JP2014175419A - 電流制御素子、不揮発性記憶素子、不揮発性記憶装置および電流制御素子の製造方法 - Google Patents

電流制御素子、不揮発性記憶素子、不揮発性記憶装置および電流制御素子の製造方法 Download PDF

Info

Publication number
JP2014175419A
JP2014175419A JP2013045968A JP2013045968A JP2014175419A JP 2014175419 A JP2014175419 A JP 2014175419A JP 2013045968 A JP2013045968 A JP 2013045968A JP 2013045968 A JP2013045968 A JP 2013045968A JP 2014175419 A JP2014175419 A JP 2014175419A
Authority
JP
Japan
Prior art keywords
current
suppression layer
current suppression
control element
current control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013045968A
Other languages
English (en)
Inventor
Yukio Hayakawa
幸夫 早川
Shinichi Yoneda
慎一 米田
Ryoko Miyanaga
良子 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013045968A priority Critical patent/JP2014175419A/ja
Publication of JP2014175419A publication Critical patent/JP2014175419A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

【課題】電流制御素子を微細化した場合であっても高い電流駆動能力と良好なオフ特性の両立を実現し得る電流制御素子を提供する。
【解決手段】上部電極206と、下部電極201と、上部電極206および下部電極201間に挟まれた電流抑制層205とを備え、電流抑制層205は、第1の電流抑制層202と第2の電流抑制層203と第3の電流抑制層204とがこの順に積層され、第1の電流抑制層202と第3の電流抑制層204は、酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または、酸素を含有しない半導体化合物で構成され、第2の電流抑制層203は金属酸化物または半導体酸化物で構成され、第2の電流抑制層203のエネルギー障壁の高さは、第1の電流抑制層202および第3の電流抑制層204のエネルギー障壁の高さより低い。
【選択図】図1

