CN112210756A - 一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法 - Google Patents
一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法 Download PDFInfo
- Publication number
- CN112210756A CN112210756A CN202011089908.6A CN202011089908A CN112210756A CN 112210756 A CN112210756 A CN 112210756A CN 202011089908 A CN202011089908 A CN 202011089908A CN 112210756 A CN112210756 A CN 112210756A
- Authority
- CN
- China
- Prior art keywords
- iron
- based alloy
- chromium
- alloy workpiece
- nitriding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3435—Applying energy to the substrate during sputtering
- C23C14/345—Applying energy to the substrate during sputtering using substrate bias
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
- C23C14/5813—Thermal treatment using lasers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5846—Reactive treatment
- C23C14/586—Nitriding
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/36—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
- C23C8/38—Treatment of ferrous surfaces
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Thermal Sciences (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
本发明提供一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法,该方法首先采用磁控溅射方法,在铁基合金表面沉积厚度约1μm的纯铬层;再通过激光助渗的方式使铬原子通过二者交互界面渗入铁基合金基体,渗入厚度在5μm以上;最后进行渗氮处理,在铁基合金表面形成厚度1~5μm的高铬复合渗氮层,铬的原子百分比高达20~40%,氮含量由表及里呈梯度分布,氮的原子百分比由20%以上逐渐降低至1.7%左右。制备的高铬复合渗氮层的表面硬度可达20GPa以上,复合层及基体间无明显界面,结合性好,使材料耐磨性和耐蚀性明显改善。
Description
技术领域
本发明属于表面改性技术领域,具体涉及到非平衡磁控溅射镀膜技术、激光助渗与离子渗氮技术的复合强化方式。
背景技术
铬为钢中重要的合金元素之一,特别是对于钢的耐蚀性起到决定性作用。在氧化性介质中,当铬含量大于13%,铬与氧结合能够在钢表面形成一层致密的氧化铬钝化膜,可使钢的极化电位正移,显著提高钢的耐蚀性。此外,铬的添加还能够提高钢的淬透性、强度和硬度等。含铬量在15%以上的铁铬固溶体合金,因具有良好的耐蚀性而被称为“不锈钢”,其中,奥氏体不锈钢是一种含铬量在16~30%的具有面心立方的铁碳合金,具有良好的耐蚀性和可加工性而被广泛应用汽车、管道、食品加工和化工设备等工业领域。然而,不锈钢的硬度低、耐磨性差、抗点蚀能力弱等缺点严重制约了它的应用。几十年来不断地研究发现,对不锈钢表面进行渗氮处理,可形成氮化过饱和固溶体,通过固溶强化效应提高不锈钢的摩擦学性能,硬度可提到1000HV以上。
目前的铁基合金渗氮处理方法如下:
方法一:文献1专利CN 105755427 A《一种奥氏体不锈钢及其复合等离子体强化方法》公开了一种奥氏体不锈钢电化学复合等离子体渗氮的处理方法:(1)对不锈钢表面进行预清洗,去除油污和杂质;(2)电化学处理生成纳米结构层;(3)清洗烘干;(4)低温渗氮处理。获得的氮化层硬度可达1200~1400HV,中性盐雾时间大于200h,具有较高的硬度和良好的耐蚀性能。
方法2:文献2专利CN 106637058 A《一种奥氏体不锈钢低温气体渗氮方法》公开了一种奥氏体不锈钢的低温气体渗氮方法:(1)表面钝化膜处理;(2)三阶段变温变浓度渗氮处理,即高温低浓度渗氮+低温低浓度渗氮+低温高浓度渗氮。该方法获得的渗氮层表面硬度可达到1075HV。
方法3:文献3专利CN 101386983 A《一种富Cr渗氮层的制备方法和应用》公开了一种抑制渗氮层脆性开裂的渗氮方法:首先通过控制在一定时间氨气流量、真空室压力及轰击功率进行离子渗氮,然后导入压强并进行离子轰击使得合金中的铬富集于渗氮层中而获得富铬渗氮层。该方法获得的渗氮层厚度为48μm左右,硬度在400~800HV范围内,Cr含量在20%到40%之间。
方法4:文献4《SKH51钢表面渗氮及热丝增强等离子体磁控溅射制备氮化铬涂层》公开了SKH51钢表面渗氮和制备氮化铬涂层的方法:(1)基体预处理—热丝增强等离子体磁控溅射渗氮(2)基体预处理—热丝增强等离子体磁控溅射氮化铬涂层(3)基体预处理—热丝增强等离子体磁控溅射渗氮—热丝增强等离子体磁控溅射氮化铬涂层。
方法5:文献5《等离子体增强磁控溅射渗氮及氮化铬涂层制备》公开了SKH51单一渗氮、单一沉积氮化铬涂层以及渗氮+氮化铬沉积的复合处理方法。
方法1不足:该方法只适用于奥氏体不锈钢的表面处理,为避免析出CrN破坏其耐蚀性均在低温下(~400℃)进行,该方法存在渗氮速率低,渗氮时间长,渗氮层硬度低(低于1500HV)等问题。
方法2不足:方法2同样存在方法1的问题。同时,该方法利用氨气作为气体渗氮的反应气体,需加入稀土催渗剂,不但提高了成本,还存在环境污染等问题。
方法3不足:方法3同样存在方法1的问题。同时,其渗氮层中Cr的富集来自于基体自身所含的Cr元素,这就局限于该方法只能针对含Cr量较高不锈钢,不适用于其他铁基合金。
方法4和方法5的不足:高速钢(SKH51)公开的氮化铬涂层的制备采用的方法是在基体表面生长CrN涂层,该涂层呈柱状晶结构,存在开口缺陷,腐蚀液易沿着柱状晶开口缺陷渗入基体,腐蚀基体,并使涂层剥落,起不到防腐作用。
发明内容
本发明的目的是提供一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法,该方法可以解决当渗氮温度低、时间短时,所形成固溶体固溶度低、渗氮层薄,在机械性能提高方面上受限,不能承受较大载荷;当渗氮温度高、时间长时,虽然氮化层能够承载更大的外力,但由于析出CrN相而破坏了其耐蚀性;基体表面生长CrN涂层呈柱状晶结构,存在开口缺陷,腐蚀液易沿着柱状晶开口缺陷渗入基体,腐蚀基体,并使涂层剥落,起不到防腐作用等技术问题,且适用于铁基合金,不限于不锈钢,应用范围更广。
本发明通过以下技术方案实现:
1)铁基合金工件表面清洗
将铁基合金工件放入装有丙酮的容器中,被完全浸没,然后将所述容器放入超声波清洗器中,清洗20~45min,取出所述铁基合金工件用压缩空气吹干表面后置于干燥箱中,干燥箱设定温度100~200℃,烘干10~20min。
2)铁基合金工件离子除杂
将经过步骤1)处理的铁基合金工件悬挂于等离子体增强磁控溅射设备的真空室内,开启真空抽气系统,待真空度≤3×10-3Pa后,开启加热管对真空室进行加热,先加热至150~200℃,待真空度降至≤3×10-3Pa,再加热到300~400℃,待真空度降至≤3×10-3Pa,通入140~200sccm Ar 5~10min,将真空室中残存的杂气排除;预热灯丝,调节电流至20~30A;按体积比5:4通入Ar和H2的混合气体,对基体施加负偏压-100~-400V,溅射除杂20~30min。
3)靶清洗
开启等离子体增强磁控溅射设备的靶电源,设定靶功率为1~5kW,频率50~60kHz,占空比50~80%,清洗靶表面,至靶电压稳定在350~400V。
4)沉积纯Cr层
关闭氢气,所述等离子体增强磁控溅射设备的真空室压力保持在0.5~1Pa,基体偏压调节为-50~-100V,打开挡板,对经过步骤2)处理的铁基合金工件沉积纯铬0.5~2h,之后冷却至室温取出。
5)激光助渗
经过步骤4)处理的铁基合金工件放到二氧化碳气体激光器的工作台上;调节激光器的焦距300~500mm,光斑直接2~10mm,功率400~1300W,激光探头以扫描速度300~600mm/min对所述铁基合金工件表面进行扫描,直至整个表面被均匀扫描,关闭二氧化碳气体激光器,将所述铁基合金工件在工作台上空冷至室温取出。
6)离子渗氮
