JP2014180250A - 生化学カートリッジ用温調機構、温調ブロック及び生化学処理装置 - Google Patents

生化学カートリッジ用温調機構、温調ブロック及び生化学処理装置 Download PDF

Info

Publication number
JP2014180250A
JP2014180250A JP2013057480A JP2013057480A JP2014180250A JP 2014180250 A JP2014180250 A JP 2014180250A JP 2013057480 A JP2013057480 A JP 2013057480A JP 2013057480 A JP2013057480 A JP 2013057480A JP 2014180250 A JP2014180250 A JP 2014180250A
Authority
JP
Japan
Prior art keywords
temperature control
biochemical cartridge
control mechanism
biochemical
concave structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013057480A
Other languages
English (en)
Other versions
JP6012518B2 (ja
Inventor
Junji Ishizuka
隼司 石塚
Motohiro Yamazaki
基博 山崎
Takamichi Muramatsu
高道 村松
Ryusuke Kimura
隆介 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2013057480A priority Critical patent/JP6012518B2/ja
Publication of JP2014180250A publication Critical patent/JP2014180250A/ja
Application granted granted Critical
Publication of JP6012518B2 publication Critical patent/JP6012518B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

【課題】空気圧により変形可能な弾性体であるメンブレンの変形により形成される反応部と温調ブロックの凹構造とを密着させ、効率的な熱交換を実現する。
【解決手段】生化学カートリッジ用温調機構に、空気圧により変形可能な弾性体であるメンブレンが表面に貼りつけられた生化学カートリッジの装着時に、前記生化学カートリッジ側に形成された流路の開口端と前記メンブレンを挟んで対向する反応部形成用の凹構造と、前記凹構造の内周面に設けられる空気吸引用の少なくとも1つの開口と、前記開口に接続された管路とが形成された温調ブロックと、前記管路を通じて前記溝内の空気圧を制御するポンプとを設ける。
【選択図】図3

Description

本発明は、PCR(Polymerase Chain Reaction)法により、DNA(deoxyribonucleic acid)断片を増幅するのに適した生化学カートリッジ用温調機構、温調ブロック及び生化学処理装置に関する。
近年、マイクロ流体デバイスの微小空間内でサンプルと試薬を反応させ、化学反応(生体物質の抽出、精製、増幅等)及び分析等を行う研究が進められている。マイクロ流体デバイスは、遺伝子解析等の幅広い用途に応用できる。さらに、マイクロ流体デバイスの使用には、(1) 通常装置と比較してサンプル及び試薬の消費量が少なく済む、(2) 様々な試薬をセットする場合と比べて持ち運びが容易である、(3)使い捨てが出来る等の利点がある。
遺伝子解析では、生物等から取得したサンプルからDNAやRNA(ribonucleic acid)といった核酸を抽出して増幅する等の生化学処理や反応が必要とされる。これらの処理や反応の中には、温度が重要な要素となる場合があり、必要に応じてサンプルの加熱又は冷却が必要となる。
温度が重要な要素となる生化学処理や反応の例としてPCRがある。PCRは、酵素連鎖反応と呼ばれ、DNAを増幅する分子生物学上の重要な技術である。PCRでは、適切に調整した反応溶液に3段階又は2段階の温度サイクルを与え、DNAを増幅する。温度サイクルとは、熱変性、アニーリング、伸長と呼ばれる異なった温度の状態を繰り返す操作であり、それぞれ95℃近辺、60℃近辺、72℃近辺の温度が用いられる。各温度を維持する時間は、数秒から数分間である。サイクル数は一般に30前後である。
通常のPCRにかかる時間は、およそ90分程度である。PCRにかかる時間を短くするために、各温度での維持時間を短くし、PCRにかかる時間を30〜45分へ短縮したFastPCRが考案されている。さらなる維持時間の短縮には、反応液を素早く目的温度に変化させることが必要となる。一方、遺伝子解析等の目的でPCRを行う場合、解析対象としないDNAの混入を防ぐ必要がある。もし、解析対象としないDNAがPCR時に外部から混入すると、混入したDNAも増幅されてしまうためである。このため、マイクロ流体デバイスでは、外部と遮断した密閉系で試薬の調整やPCR等を操作可能な構造が採用されており、コンタミネーションの可能性を低下させている。マイクロ流体デバイス上でのサンプル流体の加熱及び冷却には、例えば特許文献1に記載の温調機構が用いられる。
特開2011−30522号公報
特許文献1に開示の温調機構は、サンプル温度を調整する凹陥部を断面半円状に形成し、サンプルの注入に伴って自重変形したメンブレン層と凹陥部との接触を通じてサンプル温度の調整を実現する。しかし、この手法の場合、メンブレン層と凹陥部の内周面の全域とが必ずしも密着するとは限らず、サンプル流体との熱交換に支障が出る可能性がある。そこで、本発明は、サンプル流体との間で効率的に熱交換できる生化学カートリッジ用温調機構を提供する。
本発明に係る生化学カートリッジ用温調機構は、空気圧により変形可能な弾性体であるメンブレンが表面に貼りつけられた生化学カートリッジの装着を想定する。本発明は、上記課題を解決するために、前記生化学カートリッジの装着時に、生化学カートリッジ側に形成された流路の開口端とメンブレンを挟んで対向する反応部形成用の凹構造と、前記凹構造の内周面に設けられる少なくとも1つの空気吸引用の開口と、前記開口に接続された管路とが形成された温調ブロックと、前記管路を通じて前記凹構造から空気を吸引するポンプとを有する。
本発明によれば、温調ブロック側の凹構造に密着させるようにメンブレンを変形させて反応部を形成でき、メンブレン内に保持される反応液の温度を効率的に調整することができる。前述した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
実施例に係る前処理一体型キャピラリ電気泳動装置の構成例を示す図。 実施例に係る前処理機構の構成例を示す図。 実施例に係る反応部前後の構成を説明する図。 実施例に係る温調機構の概略的な平面構成を説明する図。 実施例に係る反応ウェルとその周辺の構成例を説明する拡大図。 実施例に係る温調機構のA-A’断面図。 実施例に係る温調機構のB-B’断面図。 実施例に係る温調部への送液方法の一例を示すフローチャート。 実施例に係る温調部への送液を説明する図。 実施例に係る温調部への送液方法の一例を示すフローチャート。 実施例に係る温調部への送液方法の一例を示すフローチャート。 実施例に係る温調部からの送液を説明する図。 実施例2に係る温調機構の構成を説明する図。
以下、図面に基づいて、本発明の実施の形態を説明する。なお、本発明の実施の態様は、後述する実施例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。
〔実施例1〕
(装置の全体構成)
本実施例では、生化学処理装置の一例として、DNAの解析に使用される前処理一体型キャピラリ電気泳動装置について説明する。図1に、前処理一体型キャピラリ電気泳動装置1の構成例を示す。前処理一体型キャピラリ電気泳動装置1は、前処理部2と分析部3で構成される。前処理部2は、反応液からDNAを抽出して増幅する前処理を実行し、分析部3は、前処理部2で処理されたDNAをキャピラリ電気泳動により分析する。前処理部2の詳細構成については後述する。分析部3は、キャピラリ5と、検出部6と、オーブン8と、高圧電源9を有する。
前処理一体型キャピラリ電気泳動装置1は、前処理の終了後、オートサンプラ4を通じて前処理部2を水平方向に駆動し、前処理部2の流路の一端を分析部3のキャピラリ5の一端と接続する。キャピラリ5にはポリマが充填されており、オーブン8により一定温度に保持されている。キャピラリ5の接続後、分析部3は、その両端部に高圧電源9により高電圧を印加してキャピラリ内に導入されたDNA検体を電気泳動し、検出部6において蛍光分析する。
(前処理部の構成)
図2に、前処理部2の構成例を示す。前処理部2は、送液機構12と温調機構13とを有している。図2の前処理部2には、マイクロ流体デバイスとしてのカートリッジ11が装着された状態を表している。平板状のカートリッジ11には、メンブレンで外界から密閉された流路が形成され、当該流路内でDNAの抽出から増幅までの生化学的な処理が実行される。送液機構12は、前述のカートリッジ11を支持する支持面(載置面)と、カートリッジ11に形成された流路を通じ、サンプルや試薬等の流体を送液する機構(図1のポンプ7を含む。)とを有する。温調機構13は、例えばペルチェ素子で構成され、カートリッジ11内の流体をPCRに適した温度に制御する。
図3に、装着状態におけるカートリッジ11と前処理部2の断面構造を示す。カートリッジ11には、各処理に用いる試薬を封入するウェル24aと、ウェル24aからPCRを行う反応部に試薬を送液するための狭流路23aと、反応部から反応液をウェル24bに送液するための狭流路23bとが形成されている。
カートリッジ11の下面(前処理部2に装着される面)には、空気圧により変形可能な弾性体であるメンブレン21が貼り付けられている。なお、メンブレン21は、少なくともウェル24aの開口と狭流路23aの一方の開口間、狭流路23aの他方の開口と狭流路23bの一方の開口間、狭流路23bの他方の開口とウェル24bの開口間を連結して流路を形成できるように貼り付けられていれば良い。後述するように、メンブレン21が、送液機構12の支持面(載置面)に形成された送液流路溝22a、22bや反応部の外形を規定する溝(後述の反応ウェル34)に沿って変形することにより、送液のための流路や反応部を形成する。すなわち、カートリッジ11内の反応液は、メンブレン21の変形により形成される流路を通ってウェル24aからウェル24bに送液される。つまり、カートリッジ11を用いれば、外気とのコンタミネーションを無くした状態で反応液の送液と反応を行うことができる。
カートリッジ11は、例えば熱及び薬品の両方に耐性を有するポリカーボネート樹脂(PC)、ポリプロピレン樹脂(PP)、シクロオリフィン系樹脂(COP)等の材料で構成される。また、メンブレン21は、シリコンゴム、エチレンプロピレンジエンゴム(EPDM)、ブチルゴムなどのゴム材、エラストマー材等の材料で構成される。さらに、蒸発を極力防いで安定した分析を行うため、メンブレン21には、水蒸気透過性及びガス透過性が共に低い材料を使用する。例えばガス透過性が、20cc・cm/cm・sec・atm以下の材質のメンブレンを使用する。
一方、送液機構12には、カートリッジ11の構造に合わせた溝構造の送液流路溝22a及び22bと、空気圧によりメンブレン21を流路の形状に変形させる吸引口25及び加圧口26が設けられている。吸引口25及び加圧口26は、接続部(図示せず)と配管チューブを介し、空気圧を制御するポンプ7(図1)に接続されている。接続部には、三方弁等の切換え弁が配置されており、前記切換え弁の開閉を通じて吸引口25や加圧口26に対する空気の印加タイミングを制御する。本実施例で使用されるポンプ7は、例えばダイヤフラム型もしくはロータリー型エアポンプであり、−1MPa〜1MPaを発生することができる。
送液の方式について、図3を用いて説明する。送液流路溝22aとメンブレン21で囲まれた空間の空気を吸引口25から吸引すると、メンブレン21は送液流路溝22aの表面に沿うように変形し、ウェル24aと連結する送液流路が形成される。このように形成された送液流路溝22aに、ウェル24aから反応液が導入される。これに対し、加圧口26よりメンブレン21と送液流路溝22aの間に空気を導入すると、メンブレン21は押し上げられ、カートリッジ11の下面に密着した状態に戻る。結果的に、送液流路溝22a内に導入された反応液は、狭流路23aを通って反応部へと送液される。
反応部が形成される位置には、温調機構13が配置される。温調機構13は、温調ブロック32と、加熱冷却装置51と、放熱ブロック52で構成される。温調機構13は、2つの送液機構12の間に配置されており、放熱ブロック52に取り付けられたヒートシンク53(図6)を通じて放熱する。
(温調ブロックの構成)
図4に、カートリッジ11の装着面の側から見た温調ブロック32の構造を透視図として示す。図4に示すように、温調ブロック32には、反応ウェル34、断熱材35、加圧吸引用路36、加圧吸引用継ぎ手31、温度センサ33が配置される。図4の場合、温調ブロック32の表面には、反応部の外形を規定する溝(反応ウェル34)が8個形成される。反応ウェル34の個数は、装着するカートリッジ11の個数に応じて定まる。本実施例に係る温調ブロック32では、8個のカートリッジ11について加熱処理と冷却処理を同時並列的に実行することができる。
本実施例の場合、反応ウェル34は、カートリッジ11の装着面から見て、図5に示すように六角形状に形成される。もっとも、反応ウェル34の形状は、六角形状に限らず、その他の形状(例えば長方形、円形、楕円)でも良い。本実施例の場合、6つの頂角のうち対向位置の2つの頂点位置に、反応ウェル34内の空気圧制御用の加圧吸引口41a、41bが計16個配置される。なお、加圧吸引口41a及び41bは、図3に示すように、狭流路23a及び23bの開口付近に配置する。
本実施例の場合、加圧吸引口41a及び41bを通じて反応ウェル34内の空気を吸引することにより、対応位置のメンブレン21を反応ウェル34の表面形状に沿って変形させることができる。この変形により、反応部が形成される。
図4の場合、同じ頂点側に位置する4個の加圧吸引口41a、41bに対し、放熱ブロック52の内部に形成された各1本の加圧吸引用路36が接続される。4本の加圧吸引口41a、41bには、それぞれ加圧吸引用継ぎ手31が接続される。加圧吸引用継ぎ手31には、二方弁、三方弁等の弁を通じてポンプ7(図1)が接続される。これらの弁を適切に制御することにより、同じ加圧吸引口41を用いながら、反応ウェル34を加圧又は減圧(吸引)することができる。ポンプ7の動作は不図示の制御部により制御される。本実施例の場合、放熱ブロック32と加圧吸引用継ぎ手31の間には樹脂製のアダプタ(不図示)が接続される。放熱ブロック32から加圧吸引用継ぎ手31への放熱を少なくするためである。8個の反応ウェル34の外周には断熱材35が取り囲むように配置される。8個の反応ウェル34の温度を均一に保つためである。
図6及び図7に、図4に示す温調ブロック32のA-A断面及びB-B断面を示す。図6に示すように、温度センサ33は、直線状に配列された8個の反応ウェル34の反応温度の測定用に、反応ウェル34の下部に配置される。本実施例の場合、温度センサ33は3つ配置される。もっとも、温度センサ33の数は、2個以下でも4個以上でも良い。本実施例の場合、温度センサ33の数は、加熱冷却装置51の数に応じて設けられている。測定温度に応じて各加熱冷却装置51をフィードバック制御するためである。
断熱材35は、図6に示すように、温調ブロック32の側面部にも貼り付けられる。温調ブロック32の側面部にも断熱材35を貼り付けることにより、温調ブロック32の側面からの放熱を防ぐことができる。
図6及び図7に示すように、放熱ブロック52は、その下方位置に配置される空冷ファン54からの風が直接当たないように配置する。ちなみに、空冷ファン54の風は、放熱ブロック52の下面に取り付けられたヒートシンク53に直接当るように設定される。
ここで、反応ウェル34の断面構造について説明する。図6及び図7に示すように、反応ウェル34の断面形状は矩形形状であり、送液方向の長さに比して、溝の高さ(重力方向の厚み)が小さい構造を有している。溝の高さを低くすることで反応液の熱抵抗が小さくなり、反応液の上面側と下面側との間で温度差が生じ難くなる。
なお、前述した特許文献1の場合には、反応ウェル34に相当する凹陥部が断面半円状に形成されており、送液方向の長さに比例して溝が深くなり、凹陥部の上面側の反応液と底面側の反応液との間で温度差が生じ易い。
このように、本実施例に係る反応ウェル34は、従来構造に比して格段に薄型化できるため、より正確な温度調整が可能となる。また、本実施例の場合、反応ウェル34を薄型化できるため、温調ブロック32の薄型化も実現できる。
因みに、温調ブロック32には、一定以上の剛性を持ち、熱伝導性がよく、比熱が小さい材質(例えばアルミニウム合金、銅、真鍮等)の部材を用いる。もちろん、温調ブロック32の温度を素早く変化させるためには、温調ブロック32の熱容量はなるべく小さく抑えることが望ましい。このため、本実施例の温調ブロック32では、反応ウェル34及び温度センサ33を挿入する部分以外の部位を必要に応じて肉抜きした構造を採用し、ブロック自身の熱容量を小さくする。
温調機構13の加熱冷却装置51には、公知の装置を使用する。本実施例の場合、加熱と冷却の両方が可能なペルチェ素子を使用する。加熱冷却装置51は、温調ブロック32の大きさや形状に合わせ、1つ又は複数個配置する。もっとも、用途によっては、加熱源と冷却源をそれぞれ配置する又はどちらか一方のみを配置しても良い。
温調ブロック32に備えられている温度センサ33は、温調機構13に備える加熱冷却装置51の個数及び温調ブロック32の大きさや形状に応じて1つ又は複数個備える。本実施例では、それぞれ3個の温度センサ33と加熱冷却装置51を設ける。温度センサ33には、白金電極、サーミスタ、測温抵抗体を用いることができ、加熱冷却装置51には、ペルチェ素子を利用できる。
図7に示すように、温度センサ33及び加熱冷却装置51は、温度制御基板61に接続されている。各温度センサ33からの検出信号は、温度制御基板61に入力される。温度制御基板61は、演算結果に基づいて制御信号を各加熱冷却装置51に送信し、その温度を制御する。温度制御基板61は、温度制御に必要な素子(例えばメモリ、CPU、加熱冷却装置51のオン(ON)/オフ(OFF)制御に必要な回路等)を備えている。
加熱又は冷却の際には、温度制御基板61は、それぞれ対応する一対又は備えられている温度センサ33の全ての測定値に基づいて加熱冷却装置51をフィードバック制御する。本実施例では、各ペルチェ素子の加熱冷却性能が15W以上を用いることにより、温調ブロック32の温度を、3℃/sec以上の速度で変化させる。
複数の加熱冷却装置51をそれぞれ独立に制御することにより、温調ブロック32に温度のローカリティが生じ難くなる。
(反応部への送液動作1)
カートリッジ11内の流体を温調制御される反応部に送液する動作は、送液機構12の送液流路溝22a及び温調ブロック32に形成された加圧吸引機構(加圧吸引用路36、加圧吸引口41a、41b、加圧吸引用継ぎ手31)とポンプ7の協働制御を通じて実行される。前述したように、反応部は、反応ウェル34の形状に沿って作成される。
図8に、反応部への送液動作の一例を示す。
[ステップ101]
送液開始前、メンブレン21は、図9(a)に示すように、カートリッジ11の表面に貼りついている。メンブレン21と反応ウェル34の間は空気で満たされている。この状態で、送液流路溝22aに加圧口26から空気を加圧導入すると、送液流路溝22aのメンブレン21に保持されていた液体が反応ウェル34と対面する領域のメンブレン21へ押し出される。この結果、反応ウェル34側のメンブレン21は送液の圧力により図9(b)に示すように伸長され、膨らんでいく。
[ステップ102、103、104]
前処理一体型キャピラリ電気泳動装置の全体動作を管理する不図示の制御装置(以下「全体制御部」という)は、この際の送液量を確認し、送液量が一定量以上であれば(本実施例では15μl以上であれば)、ポンプ7を駆動制御し、液体の流入口に近い側の加圧吸引口41aから反応ウェル34内の空気の吸引(排気)を開始する。
[ステップ105]
全体制御部は、加圧吸引口41aからの吸引を維持しつつ、送液流路溝22aからの送液を続行する。一定量以上の送液が実行されると、図9(c)に示すように、吸引を行っている方のメンブレン21が反応ウェル34の内壁面(すなわち、温調ブロック32)と密着した状態になる。特に、断面の形状が矩形である薄型の反応ウェル34の場合には、従来装置のように流体の自重による送液だけの場合には角部に空気だまりが形成されて密着度が低下する可能性が高いが、本実施例では角部まで確実に密着させることができる。
[ステップ106、107、108]
全体制御部は、この際の送液量を確認し、送液量が一定量以上であれば(本実施例では20μl以上であれば)、液体の流入口から遠い側の加圧吸引口41bから反応ウェル34内の空気の吸引(排気)を開始する。
[ステップ109、110、111]
全体制御部は、加圧吸引口41a及び41bの両方からの吸引を維持しつつ、さらに送液流路溝22aからの送液を続行する。さらに一定量以上の送液が実行されると、図9(d)に示すように、温調ブロック32とのメンブレンの間の空気は加圧吸引口から吸引され、メンブレン21が反応ウェル34の内壁面(すなわち、温調ブロック32)の全体と密着した反応部が形成される。
なお、本実施例の場合には、メンブレン21によって形成される反応部は、反応ウェル34の形状以上には膨張できないため、仮に送液量が一定量以上になった場合でも、温調機構12によって温度制御を行う液量を一定量に制限することができる。
[ステップ111、112、113、114]
送液流路溝22aからの送液量が規定量(本実施例では25μl以上)になると、全体制御部は送液を終了制御し、その後、加圧吸引口41a及び41bからの吸引も終了して温調処理(加熱及び冷却)を開始する。図9では、温調開始前に吸引も終了しているが、温調中も吸引を継続しても良い。
図9(e)に示すように、本実施例では、メンブレン21が、温調ブロック32に強固に(隙間なく)密着されるため、メンブレン21と温調ブロック32間の接触熱抵抗が小さくなり、温調ブロック32からメンブレン21を介して反応液71に効率良く熱を供給もしくは除去が行える。例えば反応液25μlに対して、3℃/sec以上の速度で変化させることができる。
(反応部への送液動作2)
ところで、反応部を形成する動作(反応部への送液動作)は、図8に示す吸引タイミングに限らない。例えば図10に示す吸引タイミングのように、予め反応部を形成した後に送液を開始することもできる。
[ステップ201、202]
この場合、全体制御部は、送液流路溝22aからの送液を開始する前に、一定時間(本実施例の場合、10sec)、反応ウェル34に形成された加圧吸引口41aから空気を吸引し、予めメンブレン21を部分的に膨らませておく。換言すると、メンブレン21を、加圧吸引口41a側の反応ウェル34の内壁に密着させるように変形する。
[ステップ203]
その後、全体制御部はポンプ7を制御して、反応ウェル34の上流側に位置する送液流路溝22aの加圧口26から空気を導入し、送液流路溝22aのメンブレン21に保持されていた液体を反応ウェル34側のメンブレン21へ送液する。
[ステップ204、205、206]
全体制御部は、この際の送液量を確認し、送液量が一定量以上(本実施例では15μl以上)であれば、液体の流入口から遠い側の加圧吸引口41bから反応ウェル34内の空気の吸引(排気)を開始する。
[ステップ207]
ここで、全体制御部は、加圧吸引口41bからの吸引を一定時間(本実施例の場合、10sec)実行し、メンブレン21を膨らませて反応部を完成させる。具体的には、メンブレン21を、加圧吸引口41b側の反応ウェル34の内壁全体に密着させる。
[ステップ208、209、210]
この後、全体制御部はポンプ7を制御して、反応ウェル34の上流側に位置する送液流路溝22aの加圧口26に対する空気の導入を再開し、送液流路溝22aのメンブレン21に保持されていた液体を反応ウェル34側のメンブレン21へ送液する。
[ステップ211、212]
送液流路溝22aからの送液量が規定量(本実施例では25μl以上)になると、全体制御部は送液を終了制御し、温調処理(加熱及び冷却)を開始する。
(反応部への送液動作3)
この他、図11に示す吸引タイミングを用い、反応部を形成する(反応部への送液する)こともできる。図11では、送液流路溝22aからの送液と反応ウェル34内の吸引とを同時に実行する手法を説明する。
[ステップ301]
この場合、全体制御部は、送液流路溝22aに加圧口26から空気を加圧導入して流体を送液する処理と、反応ウェル34に形成された加圧吸引口41a及び41bから空気を吸引して反応部を形成する処理とを同時に開始する。
[ステップ302、303、304]
全体制御部は、送液量を確認し、送液量が一定量以上(本実施例では25μl以上)であれば、送液を終了する。図11の場合、温調ブロック32に密着した反応部がほぼ同時に終了する。図11の場合、送液の終了後も、加圧吸引口41a及び41bの両方からの空気の吸引は継続する。なお、前述した吸引タイミング例と同様に、送液の終了時点でメンブレン21と温調ブロック32との密着が確保されている場合には、この時点で、加圧吸引口41a及び41bの両方からの吸引を終了しても良い。
[ステップ305、306、307]
全体制御部は、温調処理(加熱及び冷却)を開始し、温度センサ33により反応ウェル34内の液体の温度が90℃以上になったことが確認されると、加圧吸引口41a及び41bの両方からの空気の吸引を終了する。図11では、加熱する場合だけを想定しているが、勿論、所定温度まで反応ウェル34内の液体の温度を冷却する処理も実行する。
(反応部からの送液動作)
図12(a)に、反応ウェル34での反応処理が終了した時点における反応部の状態を示す。この時点では、反応ウェル34に密着したメンブレン21内に流体が満たされている。次に、全体制御部は、反応ウェル34の下流側に位置する送液流路溝22bの吸引口25から空気を吸引し、送液流路溝22bに対向する位置のメンブレン21を引き下げる(膨張させる)。これにより、反応ウェル34側のメンブレン21に保持されていた流体は送液流路溝22bの側に吸い出される。同時に、全体制御部は、反応ウェル34内に形成された加圧吸引口41a及び41bに空気を導入する(加圧する)。この状態を図12(b)に示す。なお、反応ウェル34に対する空気の導入は、加圧吸引口41a及び41bの両方である必要はなく、いずれか一方だけでも良い。いずれにしても、反応ウェル34内に空気を導入して加圧し、メンブレン21を押し上げるように変形することにより、メンブレン21がカートリッジ11の表面に密着した状態に確実に戻る。すなわち、反応部から反応液を確実に排出できる。この結果、送液流路溝22bからの吸い出しだけによる送液に比べ、確実かつ短時間のうちに送液することができる。
〔実施例2〕
前述の実施例では、断熱材35を反応ウェル34を取り囲むように配置し(すなわち、断熱材35を温調ブロック32の側面全体に亘って配置し)、反応部から外部への放熱を少なくする手法について説明した。さらに、放熱量を少なくするためには、カートリッジ11の本体のうち反応部の形成領域に対向する部分を他の部分に比べて薄くし、薄くした部分に断熱材35を設置しても良い。このような構造を採用すれば、反応部の上面側からカートリッジ11への放熱を一段と少なくすることができる。
より積極的には、断熱材だけではなく、加熱装置または加熱冷却装置を反応部と対向する領域部分に設置しても良い。反応部の上面から加熱又は加熱冷却すれば、反応液の温度変化を一段と速めることができる。図13に、カートリッジ11の上面側に加熱装置62を設置する例を示す。図13では、カートリッジ11のうち反応部と対向する部分に空気層63を形成し、断熱効果も高めている。もっとも、空気層63を有しない構造のカートリッジ11の上面に加熱装置62を直接接触させても良い。なお、加熱装置62をカートリッジ11の表面に直接接触させる場合には、加熱装置62の設定温度は目標加熱温度に一致させることが望ましい。なお、図13に示すように、加熱装置62と反応部の間に空気層63を挟む場合には、目標加熱温度よりも高い温度に設定することで、間に挟んだ空気の層を十分に加熱する必要がある。
冷却時には、加熱装置62の加熱を停止する又は加熱装置62をカートリッジ11の上面から取り外す等の処理や動作を実行する。
ところで、本実施例のように、カートリッジ11の上面に加熱装置62(ここでは加熱冷却装置も含む)を設ける場合には、加熱装置62の制御を、温調機構13内の加熱冷却機構の加熱及び又は冷却の制御と同期させることが望ましい。反応部の上面側からと下面側からの両方から熱交換を実行すれば、反応液の温度変化がさらに促進され、反応液の上面と下面での温度差がより生じ難くなる。
(他の実施例)
本発明は上述した実施例に限定されるものでなく、様々な変形例を含んでいる。例えば加圧吸引口41a及び41bを断面矩形の反応ウェル34の底面に設けているが、側面と底面が形成するコーナー付近であれば任意の位置、例えば側面、底面、隅のいずれにも設けることができる。また、前述の実施例では、加圧吸引口41a及び41bのいずれもが、加圧だけでなく吸引にも使用できる場合について説明したが、反応ウェル34内に加圧専用の開口と吸引専用の開口を設け、温調ブロック32内に加圧専用の管と吸引専用の管を設けても良い。例えば加圧吸引口41aとその接続管を吸引専用とし、加圧吸引口41bとその接続管を加圧専用として用いても良い。
また、前述の実施例では、反応ウェル34の断面形状が矩形形状である場合について説明したが、必ずしも矩形形状でなくても良い。例えばコーナー部に丸みを有していても良いし、反応ウェル34の送液方向の断面形状が楕円形状でも良い。
また、上述した実施例は、本発明を分かりやすく説明するために、一部の実施例について詳細に説明したものであり、必ずしも説明した全ての構成を備える必要は無い。また、ある実施例の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成を追加、削除又は置換することも可能である。
1:前処理一体型キャピラリ電気泳動装置
2:前処理部
3:分析部
4:オートサンプラ
5:キャピラリ
6:検出部
7:ポンプ
8:オーブン
9:高圧電源
11:カートリッジ
12:送液機構
13:温調機構
21:メンブレン
22a、22b:送液流路溝
23a、23b:狭流路
24a、24b:ウェル
25:吸引口
26:加圧口
31:加圧吸引用継ぎ手
32:温調ブロック
33:温度センサ
34:反応ウェル
35:断熱材
36:加圧吸引用路
41a、41b:加圧吸引口
51:加熱冷却装置
52:放熱ブロック
53:ヒートシンク
54:空冷ファン
55:放熱部
61:温度制御基板
62:加熱装置
63:空気層
71:反応液

Claims (14)

  1. 空気圧により変形可能な弾性体であるメンブレンが表面に貼りつけられた生化学カートリッジの装着時に、前記生化学カートリッジ側に形成された流路の開口端と前記メンブレンを挟んで対向する反応部形成用の凹構造と、前記凹構造の内周面に設けられる少なくとも1つの空気吸引用の開口と、前記開口に接続された管路とが形成された温調ブロックと、
    前記管路を通じて前記凹構造から空気を吸引及び加圧するポンプと
    を有する生化学カートリッジ用温調機構。
  2. 請求項1に記載の生化学カートリッジ用温調機構において、
    前記凹構造は断面矩形形状である
    ことを特徴とする生化学カートリッジ用温調機構。
  3. 請求項1に記載の生化学カートリッジ用温調機構において、
    前記開口は凹構造のコーナー付近に形成される
    ことを特徴とする生化学カートリッジ用温調機構。
  4. 請求項1に記載の生化学カートリッジ用温調機構において、
    前記管路は、前記凹構造への空気の導入にも使用される
    ことを特徴とする生化学カートリッジ用温調機構。
  5. 請求項1に記載の生化学カートリッジ用温調機構において、
    前記温調ブロックは、前記凹構造への空気の導入用に、前記管路とは異なる管路と開口を有する
    ことを特徴とする生化学カートリッジ用温調機構。
  6. 請求項1に記載の生化学カートリッジ用温調機構において、
    前記温調ブロックは、前記凹構造の周囲に断熱構造を有する
    ことを特徴とする生化学カートリッジ用温調機構。
  7. 請求項1に記載の生化学カートリッジ用温調機構において、
    前記生化学カートリッジの上面側に断熱構造を有する
    ことを特徴とする生化学カートリッジ用温調機構。
  8. 請求項1に記載の生化学カートリッジ用温調機構において、
    前記生化学カートリッジの上面側に加熱装置又は加熱冷却装置を有する
    ことを特徴とする生化学カートリッジ用温調機構。
  9. 請求項1に記載の生化学カートリッジ用温調機構において、
    前記ポンプは、前記凹構造内への送液開始後に前記開口から空気を吸引する
    ことを特徴とする生化学カートリッジ用温調機構。
  10. 請求項1に記載の生化学カートリッジ用温調機構において、
    前記ポンプは、前記凹構造内への送液開始に先立って前記開口から空気を吸引する
    ことを特徴とする生化学カートリッジ用温調機構。
  11. 請求項1に記載の生化学カートリッジ用温調機構において、
    前記ポンプは、前記凹構造内への送液開始と同時に前記開口から空気を吸引する
    ことを特徴とする生化学カートリッジ用温調機構。
  12. 請求項1に記載の生化学カートリッジ用温調機構において、
    前記ポンプは、前記凹構造内からの送液時に、前記開口から空気を導入することを特徴とする生化学カートリッジ用温調機構。
  13. 空気圧により変形可能な弾性体であるメンブレンが表面に貼りつけられた生化学カートリッジの装着時に、前記生化学カートリッジ側に形成された流路の開口端と前記メンブレンを挟んで対向する反応部形成用の凹構造と、
    前記凹構造の内周面に設けられる少なくとも1つの空気吸引及び加圧用の開口と、
    前記開口に接続された管路と
    を有する温調ブロック。
  14. 空気圧により変形可能な弾性体であるメンブレンが表面に貼りつけられた生化学カートリッジと、
    前記生化学カートリッジの装着時に、前記生化学カートリッジ側に形成された流路の開口端と前記メンブレンを挟んで対向する反応部形成用の凹構造と、前記凹構造の内周面に設けられる少なくとも1つの空気吸引用の開口と、前記開口に接続された管路とが形成された温調ブロックと、前記管路を通じて前記凹構造から空気を吸引及び加圧するポンプとを有する生化学カートリッジ用温調機構と、
    前記生化学カートリッジから流体を導入し、前記流体に含まれる核酸を分析する核酸分析装置と
    を有する生化学処理装置。
JP2013057480A 2013-03-21 2013-03-21 生化学カートリッジ用温調機構、温調ブロック及び生化学処理装置 Active JP6012518B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013057480A JP6012518B2 (ja) 2013-03-21 2013-03-21 生化学カートリッジ用温調機構、温調ブロック及び生化学処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013057480A JP6012518B2 (ja) 2013-03-21 2013-03-21 生化学カートリッジ用温調機構、温調ブロック及び生化学処理装置

Publications (2)

Publication Number Publication Date
JP2014180250A true JP2014180250A (ja) 2014-09-29
JP6012518B2 JP6012518B2 (ja) 2016-10-25

Family

ID=51699564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013057480A Active JP6012518B2 (ja) 2013-03-21 2013-03-21 生化学カートリッジ用温調機構、温調ブロック及び生化学処理装置

Country Status (1)

Country Link
JP (1) JP6012518B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015216794A1 (de) 2014-09-04 2016-03-10 Yazaki Corporation Projektionsanzeigeeinrichtung
CN110964633A (zh) * 2019-11-08 2020-04-07 江苏科技大学 一种生物样液的恒温控制系统
WO2020174644A1 (ja) * 2019-02-28 2020-09-03 株式会社日立ハイテク 複数サンプルを独立して電気泳動可能な電気泳動装置
WO2020179053A1 (ja) * 2019-03-07 2020-09-10 株式会社日立ハイテク 温度制御装置用送液カートリッジ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278789A (ja) * 2006-04-05 2007-10-25 Aida Eng Ltd マイクロ流体チップ
JP2009139138A (ja) * 2007-12-04 2009-06-25 Toppan Printing Co Ltd 反応容器
JP2010515924A (ja) * 2007-01-16 2010-05-13 ラブ901 リミテッド マイクロ流体デバイス
JP2011030522A (ja) * 2009-08-04 2011-02-17 Aida Engineering Ltd マイクロ流体デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278789A (ja) * 2006-04-05 2007-10-25 Aida Eng Ltd マイクロ流体チップ
JP2010515924A (ja) * 2007-01-16 2010-05-13 ラブ901 リミテッド マイクロ流体デバイス
JP2009139138A (ja) * 2007-12-04 2009-06-25 Toppan Printing Co Ltd 反応容器
JP2011030522A (ja) * 2009-08-04 2011-02-17 Aida Engineering Ltd マイクロ流体デバイス

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015216794A1 (de) 2014-09-04 2016-03-10 Yazaki Corporation Projektionsanzeigeeinrichtung
WO2020174644A1 (ja) * 2019-02-28 2020-09-03 株式会社日立ハイテク 複数サンプルを独立して電気泳動可能な電気泳動装置
JPWO2020174644A1 (ja) * 2019-02-28 2021-11-04 株式会社日立ハイテク 複数サンプルを独立して電気泳動可能な電気泳動装置
GB2594822A (en) * 2019-02-28 2021-11-10 Hitachi High Tech Corp Electrophoresis device capable of carrying out electrophoresis on plurality of samples independently
JP7110474B2 (ja) 2019-02-28 2022-08-01 株式会社日立ハイテク 複数サンプルを独立して電気泳動可能な電気泳動装置
GB2594822B (en) * 2019-02-28 2022-12-07 Hitachi High Tech Corp Electrophoresis device capable of carrying out electrophoresis on plurality of samples independently
WO2020179053A1 (ja) * 2019-03-07 2020-09-10 株式会社日立ハイテク 温度制御装置用送液カートリッジ
CN110964633A (zh) * 2019-11-08 2020-04-07 江苏科技大学 一种生物样液的恒温控制系统

Also Published As

Publication number Publication date
JP6012518B2 (ja) 2016-10-25

Similar Documents

Publication Publication Date Title
KR100450818B1 (ko) 다챔버 pcr 칩
EP2562247B1 (en) Pcr device including two heating blocks
EP3981510B1 (en) Microfluidic control chip component for quickly performing digital pcr reaction and application thereof
US7648835B2 (en) System and method for heating, cooling and heat cycling on microfluidic device
US7544506B2 (en) System and method for heating, cooling and heat cycling on microfluidic device
EP3610947B1 (en) Microfluidic system for digital polymerase chain reaction of a biological sample, and respective method
JP6012518B2 (ja) 生化学カートリッジ用温調機構、温調ブロック及び生化学処理装置
KR101221872B1 (ko) 중합효소 연쇄반응 장치
US20080241844A1 (en) Devices and Methods for the Performance of Miniaturized In Vitro Assays
US20090087903A1 (en) Temperature control device with a flexible temperature control surface
JP2011030522A (ja) マイクロ流体デバイス
KR20090080818A (ko) 핵산 증폭 장치
JP6004486B2 (ja) マイクロ流体装置を活用した核酸増幅方法
US8795592B2 (en) Sample thermal cycling
CN108636471A (zh) 一种核酸扩增装置及其应用
JP2007278789A (ja) マイクロ流体チップ
US20120295341A1 (en) Thermal treatment apparatus and fluid treatment method with fluidic device
JP6202713B2 (ja) 生化学用カートリッジおよび生化学用送液システム
CN103333789B (zh) 便于集成的实现pcr的装置及操作方法
US20100104485A1 (en) Flow-through thermal cycling device
US20150176058A1 (en) Device for preparing a sample
JP4147292B2 (ja) 反応装置
KR101513273B1 (ko) 회전형 pcr 장치 및 pcr 칩
CN114618599A (zh) 加热控温装置及微流控系统
TWI296608B (en) Microscale heating module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R150 Certificate of patent or registration of utility model

Ref document number: 6012518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350