Description

本発明は、電流制御素子、抵抗変化素子と電流制御素子とで構成される不揮発性記憶素子、複数の不揮発性記憶素子を備える高集積化に適したクロスポイント型の不揮発性記憶装置及び電流制御素子の製造方法に関する。特に、本発明は、極性の異なる電気パルスを印加してデータを書き込むときに抵抗変化素子に流れる電流を制御する電流制御素子に関するものである。
近年、デジタル技術の進展に伴って携帯情報機器や情報家電等の電子機器が、より一層高機能化している。これらの電子機器の高機能化に伴い、使用される不揮発性記憶装置の大規模化、高集積化、高速化が急速に進んでおり、またその用途も急速に拡大している。その中でも、フラッシュメモリに代表されるような大記憶容量の不揮発性メモリの用途が急速に拡大している。そして、このフラッシュメモリに置き換わる次世代の新型不揮発性メモリとして、いわゆる抵抗変化素子を用いた抵抗変化型の不揮発性記憶装置の研究開発が進んでいる。
抵抗変化素子は、例えば、金属酸化物で構成される材料により構成される薄膜を有している。この薄膜に電気パルスを印加すると、その電気抵抗値が変化し、かつ、その変化した後の電気抵抗値が保存される。従って、この薄膜の高抵抗状態と低抵抗状態とを、それぞれ、例えば2値データの“1”と“0”とに対応させると、抵抗変化素子に2値データを記憶させることが可能になる。
また、2値をとる抵抗変化素子においては、同一の極性で大きさの異なる電圧の電気パルスを印加することにより抵抗値が変化する抵抗変化素子(いわゆるユニポーラ型の抵抗変化素子)と、異なる極性の電気パルスの印加により抵抗値が変化する抵抗変化素子(いわゆるバイポーラ型の抵抗変化素子)とがある。
一般に、ユニポーラ型の抵抗変化素子は、低抵抗状態から高抵抗状態に遷移させる(いわゆるリセット)時の書き込み時間が、高抵抗状態から低抵抗状態に遷移させる(いわゆるセット)時の書き込み時間よりも長いという特性を有する。これに対し、バイポーラ型の抵抗変化素子では一般に、セットおよびリセットともに短い時間で書き込みが可能であることから、高速動作に優れている。
バイポーラ型の抵抗変化素子の一例として、酸素含有率の異なる遷移金属酸化物を積層して抵抗変化層に用いた不揮発性記憶装置が提案されている。例えば、特許文献1においては、酸素含有率の高い抵抗変化層とその抵抗変化層に接触する電極との界面で酸化・還元反応を選択的に発生させ、抵抗変化を安定化することが開示されている。
上記した従来の抵抗変化素子は、下部電極と抵抗変化層と上部電極とを有して構成される。このような抵抗変化素子が二次元状もしくは三次元上に配置されて、メモリアレイを構成している。各々の抵抗変化素子においては、抵抗変化層は第1の抵抗変化層と第2の抵抗変化層の積層構造で構成され、かつ第1の抵抗変化層及び第2の抵抗変化層は同種の遷移金属酸化物で構成される。第2の抵抗変化層を形成する遷移金属酸化物の酸素含有率は、第1の抵抗変化層を形成する遷移金属酸化物の酸素含有率より高い。このような構造とすることで、抵抗変化素子に電圧を印加した場合には、酸素含有率が高く、より高い抵抗値を示す第2の抵抗変化層にほとんどの電圧が印加されることになる。また、この界面近傍では、反応に寄与できる酸素も豊富に存在する。よって、上部電極と第2の抵抗変化層との界面で、選択的に酸化・還元の反応が起こり、安定に抵抗変化を実現することができる。この抵抗変化素子では、抵抗変化が開始される状態へ遷移させるために、初期(製造後、読み書き動作をさせる前)に抵抗変化素子に電圧を印加し、第2の抵抗変化層にフィラメントを形成するための初期化(ブレイク)を行う必要がある。
複数のワード線と複数のビット線とを、互いに接触しないように平面視において交差(立体交差)させ、立体交差部のそれぞれに抵抗変化素子を配設した記憶装置が、クロスポイント型の不揮発性記憶装置である。クロスポイント型の不揮発性記憶装置では、例えば、抵抗変化素子にデータを書き込む際に、選択されたセル以外のセルを流れる迂回電流(sneak current)が発生する。抵抗変化素子に書き込まれたデータを読み出す際に、選択されたセルを流れる電流と迂回電流は、ビット線電流としてビット線デコーダへと流れ、デコーダ内のトランジスタで選択されたセルの書込み状態を判別するために用いられる。ビット線を流れる電流値が同じであっても、迂回電流が大きい場合には選択されたセルを流れる電流が相対的に小さくなり、迂回電流が小さい場合には選択されたセルを流れる電流が大きくなる。従って、前者の場合には選択されたセルを流れる電流が小さいことから、抵抗変化素子の書込みが不十分となる。このため、迂回電流を小さくし、選択されるセルを流れる電流を確保する必要がある。また、迂回電流が流れることにより、選択されたセル以外の抵抗変化素子の抵抗状態が変化してしまうという障害(以下、この障害を「書込みディスターブ」という)が生じ、これを防止しなければならない。以上の理由により、クロスポイント型の不揮発性記憶装置においては、各セルに抵抗変化素子と直列に電流制御素子を配設する必要がある。
高速動作に優れているバイポーラ型の抵抗変化素子を用いたクロスポイント型の不揮発性記憶装置の場合、抵抗変化素子へのデータ書き込みに2つの異なる極性の電気パルスが用いられる。このため、電流制御素子には、正負いずれの電圧に対しても非線形な(つまり、電圧の絶対値が低い領域(低電圧領域)では抵抗値が大きく、電圧の絶対値が高い領域(高電圧領域)では抵抗値が小さい)電流特性が求められる。このような特性を備える素子としては、例えば、MIM(Metal−Insulator−Metal;金属−絶縁体−金属)ダイオード、MSM(Metal−Semiconductor−Metal;金属−半導体−金属)ダイオード、或いは、バリスタ等の二端子素子が知られている。
例えば、特許文献2には、不揮発性記憶素子の各々が、抵抗変化素子と、抵抗変化素子に対して直列に接続された電流制御素子との直列回路により構成されている不揮発性記憶素子アレイが開示されている。電流制御素子は、対向する一対の電極の間に電流抑制層を配設するMIMダイオードあるいはMSMダイオードである。
また、非特許文献1には、対向する電極間の電流抑制層が金属酸化物の3層構造で構成された電流制御素子と抵抗変化素子とを直列に接続し、メモリアレイ回路を構成したクロスポイント型の不揮発性記憶装置が開示されている。
国際公開第2008/149484号 国際公開第2010/32470号
Wootae. Lee,2012 Symposium on VLSI Technology Digest,p37−38
しかしながら、前述した従来の電流制御素子には、以下の様な課題がある。
大記憶容量の不揮発性記憶装置を実現するためには、抵抗変化素子と電流制御素子とで構成される不揮発性記憶素子を微細化し、メモリセルの面積を縮小することが有効な手段の一つである。
電流制御素子は、クロスポイント型の不揮発性記憶装置に特有の課題である迂回電流を低減し(つまり、優れたオフ特性を有し)、かつ抵抗変化素子の書込み動作に必要な電流を供給し(つまり、高い電流駆動能力を有し)なければならない。
電流制御素子は、電流抑制層を通過する電荷量に応じて電流が変動する。このため、素子の微細化に伴って、電流抑制層の面積が縮小し、駆動電流が減少する。
一方、抵抗変化素子は、抵抗変化素子内に形成された微小なフィラメント領域で動作するため、書込み電流は抵抗変化素子の寸法に依存しない。つまり、抵抗変化素子と電流制御素子とでは、素子寸法の縮小に対する各々の挙動が異なる。
図10は、電流制御素子の最大駆動電流と抵抗変化素子の書込み電流(縦軸の「電流(A.U.)」)の素子寸法(横軸の「素子寸法(μm)」)への依存性を示す特性図である。素子寸法の縮小に伴い、電流制御素子の最大駆動電流(破壊電流)が小さくなり、抵抗変化素子の書込み電流との差が減少することがわかる。従って、クロスポイント型の不揮発性記憶素子を微細化していき、抵抗変化素子の書込み電流が電流制御素子の最大駆動電流を超えると、電流制御素子が破壊してしまう。また、一般的に最大駆動電流の高い材料を電流抑制層に用いた場合には、電流制御素子のリーク電流が増加(つまり、オフ特性が劣化)するため、クロスポイント型の不揮発性記憶装置に特有の課題である迂回電流を防止する事ができない。
本発明は、電流制御素子を微細化した場合に生じる従来技術の課題である高い電流駆動能力と良好なオフ特性の両立を実現し得る電流制御素子、その電流制御素子を含む不揮発性記憶素子、その不揮発性記憶素子を備えるクロスポイント型の不揮発性記憶装置等を提供することを目的とする。
上記目的を達成するために、本発明に係る電流制御素子の一つの形態は、極性が正および負の電気パルスが印加された時に流れる電流を制御する電流制御素子であって、上部電極と、下部電極と、前記上部電極および前記下部電極間に挟まれた電流抑制層とを備え、前記電流抑制層は、第1の電流抑制層と第2の電流抑制層と第3の電流抑制層とがこの順に積層され、前記第1の電流抑制層と前記第3の電流抑制層とは、酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または、酸素を含有しない半導体化合物で構成され、前記第2の電流抑制層は、金属酸化物または半導体酸化物で構成され、前記上部電極または前記下部電極のエネルギー準位を基準として、前記第2の電流抑制層のエネルギー障壁の高さは、前記第1の電流抑制層および前記第3の電流抑制層のエネルギー障壁の高さより低い。
また、上記目的を達成するために、本発明に係る不揮発性記憶素子の一つの形態は、極性が正および負の電気パルスが印加されることによりその電気抵抗値が可逆的に変化する不揮発性の抵抗変化素子と、前記抵抗変化素子と直列に接続され、前記抵抗変化素子に前記電気パルスを印加した時に流れる電流を制御する電流制御素子とを備え、前記電流制御素子は、上記電流制御素子である。
また、上記目的を達成するために、本発明に係る不揮発性記憶装置の一つの形態は、複数のビット線と、前記複数のビット線の各々と立体交差する複数のワード線と、複数の不揮発性記憶素子とを備え、前記複数の不揮発性記憶素子は、上記不揮発性記憶素子であり、前記複数の不揮発性記憶素子は、前記複数のビット線と前記複数のワード線とが立体交差する各々の交点に配設され、該各々の交点において、前記不揮発性記憶素子の一端が当該交点を形成する前記ビット線に、前記不揮発性記憶素子の他端が当該交点を形成する前記ワード線に、各々接続されている。
また、上記目的を達成するために、本発明に係る電流制御素子の製造方法の一つの形態は、半導体基板上に下部電極を形成する工程と、前記下部電極上に酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または、酸素を含有しない半導体化合物で構成される第1の電流抑制層を形成する工程と、前記第1の電流抑制層上に前記第1の電流抑制層の表面を酸化させずに金属酸化物または半導体酸化物で構成される第2の電流抑制層を形成する工程と、前記第2の電流抑制層上に酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または、酸素を含有しない半導体化合物で構成される第3の電流抑制層を形成する工程と、前記第3の電流抑制層上に上部電極を形成する工程とを有し、前記上部電極または前記下部電極のエネルギー準位を基準として、前記第2の電流抑制層のエネルギー障壁の高さは、前記第1の電流抑制層および前記第3の電流抑制層のエネルギー障壁の高さより低い。
本発明によれば、電流制御素子を微細化しても、高い駆動電流と良好なオフ特性を両立できる電流制御素子、その電流制御素子を含む不揮発性記憶素子、その不揮発性記憶素子を備えるクロスポイント型の不揮発性記憶装置等が実現される。これにより、電流制御素子と抵抗変化素子の直列接続で構成される不揮発性記憶素子の微細化が可能となり、大記憶容量のクロスポイント型の不揮発性記憶装置を実現することができる。
したがって、不揮発性記憶装置を備える電子機器が普及してきた今日において、本発明の実用的意義は極めて高い。
本発明の実施の形態1における電流制御素子の断面図 (a)は各種電流制御素子の電流―電圧特性図、(b)は本発明の実施の形態1における電流制御素子のエネルギー障壁の高さを示す図 本発明の実施の形態1における電流制御素子のTiO/SiN積層膜における酸素濃度の深さ方向分布(SIMS分析結果) 本発明の実施の形態1における電流制御素子の製造方法を示す断面図 本発明の実施の形態2における不揮発性記憶素子の断面図 本発明の実施の形態2における不揮発性記憶素子の製造方法を示す断面図 本発明の実施の形態3における不揮発性記憶装置の回路構成を示す図 本発明の実施の形態3における電流制御素子の電流−電圧特性を模式的に示す特性図 本発明の実施の形態3における書込み電圧の印加動作を示す模式図 抵抗変化素子の書き換え電流と電流制御素子の駆動電流の素子寸法への依存を表す特性図 単層および積層で構成される電流抑制層を有する電流制御素子の電流―電圧特性図 (a)は電流抑制層が単層で構成された電流制御素子の断面図、(b)は電流抑制層が3層で構成された電流制御素子の断面図 (a)は電流抑制層が単層で構成された電流制御素子のエネルギー障壁の高さ、(b)は電流抑制層が3層(TaO/TiO/TaO)で構成された電流制御素子のエネルギー障壁の高さ 電流抑制層が3層(TaO/TiO/TaO)で構成された電流制御素子におけるTiO/TaO積層膜における酸素濃度の深さ方向分布(SIMS分析結果)
(本発明に至った知見)
以下、本発明の詳細を説明する前に、本発明者らが実験によって得た新たな知見について説明する。なお、図1〜図3および図11〜図14を参照しながら当該知見について説明するが、これは後述の本発明の実施の形態を理解するための一助とするものである。したがって、本発明はこれらの図面およびその説明に限定されない。
図11は、電流抑制層が金属酸化物の単層および積層で構成される電流制御素子の電流―電圧特性図を示す。図11で示す特性図の一点鎖線は、電流抑制層がチタン酸化物(TiO)の単層で構成される電流制御素子の電流―電圧特性、破線は電流抑制層がチタン酸化物とタンタル酸化物の3層(TaO/TiO/TaO)で構成される電流制御素子の電流―電圧特性である。
図12の(a)、図12の(b)は、それぞれ、図11で示した各々の電流制御素子の断面図を示す。つまり、図12の(a)は、下部電極400と上部電極410との間にTiOで構成される単層の電流抑制層401を備える電流制御素子の断面図を示す。図12の(b)は、下部電極400と上部電極410との間にタンタル酸化物(TaO)で構成される第1の電流抑制層402、チタン酸化物(TiO)で構成される第2の電流抑制層403、タンタル酸化物(TaO)で構成される第3の電流抑制層404の3層で構成される電流抑制層405を備える電流制御素子の断面図を示す。
図11の一点鎖線から明らかな様に、電流抑制層がTiOの単層の電流制御素子の場合、電流制御素子の駆動電流は高く、素子破壊は見られない。つまり、クロスポイント型の不揮発性記憶素子を構成する電流制御素子が必要とする要件の一つである、抵抗変化素子の書き換え電流に必要な高い駆動電流能力を有していると言える。しかし、低電圧領域の電流(いわゆるオフリーク電流)も大きく、電流制御素子が必要とするもう一つの要件である、良好なオフ特性を満足することができない。
一方、図11の破線から明らかなように、第2の電流抑制層として高い電流駆動能力を有するTiO膜、第1の電流抑制層および第3の電流抑制層としてTaO膜で構成された3層の電流抑制層を備える電流制御素子の場合は、TiO膜の単層の電流抑制層を備える電流制御素子に比べ、低電圧領域のリーク電流を3桁以上も低減でき、クロスポイント型の不揮発性記憶素子の迂回電流を十分に防止する事ができる。しかし、最大駆動電流(素子の破壊電流)も減少することから、素子を微細化した場合には、抵抗変化素子の書込み動作に必要な駆動電流を供給する事ができない。
そこで、発明者らは、金属酸化物の3層で構成された電流抑制層405を備えた電流制御素子において、最大駆動電流(素子の破壊電流)が減少する原因と低電圧領域におけるリーク電流が改善するメカニズムについて解明を試みた。
図13の(a)および図13の(b)は、それぞれ、図12の(a)、図12の(b)で示した各々の電流制御素子のエネルギー障壁の高さを表す模式図である。ここで示すエネルギー障壁の高さは、電流制御素子の電流―電圧特性の温度特性を取得し、リチャードソン・プロットから算出した値である。
図13の(a)で示す様に、電流抑制層401がTiOの単層で構成される電流制御素子の場合、電極からのエネルギー障壁(電極のエネルギー準位を基準とするエネルギー障壁)の高さは0.17(eV)であった。一方、図13の(b)で示した様に、電流抑制層405が3層(TaO/TiO/TaO)で構成される電流制御素子の場合、電極からのエネルギー障壁の高さは0.37(eV)となり、電流抑制層401がTiOの単層で構成される電流制御素子よりも高くなる。そして、電流抑制層405が3層で構成される電流制御素子の場合、それぞれのエネルギー障壁(電極のエネルギー準位を基準とするエネルギー障壁)の高さは、第1の電流抑制層402および第3の電流抑制層404に比べ、第2の電流抑制層403の方が低くなる。この結果、電流抑制層405の膜厚方向のエネルギー障壁の高さは凹型(h1(>0)の高さの領域、h2(0<h2<h1)の高さの領域、および、h1(>0)の高さの領域がこの順で繋がった形状)を形成する。ここで、下部電極400および上部電極410を構成する窒化タンタル(TaN)と、第1の電流抑制層402および第3の電流抑制層404を構成するTaOの仕事関数は、それぞれ4.6(eV)、4.2(eV)であり、両者の仕事関数の差は上述した電流抑制層405のエネルギー障壁の高さと一致する。つまり、低電圧領域におけるリーク電流は、電極から見た電流抑制層のエネルギー障壁の高さに依存する。
図14は、図12の(b)に示された電流抑制層が3層(TaO/TiO/TaO)で構成された電流制御素子におけるTiO/TaO積層膜における酸素濃度の深さ分布を示す。縦軸は、酸素濃度比を示し、横軸は、深さ(nm)を示す。酸素濃度の計測については、SIMS分析法で行い、電流制御素子を形成する際のプロセス温度に相当するアニール(400℃、5分)前後で値を比較した。実線および破線は、それぞれ、アニール前およびアニール後における酸素濃度を示す。図14から明らかなように、アニール後は、TiO膜中の酸素原子がTaO膜へと拡散し、その界面(TiO膜とTaO膜との界面)に酸化物層が形成されている。これは、タンタルとチタンのイオン化傾向が近く、共に酸化されやすい特性を有した金属のためである。そして、図11の破線で示した電流抑制層の最大駆動電流(素子の破壊電流)の減少は、界面に形成される酸化物層によって引き起こされたと推測される。つまり、酸化物層の形成によって電流抑制層の抵抗値が増大し、電流抑制層に流れ得る最大電流(つまり、最大駆動電流、あるいは、素子の破壊電流)が減少したと予測される。
この様に、本発明者らは、電極からのエネルギー障壁の高さが凹型の電流抑制層を採用することにより、最大駆動電流(素子の破壊電流)の大きい金属酸化物でも低電圧領域のリーク電流が低減できる(つまり、オフ特性を向上できる)事を見出した。しかし、金属酸化物からの酸素原子の拡散により、金属酸化物と接する界面に予期せぬ酸化物層が形成され、電流制御素子の最大駆動電流が減少するという新たな課題が発生した。
そこで本発明者らは、3層の電流抑制層で構成された電流制御素子の課題について鋭意検討し、以下に示す新たな知見を得た。
図2の(a)は、異なる3種類の電流抑制層を備える3種類の電流制御素子の電流―電圧特性を示す。ここでは、図11に示された2種類の電流制御素子の電流―電圧特性に、新たな種類の電流制御素子の電流―電圧特性(実線)が追記されている。実線は、金属酸化物と酸素を含有しない半導体化合物とを積層した3層の電流制御層からなる電流制御素子の電流―電圧特性を示す。具体的には、窒素含有シリコン(SiN)で構成される第1の電流抑制層202および第3の電流抑制層204と、TiOで構成される第2の電流抑制層203とを積層した3層の電流抑制層205を備える電流制御素子である。
図2の(a)から明らかな様に、電流抑制層がSiN/TiO/SiNの3層で構成される電流制御素子の場合(実線)は、電流抑制層がTiOの単層で構成される電流制御素子の場合(一点鎖線)に比べ、低電圧領域におけるリーク電流が大幅に低減される。さらに、電流抑制層がTaO/TiO/TaOの3層で構成される電流制御素子の場合(破線)に比べ、電流制御素子の最大駆動電流(素子の破壊電流)が増加する。
図2の(b)は、SiN/TiO/SiNの3層で構成される電流抑制層205における、電極からのエネルギー障壁(電極(図1の上部電極206および下部電極201)のエネルギー準位を基準とするエネルギー障壁)の高さを表す図である。ここで示した電極からのエネルギー障壁の高さは、図2の(a)で示した電流―電圧特性の温度依存を取得し、リチャードソン・プロットから算出した。図2の(b)から明らかなように、電極から見た(電極のエネルギー準位を基準とする)電流抑制層のエネルギー障壁の高さは、0.25(eV)であり、図13の(a)で示したTiOの単層で構成される電流抑制層のエネルギー障壁の高さ(0.17eV)に比べ、高い値を示す。つまり、SiN/TiO/SiN構造の3層で構成される電流抑制層205は、膜厚方向のエネルギー障壁の高さが凹型となっている。従って、TiOの単層に比べ、リーク電流を低減する(オフ特性を向上させる)ことが可能となる。
図3は、図1に示されるような、電流抑制層がSiN/TiO/SiNの3層で構成される電流制御素子において、TiO膜とSiN膜とにおける酸素濃度の深さ方向分布を示す。図3では、TiO膜はチタン酸化物、SiN膜は窒素含有シリコンと記載している。酸素濃度は、SIMS分析法で行い、電流制御素子を形成する際のプロセス温度に相当するアニール(400℃、5分)の前後で値を比較した。実線および破線は、それぞれ、アニール前およびアニール後における酸素濃度を示す。図3から明らかな様に、アニールの前後で酸素濃度の深さ方向分布にほとんど変化は見られず、SiN膜によって、TiO膜中の酸素原子の拡散が抑制されていることがわかる。これは、チタンに比べ、シリコンは、イオン化傾向は小さく、酸化され難い特性を有するためである。従って、アニールによって酸素原子が拡散し易い状況が生じても、シリコンが酸化されることがない。
以上の様に、金属酸化物を含む3層で構成される電流抑制層において、金属酸化物と接する界面にイオン化傾向の小さい金属または半導体を配設することで、界面での酸化物層の形成を防止でき、電流制御素子の最大駆動電流(破壊電流)を向上させる事ができた。
以上の様に、本発明者らは、金属酸化物を含む3層で構成される電流抑制層においては、金属酸化物と接する界面の酸化物層の形成を抑制し、かつ電流抑制層の膜厚方向のエネルギー障壁の高さを凹型にする事によって、クロスポイント型の不揮発性記憶素子の電流制御素子に不可欠な2つの要件である、高い電流駆動能力(高い最大駆動電流)と良好なオフ特性の両立が可能である事を見出した。
本発明は、上述した金属酸化物を含む3層で構成される電流抑制層を備えた電流制御素子の電流―電圧特性、温度特性から求めたエネルギー障壁の高さおよび酸素濃度分析に基づいて着想され、完成されたものである。
より詳しくは、本発明に係る電流制御素子の一形態は、極性が正および負の電気パルスが印加された時に流れる電流を制御する電流制御素子であって、上部電極と、下部電極と、前記上部電極および前記下部電極間に挟まれた電流抑制層とを備え、前記電流抑制層は、第1の電流抑制層と第2の電流抑制層と第3の電流抑制層とがこの順に積層され、前記第1の電流抑制層と前記第3の電流抑制層とは、酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または、酸素を含有しない半導体化合物で構成され、前記第2の電流抑制層は、金属酸化物または半導体酸化物で構成され、前記上部電極または前記下部電極のエネルギー準位を基準として、前記第2の電流抑制層のエネルギー障壁の高さは、前記第1の電流抑制層および前記第3の電流抑制層のエネルギー障壁の高さより低い。
これにより、電流抑制層を構成する第1の電流抑制層と第3の電流抑制層とは酸素を含有しない金属等で構成されるので、第1の電流抑制層および第3の電流抑制層と第2の電流抑制層との界面における酸化物層の形成が抑制され、高い電流駆動能力が実現される。さらに、上部電極または下部電極のエネルギー準位を基準として、第2の電流抑制層のエネルギー障壁の高さは第1の電流抑制層および第3の電流抑制層のエネルギー障壁の高さより低いので、電流抑制層の膜厚方向のエネルギー障壁の高さが凹型となり、良好なオフ特性が実現される。
ここで、前記第1の電流抑制層および前記第3の電流抑制層のイオン化傾向は、前記第2の電流抑制層のイオン化傾向より小さくてもよい。
これにより、イオン化傾向の小さな金属は酸化され難いことから、第1の電流抑制層および第3の電流抑制層と第2の電流抑制層との界面における酸化物層の形成がさらに抑制され、さらに高い電流駆動能力が実現される。
また、前記第2の電流抑制層は、前記上部電極および前記下部電極より仕事関数が小さくてもよい。
これにより、下部電極201および上部電極206に対してエネルギー障壁を形成でき、確実に整流作用が生じる。
また、前記第1の電流抑制層および前記第3の電流抑制層は、それぞれ、前記下部電極および前記上部電極と接し、前記下部電極のエネルギー準位を基準とする前記第1の電流抑制層のエネルギー障壁の高さ、および、前記上部電極のエネルギー準位を基準とする前記第3の電流抑制層のエネルギー障壁の高さは、0.5eVより小さくてもよい。
これにより、電流制御素子と接続される抵抗変化素子への書込み動作に要する電流を供給するための電圧が高くなってしまうことが回避される。
また、前記第1の電流抑制層と前記第3の電流抑制層とは、同じ材料で構成されてもよい。
これにより、電流制御素子に、極性の異なる電気パルスを印加しても、絶対値の等しい駆動電流を抵抗変化素子へ供給する事ができ、ヒステリシス特性が生じない。したがって、バイポーラ型の抵抗変化素子の電流制御素子に必要な正負対称の電流―電圧特性が得られる。
なお、第2の電流抑制層の材料として、前記第2の電流抑制層は、バナジウム、チタン、タンタル、タングステン、ニッケル、および、シリコンのいずれかの酸化物で構成されてもよい。さらに、第1の電流抑制層および第3の電流抑制層の材料として、前記第1の電流抑制層および前記第3の電流抑制層は、バナジウム、チタン、タンタル、タングステン、ニッケル、および、シリコンのいずれかを含んでもよい。
また、本発明は、極性が正および負の電気パルスが印加されることによりその電気抵抗値が可逆的に変化する不揮発性の抵抗変化素子と、前記抵抗変化素子と直列に接続され、前記抵抗変化素子に前記電気パルスを印加した時に流れる電流を制御する電流制御素子とを備え、前記電流制御素子は、上記電流制御素子である、不揮発性記憶素子として実現してもよい。
さらに、本発明は、複数のビット線と、前記複数のビット線の各々と立体交差する複数のワード線と、複数の不揮発性記憶素子とを備え、前記複数の不揮発性記憶素子は、上記不揮発性記憶素子であり、前記複数の不揮発性記憶素子は、前記複数のビット線と前記複数のワード線とが立体交差する各々の交点に配設され、該各々の交点において、前記不揮発性記憶素子の一端が当該交点を形成する前記ビット線に、前記不揮発性記憶素子の他端が当該交点を形成する前記ワード線に、各々接続されている、不揮発性記憶装置として実現してもよい。
さらに、本発明は、半導体基板上に下部電極を形成する工程と、前記下部電極上に酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または、酸素を含有しない半導体化合物で構成される第1の電流抑制層を形成する工程と、前記第1の電流抑制層上に前記第1の電流抑制層の表面を酸化させずに金属酸化物または半導体酸化物で構成される第2の電流抑制層を形成する工程と、前記第2の電流抑制層上に酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または、酸素を含有しない半導体化合物で構成される第3の電流抑制層を形成する工程と、前記第3の電流抑制層上に上部電極を形成する工程とを有し、前記上部電極または前記下部電極のエネルギー準位を基準として、前記第2の電流抑制層のエネルギー障壁の高さは、前記第1の電流抑制層および前記第3の電流抑制層のエネルギー障壁の高さより低い、電流制御素子の製造方法として実現してもよい。
このとき、前記第2の電流抑制層を形成する工程では、前記第1の電流抑制層の表面を大気に曝露せず、不活性ガスを用いて前記第2の電流抑制層を前記第1の電流抑制層上に堆積してもよい。
これにより、第2の電流抑制層を形成する際に第1の電流抑制層の表面が酸化されることによる電流駆動能力の低下が防止される。
以下、本発明に係る電流制御素子、不揮発性記憶素子、不揮発性記憶装置および電流制御素子の製造方法の実施の形態について、図面を用いて、詳細に説明する。
なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(実施の形態1)
以下、図面を参照しながら、本発明の実施の形態1に係る電流制御素子10について説明する。
[電流制御素子の構成]
図1は、本発明の実施の形態1における電流制御素子10の断面図を示す。この電流制御素子10は、極性が正および負の電気パルスが印加された時に流れる電流を制御する電流制御素子であって、上部電極206と、下部電極201と、上部電極206および下部電極201間に挟まれた電流抑制層205とを備える。なお、本図には、電流制御素子10の周辺の構成要素として、基板100、第1の配線101、第1の層間絶縁層102、第1のコンタクトホール103内に形成されたコンタクトプラグ104、第2の層間絶縁層108、第2のコンタクトホール109内に形成された第2のコンタクトプラグ110、および、第2の配線111も併せて図示されている。
基板100は、シリコン(Si)等の半導体基板である。第1の配線101は、基板100上に形成された配線である。第1の層間絶縁層102は、この基板100上の第1の配線101を覆う500〜1000nm厚のシリコン酸化膜等で構成される層間絶縁層である。第1のコンタクトホール103は、この第1の層間絶縁層102を貫通して第1の配線101と電気的に接続されるコンタクトプラグ104のための直径50〜300nmのコンタクトホールである。コンタクトプラグ104は、第1のコンタクトホール103の内部にタングステンを主成分として埋め込まれた導体である。
電流制御素子10は、第1のコンタクトプラグ104を被覆するように形成されており、下部電極201と、上部電極206と、これらの下部電極201と上部電極206の間に配設された電流抑制層205とにより構成されている。電流抑制層205は、第1の電流抑制層202と、第2の電流抑制層203と、第3の電流抑制層204の3層がこの順で積層されて構成される。第1の電流抑制層202と第3の電流抑制層204とは、酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または、酸素を含有しない半導体化合物で構成される。第2の電流抑制層203は、金属酸化物または半導体酸化物で構成される。ここで、上部電極206または下部電極201のエネルギー準位を基準として、第2の電流抑制層203のエネルギー障壁の高さは、第1の電流抑制層202および第3の電流抑制層204のエネルギー障壁の高さより低い。つまり、電流抑制層205の膜厚方向のエネルギー障壁の高さが凹型になっている。
より詳しくは、下部電極201および上部電極206は、Al、Cu、Ti、W、Pt、Ir、Cr、Ni、Nb等の金属、または、これらの金属の混合物(合金)或いは積層構造物により構成される。或いは、これらの下部電極201および上部電極206は、TiN、TiW、TaN、TaSi、TaSiN、TiAlN、NbN、WN、WSi、WSiN、RuO、In、SnO、IrO等の導電性を有する化合物、又は、これらの導電性を有する化合物の混合物或いは積層構造物により構成される。勿論、下部電極201および上部電極206を構成する材料は、これらの材料に限定されるわけではなく、電流抑制層205との間で形成されるエネルギー障壁により整流性が生じるような材料であれば、如何なる材料であってもよい。
第1の電流抑制層202および第3の電流抑制層204は、V(バナジウム)、Ti(チタン)、Ta(タンタル)、W(タングステン)、Ni(ニッケル)、Si(シリコン)のいずれかを含みかつ酸素を含有しない金属または金属化合物、V(バナジウム)、Ti(チタン)、Ta(タンタル)、W(タングステン)、Ni(ニッケル)、Si(シリコン)のいずれかを含みかつ酸素を含有しない半導体または半導体化合物で構成される。
第2の電流抑制層203は、V、Ti、Ta、W、Ni、Siのいずれかの金属酸化物または半導体酸化物で構成される。そして、第2の電流抑制層203の仕事関数は、第1の電流抑制層202および第3の電流抑制層204の仕事関数より大きい。言い換えると、電極からのエネルギー障壁の高さは、第1の電流抑制層202および第3の電流抑制層204より小さい。すなわち、第2の電流抑制層203は、上部電極206および下部電極201より仕事関数が小さい。電流抑制層205の膜厚方向のエネルギー障壁の高さは平面方向に見ると凹型を成す。これにより、良好なオフ特性が実現される。
また、第1の電流抑制層202および第3の電流抑制層204を構成する主成分の金属または半導体は、第2の電流抑制層203を構成する金属より、イオン化傾向が小さいことが望ましい。一般的に、イオン化傾向の大きな金属は、酸化され易い事が知られている。従って、第2の電流抑制層203よりイオン化傾向の小さな金属または半導体を第1の電流抑制層202および第3の電流抑制層204に用いることで、第2の電流抑制層203と接する界面における酸化物層の形成を抑制でき、これにより、界面酸化物層で生じる最大駆動電流の減少を抑制できる。つまり、高い電流駆動能力(高い最大駆動電流)が実現される。
更に、電流抑制層205を構成する第1の電流抑制層202、第2の電流抑制層203および第3の電流抑制層204の仕事関数は、いずれも下部電極201および上部電極206の仕事関数より小さいことが望ましい。これにより、第1の電流抑制層202、第2の電流抑制層203および第3の電流抑制層204は、下部電極201および上部電極206に対してエネルギー障壁を形成でき、整流作用が生じる。特に、第1の電流抑制層202と下部電極201との間、および第3の電流抑制層204と上部電極206との間で形成されるエネルギー障壁は、0.5eVより小さいことが望ましい。より詳しくは、下部電極201のエネルギー準位を基準とする第1の電流抑制層202のエネルギー障壁の高さ、および、上部電極206のエネルギー準位を基準とする第3の電流抑制層204のエネルギー障壁の高さは、0.5eVより小さいことが望ましい。エネルギー障壁が0.5eVより大きい場合には、下部電極201および上部電極206から電流抑制層205へ流入する電流が小さくなる。したがって、抵抗変化素子の書込み動作に要する電流を供給するための電圧が高くなり、このような電流制御素子を用いた不揮発性記憶素子は低電圧動作が困難となる。
また更に、第1の電流抑制層202と第3の電流抑制層204とは同じ材料で構成される(つまり、同じ金属、同じ金属化合物、同じ半導体、または、同じ半導体化合物を用いる)事が望ましい。これにより、電流制御素子10に、極性の異なる電気パルス(正および負の電気パルス)を印加しても、絶対値の等しい駆動電流を抵抗変化素子へ供給する事ができ、ヒステリシス特性が生じない。したがって、バイポーラ型の抵抗変化素子の電流制御素子に必要な正負対称の電流―電圧特性が得られる。
第2の層間絶縁層108は、電流抑制層205および第2のコンタクトプラグ110を被覆する、500〜1000nm厚のシリコン酸化膜等で構成される層間絶縁層である。第2のコンタクトホール109は、この第2の層間絶縁層108を貫通して、上部電極206と電気的に接続される第2のコンタクトプラグ110を設けるために形成され、その直径は50〜300nmである。第2のコンタクトプラグ110は、第2のコンタクトホール109の内部にタングステンを主成分として埋め込まれた導体である。第2の配線111は、第2のコンタクトプラグ110を被覆するように、第2の層間絶縁層108上に形成された配線である。
なお、本発明に係る電流制御素子10では、周辺の構成要素(基板100、第1の配線101、第1の層間絶縁層102、第1のコンタクトホール103、第1のコンタクトプラグ104、第2の層間絶縁層108、第2のコンタクトホール109、第2のコンタクトプラグ110、第2の配線111)は必須ではない。
上記の様に、金属酸化物で構成される第2の電流抑制層203と、酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または酸素を含有しない半導体化合物で構成される第1の電流抑制層202および第3の電流抑制層204の3層で電流抑制層205を構成し、かつ電流抑制層205の膜厚方向のエネルギー障壁の高さを凹型とすることにより、高い電流駆動能力と良好なオフ特性を有した電流制御素子10を実現する事ができる。これにより、クロスポイント型の不揮発性記憶素子の微細化が可能となり、大記憶容量の不揮発性記憶装置を提供する事が出来る。
[電流制御素子の製造方法]
図4の(a)から図4の(g)は本発明の実施の形態1における電流制御素子10の要部の製造方法を示す断面図である。これらを用いて、本実施の形態1の電流制御素子10の要部の製造方法について説明する。
図4の(a)に示すように、第1の配線101を形成する工程において、トランジスタや下層配線などが形成されている基板100上に、アルミニウム等で構成される400〜600nm厚の導電層を形成し、これをパターニングすることで第1の配線101を形成する。
次に、図4の(b)に示すように、第1の層間絶縁層102を形成する工程において、第1の配線101を被覆するように基板100上に絶縁層を形成し、この後に表面を平坦化することで500〜1000nm厚の第1の層間絶縁層102を形成する。第1の層間絶縁層102については、プラズマTEOS(Tetraethoxysilane)膜、配線間の寄生容量の低減のためにフッ素含有酸化物(例えば、FSG(Fluorinated Silicate Glass))またはlow−k材料を用いてもよい。
次に、図4の(c)に示すように、第1のコンタクトホール103を形成する工程において、所望のマスクを用いてパターニングして、第1の層間絶縁層102を貫通して第1の配線101に至る一辺が50〜300nmの第1のコンタクトホール103を形成する。ここで、第1の配線101の幅が第1のコンタクトホール103より小さい場合には、マスク合わせずれの影響により第1の配線101と第1のコンタクトプラグ104の接触する面積が変わり、例えばセル電流が変動する。これを防止する観点から、本実施の形態では、第1の配線101の幅は第1のコンタクトホール103より大きな外形としている。
次に、図4の(d)に示すように、第1のコンタクトプラグ104を形成する工程において、まず下層に密着層及び拡散バリアとして機能する各々5〜30nm厚のTi/TiN層をスパッタ法で成膜した後、上層にコンタクトプラグの主たる構成要素となる200〜400nm厚のタングステン(W)をCVD(Chemical Vapor Depotion)法で成膜する。このとき、第1のコンタクトホール103は後に第1のコンタクトプラグ104となる積層構造の導電層(W/Ti/TiN構造)で充填される。次に、第1のコンタクトプラグ104を形成する工程において、化学的機械研磨法(CMP(Chemical Mechanical Polishing)法)を用いてウエハ全面を平坦化研磨し、第1の層間絶縁層102上の不要な導電層を除去して、第1のコンタクトホール103の内部に第1のコンタクトプラグ104を形成する。
次に、図4の(e)に示すように、電流抑制層205を形成する工程において、まず第1のコンタクトプラグ104を被覆するように、第1の層間絶縁層102上に下部電極201を形成する。下部電極201の成膜条件は、使用する電極材料等によって変わるが、例えば、窒化タンタル(TaN)を下部電極201の材料に用いる場合はDCマグネトロンスパッタ法を用い、タンタル(Ta)ターゲットをアルゴン(Ar)と窒素(N)の混合雰囲気の下で反応性スパッタリングを行い、厚さが20〜100nmとなるよう成膜時間を調節する。さらに、下部電極201の主面上に、第1の電流抑制層202として、例えばSiN膜を形成する。この成膜の際には、例えば、多結晶シリコンターゲットをArと窒素との混合ガス雰囲気の下でスパッタする手法(いわゆる、反応性スパッタ法)を用いる。そして、典型的な成膜条件として、圧力を0.08〜2Paとし、基板温度を20〜300℃とし、窒素ガスの流量比(Arと窒素との総流量に対する窒素の流量の比率)を0〜40%とし、DCパワーを100〜1300Wとした上で、SiN膜の厚さが3〜30nmとなるよう成膜時間を調節する。SiN膜におけるxの値は、多結晶シリコンで構成されるターゲットをスパッタリングする条件(Arと窒素とのガス流量比等)を変えることにより、適宜変化させることが可能である。
続いて、第1の電流抑制層202の主面上に第2の電流抑制層203として、例えば酸化チタン(TiO)膜を形成する。この成膜の際には、例えば、アナターゼ型の酸化チタンターゲットをArガス雰囲気の下でスパッタする手法(いわゆる、高周波スパッタ法)を用いる。そして、典型的な成膜条件として、圧力を0.08〜2Paとし、基板温度を20〜300℃とし、Arガスの流量20〜300sccmとし、RFパワーを200〜1500Wとした上で、TiO膜の厚さが2〜30nmとなるよう成膜時間を調節する。第1の電流抑制層202から第2の電流抑制層203の形成までの間は、真空状態で保持することにより、大気暴露による第1の電流抑制層202の表面への自然酸化膜の形成が抑制できる。また、Arガス等の不活性ガスで酸化チタンターゲットをスパッタリングすることにより、酸素ガスがチャンバー内へ導入されないため、第1の電流抑制層202の表面酸化を防止することができる。つまり、第2の電流抑制層203を形成する工程では、第1の電流抑制層202の表面を大気に曝露せず、不活性ガスを用いて第2の電流抑制層203を第1の電流抑制層202上に堆積する。これにより、第1の電流抑制層202の表面が酸化されることによる電流駆動能力の低下が防止される。
次に、第2の電流抑制層203の主面上に、第3の電流抑制層204として、例えば第1の電流抑制層202と同じSiN膜を反応性スパッタ法で形成する。SiN膜の典型的な成膜条件として、圧力を0.08〜2Paとし、基板温度を20〜300℃とし、窒素ガスの流量比を0〜40%とし、DCパワーを100〜1300Wとし、厚さは3〜30nmである。ここでは、第3の電流抑制層204と第1の電流抑制層202とが同じ半導体化合物の場合について示したが、第3の電流抑制層204は、第1の電流抑制層202と異なる金属、金属化合物、半導体または半導体化合物でも良い。
そして、電流抑制層205の主面上に、上部電極206として、例えば、窒化タンタル(TaN)を上部電極の材料に用いる場合は、DCマグネトロンスパッタ法を用い、タンタル(Ta)ターゲットをアルゴン(Ar)と窒素(N)の混合雰囲気の下で反応性スパッタリングを行い、厚さが20〜100nmの窒化タンタル膜となるよう成膜時間を調節する。
次に、図4の(f)に示すように、電流制御素子10を加工する工程において、マスクを用いて、電流制御素子10をパターニングにより形成する。
最後に、図4の(g)に示す様に、電流制御素子10を被覆するように、500〜1000nm厚の第2の層間絶縁層108を形成し、図4の(b)、図4の(c)と同様の製造方法で、その第2のコンタクトホール109及び第2のコンタクトプラグ110を形成する。その後、第2のコンタクトプラグ110を被覆するように、第2の配線111を形成して、電流制御素子10が完成する。
以上の製造方法により、第1の電流抑制層202と第2の電流抑制層203との界面、または第2の電流抑制層203と第3の電流抑制層204との界面に酸化物層が形成されない事から、電流制御素子10の破壊電流耐性(つまり、最大駆動電流)を向上することができる。
(実施の形態2)
以下、図面を参照しながら、本発明の実施の形態2に係る不揮発性記憶素子20について説明する。
[不揮発性記憶素子の構成]
図5は、本発明の実施の形態2における不揮発性記憶素子20の断面図を示す。この不揮発性記憶素子20は、極性が正および負の電気パルスが印加されることによりその電気抵抗値が可逆的に変化する不揮発性の抵抗変化素子300と、抵抗変化素子300と直列に接続され、抵抗変化素子300に電気パルスを印加した時に流れる電流を制御する電流制御素子200とを備える。電流制御素子200は、実施の形態1における電流制御素子10と同じ構成(上部電極206と、下部電極201と、上部電極206および下部電極201間に挟まれた電流抑制層205)を備える。図5から明らかなように、本実施の形態2の不揮発性記憶素子20は、電流制御素子200の上に抵抗変化素子300を配置し、かつ、電流制御素子200の上部電極と抵抗変化素子300の下部電極を共有化して、電流制御素子200と抵抗変化素子300を一体化した構成である。なお、本図には、不揮発性記憶素子20の周辺の構成要素として、基板100、第1の配線101、第1の層間絶縁層102、第1のコンタクトホール103内に形成されたコンタクトプラグ104、第2の層間絶縁層108、第2のコンタクトホール109内に形成された第2のコンタクトプラグ110、および、第2の配線111も併せて図示されている。
図5において、図1と同じ構成要素については同じ符号を用い、説明を省略する。図5では、電流制御素子200の上部電極206の主面上に、抵抗変化層303(20〜100nm)と抵抗変化素子300の上部電極304(膜厚:5〜100nm)が形成されている。
抵抗変化層303は、電流制御素子200の上部電極206と抵抗変化素子300の上部電極304との間に介在され、電流制御素子200の上部電極206と抵抗変化素子300の上部電極304との間に与えられる電気的信号に基づいて可逆的に抵抗値が変化する層である。例えば、電流制御素子200の上部電極206と抵抗変化素子300の上部電極304との間に与えられる電圧の極性に応じて高抵抗状態と低抵抗状態とを可逆的に遷移する層である。抵抗変化層303は、電流制御素子200の上部電極206に接続される第1の抵抗変化層301と、抵抗変化素子300の上部電極304に接続される第2の抵抗変化層302の少なくとも2層を積層して構成される。
第1の抵抗変化層301は、酸素不足型の第1の金属酸化物で構成され、第2の抵抗変化層302は、第1の金属酸化物よりも酸素不足度が小さい第2の金属酸化物で構成されている。抵抗変化素子300の第2の抵抗変化層302中には、電気パルスの印加に応じて酸素不足度が可逆的に変化する微小な局所領域が形成されている。局所領域は、酸素欠陥サイトから構成されるフィラメントを含むと考えられる。
「酸素不足度」とは、金属酸化物において、その化学量論的組成(複数の化学量論的組成が存在する場合は、そのなかで最も抵抗値が高い化学量論的組成)の酸化物を構成する酸素の量に対し、不足している酸素の割合をいう。化学量論的組成の金属酸化物は、他の組成の金属酸化物と比べて、より安定でありかつより高い抵抗値を有している。
例えば、金属がタンタル(Ta)の場合、上述の定義による化学量論的組成の酸化物はTaであるので、TaO2.5と表現できる。TaO2.5の酸素不足度は0%であり、TaO1.5の酸素不足度は、酸素不足度=(2.5−1.5)/2.5=40%となる。また、酸素過剰の金属酸化物は、酸素不足度が負の値となる。なお、本明細書中では、特に断りのない限り、酸素不足度は正の値、0、負の値も含むものとして説明する。
酸素不足度の小さい酸化物は化学量論的組成の酸化物により近いため抵抗値が高く、酸素不足度の大きい酸化物は酸化物を構成する金属により近いため抵抗値が低い。
「酸素含有率」とは、総原子数に占める酸素原子の比率である。例えば、Taの酸素含有率は、総原子数に占める酸素原子の比率(O/(Ta+O))であり、71.4atm%となる。したがって、酸素不足型のタンタル酸化物は、酸素含有率は0より大きく、71.4atm%より小さいことになる。例えば、第1の金属酸化物層を構成する金属と、第2の金属酸化物層を構成する金属とが同種である場合、酸素含有率は酸素不足度と対応関係にある。すなわち、第2の金属酸化物の酸素含有率が第1の金属酸化物の酸素含有率よりも大きいとき、第2の金属酸化物の酸素不足度は第1の金属酸化物の酸素不足度より小さい。
抵抗変化層303を構成する金属は、タンタル以外の金属を用いてもよい。抵抗変化層303を構成する金属としては、遷移金属、またはアルミニウム(Al)を用いることができる。遷移金属としては、タンタル(Ta)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、ニオブ(Nb)、タングステン(W)、ニッケル(Ni)等を用いることができる。遷移金属は複数の酸化状態をとることができるため、異なる抵抗状態を酸化還元反応により実現することが可能である。
例えば、ハフニウム酸化物を用いる場合、第1の金属酸化物の組成をHfOとした場合にxが0.9以上1.6以下であり、かつ、第2の金属酸化物の組成をHfOとした場合にyがxの値よりも大である場合に、抵抗変化層303の抵抗値を安定して高速に変化させることができる。この場合、第2の金属酸化物の膜厚は、3〜4nmとしてもよい。
また、ジルコニウム酸化物を用いる場合、第1の金属酸化物の組成をZrOとした場合にxが0.9以上1.4以下であり、かつ、第2の金属酸化物の組成をZrOとした場合にyがxの値よりも大である場合に、抵抗変化層303の抵抗値を安定して高速に変化させることができる。この場合、第2の金属酸化物の膜厚は、1〜5nmとしてもよい。
第1の金属酸化物を構成する第1の金属と、第2の金属酸化物を構成する第2の金属とは、異なる金属を用いてもよい。この場合、第2の金属酸化物は、第1の金属酸化物よりも酸素不足度が小さい、つまり抵抗が高くてもよい。このような構成とすることにより、抵抗変化時に電流制御素子200の上部電極206と抵抗変化素子300の上部電極304との間に印加された電圧は、第2の金属酸化物に、より多くの電圧が分配され、第2の金属酸化物中で発生する酸化還元反応をより起こしやすくすることができる。
また、第1の抵抗変化層301となる第1の金属酸化物を構成する第1の金属と、第2の抵抗変化層302となる第2の金属酸化物を構成する第2の金属とを、互いに異なる材料を用いる場合、第2の金属の標準電極電位は、第1の金属の標準電極電位より低くてもよい。標準電極電位は、その値が高いほど酸化しにくい特性を表す。これにより、標準電極電位が相対的に低い第2の金属酸化物において、酸化還元反応が起こりやすくなる。なお、抵抗変化現象は、抵抗が高い第2の金属酸化物中に形成された微小な局所領域中で酸化還元反応が起こってフィラメント(導電パス)が変化することにより、その抵抗値(酸素不足度)が変化すると考えられる。
例えば、第1の金属酸化物に酸素不足型のタンタル酸化物(TaO)を用い、第2の金属酸化物にチタン酸化物(TiO)を用いることにより、安定した抵抗変化動作が得られる。チタン(標準電極電位=−1.63eV)はタンタル(標準電極電位=−0.6eV)より標準電極電位が低い材料である。このように、第2の金属酸化物に第1の金属酸化物より標準電極電位が低い金属の酸化物を用いることにより、第2の金属酸化物中でより酸化還元反応が発生しやすくなる。その他の組み合わせとして、高抵抗層となる第2の金属酸化物にアルミニウム酸化物(Al)を用いることができる。例えば、第1の金属酸化物に酸素不足型のタンタル酸化物(TaO)を用い、第2の金属酸化物にアルミニウム酸化物(Al)を用いてもよい。
積層構造の抵抗変化層303における抵抗変化現象は、いずれも抵抗が高い第2の金属酸化物中に形成された微小な局所領域中で酸化還元反応が起こって、局所領域中のフィラメント(導電パス)が変化することにより、その抵抗値が変化すると考えられる。
つまり、第2の金属酸化物に接続される抵抗変化素子300の上部電極304に、電流制御素子200の上部電極206を基準にして正の電圧を印加したとき、抵抗変化層303中の酸素イオンが第2の金属酸化物側に引き寄せられる。これによって、第2の金属酸化物中に形成された微小な局所領域中で酸化反応が発生し、酸素不足度が減少する。その結果、局所領域中のフィラメントが繋がりにくくなり、抵抗値が増大すると考えられる。
逆に、第2の金属酸化物に接続される抵抗変化素子300の上部電極304に、電流制御素子200の上部電極206を基準にして負の電圧を印加したとき、第2の金属酸化物中の酸素イオンが第1の金属酸化物側に押しやられる。これによって、第2の金属酸化物中に形成された微小な局所領域中で還元反応が発生し、酸素不足度が増加する。その結果、局所領域中のフィラメントが繋がりやすくなり、抵抗値が減少すると考えられる。
酸素不足度がより小さい第2の金属酸化物に接続されている抵抗変化素子300の上部電極304は、例えば、白金(Pt)、イリジウム(Ir)、パラジウム(Pd)など、第2の金属酸化物を構成する金属及び電流制御素子200の上部電極206を構成する材料と比べて標準電極電位が、より高い材料で構成する。また、酸素不足度がより高い第1の金属酸化物に接続されている電流制御素子200の上部電極206は、例えば、タングステン(W)、ニッケル(Ni)、タンタル(Ta)、チタン(Ti)、アルミニウム(Al)、窒化タンタル(TaN)、窒化チタン(TiN)など、第1の金属酸化物を構成する金属と比べて標準電極電位が、より低い材料で構成してもよい。標準電極電位は、その値が高いほど酸化しにくい特性を表す。
すなわち、抵抗変化素子300の上部電極304の標準電極電位V2、第2の金属酸化物を構成する金属の標準電極電位Vr2、第1の金属酸化物を構成する金属の標準電極電位Vr1、電流制御素子200の上部電極206の標準電極電位V1との間には、Vr2<V2、かつV<Vなる関係を満足してもよい。さらには、V2>Vr2で、Vr1≧V1の関係を満足してもよい。
上記の構成とすることにより、抵抗変化素子300の上部電極304と第2の金属酸化物との界面近傍の第2の金属酸化物中において、選択的に酸化還元反応が発生し、安定した抵抗変化現象が得られる。
上記の構成により、電流制御素子200と抵抗変化素子300を同時に形成することができ、製造プロセスを簡素化する事ができる。
[不揮発性記憶素子の製造方法]
図6の(a)から図6の(c)は本発明の実施の形態2における不揮発性記憶素子20の要部の製造方法を示す断面図である。図6の(a)以前の工程は、図4の(a)〜図4の(e)と同様であるので、説明を省略する。
図6の(a)に示すように、第1の抵抗変化層301と、第1の抵抗変化層301より酸素含有率の高い第2の抵抗変化層302とを形成する工程において、電流制御素子200の上部電極206上に、金属酸化物で構成される第1の抵抗変化層301と第2の抵抗変化層302を形成する。ここでは、タンタルターゲットをアルゴンと酸素ガス雰囲気中でスパッタリングする、いわゆる、反応性スパッタ法で第1の抵抗変化層301を形成した。その酸素含有率としては、50〜65atm%、その抵抗率は2〜50mΩcm、膜厚は20〜100nmである。続いて、第1の抵抗変化層301と同様にして、タンタルターゲットを酸素ガス雰囲気中でスパッタリングする反応性スパッタ法で第2の抵抗変化層302を形成した。その酸素含有率は、67〜71atm%、その抵抗率は10mΩcm以上、膜厚は2〜10nmである。ここで、電流制御素子200と抵抗変化素子300は、真空雰囲気中で連続形成することが望ましい。これは、電流制御素子200の上部電極206の形成後に大気に曝露すると、上部電極206の表面に自然酸化層が形成され、寄生抵抗となり、不揮発性記憶素子20の特性が変動する為である。
上部電極304については、貴金属(白金、イリジウム、パラジウムなど)で構成される導電層で形成する。
図6の(b)以降の工程は、図4の(f)〜図4の(g)と同様であるため、説明を省略する。
以上の製造方法により、電流制御素子200と抵抗変化素子300を同時に形成でき、製造プロセスを簡素化する事ができる。
(実施の形態3)
以下、図面を参照しながら、本発明の実施の形態3に係る不揮発性記憶装置30について説明する。
図7は、本発明の実施の形態3に係る不揮発性記憶装置30の構成を模式的に示すブロック図である。尚、図7では、本発明に係る不揮発性記憶装置30を説明するために必要となる構成要素のみを図示し、その他の構成要素は図示を省略している。
図7に示すように、本実施の形態に係る不揮発性記憶装置30は、いわゆるクロスポイント型の不揮発性記憶装置であり、複数のビット線BL0〜BL3と、複数のビット線BL0〜BL3の各々と立体交差する複数のワード線WL0〜WL3と、複数の不揮発性記憶素子20(実施の形態2における不揮発性記憶素子20)とを備える。なお、本実施の形態では、この不揮発性記憶装置30は、不揮発性記憶素子アレイ500と、不揮発性記憶素子アレイ500を駆動するための周辺回路(例えば、ビット線デコーダ504、読み出し回路505、ワード線デコーダ506および507)とを備えている。
ここで、実際の不揮発性記憶素子アレイは、通常、図示された本数よりも多い複数のビット線と複数のワード線とを有しているが、本明細書では、図7に示すように、不揮発性記憶素子アレイの構成を容易に理解可能とするため、4本のビット線BL0〜BL3と4本のワード線WL0〜WL3とを備える不揮発性記憶素子アレイ500を例示する。
本実施の形態に係る不揮発性記憶素子アレイ500では、4本のビット線BL0〜BL3と、4本のワード線WL0〜WL3とが、互いに直角に立体交差するように配設されている。そして、これらの4本のビット線BL0〜BL3と4本のワード線WL0〜WL3との立体交差部511の各々には、不揮発性記憶素子20(いわゆる、メモリセル)が配設されている。換言すれば、本実施の形態に係る不揮発性記憶素子アレイ500では、不揮発性記憶素子20が4行4列のマトリクス状に配設されている。ここで、不揮発性記憶素子20の各々は、抵抗変化素子300と、この抵抗変化素子300に対して直列に接続された電流制御素子200との直列回路により構成されている。そして、この直列回路の一端および他端が、各々、その立体交差部511に対応するビット線BLn(BL0〜BL3)およびワード線WLn(WL0〜WL3)に接続されている。つまり、複数の不揮発性記憶素子20は、複数のビット線BL0〜BL3と複数のワード線WL0〜WL3とが立体交差する各々の交点に配設され、該各々の交点において、不揮発性記憶素子20の一端が当該交点を形成するビット線に、不揮発性記憶素子20の他端が当該交点を形成するワード線に、各々接続されている。
そして、図7に示すように、4本のビット線BL0〜BL3の一端が、ビット線デコーダ504に接続されている。また、ビット線BL0〜BL3の他端が、読み出し回路505に接続されている。一方、4本のワード線WL0〜WL3の両端が、ワード線デコーダ506および507に接続されている。
かかる不揮発性記憶装置30では、ビット線デコーダ504が、制御器(図示せず)からの指令に応じて、ビット線BL0〜BL3の中から少なくも一つを選択する。また、ワード線デコーダ506および507は、上記制御器からの指令に応じて、ワード線WL0〜WL3の中から少なくとも一つを選択する。そして、ビット線デコーダ504とワード線デコーダ506および507とは、上記制御器からの指令がデータの書き込み(以下、単に「書き込み」という)であるか、或いは、データの読み出し(以下、単に「読み出し」という)であるかに応じて、ビット線BL0〜BL3における選択されたビット線とワード線WL0〜WL3における選択されたワード線との間に、その電圧が所定の書き込み電圧Vwである電気パルス(正確には、電圧パルス)、または、その電圧が所定の読み出し電圧Vrである電気パルス(正確には、電圧パルス)が印加される。一方、読み出し時においては、読み出し回路505は、ビット線BL0〜BL3における選択されたビット線に流れる電流値を検出して、選択された不揮発性記憶素子(選択素子)20に記憶されたデータを読み出し、これを上記制御器に向けて出力する。ここで、図7に示すビット線デコーダ504、読み出し回路505、ワード線デコーダ506および507等の周辺回路は、例えば、MOSFETにより構成される。
尚、本実施の形態では、電流制御素子200を構成する下部電極201は、ワード線WL0〜WL3の何れかに接続されている。一方、抵抗変化素子300の上部電極304は、ビット線BL0〜BL3の何れかに接続されている。
次に、本実施の形態に係る不揮発性記憶装置30のより具体的な動作について、図面を参照しながら詳細に説明する。
図8は、本発明の実施の形態3に係る電流制御素子200の電圧−電流特性を模式的に示す特性図である。尚、図8において、Vwは書き込み電圧を示しており、Vrは読み出し電圧を示している。
図8に示す電流制御素子200の電圧−電流特性において、書き込み電圧Vwは、その絶対値が臨界電圧(範囲Aの下限電圧および範囲Bの上限電圧)の絶対値以上であって、抵抗変化素子300の状態を低抵抗状態と高抵抗状態との間で遷移させるために十分な電圧であり、かつ、抵抗変化素子300を破壊しない絶対値を有する電圧に設定される。本実施の形態では、書き込み電圧Vwは、範囲Aの上限電圧および範囲Bの下限電圧とされている。ここで、抵抗変化素子300の状態は、例えば、正の電気パルスを印加すると低抵抗状態から高抵抗状態に遷移し、負の電気パルスを印加すると高抵抗状態から低抵抗状態に遷移する。
一方、図8に示す電流制御素子200の電圧−電流特性において、読み出し電圧Vrは、その絶対値が臨界電圧の絶対値以上であって、抵抗変化素子300の状態を低抵抗状態と高抵抗状態との間で遷移させない絶対値を有する電圧に設定される。具体的には、本実施の形態では、読み出し電圧Vrは、図8に示す範囲Aおよび範囲Bに含まれる所定の電圧に設定される。
さて、図7に示す不揮発性記憶装置30は、図示されない制御器によりその動作が制御される。即ち、この制御器から書き込み指令が不揮発性記憶装置30に入力されると、ビット線デコーダ504は、書き込み指令により指定されたアドレスのビット線BL0〜BL3の何れかを選択する。一方、ワード線デコーダ506および507は、書き込み指令により指定されたアドレスのワード線WL0〜WL3の何れかを選択する。これにより、書き込むべき不揮発性記憶素子20が選択される。そして、ビット線デコーダ504とワード線デコーダ506および507とは、協働して、選択されたビット線BL0〜BL3の何れかとワード線WL0〜WL3の何れかとの間に、書き込み指令により指定されたデータ(ここでは“1”または“0”)に対応する書き込み電圧Vwの電気パルスを印加する。これにより、書き込み指令により指定されたアドレスの不揮発性記憶素子20に、指定されたデータが書き込まれる。尚、書き込み電圧Vwの具体的な印加動作については、後に詳細に説明する。
一方、上述の制御器から読み出し指令が不揮発性記憶装置30に入力されると、ビット線デコーダ504は、読み出し指令により指定されたアドレスのビット線BL0〜BL3の何れかを選択する。一方、ワード線デコーダ506および507は、読み出し指令により指定されたアドレスのワード線WL0〜WL3の何れかを選択する。これにより、読み出すべき不揮発性記憶素子20が選択される。そして、ビット線デコーダ504とワード線デコーダ506および507とは、協働して、選択されたビット線BL0〜BL3の何れかとワード線WL0〜WL3の何れかとの間に、所定の読み出し電圧Vrの電気パルスを印加する。すると、読み出し回路505は、選択されたビット線BL0〜BL3の何れかに流れる電流を検出して、その検出した電流に基づき、選択された不揮発性記憶素子20に記憶されているデータの値が“1”であるか“0”であるかを検知する。そして、読み出し回路505は、この検知した“1”または“0”の値を読み出しデータとして制御器に向け出力する。尚、読み出し電圧Vrの具体的な印加動作については、後に説明する。
以下、書き込み電圧Vwの具体的な印加動作、および、読み出し電圧Vrの印加動作について、図面を参照しながら説明する。
図9は、本発明の実施の形態3に係る書き込み電圧の具体的な印加動作を示す模式図である。尚、以下の説明では、ビット線BL1とワード線WL1との立体交差部511に位置する不揮発性記憶素子20が選択され、この選択された不揮発性記憶素子20(以下、「選択素子」という。この選択素子は、図5に示す一つの不揮発性記憶素子20に相当する)にデータを書き込む場合の動作を例に挙げて説明する。
図9において、縦線は、左から順に、ビット線BL0、BL1、BL2、BL3を表している。そして、それらのビット線の上端には、各ビット線に印加される電圧値が記載されている。一方、横線は、上から順に、ワード線WL0、WL1、WL2、WL3を表している。そして、それらのワード線の左端には、各ワード線に印加される電圧値が記載されている。
さて、図9では、この4行4列の不揮発性記憶素子アレイ500を構成する、ビット線BL0〜BL3とワード線WL0〜WL3との各立体交差部511に位置する各不揮発性記憶素子20の両端における電圧差の絶対値が、縦線および横線の各交点に図形により示されている。従って、これを見れば、選択素子(ビット線BL1とワード線WL1との立体交差部511に位置する不揮発性記憶素子20)以外の不揮発性記憶素子20の両端における電位差の絶対値は全てVw/2または0となっており、よって、選択素子へのデータの書き込み時に選択素子以外へのデータの書き込みは行われないことが分かる。
具体的には、本実施の形態では、ビット線デコーダ504が、電流制御素子に接続されるビット線BL1に書き込み電圧Vwを印加する。また、ワード線デコーダ507が、電流制御素子に接続されるワード線WL1に電圧0を印加する。これにより、不揮発性記憶素子20の電流制御素子200が導通状態となる。すると、抵抗変化素子300にはその抵抗状態の遷移に十分な電流が流れ、その結果、抵抗変化素子300の抵抗値が高抵抗状態或いは低抵抗状態に遷移する。
一方、ビット線BL1は共通するが、ワード線WL1は共通しない列方向の他の不揮発性記憶素子20(即ち、ビット線BL1と、ワード線WL0、WL2、WL3との各立体交差部511に位置する不揮発性記憶素子20)は、ビット線およびワード線の内、ビット線のみが選択された形態となることから、半選択素子(BL選択)と呼ばれる。そして、これらの半選択素子(BL選択)に接続されるビット線BL1にはビット線デコーダ504により選択素子と同様に書き込み電圧Vwが印加されるが、ワード線群(ワード線WL0、WL2、WL3)にはワード線デコーダ506および507がVw/2の電圧を印加する。これにより、半選択素子(BL選択)の両端における電位差をVw/2とする。
また、ワード線WL1は共通するが、ビット線BL1は共通しない行方向の他の不揮発性記憶素子20(即ち、ワード線WL1とビット線BL0、BL2、BL3との立体交差部511に位置する不揮発性記憶素子20)は、ビット線およびワード線の内、ワード線のみが選択された形態となるので、半選択素子(WL選択)と呼ばれる。そして、これらの半選択素子(WL選択)に接続されるワード線WL1にはワード線デコーダ507により選択素子と同様に電圧0が印加されるが、ビット線群(ビット線BL0、BL2、BL3)にはビット線デコーダ504がVw/2の電圧を印加する。これにより、半選択素子(WL選択)の両端における電位差をVw/2とする。
本実施の形態では、半選択素子の両端に印加されるVw/2の電位差では、電流制御素子200が遮断状態(電流制御素子200に流れる電流が非常に小さい状態)となるよう設計される。そのため、半選択素子の抵抗変化素子300には電流が殆ど流れない。従って、半選択素子の抵抗変化素子300へのデータの書き込みは行われない。逆に言えば、本実施の形態では、半選択素子の両端に印加されるVw/2の電位差では抵抗変化素子300に非常に小さい電流しか流れないように書き込み電圧Vwが設定されており、これにより、半選択素子におけるデータの書き込みが防止される。
また、非選択素子(即ち、ビット線BL0、BL2、BL3とワード線WL0、WL2、WL3との立体交差部511に位置する不揮発性記憶素子20)の各々には、その両端にVw/2の電圧が印加されるので、不揮発性記憶素子20の両端に電位差は生じない。従って、これらの非選択素子では、抵抗変化素子300へのデータの書き込みは行われない。これにより、半選択素子および非選択素子においてはデータの書き込みが行われず、選択素子のみにデータの書き込みを行うことが可能になる。即ち、書き込みディスターブを防止することが可能になる。
尚、データの読み出し動作の際、選択素子のビット線BL1には読み出し電圧Vrが、ワード線WL1には電圧0が、各々印加される。また、この際、非選択素子には、データの書き込み動作の場合と同様にして、Vr/2の電圧が印加される。つまり、図9における書き込み電圧Vwを読み出し電圧Vrに置き換える。これにより、選択された不揮発性記憶素子20からデータが読み出される。
本実施の形態によれば、不揮発性記憶素子20へのデータの書き込みの際、データを書き込むべき抵抗変化素子には大きな絶対値の電圧が印加され、それ以外の抵抗変化素子には小さな絶対値の電圧が印加されるよう電気パルスの電圧を設定すると、データを書き込むべき抵抗変化素子には大電流が流れ、それ以外の抵抗変化素子には電流が流れないようになる。従って、金属酸化物材料を用いて抵抗変化素子を構成する場合でも、選択された記憶素子にはデータが確実に書き込まれ、それ以外の記憶素子にはデータは書き込まれない。
しかも、本発明に係る電流制御素子200は、極性が正および負の何れの印加電圧に対しても絶対値が同じ電気抵抗特性を示すので、異なる極性の書き込み電気パルスを用いても、迂回電流が確実に抑制される。これにより、不揮発性記憶装置30における書き込みディスターブの発生が確実に防止される。
以上のように、実施の形態1〜3によれば、電流制御素子を微細化した場合に生じる従来技術の課題である、高い電流駆動能力と良好なオフ特性の両立を実現し得る電流制御素子が実現される。あるいは、このような電流制御素子を備える不揮発性記憶素子、および、不揮発性記憶装置が実現される。つまり、電流制御素子と抵抗変化素子の直列接続で構成される不揮発性記憶素子の微細化が可能となり、大記憶容量のクロスポイント型の不揮発性記憶装置が実現される。
以上、本発明に係る電流制御素子、不揮発性記憶素子、不揮発性記憶装置、および、電流制御素子の製造方法について、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される別の形態も、本発明の範囲内に含まれる。
たとえば、実施の形態2における不揮発性記憶素子20では、電流制御素子200の上部電極206は、抵抗変化素子300の下部電極を兼ねていたが、これらの電極は、別個に形成されてもよい。また、この不揮発性記憶素子20では、電流制御素子200の上に抵抗変化素子300が形成されたが、これとは逆に、抵抗変化素子300の上に電流制御素子200が形成されてもよい。
本発明に係る電流制御素子は、微細素子においても抵抗変化素子の書き換え動作に必要な高い駆動電流と迂回電流の防止に必要な高いオフ特性の両立を可能とし、これにより、大記憶容量のクロスポイント型の不揮発性記憶装置を提供する事を可能にし、産業上の利用可能性を十分に有している。
10 電流制御素子
20 不揮発性記憶素子
30 不揮発性記憶装置
100 基板
101 第1の配線
102 第1の層間絶縁層
103 第1のコンタクトホール
104 コンタクトプラグ
108 第2の層間絶縁層
109 第2のコンタクトホール
110 第2のコンタクトプラグ
111 第2の配線
200 電流制御素子
201、400 下部電極(電流制御素子の下部電極)
202、402 第1の電流抑制層
203、403 第2の電流抑制層
204、404 第3の電流抑制層
205、401、405 電流抑制層
206、410 上部電極(電流制御素子の上部電極)
300 抵抗変化素子
301 第1の抵抗変化層
302 第2の抵抗変化層
303 抵抗変化層
304 上部電極(抵抗変化素子の上部電極)
500 不揮発性記憶素子アレイ
504 ビット線デコーダ
505 読み出し回路
506、507 ワード線デコーダ
511 立体交差部

Claims (11)

  1. 極性が正および負の電気パルスが印加された時に流れる電流を制御する電流制御素子であって、
    上部電極と、下部電極と、前記上部電極および前記下部電極間に挟まれた電流抑制層とを備え、
    前記電流抑制層は、第1の電流抑制層と第2の電流抑制層と第3の電流抑制層とがこの順に積層され、
    前記第1の電流抑制層と前記第3の電流抑制層とは、酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または、酸素を含有しない半導体化合物で構成され、
    前記第2の電流抑制層は、金属酸化物または半導体酸化物で構成され、
    前記上部電極または前記下部電極のエネルギー準位を基準として、前記第2の電流抑制層のエネルギー障壁の高さは、前記第1の電流抑制層および前記第3の電流抑制層のエネルギー障壁の高さより低い
    電流制御素子。
  2. 前記第1の電流抑制層および前記第3の電流抑制層のイオン化傾向は、前記第2の電流抑制層のイオン化傾向より小さい請求項1に記載の電流制御素子。
  3. 前記第2の電流抑制層は、前記上部電極および前記下部電極より仕事関数が小さい請求項1または2に記載の電流制御素子。
  4. 前記第1の電流抑制層および前記第3の電流抑制層は、それぞれ、前記下部電極および前記上部電極と接し、
    前記下部電極のエネルギー準位を基準とする前記第1の電流抑制層のエネルギー障壁の高さ、および、前記上部電極のエネルギー準位を基準とする前記第3の電流抑制層のエネルギー障壁の高さは、0.5eVより小さい請求項1から3のいずれかに記載の電流制御素子。
  5. 前記第1の電流抑制層と前記第3の電流抑制層とは、同じ材料で構成される請求項1から4のいずれかに記載の電流制御素子。
  6. 前記第2の電流抑制層は、バナジウム、チタン、タンタル、タングステン、ニッケル、および、シリコンのいずれかの酸化物で構成される請求項1から5のいずれかに記載の電流制御素子。
  7. 前記第1の電流抑制層および前記第3の電流抑制層は、バナジウム、チタン、タンタル、タングステン、ニッケル、および、シリコンのいずれかを含む請求項1から6のいずれかに記載の電流制御素子。
  8. 極性が正および負の電気パルスが印加されることによりその電気抵抗値が可逆的に変化する不揮発性の抵抗変化素子と、
    前記抵抗変化素子と直列に接続され、前記抵抗変化素子に前記電気パルスを印加した時に流れる電流を制御する電流制御素子と、
    を備え、
    前記電流制御素子は、請求項1から7のいずれかに記載の電流制御素子である
    不揮発性記憶素子。
  9. 複数のビット線と、
    前記複数のビット線の各々と立体交差する複数のワード線と、
    複数の不揮発性記憶素子とを備え、
    前記複数の不揮発性記憶素子は、請求項8に記載の不揮発性記憶素子であり、
    前記複数の不揮発性記憶素子は、前記複数のビット線と前記複数のワード線とが立体交差する各々の交点に配設され、該各々の交点において、前記不揮発性記憶素子の一端が当該交点を形成する前記ビット線に、前記不揮発性記憶素子の他端が当該交点を形成する前記ワード線に、各々接続されている
    不揮発性記憶装置。
  10. 半導体基板上に下部電極を形成する工程と、
    前記下部電極上に酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または、酸素を含有しない半導体化合物で構成される第1の電流抑制層を形成する工程と、
    前記第1の電流抑制層上に前記第1の電流抑制層の表面を酸化させずに金属酸化物または半導体酸化物で構成される第2の電流抑制層を形成する工程と、
    前記第2の電流抑制層上に酸素を含有しない金属、酸素を含有しない金属化合物、酸素を含有しない半導体、または、酸素を含有しない半導体化合物で構成される第3の電流抑制層を形成する工程と、
    前記第3の電流抑制層上に上部電極を形成する工程とを有し、
    前記上部電極または前記下部電極のエネルギー準位を基準として、前記第2の電流抑制層のエネルギー障壁の高さは、前記第1の電流抑制層および前記第3の電流抑制層のエネルギー障壁の高さより低い
    電流制御素子の製造方法。
  11. 前記第2の電流抑制層を形成する工程では、前記第1の電流抑制層の表面を大気に曝露せず、不活性ガスを用いて前記第2の電流抑制層を前記第1の電流抑制層上に堆積する請求項10に記載の電流制御素子の製造方法。
JP2013045968A 2013-03-07 2013-03-07 電流制御素子、不揮発性記憶素子、不揮発性記憶装置および電流制御素子の製造方法 Pending JP2014175419A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013045968A JP2014175419A (ja) 2013-03-07 2013-03-07 電流制御素子、不揮発性記憶素子、不揮発性記憶装置および電流制御素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013045968A JP2014175419A (ja) 2013-03-07 2013-03-07 電流制御素子、不揮発性記憶素子、不揮発性記憶装置および電流制御素子の製造方法

Publications (1)

Publication Number Publication Date
JP2014175419A true JP2014175419A (ja) 2014-09-22

Family

ID=51696375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013045968A Pending JP2014175419A (ja) 2013-03-07 2013-03-07 電流制御素子、不揮発性記憶素子、不揮発性記憶装置および電流制御素子の製造方法

Country Status (1)

Country Link
JP (1) JP2014175419A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446749B1 (en) 2018-03-23 2019-10-15 Toshiba Memory Corporation Memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446749B1 (en) 2018-03-23 2019-10-15 Toshiba Memory Corporation Memory device

Similar Documents

Publication Publication Date Title
JP5468087B2 (ja) 不揮発性記憶素子及び不揮発性記憶装置
US11037987B2 (en) Multi-layered conductive metal oxide structures and methods for facilitating enhanced performance characteristics of two-terminal memory cells
JP5899474B2 (ja) 不揮発性記憶素子、不揮発性記憶装置、不揮発性記憶素子の製造方法、及び不揮発性記憶装置の製造方法
JP4948688B2 (ja) 抵抗変化型不揮発性記憶素子、抵抗変化型不揮発性記憶装置及び抵抗変化型不揮発性記憶素子の製造方法
JP4536155B2 (ja) 電流抑制素子、記憶素子、及びこれらの製造方法
JP5291269B2 (ja) 不揮発性半導体記憶素子、不揮発性半導体記憶装置およびその製造方法
CN103238185B (zh) 非易失性半导体存储装置及其写入方法
US20110189819A1 (en) Resistive Memory Structure with Buffer Layer
US8563962B2 (en) Memory device and method of manufacturing the same
JP5270809B2 (ja) 不揮発性記憶素子、及び不揮発性記憶装置
WO2011118185A1 (ja) 不揮発性記憶素子の駆動方法および不揮発性記憶装置
JP5571833B2 (ja) 不揮発性記憶素子及び不揮発性記憶素子の製造方法
JP5161404B2 (ja) 抵抗変化型不揮発性記憶装置の製造方法
JP2012253377A (ja) 記憶素子及び記憶装置
US8995171B2 (en) Designing method of non-volatile memory device, manufacturing method of non-volatile memory device, and non-volatile memory device
US9105332B2 (en) Variable resistance nonvolatile memory device
CN102947935B (zh) 电阻变化元件的制造方法
JP2014175419A (ja) 電流制御素子、不揮発性記憶素子、不揮発性記憶装置および電流制御素子の製造方法
JP2013062327A (ja) 不揮発性記憶素子及び不揮発性記憶装置並びにそれらの製造方法
JP2012227275A (ja) 抵抗変化型不揮発性メモリセルおよび抵抗変化型不揮発性記憶装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312