经过步骤5)处理的铁基合金工件放到等离子体增强磁控溅射系统的真空室内,开启真空抽气系统,待真空度≤3×10-3Pa后,开启加热管对真空室进行加热,通入100~200sccm的N2,灯丝电流调节为24~40A,基体偏压调节为-300~-600V,温度控制在400~600℃,真空室压力保持在0.5~2Pa,渗氮处理2~8h;停止加热,保持氮气气氛下冷却至室温取出,完成铁基合金表面强耐蚀性高铬复合渗氮层制备。
所述的高铬复合渗氮层的表面硬度≥20GPa,距表面深度1~5μm内形成铬的原子百分比高达20-40%,氮含量由表及里呈梯度分布,氮的原子百分比由20%以上逐渐降低至1.7%左右。
与现有技术相比,本发明的有益效果是:
(1)本发明提出的铁基合金表面强耐蚀性高铬复合渗氮层的制备方法,首先对基体沉积纯铬层,再进行激光助渗,最后进行高温渗氮处理。通过沉积和激光助渗使基体表面铬原子百分比增加至20~40%,即使在高温渗氮过程中析出CrN,也可使基体中固溶铬原子百分比达到15%以上,保证基体的耐蚀性;另外,通过沉积和激光助渗使基体表面形成大量的缺陷,为氮原子的扩散提供了有效通道,增加氮原子的扩散速率,通过高温渗氮在基体表面形成致密且较厚的CrN或/和Cr2N氮化物膜,提高基体表面硬度,可达2000HV,同时消除晶粒间隙,基体的腐蚀速率可降低一个数量级,耐蚀性明显改善。
(2)本发明提出的铁基合金表面强耐蚀性高铬复合渗氮层的制备方法,可使Cr和N在基体表面扩散形成一个硬度梯度变化的过渡层,且无明显界面,提高了复合层的结合性能。
(3)本发明对铁基合金均适用,可使其具有“不锈”的特点。
附图说明
图1是制备高铬复合渗氮层后的AISI 316L不锈钢工件与原AISI 316L不锈钢工件的纳米硬度随深度变化曲线。
图2是制备高铬复合渗氮层后的AISI 316L不锈钢工件的洛氏压痕形貌图。
图3是制备高铬复合渗氮层后的AISI 316L不锈钢工件的截面图。
具体实施方式
【实施例】
AISI 316L不锈钢工件
1)铁基合金工件表面清洗
将铁基合金工件放入装有丙酮的容器中,被完全浸没,然后将所述容器放入超声波清洗器中,清洗30min,取出所述铁基合金工件用压缩空气吹干表面后置于干燥箱中,干燥箱设定温度200℃,烘干10min。
2)铁基合金工件离子除杂
将经过步骤1)处理的铁基合金工件悬挂于等离子体增强磁控溅射设备的真空室内,开启真空抽气系统,待真空度≤3×10-3Pa后,开启加热管对真空室进行加热,先加热至200℃,待真空度降至≤3×10-3Pa,再加热到400℃,待真空度降至≤3×10-3Pa,通入200sccm Ar10 min,将真空室中残存的杂气排除;预热灯丝,调节电流至25A;按体积比5:4通入Ar和H2的混合气体,对基体施加负偏压-300V,溅射除杂25min。
3)靶清洗
开启等离子体增强磁控溅射设备的靶电源,设定靶功率为2kW,频率50kHz,占空比50%,清洗靶表面,至靶电压稳定在375V。
4)沉积纯Cr层
关闭氢气,所述等离子体增强磁控溅射设备的真空室压力保持在0.5Pa,基体偏压调节为-100V,打开挡板,对经过步骤2)处理的铁基合金工件沉积纯铬0.75h,之后冷却至室温取出。
5)激光助渗
经过步骤4)处理的铁基合金工件放到二氧化碳气体激光器的工作台上;调节激光器的焦距400mm,光斑直接4mm,功率1000W,激光探头以扫描速度300mm/min对所述铁基合金工件表面进行扫描,直至整个表面被均匀扫描,关闭二氧化碳气体激光器,将所述铁基合金工件在工作台上空冷至室温取出;
6)离子渗氮
经过步骤5)处理的铁基合金工件放到等离子体增强磁控溅射系统的真空室内,开启真空抽气系统,待真空度≤3×10-3Pa后,开启加热管对真空室进行加热,通入200sccm的N2,灯丝电流调节为32A,基体偏压调节为-300V,温度控制在500℃,真空室压力保持在0.5Pa,渗氮处理3h;停止加热,保持氮气气氛下冷却至室温取出,完成铁基合金表面强耐蚀性高铬复合渗氮层制备。
制备高铬复合渗氮层后的AISI 316L不锈钢工件采用纳米压痕测试其表面硬度及其随深度分布,如图1所示,所述AISI 316L不锈钢工件表面硬度可达到20.37GPa(约为2078HV),且从所述AISI 316L不锈钢工件表面到基体硬度呈梯度下降;洛氏压痕形貌如图2所示,无裂纹和剥落,结合性能良好。
制备高铬复合渗氮层后的AISI 316L不锈钢工件的截面图如图3所示,最外层为Cr2N/CrN膜;渗氮层厚度约为5μm,在标记“+”处用电子能谱(EDS)测量铬的原子百分比为24.6%,氮的原子百分比为35.7%。
以上所述,仅为本发明的实例之一,并非对被发明做任何限制,凡是根据本发明技术实质上对以上实施例所作的任何修改、变更及等效变化,均仍属于本发明技术方案的保护范围。
Claims (2)
1.一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法,其特征在于:该方法具体包含步骤如下:
1)铁基合金工件表面清洗
将铁基合金工件放入装有丙酮的容器中,被完全浸没,然后将所述容器放入超声波清洗器中,清洗20~45min,取出所述铁基合金工件用压缩空气吹干表面后置于干燥箱中,干燥箱设定温度100~200℃,烘干10~20min;
2)铁基合金工件离子除杂
将经过步骤1)处理的铁基合金工件悬挂于等离子体增强磁控溅射设备的真空室内,开启真空抽气系统,待真空度≤3×10-3Pa后,开启加热管对真空室进行加热,先加热至150~200℃,待真空度降至≤3×10-3Pa,再加热到300~400℃,待真空度降至≤3×10-3Pa,通入140~200sccm Ar 5~10min,将真空室中残存的杂气排除;预热灯丝,调节电流至20~30A;按体积比5:4通入Ar和H2的混合气体,对基体施加负偏压-100~-400V,溅射除杂20~30min;
3)靶清洗
开启等离子体增强磁控溅射设备的靶电源,设定靶功率为1~5kW,频率50~60kHz,占空比50~80%,清洗靶表面,至靶电压稳定在350~400V;
4)沉积纯Cr层
关闭氢气,所述等离子体增强磁控溅射设备的真空室压力保持在0.5~1Pa,基体偏压调节为-50~-100V,打开挡板,对经过步骤2)处理的铁基合金工件沉积纯铬0.5~2h,之后冷却至室温取出;
5)激光助渗
经过步骤4)处理的铁基合金工件放到二氧化碳气体激光器的工作台上;调节激光器的焦距300~500mm,光斑直接2~10mm,功率400~1300W,激光探头以扫描速度300~600mm/min对所述铁基合金工件表面进行扫描,直至整个表面被均匀扫描,关闭二氧化碳气体激光器,将所述铁基合金工件在工作台上空冷至室温取出;
6)离子渗氮
经过步骤5)处理的铁基合金工件放到等离子体增强磁控溅射系统的真空室内,开启真空抽气系统,待真空度≤3×10-3Pa后,开启加热管对真空室进行加热,通入100~200sccm的N2,灯丝电流调节为24~40A,基体偏压调节为-300~-600V,温度控制在400~600℃,真空室压力保持在0.5~2Pa,渗氮处理2~8h;停止加热,保持氮气气氛下冷却至室温取出,完成铁基合金表面强耐蚀性高铬复合渗氮层制备。
2.一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法,其特征在于:高铬复合渗氮层的表面硬度≥20GPa,距表面深度1~5μm内形成铬的原子百分比高达20-40%,氮含量由表及里呈梯度分布,氮的原子百分比由20%以上逐渐降低至1.7%左右。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011089908.6A CN112210756B (zh) | 2020-10-13 | 2020-10-13 | 一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011089908.6A CN112210756B (zh) | 2020-10-13 | 2020-10-13 | 一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112210756A true CN112210756A (zh) | 2021-01-12 |
CN112210756B CN112210756B (zh) | 2022-09-02 |
Family
ID=74053696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011089908.6A Active CN112210756B (zh) | 2020-10-13 | 2020-10-13 | 一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112210756B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113512710A (zh) * | 2021-03-31 | 2021-10-19 | 南京航空航天大学 | 一种45钢表面CrN-Cr梯度涂层及其制备方法与应用 |
CN114196921A (zh) * | 2022-02-17 | 2022-03-18 | 中南大学湘雅医院 | 一种镁合金表面涂层及其制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102560505A (zh) * | 2010-12-17 | 2012-07-11 | 中国石油大学(华东) | 一种复合耐磨耐蚀自润滑膜层及其制备方法 |
JP2014181371A (ja) * | 2013-03-19 | 2014-09-29 | Toyota Central R&D Labs Inc | 高耐食性金属部材およびその製造方法 |
US20160115997A1 (en) * | 2013-05-28 | 2016-04-28 | Schaeffler Technologies AG & Co. KG | Coated component |
WO2018093146A1 (ko) * | 2016-11-18 | 2018-05-24 | 한국생산기술연구원 | 철계 합금의 코팅 방법 및 이에 의하여 제조된 고경도 및 저마찰 특성을 갖는 제품 |
CN108441625A (zh) * | 2018-02-07 | 2018-08-24 | 常州大学 | 一种提高离子渗氮效率的激光冲击工艺 |
CN108998816A (zh) * | 2018-08-22 | 2018-12-14 | 深圳市源盾新材料科技有限公司 | 一种氯化铵助渗的Cr/氮化复合涂层及其制备方法 |
CN109371212A (zh) * | 2018-12-17 | 2019-02-22 | 常州大学 | 一种大变形增强快速离子渗氮方法 |
CN109722623A (zh) * | 2019-03-08 | 2019-05-07 | 北京师范大学 | 一种锯片表面处理方法 |
CN111224121A (zh) * | 2020-01-15 | 2020-06-02 | 辽宁科技大学 | 一种质子交换膜燃料电池不锈钢双极板表面复合改性层原位制备方法 |
WO2020140229A1 (zh) * | 2019-01-03 | 2020-07-09 | 天王电子(深圳)有限公司 | 奥氏体不锈钢及其硬化方法 |
-
2020
- 2020-10-13 CN CN202011089908.6A patent/CN112210756B/zh active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102560505A (zh) * | 2010-12-17 | 2012-07-11 | 中国石油大学(华东) | 一种复合耐磨耐蚀自润滑膜层及其制备方法 |
JP2014181371A (ja) * | 2013-03-19 | 2014-09-29 | Toyota Central R&D Labs Inc | 高耐食性金属部材およびその製造方法 |
US20160115997A1 (en) * | 2013-05-28 | 2016-04-28 | Schaeffler Technologies AG & Co. KG | Coated component |
WO2018093146A1 (ko) * | 2016-11-18 | 2018-05-24 | 한국생산기술연구원 | 철계 합금의 코팅 방법 및 이에 의하여 제조된 고경도 및 저마찰 특성을 갖는 제품 |
CN108441625A (zh) * | 2018-02-07 | 2018-08-24 | 常州大学 | 一种提高离子渗氮效率的激光冲击工艺 |
CN108998816A (zh) * | 2018-08-22 | 2018-12-14 | 深圳市源盾新材料科技有限公司 | 一种氯化铵助渗的Cr/氮化复合涂层及其制备方法 |
CN109371212A (zh) * | 2018-12-17 | 2019-02-22 | 常州大学 | 一种大变形增强快速离子渗氮方法 |
WO2020140229A1 (zh) * | 2019-01-03 | 2020-07-09 | 天王电子(深圳)有限公司 | 奥氏体不锈钢及其硬化方法 |
CN109722623A (zh) * | 2019-03-08 | 2019-05-07 | 北京师范大学 | 一种锯片表面处理方法 |
CN111224121A (zh) * | 2020-01-15 | 2020-06-02 | 辽宁科技大学 | 一种质子交换膜燃料电池不锈钢双极板表面复合改性层原位制备方法 |
Non-Patent Citations (1)
Title |
---|
何卫锋等: "激光冲击波增强38CrMoAl钢渗氮耐磨性能研究", 《材料科学与工艺》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113512710A (zh) * | 2021-03-31 | 2021-10-19 | 南京航空航天大学 | 一种45钢表面CrN-Cr梯度涂层及其制备方法与应用 |
CN114196921A (zh) * | 2022-02-17 | 2022-03-18 | 中南大学湘雅医院 | 一种镁合金表面涂层及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112210756B (zh) | 2022-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112210756B (zh) | 一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法 | |
Renevier et al. | Low temperature nitriding of AISI 316L stainless steel and titanium in a low pressure arc discharge | |
CN106244986B (zh) | 功能梯度的类金刚石碳薄膜及其制备方法和制品 | |
CN111074224B (zh) | 一种耐腐蚀高熵合金氮化物涂层、其制备方法及应用 | |
CN111224121B (zh) | 一种质子交换膜燃料电池不锈钢双极板表面复合改性层原位制备方法 | |
CN111850470B (zh) | 一种超滑性能金属/含氢碳复合薄膜及其制备方法 | |
CN106119783B (zh) | 功能梯度的类金刚石碳薄膜及其制备方法和制品 | |
CN110551992A (zh) | 一种在超级马氏体不锈钢表面制备dlc薄膜的方法 | |
JP4122387B2 (ja) | 複合硬質皮膜、その製造方法及び成膜装置 | |
CN110468384B (zh) | 一种单晶高温合金和涂层界面的阻扩散层及其制备方法 | |
Stoiber et al. | Plasma-assisted pre-treatment for PACVD TiN coatings on tool steel | |
CN113512710A (zh) | 一种45钢表面CrN-Cr梯度涂层及其制备方法与应用 | |
US20200199734A1 (en) | Magnesium alloy surface coating method and corrosion-resistant magnesium alloy prepared thereby | |
CN113072063A (zh) | 基于氢储运设备内表面的阻氢涂层及制备方法 | |
US20060086439A1 (en) | Clean atmosphere heat treat for coated turbine components | |
CN1804101A (zh) | 精纺机钢领的表面处理方法 | |
CN109913794B (zh) | 一种奥氏体不锈钢耐蚀强化的方法 | |
Sanchette et al. | Single cycle plasma nitriding and hard coating deposition in a cathodic arc evaporation device | |
FR2705692A1 (fr) | Procédé pour augmenter la résistance à l'usure de la surface d'une pièce et pièce traitée selon ce procédé. | |
CN114262863A (zh) | 一种高耐磨耐蚀性绿色高效多元离子共渗表面改性方法 | |
CN114351087A (zh) | 一种CrAlVSiN涂层的制备方法 | |
JPH07233461A (ja) | 耐食性に優れたステンレス鋼板の製造方法 | |
EP0707661B1 (fr) | Procede pour la nitruration a basse pression d'une piece metallique et four pour la mise en uvre dudit procede | |
CN112941461A (zh) | 一种复合超硬强韧涂层材料以及制备方法 | |
Kovács et al. | Effects of plasma nitriding on tempered steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |