CN111850470B - 一种超滑性能金属/含氢碳复合薄膜及其制备方法 - Google Patents
一种超滑性能金属/含氢碳复合薄膜及其制备方法 Download PDFInfo
- Publication number
- CN111850470B CN111850470B CN202010774372.5A CN202010774372A CN111850470B CN 111850470 B CN111850470 B CN 111850470B CN 202010774372 A CN202010774372 A CN 202010774372A CN 111850470 B CN111850470 B CN 111850470B
- Authority
- CN
- China
- Prior art keywords
- hydrogen
- film
- carbon
- metal
- argon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
- C23C14/352—Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0605—Carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0664—Carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
- C23C14/185—Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/221—Ion beam deposition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3485—Sputtering using pulsed power to the target
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/515—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及一种超滑性能金属/含氢碳复合薄膜,包括沉积在基材或者零部件表面的含氢碳薄膜及沉积在含氢碳薄膜表面的金属薄膜(金、银、铜等),其中碳薄膜含氢量为15~28%的含氢碳薄膜,厚度为800nm,金属薄膜厚度≤100nm。本发明通过等离子化学气相沉积、磁控溅射等调制的目标含氢碳薄膜,再通过高功率微脉冲磁控溅射或蒸发镀的方式负载金属,得到超滑性能金/含氢碳复合薄膜。在摩擦过程中,金属能够催化非晶含氢碳形成有序多层石墨烯结构,而多层石墨烯的非公度接触,能够实现在宏观尺度大气环境下、惰性气氛和真空下的超滑,因此,有望实现跨环境条件下超滑技术的工程应用。
Description
技术领域
本发明涉及一种含氢碳复合薄膜的制备,尤其涉及一种超滑性能金属/含氢碳复合薄膜及其制备方法,属于固体润滑和摩擦学领域。
背景技术
摩擦伴随着生命的起源和人类社会的发展,进入21世纪,摩擦与润滑已经成为人类文明发展和科技进步不可分割的重要部分。世界上使用的一次能源大约有1/3~1/2消耗于摩擦,机械产品的易损零件80%是由于磨损超过限度而报废和更换的。磨损不仅是材料的损耗失效,摩擦所造成的能源浪费和污染物的排放也是非常严峻的问题。据报道,在工业国家23%的能源因摩擦而消耗。其中,80%的机械组件的失效由磨损导致;损失高达GDP的5%~7%。
摩擦磨损在航空航天领域扮演着重要角色,不良润滑限制一些搭载任务的进行,制约航天重大装备的长寿命,高可靠服役以及我国高端装备的升级换代与性能升级。1990年日本科学家Hirano 和 Shinjo 首次提出了超滑的概念。事实上,早在1971,英国卡文迪许试验室的Skinner就报道了石墨表面低至0.005的摩擦系数(Nature, 232(1971)195)。1971年英国剑桥大学的J. Skinner等人首次观测到了W探针与石墨在微观尺度上作用的超滑现象(Nature Physical Science, 1971, 232, 195–196)。2007年在纳米尺度上实现了超滑,2004年M. Dienwiebel等人实现了纳米尺度上的超滑(Phys.Rev.Lett.92,126101, 2004),2012年清华大学郑泉水教授在微观尺度上观测到了多层石墨的自缩回现象,实现了微观尺度的超滑(Phys. Rev. Lett.,2012, 108, 205503)。后来又发现了双壁碳纳米管的超滑(Nature Nanotechnology, 2013, 8(12):912-916),郑泉水和魏飞等人进一步研究,利用厘米级碳纳米管将超润滑尺度从微米级扩大到了厘米级别(Nano Lett.20161621367- 1374; Phys. Rev. Lett. 97, 025501),但实现超滑条件苛刻,且仍然是在微观尺度上的超滑。而由于在宏观尺度上制备大面积的单晶石墨还不能实现,且对环境依赖大,因此,基于石墨烯和碳纳米管的宏观尺度超滑难以实现工程应用。
发明内容
本发明的目的是提供一种超滑性能金属/含氢碳复合薄膜及其制备方法。
本发明设计的一种超滑性能金属/含氢碳复合薄膜,包括沉积在基材或者零部件表面的含氢碳薄膜及沉积在含氢碳薄膜表面的金属薄膜。其中含氢碳薄膜的氢含量为15~28%,厚度为800nm。金属薄膜为Pt、Pd、Ag、Ir、Cu薄膜,金属薄膜的厚度≤100nm。
为了增强基材与复合膜的结合力,在基材表面设计有碳氮化金属过渡层,其厚度为300nm。
本发明超滑性能金/含氢碳复合薄膜的制备方法,包括以下步骤:
(1)将需要镀膜的基材或者零部件分别用水基清洗液、碳氢清洗液在超声清洗槽中清洗后用氮气吹干,置入镀膜真空室。
(2)利用空心阴极离子源进行高强度的气体离子轰击清洗:将镀膜真空室抽至2.0×10-3 Pa及以下,打开空心阴极离子源,调整电流至200~400A,偏压500~800V;通入氩气,气压保持在1~5Pa,轰击清洗20~30分钟,进一步去除样件或基底表面污染物,有利于提高膜基结合力。
(3)沉积碳氮化金属过渡层:采用高功率微脉冲磁控溅射制备碳氮化金属过渡层:金属靶材是Cr、Ti金属,调整峰值电流为200A,偏压300~500V,氩气调整至0.5~1.5Pa,沉积20~40分钟;然后通入氮气、甲烷,保持各工艺参数不变,沉积40~60分钟,在基材表面获得碳氮化金属过渡层;其中,氮气的通入量为氩气10~15%,甲烷通入量为氩气25~35%。
(4)沉积含氢碳薄膜:反应磁控溅射沉积或高功率脉冲离子源辅助化学气相沉积方式,在碳氮化金属过渡层表面获得含氢碳薄膜。含氢碳薄膜的厚度为800nm,氢含量为15~28%。
反应磁控溅射沉积工艺:关闭氮气,持续通入甲烷和氩气比例,并控制甲烷和氩气气流比在1:1~1:1.2。
采用离子源辅助化学气相沉积工艺:关闭氮气,打开离子源,调整离子源电压为800~1500V;持续通入甲烷和氩气,并控制甲烷和氩气流量比为1:1~1:1.2,然后通入氢气,使甲烷和氢气气流比为1:1,沉积时间90~150分钟,获得含氢碳薄膜。
(5)沉积金属薄膜:采用磁控溅射金属靶或离子束蒸发镀膜的方式,在含氢碳薄膜表面沉积贵金属薄膜,即获得超滑性能金属/含氢碳复合薄膜。
采用磁控溅射金属靶沉积金属薄膜的工艺:金属靶材为Pt、Pd、Ag、Ir、Cu,调整靶电流0.5~5A,氩气1Pa,偏压为0~200V,沉积1~10min。贵金属薄膜的厚度≤100nm。
采用离子束蒸发镀金属膜的工艺:金属离子束为Pt、Pd、Ag、Ir、Cu,调整离子束流0.1~1A,沉积时间1~5min。金属薄膜的厚度≤100nm。
在CSM摩擦机中进行摩擦学性能检测,结果显示:本发明制备的金属/含氢碳复合薄膜能够在摩擦过程中催化形成有序多层石墨烯结构,而多层石墨烯非公度接触,能够实现在宏观尺度大气环境下、惰性气氛和真空下的超滑(摩擦系数<0.01),远低于传统的0.1数量级(见表1),因此,有望实现跨环境条件下超滑技术的工程应用。
本发明与现有技术相比以下优点:
1、本发明通过等离子化学气相沉积、磁控溅射等调制的目标含氢碳薄膜,再通过磁控溅射或蒸发镀的方式负载金属,得到超滑性能金/含氢碳复合薄膜,由于金属能够催化非晶含氢碳形成石墨纳米结构,形成多层石墨烯的非公度接触,进而实现多环境超滑;
2、本发明薄膜制备采用的磁控溅射,离子源辅助化学气相沉积、蒸发镀等方法,均可以实现工程零部件表面的制备(米量级),克服了直接使用石墨烯难以在大尺寸零件均匀和可控制备的难题,易于实现工程化应用;
3、采用高功率微脉冲磁控溅射技术沉积结合层,不同于传统脉冲磁控溅射和传统高功率脉冲磁控溅射(占空比5%),高功率微脉冲由高功率脉冲群波组成,群波占空比10-50%可调,群波内波峰由内频率及面积共同调制,极大提高了薄膜结合力,进而提高了超滑薄膜的使用寿命。
附图说明
图1为本发明制备的Au-含氢碳复合薄膜超滑的摩擦系数图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细的说明。
实施例1
(1)将不锈钢基材分别用水基清洗液、碳氢清洗液在超声清洗槽中清洗,去除油污、锈点和污染物,然后用氮气吹干,置入镀膜真空室;
(2)依次通过机械泵、罗茨泵、分子泵将真空系统抽至2 .0×10-3 Pa及以下,打开空心阴极离子源,调整电流至400A,偏压500;通入氩气,气压保持在1Pa,轰击清洗200分钟,进一步去除基材表面污染物;
(3)打开磁控溅射靶(靶材是Cr金属),调整峰值电流为200A,偏压300 V,氩气调整至0.5Pa,沉积20分钟;通入15%氮气、35%的甲烷(同氩气相比较),调整电流15A,偏压300V,氩气调整至0.5,沉积40分钟,在基材表面获得碳氮化金属过渡层;
(4)关闭氮气,持续加入甲烷和氩气至甲烷和氩气的流量比为1:1.2,然后通入氢气,使甲烷和氢气的流量比为1:1;沉积时间90分钟,获得氢含量为15%的含氢碳薄膜;
(6)采用磁控溅射金靶沉积金属薄膜:靶材为Au;整靶电流5A,氩气1Pa,偏压为200V,沉积1分钟,在含氢碳薄膜表面沉积厚度为100nm的金薄膜,即获得超滑性能的金/含氢碳复合薄膜。
利用CSM往复摩擦试验机在真空条件,5N下测试,获得超滑摩擦系数0.005。
实施例2
(1)将模具钢基材分别用水基清洗液、碳氢清洗液在超声清洗槽中清洗,去除油污、锈点和污染物,然后用氮气吹干,置入镀膜真空室;
(2)依次通过机械泵、罗茨泵、分子泵将真空系统抽至2 .0×10-3 Pa及以下,打开空心阴极离子源,调整电流至200A,偏压800V。通入氩气,气压保持在5Pa,轰击清洗30分钟,进一步去除样件或基底表面污染物;
(3)打开磁控溅射靶(靶材是Ti),调整峰值电流为200A,偏压300-500V,氩气调整至1.5Pa,沉积40分钟;通入10%氮气、25-35%的甲烷(同氩气相比较),调整电流0.5-15A,偏压300-500V,氩气调整至0.5-1.5Pa,沉积40-60分钟,在基材表面获得碳氮化金属过渡层;
(4)采用离子源辅助化学气相沉积含氢碳薄膜,关闭氮气,打开离子源,调整离子源电压未800-1500V,持续加入甲烷和氩气,使甲烷和氩气的流量比至1:1,然后通入氢气,控制甲烷和氢气的流量比为1:1,沉积时间150分钟,获得氢含量为28%的含氢碳薄膜;
(5)采用离子束蒸发镀金膜:离子束为金Au,离子束流0.1A,沉积时间5min,在含氢碳薄膜表面沉积厚度为60nm的金薄膜,即获得超滑性能的金/含氢碳复合薄膜。
利用CSM往复摩擦试验机在真空条件,9N下测试,获得超滑摩擦系数0.004。
实施例3
(1)将硅片基材分别用水基清洗液、碳氢清洗液在超声清洗槽中清洗,去除油污、锈点和污染物,然后用氮气吹干,置入镀膜真空室;
(2)依次通过机械泵、罗茨泵、分子泵将真空系统抽至2 .0×10-3 Pa及以下,打开空心阴极离子源,调整电流至300A,偏压600V。通入氩气,气压保持在3Pa,轰击清洗30分钟,进一步去除样件或基底表面污染物;
(3)打开磁控溅射靶(靶材是Ti),调整峰值电流为200A,偏压300-400V,氩气调整至1Pa,沉积30分钟;通入15%氮气、255%的甲烷(同氩气相比较),调整电流6A,偏压500V,氩气调整至1.5Pa,沉积40分钟,在基材表面获得碳氮化金属过渡层;
(4)关闭氮气,持续加入甲烷和氩气至甲烷和氩气的流量比为1:1.2,然后通入氢气,使甲烷和氢气的流量比为1:1,沉积时间120分钟,获得氢含量为20%的含氢碳薄膜;
(5)采用离子束蒸发镀膜:离子束为Au,离子束流1A,沉积时间1min,在含氢碳薄膜表面沉积厚度为30nm的金薄膜,即获得超滑性能的金/含氢碳复合薄膜。
利用CSM往复摩擦试验机在干燥大气条件,5N下测试,获得超滑摩擦系数0.007。
实施例4
(1)将不锈钢基材分别用水基清洗液、碳氢清洗液在超声清洗槽中清洗,去除油污、锈点和污染物,然后用氮气吹干,置入镀膜真空室;
(2)依次通过机械泵、罗茨泵、分子泵将真空系统抽至2 .0×10-3 Pa及以下,打开空心阴极离子源,调整电流至400A,偏压800V。通入氩气,气压保持在3Pa,轰击清洗30分钟,进一步去除样件或基底表面污染物;
(3)打开磁控溅射靶(靶材是Cr),调整电流12A,偏压400V,氩气调整至1.5Pa,沉积25分钟;通入12%氮气、25-35%的甲烷(同氩气相比较),调整电流7A,偏压500V,氩气调整至1.5Pa,沉积50分钟,在基材表面获得碳氮化金属过渡层;
(4)采用离子源辅助化学气相沉积含情碳薄膜:关闭氮气,打开离子源,调整离子源电压未1500V,持续加入甲烷和氩气至比例流量比1:1.2,然后通入氢气,使甲烷和氢气流量比为1:2,沉积时间100分钟,获得氢含量为25%的含氢碳薄膜;
(5)采用磁控溅射金靶沉积金薄膜:靶材为金(Au),调整靶电流2A,氩气1Pa,偏压为0V,沉积5min,在含氢碳薄膜表面沉积厚度为100nm的金薄膜,即获得超滑性能的金/含氢碳复合薄膜。
利用CSM往复摩擦试验机在干燥大气条件,9N下测试,获得超滑摩擦系数0.005。
实施例5
(1)将基材9Cr18Mo分别用水基清洗液、碳氢清洗液在超声清洗槽中清洗,去除油污、锈点和污染物,然后用氮气吹干,置入镀膜真空室;
(2)依次通过机械泵、罗茨泵、分子泵将真空系统抽至2 .0×10-3 Pa及以下,打开空心阴极离子源,调整电流至400A,偏压500V。通入氩气,气压保持在1 Pa,轰击清洗30分钟,进一步去除样件或基底表面污染物;
(3)打开磁控溅射靶(靶材是Ti),调整电流5A,偏压500V,氩气调整至0.5,沉积25分钟。通入15%氮气、25-35%的甲烷(同氩气相比较),调整电流10A,偏压300-500V,氩气调整至0.5Pa,沉积60分钟,在基材表面获得碳氮化金属过渡层;
(4)采用反应磁控溅射沉积含氢碳薄膜,关闭氮气,持续加入甲烷和氩气比例(流量比1:1.1,然后通入氢气,使甲烷和氢气流量比为1:1,沉积时间100分钟,获得氢含量18%的含氢碳薄膜;
(5)采用离子束蒸发镀膜:离子束Au,离子束流1A,沉积时间3min,在含氢碳薄膜表面沉积厚度为70nm的金薄膜,即获得超滑性能的金/含氢碳复合薄膜。
利用CSM往复摩擦试验机在氩气条件,5N下测试,获得超滑摩擦系数0.002。
实施例6
(1)将碳化硅基材分别用水基清洗液、碳氢清洗液在超声清洗槽中清洗,去除油污、锈点和污染物,然后用氮气吹干,置入镀膜真空室;
(2)依次通过机械泵、罗茨泵、分子泵将真空系统抽至2 .0×10-3 Pa及以下,打开空心阴极离子源,调整电流至300A,偏压600V。通入氩气,气压保持在3Pa,轰击清洗30分钟,进一步去除样件或基底表面污染物;
(3)打开磁控溅射靶(靶材是Cr),调整电流10A,偏压3450V,氩气调整至1Pa,沉积40分钟;通入13%氮气、255%的甲烷(同氩气相比较),调整电流10A,偏压300-500V,氩气调整至1Pa,沉积40分钟,在基材表面获得碳氮化金属过渡层;
(4)采用离子源辅助化学气相沉积含氢碳薄膜,关闭氮气,打开离子源,调整离子源电压未1500V,持续加入甲烷和氩气流量比1:1,然后通入氢气,使甲烷和氢气比例流量比为1:1,沉积时间130分钟,获得氢含量为25%的含氢碳薄膜;
(5)采用磁控溅射金靶沉积金薄膜:靶材Au,调整靶电流5A,氩气1Pa,偏压为100V,沉积2min,在含氢碳薄膜表面沉积厚度为100nm的金薄膜,即获得超滑性能的金/含氢碳复合薄膜。
利用CSM往复摩擦试验机在氩气条件,9N下测试,获得超滑摩擦系数0.004。
实验表明,将上述实施例中的金(Au)薄膜采用面心立方晶格的贵金属(如Pt、Pd、Ag、Ir、Cu等。)代替,同样可以获得超滑性能的金金属/含氢碳复合薄膜。
Claims (2)
1.一种超滑性能贵金属/含氢碳复合薄膜的制备方法,由以下步骤组成:
(1)将需要镀膜的基材或者零部件分别用水基清洗液、碳氢清洗液在超声清洗槽中清洗后用氮气吹干,置入镀膜真空室;
(2)利用高功率脉冲空心阴极离子源进行高强度的气体离子轰击清洗:将镀膜真空室抽至2.0×10-3 Pa及以下,打开空心阴极离子源,调整电流至200~400A,偏压500~800V;通入氩气,气压保持在1~5Pa,轰击清洗20~30分钟,进一步去除基材或者零部件表面污染物;
(3)沉积碳氮化金属过渡层:采用高功率微脉冲磁控溅射制备碳氮化金属过渡层:金属靶材为Cr、Ti,调整峰值电流为200A,偏压300~500V,氩气调整至0.5~1.5Pa,沉积20~40分钟;然后通入氮气、甲烷,保持工艺参数不变,沉积40~60分钟,在基材表面获得碳氮化金属过渡层;氮气的通入量为氩气10~15%,甲烷通入量为氩气25~35%;
(4)沉积含氢碳薄膜:反应磁控溅射沉积或高功率脉冲离子源辅助化学气相沉积方式,在碳氮化金属过渡层表面获得含氢碳薄膜;所述反应磁控溅射沉积工艺:关闭氮气,持续通入甲烷和氩气,且控制甲烷和氩气流量比在1:1~1:1.2,然后通入氢气,使甲烷和氢气的流量比为1:1,沉积时间90~150分钟,获得含氢碳薄膜;所述采用高功率脉冲空心离子源辅助化学气相沉积工艺:关闭氮气,打开离子源,调整离子源电压为800~1500V;持续通入甲烷和氩气,并控制甲烷和氩气流量比在1:1~1:1.2,然后通入氢气,使甲烷和氢气流量比为1:1,沉积时间90~150分钟,获得含氢碳薄膜;
(5)沉积贵金属薄膜:采用磁控溅射金属靶或离子束蒸发镀膜的方式,在含氢碳薄膜表面沉积贵金属薄膜,即获得超滑性能的贵金属/含氢碳复合薄膜;采用磁控溅射金属靶沉积贵金属薄膜的工艺:贵金属靶材为Pt、Pd、Ag、Ir,调整靶电流0.5~5A,氩气流量50sccm,气压为1Pa,偏压为0~200V,沉积1~10min;采用离子束蒸发镀贵金属膜的工艺:贵金属离子束为Pt、Pd、Ag、Ir;调整离子束流0.1~1A,沉积时间1~5min;上述制备的贵金属/含氢碳复合薄膜能够在摩擦过程中催化形成有序多层石墨烯结构。
2.如权利要求1所述方法制备的超滑性能贵金属/含氢碳复合薄膜,包括沉积在基材或者零部件表面的碳氮化金属过渡层,含氢碳薄膜及沉积在含氢碳薄膜表面的贵金属薄膜;碳氮化金属过渡层的厚度为300nm;含氢碳薄膜的氢含量为15~28%,厚度为800nm;贵金属薄膜为Pt、Pd、Ag、Ir薄膜,贵金属薄膜的厚度≤100nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010774372.5A CN111850470B (zh) | 2020-08-04 | 2020-08-04 | 一种超滑性能金属/含氢碳复合薄膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010774372.5A CN111850470B (zh) | 2020-08-04 | 2020-08-04 | 一种超滑性能金属/含氢碳复合薄膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111850470A CN111850470A (zh) | 2020-10-30 |
CN111850470B true CN111850470B (zh) | 2021-11-19 |
Family
ID=72953198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010774372.5A Active CN111850470B (zh) | 2020-08-04 | 2020-08-04 | 一种超滑性能金属/含氢碳复合薄膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111850470B (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115821206A (zh) * | 2022-12-08 | 2023-03-21 | 中国科学院宁波材料技术与工程研究所 | 一种异质多层结构的超厚碳基复合涂层及其制法与应用 |
CN115896695B (zh) * | 2023-01-09 | 2023-06-23 | 北京华锐臻隆技术有限公司 | 耐氙灯测试的复合板材及其镀膜方法 |
CN118407020A (zh) * | 2024-07-02 | 2024-07-30 | 成都中云世纪科技有限责任公司 | 一种飞机起落架内孔耐磨自润滑涂层的制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101665942A (zh) * | 2008-09-04 | 2010-03-10 | 中国科学院兰州化学物理研究所 | 超润滑复合碳薄膜材料的制备方法 |
CN106119783A (zh) * | 2016-08-08 | 2016-11-16 | 珠海罗西尼表业有限公司 | 功能梯度的类金刚石碳薄膜及其制备方法和制品 |
CN107541713A (zh) * | 2017-07-14 | 2018-01-05 | 上海大学 | 载能离化原子团束辅助化学气相沉积制备dlc薄膜的方法及其系统 |
CN109722642A (zh) * | 2017-10-30 | 2019-05-07 | 深圳先进技术研究院 | 设有金刚石/石墨烯复合润滑膜的工件及其制备方法 |
US10717653B2 (en) * | 2017-11-08 | 2020-07-21 | Vaon, Llc | Graphene production by the thermal release of intrinsic carbon |
-
2020
- 2020-08-04 CN CN202010774372.5A patent/CN111850470B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101665942A (zh) * | 2008-09-04 | 2010-03-10 | 中国科学院兰州化学物理研究所 | 超润滑复合碳薄膜材料的制备方法 |
CN106119783A (zh) * | 2016-08-08 | 2016-11-16 | 珠海罗西尼表业有限公司 | 功能梯度的类金刚石碳薄膜及其制备方法和制品 |
CN107541713A (zh) * | 2017-07-14 | 2018-01-05 | 上海大学 | 载能离化原子团束辅助化学气相沉积制备dlc薄膜的方法及其系统 |
CN109722642A (zh) * | 2017-10-30 | 2019-05-07 | 深圳先进技术研究院 | 设有金刚石/石墨烯复合润滑膜的工件及其制备方法 |
US10717653B2 (en) * | 2017-11-08 | 2020-07-21 | Vaon, Llc | Graphene production by the thermal release of intrinsic carbon |
Also Published As
Publication number | Publication date |
---|---|
CN111850470A (zh) | 2020-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111850470B (zh) | 一种超滑性能金属/含氢碳复合薄膜及其制备方法 | |
CN110797545B (zh) | 一种金属双极板及其制备方法以及燃料电池 | |
CN105047958B (zh) | 用于燃料电池金属极板的石墨烯复合涂层及其制备方法 | |
US8597731B2 (en) | Method for applying a diamond layer onto a graphite substrate | |
CN110808384B (zh) | 一种金属双极板及其制备方法以及燃料电池 | |
WO2010087102A1 (ja) | ダイヤモンドライクカーボン膜の製造方法 | |
CN106129422B (zh) | 提高燃料电池金属双极板表面镀层致密和耐腐蚀的方法 | |
Chaus et al. | Improving the mechanical property of amorphous carbon films by silicon doping | |
Xi et al. | Corrosion behavior of TaC/Ta composite coatings on C17200 alloy by plasma surface alloying and CVD carburizing | |
JP5099693B2 (ja) | 非晶質炭素膜及びその成膜方法 | |
Ding et al. | Microstructure, mechanical, and wettability properties of Al-doped diamond-like films deposited using a hybrid deposition technique: Bias voltage effects | |
CN110468384B (zh) | 一种单晶高温合金和涂层界面的阻扩散层及其制备方法 | |
KR101968604B1 (ko) | 그래핀이 코팅된 스테인리스 스틸(sus) 지지체 및 이의 제조 방법 | |
Liu et al. | Enhanced anti-tribocorrosion property of aC film under high hydrostatic pressure by high power pulsed magnetron sputter (HiPIMS) | |
CN113621926A (zh) | 一种低应力类金刚石耐磨涂层及其制备方法 | |
CN112210756B (zh) | 一种铁基合金表面强耐蚀性高铬复合渗氮层的制备方法 | |
CN110783594B (zh) | 一种金属双极板及其制备方法以及燃料电池 | |
Li et al. | Adherent and smooth diamond film deposited on stainless steel by using AlSiN interlayers | |
Ye et al. | Effects of anode layer linear ion source on the microstructure and mechanical properties of amorphous carbon nitride films | |
CN108396306A (zh) | 一种低温沉积硬度可控的类金刚石复合薄膜的方法 | |
CN113072063A (zh) | 基于氢储运设备内表面的阻氢涂层及制备方法 | |
CN111575665B (zh) | 一种纳米羰基金属复合超滑含氢碳薄膜的制备方法 | |
CN113403577B (zh) | 一种改善Cu基体与碳基薄膜结合力的方法 | |
WO2015068655A1 (ja) | Dlc皮膜の成膜方法 | |
Zhang et al. | Effect of heat treatment at 1300° C on W coating prepared by double-glow plasma on carbon/carbon composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |