JP2014165500A - Batch substrate processing apparatus - Google Patents

Batch substrate processing apparatus Download PDF

Info

Publication number
JP2014165500A
JP2014165500A JP2014033926A JP2014033926A JP2014165500A JP 2014165500 A JP2014165500 A JP 2014165500A JP 2014033926 A JP2014033926 A JP 2014033926A JP 2014033926 A JP2014033926 A JP 2014033926A JP 2014165500 A JP2014165500 A JP 2014165500A
Authority
JP
Japan
Prior art keywords
substrate processing
processing unit
pair
processing apparatus
batch type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014033926A
Other languages
Japanese (ja)
Inventor
Byung Il Lee
ビョン イル リ
Tae Wan Lee
テ ワン リ
Han Kil Yoo
ハン キル ユ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tera Semicon Corp
Original Assignee
Tera Semicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50894567&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014165500(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tera Semicon Corp filed Critical Tera Semicon Corp
Publication of JP2014165500A publication Critical patent/JP2014165500A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate

Abstract

PROBLEM TO BE SOLVED: To disclose a batch substrate processing apparatus.SOLUTION: The batch substrate processing apparatus according to the present invention includes a substrate processing section (100) for housing and processing a plurality of substrates (40) laminated on a substrate stacking section(500), and a gas supply section (200) for supplying substrate processing gas to the substrate processing section (100) while housing at least one gas supply passage (250) through which the substrate processing gas flows. The following relationship is satisfied d1≤d2, where d1 is the distance between the substrate (40) and the inner peripheral surface of the substrate processing section (100), and d2 is the distance between the substrate (40) and the gas supply passage (250).

Description

本発明は、バッチ式基板処理装置に関するものである。より詳細には、基板処理部の一側外周面上に突出するようにガス供給流路を収容したガス供給部を形成し、基板処理工程が行われる内部空間の大きさが減少することができるバッチ式基板処理装置に関するものである。   The present invention relates to a batch type substrate processing apparatus. More specifically, a gas supply unit that accommodates the gas supply channel is formed so as to protrude on one outer peripheral surface of the substrate processing unit, and the size of the internal space in which the substrate processing step is performed can be reduced. The present invention relates to a batch type substrate processing apparatus.

半導体素子を製造するためには、シリコンウエハのような基板上に必要な薄膜を蒸着する工程が必須として行われる。薄膜蒸着工程には、スパッタリング法(Sputtering)、化学気相蒸着法(CVD:Chemical Vapor Deposition)、原子層蒸着法(ALD:Atomic Layer Deposition)などが主に使用される。   In order to manufacture a semiconductor element, a process of depositing a necessary thin film on a substrate such as a silicon wafer is essential. For the thin film deposition process, sputtering, sputtering, chemical vapor deposition (CVD), atomic layer deposition (ALD), or the like is mainly used.

スパッタリング法は、プラズマ状態で生成されたアルゴンイオンをターゲットの表面に衝突させ、ターゲットの表面から離脱したターゲット物質が基板上に薄膜として蒸着されるようにする技術である。スパッタリング法は、接着性に優れた高純度の薄膜を形成できるという利点はあるが、高アスペクト比(High Aspect Ratio)を有する微細パターンを形成するには限界がある。   The sputtering method is a technique in which argon ions generated in a plasma state collide with the surface of the target, and the target material separated from the surface of the target is deposited as a thin film on the substrate. The sputtering method has an advantage that a high-purity thin film excellent in adhesiveness can be formed. However, there is a limit in forming a fine pattern having a high aspect ratio.

化学気相蒸着法は、多様なガスを反応チャンバに注入し、熱、光またはプラズマのような高エネルギーによって誘導されたガスを反応ガスと化学反応させることにより、基板上に薄膜を蒸着する技術である。化学気相蒸着法は、速やかに起こる化学反応を利用するため、原子の熱力学的(Thermodynamic)安定性を制御することが非常に難しく、薄膜の物理的、化学的および電気的特性が低下する問題がある。   Chemical vapor deposition is a technology that deposits a thin film on a substrate by injecting various gases into a reaction chamber and chemically reacting a gas induced by high energy such as heat, light, or plasma with the reaction gas. It is. Since chemical vapor deposition uses a chemical reaction that occurs quickly, it is very difficult to control the thermodynamic stability of the atoms, and the physical, chemical and electrical properties of the thin film are reduced. There's a problem.

原子層蒸着法は、反応ガスであるソースガスとパージガスを交互に供給し、基板上に原子層単位の薄膜を蒸着する技術である。原子層蒸着法は、段差被覆性(Step Coverage)の限界を克服するために表面反応を利用するため、高アスペクト比を有する微細パターンの形成に適切であり、薄膜の電気的および物理的特性に優れるという利点がある。   The atomic layer deposition method is a technique in which a source gas and a purge gas that are reaction gases are alternately supplied to deposit a thin film in units of atomic layers on a substrate. The atomic layer deposition method is suitable for forming a fine pattern having a high aspect ratio because it uses a surface reaction to overcome the limitations of step coverage, and it is suitable for the electrical and physical characteristics of a thin film. There is an advantage of being excellent.

原子層蒸着装置は、チャンバ内に基板を1つずつローディングして蒸着工程を進行する枚葉式と、チャンバ内に複数の基板をローディングして一括に蒸着工程を進行するバッチ(Batch)式とに区別することができる。   The atomic layer deposition apparatus includes a single wafer type in which substrates are loaded into the chamber one by one and the deposition process proceeds, and a batch type in which a plurality of substrates are loaded into the chamber and the deposition process proceeds in batch. Can be distinguished.

図1は、従来のバッチ式原子層蒸着装置を示す斜視図である。   FIG. 1 is a perspective view showing a conventional batch atomic layer deposition apparatus.

従来のバッチ式原子層蒸着装置は、基板40がローディングされ、蒸着工程が行われる空間のチャンバ11を形成する工程チューブ10を含む。そして、前記工程チューブ10の内部には、蒸着工程に必要なガス供給部20、ガス排出部30などのような部品が設けられる。そして、工程チューブ10と密閉結合される台座部51と、工程チューブ10の内部に挿入される突出部53と、複数の基板40が積層されるようにする支持バー55とを含むボート50を含む。   A conventional batch atomic layer deposition apparatus includes a process tube 10 that forms a chamber 11 in a space where a substrate 40 is loaded and a deposition process is performed. The process tube 10 is provided with components such as a gas supply unit 20 and a gas discharge unit 30 necessary for the vapor deposition process. In addition, a boat 50 including a pedestal 51 that is hermetically coupled to the process tube 10, a protrusion 53 that is inserted into the process tube 10, and a support bar 55 that allows the plurality of substrates 40 to be stacked is included. .

前記のような従来のバッチ式原子層蒸着装置は、基板40と工程チューブ10の内周面との間の距離d1’が、基板40とガス供給部20との間の距離d2’より大きい値(d1’>d2’)を有する。すなわち、従来のバッチ式原子層蒸着装置は、工程チューブ10の内部[またはチャンバ11]にガス供給部20、ガス排出部30などの部品が設けられているため、工程チューブ10の内部チャンバ11の体積が不必要に大きくなる問題があった。   In the conventional batch atomic layer deposition apparatus as described above, the distance d1 ′ between the substrate 40 and the inner peripheral surface of the process tube 10 is larger than the distance d2 ′ between the substrate 40 and the gas supply unit 20. (D1 ′> d2 ′). That is, in the conventional batch-type atomic layer deposition apparatus, components such as the gas supply unit 20 and the gas discharge unit 30 are provided in the interior [or the chamber 11] of the process tube 10, so There was a problem that the volume became unnecessarily large.

このため、蒸着工程を行うために、チャンバ11を満たすように大量の工程ガスを供給しなければならないため、工程ガスの供給に必要な時間の消耗および工程ガスの浪費が大きくなり、蒸着工程後にチャンバ11の内部に存在する大量の工程ガスを排出するための時間の消耗も大きくなる問題があった。   For this reason, since a large amount of process gas must be supplied so as to fill the chamber 11 in order to perform the vapor deposition process, consumption of time necessary for supplying the process gas and waste of the process gas increase, and after the vapor deposition process. There is a problem that consumption of time for exhausting a large amount of process gas existing in the chamber 11 is increased.

一方、従来の原子層蒸着装置は、チャンバ11内部の圧力を耐えやすくするための理想的な形態として、縦型の工程チューブ10を用いるのが一般的である。しかし、縦型のチャンバ11の上部空間12によって、工程ガスの供給および排出に多くの時間が消耗し、工程ガスの浪費が生じる問題があった。   On the other hand, a conventional atomic layer deposition apparatus generally uses a vertical process tube 10 as an ideal configuration for easily withstanding the pressure inside the chamber 11. However, the upper space 12 of the vertical chamber 11 has a problem that a lot of time is consumed for supplying and discharging the process gas, and the process gas is wasted.

原子層を蒸着するためのバッチ式装置に関連する先行技術は、韓国特許公開公報第10−2008−0028963号、韓国特許公開公報第10−2011−0087580号などに開示されている。   Prior art related to a batch type apparatus for depositing an atomic layer is disclosed in Korean Patent Publication No. 10-2008-0028963, Korean Patent Publication No. 10-2011-0087580, and the like.

韓国特許公開公報第10−2008−0028963号Korean Patent Publication No. 10-2008-0028963 韓国特許公開公報第10−2011−0087580号Korean Patent Publication No. 10-2011-0087580

本発明は、上記の従来技術の諸問題を解決するためになされたものであって、基板処理工程が行われる内部空間の大きさが減少したバッチ式基板処理装置を提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a batch type substrate processing apparatus in which the size of the internal space in which the substrate processing step is performed is reduced. .

また、本発明は、基板処理工程が行われる内部空間の大きさが減少し、基板処理工程に使用される基板処理ガスの使用量を節減したバッチ式基板処理装置を提供することを目的とする。   Another object of the present invention is to provide a batch type substrate processing apparatus in which the size of the internal space in which the substrate processing step is performed is reduced and the amount of substrate processing gas used in the substrate processing step is reduced. .

さらに、本発明は、基板処理工程が行われる内部空間の大きさが減少し、基板処理工程に使用される基板処理ガスの供給および排出を円滑にすることで基板処理工程時間が画期的に減少したバッチ式基板処理装置を提供することを目的とする。   Further, the present invention reduces the size of the internal space in which the substrate processing process is performed, and makes the substrate processing process time epoch-making by smoothly supplying and discharging the substrate processing gas used in the substrate processing process. An object of the present invention is to provide a reduced batch type substrate processing apparatus.

また、本発明は、縦型から上面が平らになるように基板処理部の形態を変形し、内部空間の大きさが減少したバッチ式基板処理装置を提供することを目的とする。   Another object of the present invention is to provide a batch type substrate processing apparatus in which the shape of the substrate processing unit is modified so that the upper surface is flattened from the vertical type, and the size of the internal space is reduced.

上記の目的を達成するために、本発明の一実施形態にかかるバッチ式基板処理装置は、基板積載部に積層された複数の基板を収容して処理する基板処理部と、前記基板処理部の一側外周面上に形成され、基板処理ガスが流れる少なくとも1つのガス供給流路を収容して前記基板処理部に基板処理ガスを供給するガス供給部とを含み、基板と前記基板処理部の内周面との間の距離がd1、基板と前記ガス供給流路との間の距離がd2の時、d1≦d2であることを特徴とする。   In order to achieve the above object, a batch-type substrate processing apparatus according to an embodiment of the present invention includes a substrate processing unit that accommodates and processes a plurality of substrates stacked on a substrate stacking unit, and the substrate processing unit includes: A gas supply unit that is formed on one outer peripheral surface and accommodates at least one gas supply channel through which a substrate processing gas flows and supplies the substrate processing gas to the substrate processing unit, and the substrate and the substrate processing unit When the distance between the inner peripheral surface is d1 and the distance between the substrate and the gas supply flow path is d2, d1 ≦ d2.

このように構成された本発明によれば、基板処理工程が行われる内部空間の大きさが減少する効果がある。   According to the present invention configured as described above, there is an effect that the size of the internal space in which the substrate processing step is performed is reduced.

また、本発明は、基板処理工程が行われる内部空間の大きさが減少し、基板処理工程に使用される基板処理ガスの使用量が節減されるため、基板処理工程費用が節減される効果がある。   In addition, the present invention reduces the size of the internal space where the substrate processing process is performed and reduces the amount of substrate processing gas used in the substrate processing process, thereby reducing the cost of the substrate processing process. is there.

さらに、本発明は、基板処理工程が行われる内部空間の大きさが減少し、基板処理工程に使用される基板処理ガスの供給および排出を円滑にすることで基板処理工程時間が画期的に減少するため、基板処理工程の生産性が向上する効果がある。   Further, the present invention reduces the size of the internal space in which the substrate processing process is performed, and makes the substrate processing process time epoch-making by smoothly supplying and discharging the substrate processing gas used in the substrate processing process. Therefore, the productivity of the substrate processing process is improved.

また、本発明は、縦型から上面が平らになるように基板処理部の形態を変形し、内部空間の大きさが減少する効果がある。   In addition, the present invention has the effect of reducing the size of the internal space by modifying the shape of the substrate processing unit so that the upper surface is flattened from the vertical type.

従来のバッチ式原子層蒸着装置を示す斜視図である。It is a perspective view which shows the conventional batch type atomic layer deposition apparatus. 本発明の一実施形態にかかるバッチ式基板処理装置を示す斜視図である。It is a perspective view which shows the batch type substrate processing apparatus concerning one Embodiment of this invention. 図2の一部分解斜視図である。FIG. 3 is a partially exploded perspective view of FIG. 2. 本発明の一実施形態にかかるバッチ式基板処理装置の平断面図である。It is a plane sectional view of the batch type substrate processing apparatus concerning one embodiment of the present invention. 本発明の一実施形態にかかるガス供給部およびガス排出部の拡大斜視図である。It is an expansion perspective view of the gas supply part and gas discharge part concerning one Embodiment of this invention. 本発明の一実施形態にかかる、上部面に補強リブを結合したバッチ式基板処理装置を示す斜視図である。It is a perspective view which shows the batch type substrate processing apparatus which connected the reinforcement rib to the upper surface concerning one Embodiment of this invention. 本発明の一実施形態にかかる、ヒータが外面に設けられたバッチ式基板処理装置を示す斜視図である。It is a perspective view which shows the batch type substrate processing apparatus with which the heater concerning one Embodiment of this invention was provided in the outer surface. 本発明の一実施形態にかかるヒータの拡大正面図である。It is an enlarged front view of the heater concerning one Embodiment of this invention.

後述する本発明に関する詳細な説明は、本発明が実施できる特定の実施形態を例として示す添付図面を参照する。これらの実施形態は、当業者が本発明を実施できるように十分に詳細に説明される。本発明の多様な実施形態は互いに異なるが、相互排他的である必要はないことが理解されなければならない。例えば、ここに記載されている特定の形状、構造および特性は一実施形態に関連し、本発明の精神および範囲を逸脱しない範囲で他の実施形態で実現可能である。また、各々の開示された実施形態における個別構成要素の位置または配置は、本発明の精神および範囲を逸脱しない範囲で変更可能であることが理解されなければならない。したがって、後述する詳細な説明は限定的な意味として受け止めるのではなく、本発明の範囲は、適切に説明された場合、それら請求項が主張するのと均等なすべての範囲と共に添付した請求項によってのみ限定される。図面において、類似の参照符号は、様々な側面にわたって同一または類似の機能を指し示し、長さおよび面積、厚さなどとその形態は、便宜上誇張されて表現されることもある。   The following detailed description of the invention refers to the accompanying drawings that illustrate, by way of illustration, specific embodiments in which the invention can be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different from each other but need not be mutually exclusive. For example, the specific shapes, structures, and characteristics described herein are associated with one embodiment and can be implemented in other embodiments without departing from the spirit and scope of the invention. It should also be understood that the location or arrangement of individual components in each disclosed embodiment can be changed without departing from the spirit and scope of the invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims along with the full scope of equivalents to which they are claimed when properly described. Only limited. In the drawings, like reference numerals indicate like or similar functions across various aspects, and lengths, areas, thicknesses, etc., and forms thereof may be exaggerated for convenience.

本明細書において、基板とは、半導体基板、LED、LCDなどの表示装置に用いる基板、太陽電池基板などを含む意味で理解できる。   In this specification, a substrate can be understood to include a semiconductor substrate, a substrate used for a display device such as an LED or an LCD, a solar cell substrate, and the like.

また、本明細書において、基板処理工程とは、蒸着工程、好ましくは原子層蒸着法を用いた蒸着工程を意味するが、これに限定されるものではなく、化学気相蒸着法を用いた蒸着工程、熱処理工程などを含む意味で理解できる。ただし、以下では、原子層蒸着法を用いた蒸着工程と想定して説明する。   In the present specification, the substrate processing step means a vapor deposition step, preferably a vapor deposition step using an atomic layer vapor deposition method, but is not limited to this, and vapor deposition using a chemical vapor deposition method. It can be understood in the meaning including processes, heat treatment processes and the like. However, below, it demonstrates supposing the vapor deposition process using an atomic layer vapor deposition method.

以下、添付した図面を参照して、本発明の実施形態にかかるバッチ式装置を詳細に説明する。   Hereinafter, a batch type apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図2は、本発明の一実施形態にかかるバッチ式基板処理装置を示す斜視図であり、図3は、図2の一部分解斜視図、図4は、本発明の一実施形態にかかるバッチ式基板処理装置の平断面図、図5は、本発明の一実施形態にかかるガス供給部200およびガス排出部300の拡大斜視図である。   2 is a perspective view showing a batch type substrate processing apparatus according to an embodiment of the present invention, FIG. 3 is a partially exploded perspective view of FIG. 2, and FIG. 4 is a batch type according to an embodiment of the present invention. FIG. 5 is an enlarged perspective view of a gas supply unit 200 and a gas discharge unit 300 according to an embodiment of the present invention.

図2ないし図4を参照すれば、本実施形態にかかるバッチ式基板処理装置は、基板処理部100と、ガス供給部200とを含む。   2 to 4, the batch type substrate processing apparatus according to the present embodiment includes a substrate processing unit 100 and a gas supply unit 200.

基板処理部100の機能は、工程チューブといえる。基板処理部100は、複数の基板40が積層された基板積載部500が収容され、蒸着膜形成工程などの基板処理工程を行うことができるチャンバ空間110を提供する。   The function of the substrate processing unit 100 can be said to be a process tube. The substrate processing unit 100 accommodates a substrate stacking unit 500 in which a plurality of substrates 40 are stacked, and provides a chamber space 110 in which a substrate processing process such as a deposition film forming process can be performed.

基板処理部100の材質は、石英(Quartz)、ステンレススチール(SUS)、アルミニウム(Aluminium)、グラファイト(Graphite)、シリコンカーバイド(Silicon carbide)、または酸化アルミニウム(Aluminium oxide)のうちの少なくともいずれか1つであり得る。   The material of the substrate processing unit 100 is at least one of quartz (Quartz), stainless steel (SUS), aluminum (Aluminium), graphite (Graphite), silicon carbide (Silicon carbide), and aluminum oxide (Aluminium oxide). Can be one.

ガス供給部200は、少なくとも1つのガス供給流路250が収容される空間210を提供し、基板処理部100の一側外周面上に突出するように形成され、基板処理部100の内部空間110に基板処理ガスを供給することができる。ここで、ガス供給流路250は、外部から基板処理ガスを受けて基板処理部100の内部に供給可能な通路であって、管、中空などの形態を有することができ、特に、基板処理ガスの供給量の細かな制御のために、管から構成されることが好ましい。以下では、3つのガス供給管251がガス供給流路250を構成することを想定して説明する。   The gas supply unit 200 provides a space 210 in which at least one gas supply channel 250 is accommodated, and is formed so as to protrude on one outer peripheral surface of the substrate processing unit 100, and the internal space 110 of the substrate processing unit 100. A substrate processing gas can be supplied to the substrate. Here, the gas supply flow path 250 is a passage capable of receiving the substrate processing gas from the outside and supplying it to the inside of the substrate processing unit 100, and may have a form such as a tube or a hollow. In order to finely control the supply amount, it is preferable to be constituted by a pipe. In the following description, it is assumed that the three gas supply pipes 251 constitute the gas supply channel 250.

一方、ガス排出部300は、少なくとも1つのガス排出流路350が収容される空間310を提供し、基板処理部100の他側外周面上[すなわち、ガス供給部200の反対側]に突出するように形成され、基板処理部100の内部空間110に流入した基板処理ガスを排出することができる。ここで、ガス排出流路350は、基板処理部100内部の基板処理ガスが外部に排出可能な通路であって、管、中空などの形態を有することができ、特に、基板処理ガスの円滑な排出のために、ガス供給管251より直径の大きい管から構成されることが好ましい。一方、ガス排出管351を具備することなく中空形態でガス排出流路350を構成し、ポンプをガス排出流路350に連結し、基板処理ガスをポンピングして排出することもできる。以下では、1つのガス排出管351がガス排出流路350を構成することを想定して説明する。   On the other hand, the gas discharge unit 300 provides a space 310 in which at least one gas discharge channel 350 is accommodated, and protrudes on the other outer peripheral surface of the substrate processing unit 100 [that is, opposite to the gas supply unit 200]. The substrate processing gas that has been formed as described above and has flowed into the internal space 110 of the substrate processing unit 100 can be discharged. Here, the gas discharge channel 350 is a passage through which the substrate processing gas inside the substrate processing unit 100 can be discharged to the outside, and may have a form such as a tube or a hollow. For discharge, it is preferable that the gas supply pipe 251 is composed of a pipe having a larger diameter. On the other hand, it is also possible to form the gas discharge channel 350 in a hollow form without providing the gas discharge pipe 351, connect the pump to the gas discharge channel 350, and pump out the substrate processing gas. In the following description, it is assumed that one gas discharge pipe 351 constitutes the gas discharge channel 350.

基板処理部100の外周面は、ガス供給部200の外周面と一体に連結できる。また、基板処理部100の外周面は、ガス排出部300の外周面と一体に連結できる。これを考慮して、ガス供給部200およびガス排出部300の材質は、基板処理部100と同じであることが好ましい。基板処理部100、ガス供給部200およびガス排出部300の外周面同士の連結は、基板処理部100、ガス供給部200およびガス排出部300をそれぞれ別途に製造した後、これらを溶接方式などを用いて結合する方法により可能である。また、先に所定の厚さを有する基板処理部100を製造した後、基板処理部100の外周面上の一側および他側に突出する部分を除いた残りの部位を切削加工し、基板処理部100にガス供給部200およびガス排出部300が一体に形成されるようにする方法によっても可能である。   The outer peripheral surface of the substrate processing unit 100 can be integrally connected to the outer peripheral surface of the gas supply unit 200. Further, the outer peripheral surface of the substrate processing unit 100 can be integrally connected to the outer peripheral surface of the gas discharge unit 300. In view of this, the material of the gas supply unit 200 and the gas discharge unit 300 is preferably the same as that of the substrate processing unit 100. The substrate processing unit 100, the gas supply unit 200, and the gas discharge unit 300 are connected to each other with respect to the outer peripheral surfaces after the substrate processing unit 100, the gas supply unit 200, and the gas discharge unit 300 are separately manufactured. It is possible by the method of using and combining. In addition, after the substrate processing unit 100 having a predetermined thickness is manufactured in advance, the remaining portions excluding the portions protruding on one side and the other side on the outer peripheral surface of the substrate processing unit 100 are cut and processed. The gas supply unit 200 and the gas discharge unit 300 may be formed integrally with the unit 100.

本実施形態にかかるバッチ式基板処理装置は、ハウジング(Housing)400と、基板積載部500とをさらに含むことができる。ハウジング400は、下面が開放され、基板処理部100およびガス供給部200を取り囲む形態を有することができるように一側が突出した円筒状に形成され、ハウジング400の上面側は、クリーンルームなどのような工程室(図示せず)の上面に支持設置されるとよい。図4を参照すれば、ハウジング400は、基板処理部100およびガス供給部200の熱的環境を作る断熱体の役割を果たすために、基板処理部100およびガス供給部200の外周を取り囲むように一側および他側が突出したバルク(bulk)形態、または垂直方向に一側および他側が突出した円形環形態の単位体410からなるとよく、ハウジング400の最外郭面420は、SUS、アルミニウムなどで仕上げることができる。また、ハウジング400の内側面には、折曲部(一例として、「∪」または「∩」形状)が連続的に連結されて形成されたヒータ430を設けることができる。   The batch type substrate processing apparatus according to the present embodiment may further include a housing 400 and a substrate stacking unit 500. The housing 400 is formed in a cylindrical shape with one side protruding so that the lower surface is open and can surround the substrate processing unit 100 and the gas supply unit 200. The upper surface side of the housing 400 is a clean room or the like. It may be supported and installed on the upper surface of a process chamber (not shown). Referring to FIG. 4, the housing 400 surrounds the outer periphery of the substrate processing unit 100 and the gas supply unit 200 in order to serve as a heat insulator that creates a thermal environment of the substrate processing unit 100 and the gas supply unit 200. The outer body 420 may be formed of a unit 410 having a bulk shape in which one side and the other side protrude, or a circular ring shape in which one side and the other side protrude in the vertical direction, and the outermost surface 420 of the housing 400 is finished with SUS, aluminum, or the like. be able to. In addition, the inner surface of the housing 400 may be provided with a heater 430 formed by continuously connecting bent portions (for example, “∪” or “∩” shape).

基板積載部500は、公知のエレベータシステム(図示せず)によって昇降可能に設けられ、主台座部510と、補助台座部520と、基板支持部530とを含む。   The substrate stacking unit 500 is provided so as to be movable up and down by a known elevator system (not shown), and includes a main pedestal unit 510, an auxiliary pedestal unit 520, and a substrate support unit 530.

主台座部510は、略円筒状に形成され、前記工程室の底などに載置可能であり、上面がハウジング400の下端部側に結合されたマニホールド(Manifold)450に密閉結合される。   The main pedestal 510 is formed in a substantially cylindrical shape, can be placed on the bottom of the process chamber, and the upper surface is hermetically coupled to a manifold 450 that is coupled to the lower end of the housing 400.

補助台座部520は、略円筒状に形成され、主台座部510の上面に設けられ、基板処理部100の内径より小さい直径で形成され、基板処理部100の内部空間110に挿入される。補助台座部520は、半導体製造工程の均一性確保のために、基板処理工程中に基板40が回転できるようにモータ(図示せず)と連動して回転可能に設けられるとよい。また、補助台座部520の内部には、工程の信頼性確保のために、基板処理工程中に基板40の下側から熱を印加するための補助ヒータ(図示せず)が設けられるとよい。基板積載部500に積載保持された基板40は、前記補助ヒータによって基板処理工程前に予熱できる。   The auxiliary pedestal 520 is formed in a substantially cylindrical shape, is provided on the upper surface of the main pedestal 510, is formed with a diameter smaller than the inner diameter of the substrate processing unit 100, and is inserted into the internal space 110 of the substrate processing unit 100. In order to ensure uniformity in the semiconductor manufacturing process, the auxiliary pedestal 520 is preferably provided to be rotatable in conjunction with a motor (not shown) so that the substrate 40 can be rotated during the substrate processing process. In addition, an auxiliary heater (not shown) for applying heat from the lower side of the substrate 40 during the substrate processing step may be provided inside the auxiliary pedestal portion 520 in order to ensure process reliability. The substrate 40 loaded and held on the substrate stacking unit 500 can be preheated before the substrate processing step by the auxiliary heater.

基板支持部530は、補助台座部520の縁部に沿って互いに間隔を有して複数個設けられる。補助台座部520の中心側を向く基板支持部530の内面には、互いに対応するように複数の支持溝がそれぞれ形成される。支持溝には、基板40の縁部が挿入支持され、これにより、複数の基板40が上下に積層された形態で基板積載部500に積載保持される。   A plurality of substrate support portions 530 are provided at intervals along the edge of the auxiliary pedestal portion 520. A plurality of support grooves are formed on the inner surface of the substrate support portion 530 facing the center side of the auxiliary pedestal portion 520 so as to correspond to each other. The edge of the substrate 40 is inserted and supported in the support groove, whereby the plurality of substrates 40 are stacked and held on the substrate stacking unit 500 in a stacked manner.

基板積載部500は、昇降しながら、基板処理部100の下端面およびガス供給部200の下端面に上端面が結合されたマニホールド450の下端面に着脱可能に結合できる。ガス供給部200のガス供給流路250を構成するガス供給管251から延びたガス供給連結管253は、マニホールド450のガス供給連通孔451に挿入されて連通し、ガス排出部300のガス排出流路350を構成するガス排出管351から延びたガス排出連結管353は、マニホールド450のガス排出連通孔455に挿入されて連通する。また、基板積載部500が上昇して、マニホールド450の下端面側に基板積載部500の主台座部510の上面が結合されると、基板40が基板処理部100の内部空間110にローディングされ、基板処理部100は密閉可能である。安定したシーリングのために、マニホールド450と基板積載部500の主台座部510との間にはシーリング部材(図示せず)が介在し得る。   The substrate stacking unit 500 can be detachably coupled to the lower end surface of the manifold 450 whose upper end surface is coupled to the lower end surface of the substrate processing unit 100 and the lower end surface of the gas supply unit 200 while moving up and down. The gas supply connection pipe 253 extending from the gas supply pipe 251 constituting the gas supply flow path 250 of the gas supply section 200 is inserted into and communicated with the gas supply communication hole 451 of the manifold 450, and the gas discharge flow of the gas discharge section 300. A gas discharge connection pipe 353 extending from the gas discharge pipe 351 constituting the path 350 is inserted into and communicates with the gas discharge communication hole 455 of the manifold 450. When the substrate stacking unit 500 is raised and the upper surface of the main pedestal 510 of the substrate stacking unit 500 is coupled to the lower end surface of the manifold 450, the substrate 40 is loaded into the internal space 110 of the substrate processing unit 100, The substrate processing unit 100 can be sealed. A sealing member (not shown) may be interposed between the manifold 450 and the main pedestal 510 of the substrate stacking unit 500 for stable sealing.

図3および図4を参照すれば、基板処理部100は、ハウジング400と同心円をなしてハウジング400の内部に配置され、ハウジング400は、一体に連結された基板処理部100、ガス供給部200およびガス排出部300を取り囲む形態で設けられるとよい。   Referring to FIGS. 3 and 4, the substrate processing unit 100 is disposed in the housing 400 concentrically with the housing 400, and the housing 400 is integrally connected to the substrate processing unit 100, the gas supply unit 200, and the substrate processing unit 100. It may be provided in a form surrounding the gas discharge unit 300.

ガス供給部200の内部空間210にはガス供給流路250が収容できる。図4および図5(a)を参照すれば、ガス供給流路250は、ガス供給部200の長さ方向に沿って形成された複数のガス供給管251と、基板処理部100に向けてガス供給管251の一側に形成される複数の吐出孔252とを含む。吐出孔252は、それぞれのガス供給管251にそれぞれ複数個が形成される。そして、ガス供給管251から連通したガス供給連結管253は、マニホールド450に形成されたガス供給連通孔451に挿入されて連通する。   A gas supply channel 250 can be accommodated in the internal space 210 of the gas supply unit 200. Referring to FIG. 4 and FIG. 5A, the gas supply flow path 250 includes a plurality of gas supply pipes 251 formed along the length direction of the gas supply unit 200 and a gas toward the substrate processing unit 100. A plurality of discharge holes 252 formed on one side of the supply pipe 251. A plurality of discharge holes 252 are formed in each gas supply pipe 251. The gas supply connection pipe 253 communicated from the gas supply pipe 251 is inserted into and communicated with the gas supply communication hole 451 formed in the manifold 450.

ガス排出部300の内部空間310にはガス排出流路350が収容できる。図4および図5(b)を参照すれば、ガス排出流路350は、ガス排出部300の長さ方向に沿って形成されたガス排出管351と、基板処理部100に向けてガス排出管351の一側に形成される複数の排出孔352とを含む。排出孔352は、ガス排出管351に複数個形成される。そして、ガス排出管351から連通したガス排出連結管353は、マニホールド450に形成されたガス排出連通孔455に挿入されて連通する。   A gas discharge channel 350 can be accommodated in the internal space 310 of the gas discharge unit 300. Referring to FIGS. 4 and 5B, the gas discharge channel 350 includes a gas discharge pipe 351 formed along the length direction of the gas discharge unit 300 and a gas discharge pipe toward the substrate processing unit 100. 351 and a plurality of discharge holes 352 formed on one side. A plurality of discharge holes 352 are formed in the gas discharge pipe 351. The gas discharge connection pipe 353 communicated with the gas discharge pipe 351 is inserted into and communicated with the gas discharge communication hole 455 formed in the manifold 450.

吐出孔252および排出孔352は、基板積載部500がマニホールド450に結合されて、複数の基板40が基板処理部100に収容された時、基板処理ガスを基板40に均一に供給し、基板処理ガスを容易に吸入して外部に排出できるように、基板支持部530に支持された、互いに隣接する基板40と基板40との間の間隔にそれぞれ位置することが好ましい。   The discharge holes 252 and the discharge holes 352 uniformly supply the substrate processing gas to the substrate 40 when the substrate stacking unit 500 is coupled to the manifold 450 and the plurality of substrates 40 are accommodated in the substrate processing unit 100. It is preferable that the substrate 40 is positioned at a distance between the substrates 40 and 40 that are adjacent to each other so that the gas can be easily sucked and discharged to the outside.

ガス供給部200およびガス排出部300は、基板処理部100の外周面から突出して形成されるため、基板40と基板処理部100の内周面との間の距離d1に比べて、基板40とガス供給流路250との間の距離d2が同等またはより大きいとよい。すなわち、図1に示された、基板処理工程が行われる工程チューブ10のチャンバ11にガス供給部20またはガス排出部30を配置し、基板40と工程チューブ10の内周面との間の距離d1’が、基板40とガス供給部20との間の距離d2’より大きい値(d1’>d2’)を有する従来の技術とは異なり、本発明は、d1≦d2の条件を満足し、基板処理部100の外部にガス供給部200またはガス排出部300を配置するため、基板処理部100の内部空間110の大きさを、基板積載部500が収容可能な最小の大きさ[または基板40が収容可能な最小の大きさ]に減少させることができる。したがって、基板処理工程が行われる基板処理部100の内部空間110の大きさの減少による基板処理ガスの使用量の節減およびこれに伴う基板処理工程の費用の節減の利点があるだけでなく、基板処理ガスの供給時間および排出時間の減少およびこれに伴う基板処理工程の生産性を向上する利点がある。   Since the gas supply unit 200 and the gas discharge unit 300 are formed so as to protrude from the outer peripheral surface of the substrate processing unit 100, the gas supply unit 200 and the gas discharge unit 300 are compared to the distance d 1 between the substrate 40 and the inner peripheral surface of the substrate processing unit 100. The distance d2 between the gas supply channel 250 and the gas supply channel 250 may be equal or larger. That is, the gas supply unit 20 or the gas discharge unit 30 is disposed in the chamber 11 of the process tube 10 in which the substrate processing process is performed as illustrated in FIG. 1, and the distance between the substrate 40 and the inner peripheral surface of the process tube 10. Unlike the conventional technique in which d1 ′ has a value larger than the distance d2 ′ between the substrate 40 and the gas supply unit 20 (d1 ′> d2 ′), the present invention satisfies the condition of d1 ≦ d2. Since the gas supply unit 200 or the gas discharge unit 300 is arranged outside the substrate processing unit 100, the size of the internal space 110 of the substrate processing unit 100 is set to the minimum size that can be accommodated by the substrate stacking unit 500 [or the substrate 40. Can be reduced to the minimum size that can be accommodated. Accordingly, not only is there a benefit in reducing the amount of substrate processing gas used due to a reduction in the size of the internal space 110 of the substrate processing unit 100 in which the substrate processing process is performed, and the associated cost savings in the substrate processing process, There is an advantage that the supply time and the discharge time of the processing gas are reduced and the productivity of the substrate processing process associated therewith is improved.

図6は、本発明の一実施形態にかかる、上部面に補強リブ120、130を結合したバッチ式基板処理装置を示す斜視図である。   FIG. 6 is a perspective view showing a batch-type substrate processing apparatus according to an embodiment of the present invention, in which reinforcing ribs 120 and 130 are coupled to the upper surface.

従来のバッチ式基板処理装置の工程チューブ10が縦型であるのとは異なり、本発明の基板処理部100は、円柱形状を有し、上面が平らであり得る。基板処理部100の上面を平らに構成して、基板40が収容できない縦型チャンバ11の上部空間12(図1参照)を排除することにより、基板処理部100の内部空間110の大きさがより減少するという利点がある。ただし、従来の縦型チャンバ11に比べて内部の圧力を均等に分散できないことから発生し得る耐久性の問題を解消するために、本発明のバッチ式基板処理装置は、基板処理部100の上面上に複数の補強リブ120、130を結合したことを特徴とする。   Unlike the process tube 10 of the conventional batch type substrate processing apparatus, which is a vertical type, the substrate processing unit 100 of the present invention may have a cylindrical shape and a flat upper surface. By configuring the upper surface of the substrate processing unit 100 to be flat and eliminating the upper space 12 (see FIG. 1) of the vertical chamber 11 in which the substrate 40 cannot be accommodated, the size of the internal space 110 of the substrate processing unit 100 is further increased. There is an advantage of reducing. However, in order to eliminate the durability problem that may occur because the internal pressure cannot be evenly distributed as compared with the conventional vertical chamber 11, the batch-type substrate processing apparatus of the present invention has an upper surface of the substrate processing unit 100. A plurality of reinforcing ribs 120 and 130 are coupled to each other.

補強リブ120、130の材質は、基板処理部100の材質と同一に採用することができるが、これに限定されず、基板処理部100の上面を支持可能な目的の範囲内で多様な材質を採用することができる。   The material of the reinforcing ribs 120 and 130 may be the same as the material of the substrate processing unit 100, but is not limited thereto, and various materials can be used within a range of purposes capable of supporting the upper surface of the substrate processing unit 100. Can be adopted.

補強リブ120、130は、図6(a)のように、複数の補強リブ121、122を交差するように配置して基板処理部100の上面に結合することもでき、図6(b)のように、複数の補強リブ131、132を平行に配置して基板処理部100の上面に結合することもできる。補強リブ120、130は、溶接方式などを用いて基板処理部100の上面に結合することができる。   As shown in FIG. 6A, the reinforcing ribs 120 and 130 may be arranged so as to intersect with the plurality of reinforcing ribs 121 and 122 and coupled to the upper surface of the substrate processing unit 100, as shown in FIG. As described above, the plurality of reinforcing ribs 131 and 132 may be arranged in parallel to be coupled to the upper surface of the substrate processing unit 100. The reinforcing ribs 120 and 130 can be coupled to the upper surface of the substrate processing unit 100 using a welding method or the like.

図7は、本発明の一実施形態にかかる、ヒータ150、160が外面に設けられたバッチ式基板処理装置を示す斜視図である。   FIG. 7 is a perspective view showing a batch type substrate processing apparatus in which heaters 150 and 160 are provided on the outer surface according to an embodiment of the present invention.

図7を参照すれば、図3に示されているように、ハウジング400の内側面にヒータ430が設けられ、またはハウジング400の外側面にヒータ430が設けられることなく、基板処理部100の上面および外周面に基板40を加熱するためのヒータ150、160が設けられるとよい。図示しないが、必要によって、ガス供給部200およびガス排出部300の上面および外周面にもヒータを設けることができる。   Referring to FIG. 7, as shown in FIG. 3, the heater 430 is provided on the inner surface of the housing 400, or the heater 430 is not provided on the outer surface of the housing 400. In addition, heaters 150 and 160 for heating the substrate 40 may be provided on the outer peripheral surface. Although not shown, heaters can be provided on the upper and outer peripheral surfaces of the gas supply unit 200 and the gas discharge unit 300 as necessary.

ヒータ150、160は、板状に形成され、基板処理部100の内部空間110に熱伝達を効率的に行うことができ、グラファイト(Graphite)またはカーボン(Carbon)複合体の中から選択されたいずれか1つで形成されるとよい。あるいは、ヒータ150、160は、シリコンカーバイド(Silicon carbide)またはモリブデンの中から選択されたいずれか1つで形成されたり、カンタル(Kanthal)で形成されてもよい。   The heaters 150 and 160 are formed in a plate shape, can efficiently transfer heat to the internal space 110 of the substrate processing unit 100, and can be any one selected from graphite (Graphite) and carbon (Carbon) composites. It is good to form with one. Alternatively, the heaters 150 and 160 may be formed of any one selected from silicon carbide or molybdenum, or may be formed of Kanthal.

ヒータ150は、基板処理部100の上面に設けられ、

Figure 2014165500
が順次に連続して繰り返される形状に形成されるとよい。この時、ヒータ150は、基板処理部100の上面に形成された補強リブ120、130によって区画された基板処理部100の上面にそれぞれ設けられる。 The heater 150 is provided on the upper surface of the substrate processing unit 100,
Figure 2014165500
It is good to form in the shape which repeats sequentially sequentially. At this time, the heater 150 is provided on the upper surface of the substrate processing unit 100 defined by the reinforcing ribs 120 and 130 formed on the upper surface of the substrate processing unit 100.

ヒータ160は、基板処理部100の外周面に設けられ、下側および上側にそれぞれ配置され、対向して対をなす第1ヒータ161および第2ヒータ165を含む。そして、対をなす第1ヒータ161および第2ヒータ165は、基板処理部100の円周方向に沿って所定間隔で複数個設けられる。   The heater 160 includes a first heater 161 and a second heater 165 that are provided on the outer peripheral surface of the substrate processing unit 100, are respectively disposed on the lower side and the upper side, and are opposed to each other. A plurality of pairs of first heaters 161 and second heaters 165 are provided at predetermined intervals along the circumferential direction of the substrate processing unit 100.

図8は、本発明の一実施形態にかかるヒータ160の拡大正面図である。   FIG. 8 is an enlarged front view of the heater 160 according to the embodiment of the present invention.

第1ヒータ161は、一対の第1左側垂直板161aと、一対の第1右側垂直板161bと、一対の第1中央垂直板161cと、一対の第1上側連結板161dと、一対の第1下側連結板161eと、第1中央連結板161fとを有する。   The first heater 161 includes a pair of first left vertical plates 161a, a pair of first right vertical plates 161b, a pair of first central vertical plates 161c, a pair of first upper connection plates 161d, and a pair of first A lower connecting plate 161e and a first central connecting plate 161f are provided.

第1左側垂直板161aは、第1ヒータ161の左側から互いに所定距離離隔して対向する一対で、基板処理部100の上下方向に向ける。第1右側垂直板161bは、第1ヒータ161の右側から互いに所定距離離隔して対向する一対で、基板処理部100の上下方向に向け、第1左側垂直板161aと同じ長さを有する。第1中央垂直板161cは、第1ヒータ161の中央から互いに所定距離離隔して対向する一対で、基板処理部100の上下方向に向け、第1左側垂直板161aおよび第1右側垂直板161bより短く形成され、第1左側垂直板161aおよび第1右側垂直板161bの間に配置される。   The first left vertical plate 161a is a pair facing each other at a predetermined distance from the left side of the first heater 161 and faces the substrate processing unit 100 in the vertical direction. The first right vertical plate 161b is a pair facing each other with a predetermined distance from the right side of the first heater 161, and has the same length as the first left vertical plate 161a in the vertical direction of the substrate processing unit 100. The first central vertical plate 161c is a pair opposed to each other with a predetermined distance from the center of the first heater 161, and is directed from the first left vertical plate 161a and the first right vertical plate 161b toward the vertical direction of the substrate processing unit 100. It is formed short and is disposed between the first left vertical plate 161a and the first right vertical plate 161b.

第1上側連結板161dは、一対の第1左側垂直板161aの上側部分および一対の第1右側垂直板161bの上側部分をそれぞれ連結する。第1下側連結板161eは、一対の第1中央垂直板161cと互いに隣接する第1左側垂直板161aおよび第1右側垂直板161bの下側部分をそれぞれ連結する。第1中央連結板161fは、一対の第1中央垂直板161cの上側部分を連結する。   The first upper connecting plate 161d connects the upper portion of the pair of first left vertical plates 161a and the upper portion of the pair of first right vertical plates 161b, respectively. The first lower connecting plate 161e connects a pair of first central vertical plates 161c and lower portions of the first left vertical plate 161a and the first right vertical plate 161b adjacent to each other. The first center connecting plate 161f connects the upper portions of the pair of first center vertical plates 161c.

第2ヒータ165は、一対の第2左側垂直板165aと、一対の第2右側垂直板165bと、一対の第2中央垂直板165cと、一対の第2中央連結板165dと、一対の第2上側連結板165eと、第2下側連結板165fとを有する。   The second heater 165 includes a pair of second left vertical plates 165a, a pair of second right vertical plates 165b, a pair of second central vertical plates 165c, a pair of second central connecting plates 165d, and a pair of second It has an upper connecting plate 165e and a second lower connecting plate 165f.

第2左側垂直板165aは、第2ヒータ165の左側から互いに所定距離離隔して対向する一対で、基板処理部100の上下方向に向ける。第2右側垂直板165bは、第2ヒータ165の右側から互いに所定距離離隔して対向する一対で、基板処理部100の上下方向に向け、第2左側垂直板165aと同じ長さを有する。第2中央垂直板165cは、第2ヒータ165の中央から互いに所定距離離隔して対向する一対で、基板処理部100の上下方向に向け、第2左側垂直板165aおよび第2右側垂直板165bより長く形成され、第2左側垂直板165aおよび第2右側垂直板165bの間に配置される。   The second left vertical plate 165a is a pair facing each other with a predetermined distance from the left side of the second heater 165, and faces the vertical direction of the substrate processing unit 100. The second right vertical plate 165b is a pair facing each other with a predetermined distance from the right side of the second heater 165, and has the same length as the second left vertical plate 165a in the vertical direction of the substrate processing unit 100. The second central vertical plate 165c is a pair opposed to each other at a predetermined distance from the center of the second heater 165, and is directed from the second left vertical plate 165a and the second right vertical plate 165b in the vertical direction of the substrate processing unit 100. It is formed long and is disposed between the second left vertical plate 165a and the second right vertical plate 165b.

第2中央連結板165dは、一対の第2左側垂直板165aの下側部分および一対の第2右側垂直板165bの下側部分をそれぞれ連結する。第2上側連結板165eは、一対の第2中央垂直板165cと互いに隣接する第2左側垂直板165aおよび第2右側垂直板165bの上側部分をそれぞれ連結する。第2下側連結板165fは、一対の第2中央垂直板165cの下側部分を連結する。   The second central connecting plate 165d connects a lower portion of the pair of second left vertical plates 165a and a lower portion of the pair of second right vertical plates 165b. The second upper connecting plate 165e connects the pair of second central vertical plates 165c and the upper portions of the second left vertical plate 165a and the second right vertical plate 165b adjacent to each other. The second lower connecting plate 165f connects the lower portions of the pair of second central vertical plates 165c.

この時、第1上側連結板161dの上面と第2中央連結板165dの下面は互いに対向し、第2下側連結板165fの下面は第1中央連結板161fの上面と互いに対向しつつ、第2下側連結板165fは第1左側垂直板161aと第1右側垂直板161bとの間に位置する。   At this time, the upper surface of the first upper connecting plate 161d and the lower surface of the second central connecting plate 165d are opposed to each other, and the lower surface of the second lower connecting plate 165f is opposed to the upper surface of the first central connecting plate 161f. 2 The lower connection plate 165f is located between the first left vertical plate 161a and the first right vertical plate 161b.

前記のようなヒータ160は、ヒータ端子が第1左側垂直板161aの下端部、第1右側垂直板161bの下端部、第2左側垂直板165aの上端部、および第2右側垂直板165bの上端部に具備[すなわち、ヒータ160の4つの角側にヒータ端子を具備]されているため、外部電源とヒータ端子とを連結しやすいという利点がある。   In the heater 160, the heater terminals have lower ends of the first left vertical plate 161a, lower ends of the first right vertical plate 161b, upper ends of the second left vertical plate 165a, and upper ends of the second right vertical plate 165b. Since it is provided in the part [that is, the heater terminal is provided on the four corners of the heater 160], there is an advantage that it is easy to connect the external power source and the heater terminal.

また、基板処理部100の内部が加熱されると、対流現象によって基板処理部100の内部空間110の上側部位が下側部位より高温になる。しかし、ヒータ160が互いに区画された第1ヒータ161および第2ヒータ165として用意されて上下に配置されるため、第1ヒータ161と第2ヒータ165を適切に制御すると、基板処理部100の内部空間110の上下側の温度が均一になるように制御することができる。   Further, when the inside of the substrate processing unit 100 is heated, the upper part of the internal space 110 of the substrate processing unit 100 becomes hotter than the lower part due to the convection phenomenon. However, since the heater 160 is prepared as a first heater 161 and a second heater 165 that are separated from each other and arranged vertically, if the first heater 161 and the second heater 165 are appropriately controlled, the inside of the substrate processing unit 100 The temperature on the upper and lower sides of the space 110 can be controlled to be uniform.

さらに、基板処理部100の高さ方向に沿った3つの領域[第2ヒータ165の上端から第2中央連結板165dまでの領域、第1上側連結板161dから第2下側連結板165fまでの領域、第1中央連結板161fから第1ヒータ161の下端までの領域]を、互いに区画された2つのヒータ161、165によりヒーティングが可能なため、2つの領域を2つのヒータで制御する方式に比べて、温度制御の効率性および均一性の面で有利である。   Further, three regions along the height direction of the substrate processing unit 100 [regions from the upper end of the second heater 165 to the second central connecting plate 165d, from the first upper connecting plate 161d to the second lower connecting plate 165f. Since the area, the area from the first central connecting plate 161f to the lower end of the first heater 161, can be heated by the two heaters 161 and 165 partitioned from each other, the two areas are controlled by two heaters. Compared to the above, it is advantageous in terms of efficiency and uniformity of temperature control.

このように、本発明は、ガス供給流路250およびガス排出流路350を収容するガス供給部200およびガス排出部300を、基板処理工程が行われる基板処理部100と分離して配置することにより、基板処理部100の内部空間110の大きさを最小化できるため、基板処理ガスの使用量を節減することで工程費用を節約し、基板処理ガスの供給および排出時間を短縮することで基板処理工程の生産性を向上することができる。   Thus, according to the present invention, the gas supply unit 200 and the gas discharge unit 300 that accommodate the gas supply channel 250 and the gas discharge channel 350 are arranged separately from the substrate processing unit 100 in which the substrate processing step is performed. Accordingly, the size of the internal space 110 of the substrate processing unit 100 can be minimized, so that the processing cost can be saved by reducing the amount of the substrate processing gas used, and the substrate processing gas supply and exhaust time can be shortened. The productivity of the processing process can be improved.

そして、基板処理部100の上部を平らに形成することにより、基板処理部100の内部空間110の大きさがより減少することで前記効果を極大化することができ、補強リブ120、130を基板処理部100の上面に結合することで耐久性を強化することができる。   Further, by forming the upper portion of the substrate processing unit 100 flat, the size of the internal space 110 of the substrate processing unit 100 can be further reduced, so that the above effect can be maximized, and the reinforcing ribs 120 and 130 are formed on the substrate. The durability can be enhanced by bonding to the upper surface of the processing unit 100.

そして、ヒータ150、160が板状に形成され、基板処理部100の外面に設けられるため、基板処理部100の内部空間110に熱伝達を効率的に行うことができ、ヒータ160の端子を角側に具備することで外部電源との連結を容易にすることができ、2つのヒータ161、162で3つの領域を均一に温度制御することができる。   Since the heaters 150 and 160 are formed in a plate shape and are provided on the outer surface of the substrate processing unit 100, heat can be efficiently transferred to the internal space 110 of the substrate processing unit 100, and the terminals of the heater 160 are connected to the corners. By being provided on the side, the connection with the external power source can be facilitated, and the temperature of the three regions can be uniformly controlled by the two heaters 161 and 162.

本発明は、上述のように好ましい実施形態を挙げて図示および説明したが、上記の実施形態に限定されず、本発明の精神を逸脱しない範囲内で当該発明の属する技術分野における通常の知識を有する者によって多様な変形および変更が可能である。そのような変形例および変更例は、本発明と添付した特許請求の範囲の範囲内に属する。   Although the present invention has been illustrated and described with reference to the preferred embodiments as described above, the present invention is not limited to the above-described embodiments, and general knowledge in the technical field to which the invention belongs is within the scope not departing from the spirit of the present invention. Various modifications and changes are possible depending on the person who has them. Such variations and modifications are within the scope of the present invention and the appended claims.

40 基板
100 基板処理部
110 基板処理部の内部空間
120、130 補強リブ
150、160 ヒータ
200 ガス供給部
250 ガス供給流路
251 ガス供給管
252 吐出孔
300 ガス排出部
350 ガス排出流路
351 ガス排出管
352 排出孔
400 ハウジング
450 マニホールド
500 基板積載部
d1 基板と基板処理部の内周面との間の距離
d2 基板とガス供給流路との間の距離
40 Substrate 100 Substrate Processing Unit 110 Internal Space 120, 130 Reinforcing Rib 150, 160 Heater 200 Gas Supply Unit 250 Gas Supply Channel 251 Gas Supply Pipe 252 Discharge Hole 300 Gas Exhaust Unit 350 Gas Exhaust Channel 351 Gas Exhaust Pipe 352 Discharge hole 400 Housing 450 Manifold 500 Substrate loading portion d1 Distance between substrate and inner peripheral surface of substrate processing portion d2 Distance between substrate and gas supply flow path

Claims (19)

基板積載部に積層された複数の基板を収容して処理する基板処理部と、
前記基板処理部の一側外周面上に形成され、基板処理ガスが流れる少なくとも1つのガス供給流路を収容して前記基板処理部に基板処理ガスを供給するガス供給部とを含み、
基板と前記基板処理部の内周面との距離がd1、基板と前記ガス供給流路との距離がd2の時、d1≦d2であることを特徴とするバッチ式基板処理装置。
A substrate processing unit for accommodating and processing a plurality of substrates stacked on the substrate stacking unit;
A gas supply unit that is formed on one outer peripheral surface of the substrate processing unit and that houses at least one gas supply channel through which a substrate processing gas flows and supplies the substrate processing gas to the substrate processing unit;
A batch type substrate processing apparatus, wherein a distance between a substrate and an inner peripheral surface of the substrate processing unit is d1, and a distance between the substrate and the gas supply channel is d2, d1 ≦ d2.
前記基板処理部の他側外周面上に形成され、基板処理ガスが流れる少なくとも1つのガス排出流路を収容して前記基板処理部に供給された基板処理ガスを排出するガス排出部をさらに含むことを特徴とする請求項1に記載のバッチ式基板処理装置。   A gas exhaust unit that is formed on the outer peripheral surface of the other side of the substrate processing unit and that accommodates at least one gas exhaust channel through which a substrate processing gas flows, and exhausts the substrate processing gas supplied to the substrate processing unit; The batch type substrate processing apparatus according to claim 1. 前記基板処理部の前記外周面は、前記ガス供給部の外周面と一体に連結され、
前記基板処理部の前記外周面は、前記ガス排出部の外周面と一体に連結されることを特徴とする請求項2に記載のバッチ式基板処理装置。
The outer peripheral surface of the substrate processing unit is integrally connected to the outer peripheral surface of the gas supply unit,
The batch type substrate processing apparatus according to claim 2, wherein the outer peripheral surface of the substrate processing unit is integrally connected to the outer peripheral surface of the gas discharge unit.
前記ガス供給流路は、前記ガス供給部の長さ方向に沿って形成された複数のガス供給管と、前記基板処理部に向けて前記ガス供給管の一側に形成される複数の吐出孔とを含むことを特徴とする請求項2に記載のバッチ式基板処理装置。   The gas supply flow path includes a plurality of gas supply pipes formed along a length direction of the gas supply part, and a plurality of discharge holes formed on one side of the gas supply pipe toward the substrate processing part. The batch type substrate processing apparatus according to claim 2, wherein: 前記ガス排出流路は、前記ガス排出部の長さ方向に沿って形成されたガス排出管と、前記基板処理部に向けて前記ガス排出管の一側に形成される複数の排出孔とを含むことを特徴とする請求項4に記載のバッチ式基板処理装置。   The gas discharge flow path includes a gas discharge pipe formed along the length direction of the gas discharge section, and a plurality of discharge holes formed on one side of the gas discharge pipe toward the substrate processing section. The batch type substrate processing apparatus according to claim 4, further comprising: 前記基板処理部は、円柱形状を有し、上面が平らであることを特徴とする請求項1に記載のバッチ式基板処理装置。   The batch type substrate processing apparatus according to claim 1, wherein the substrate processing unit has a cylindrical shape and has a flat upper surface. 前記基板処理部の上面の上に複数の補強リブを結合したことを特徴とする請求項6に記載のバッチ式基板処理装置。   The batch type substrate processing apparatus according to claim 6, wherein a plurality of reinforcing ribs are coupled on the upper surface of the substrate processing unit. 前記複数の補強リブを交差するように配置して前記基板処理部の上面の上に結合したことを特徴とする請求項7に記載のバッチ式基板処理装置。   The batch type substrate processing apparatus according to claim 7, wherein the plurality of reinforcing ribs are arranged so as to intersect with each other and are bonded onto an upper surface of the substrate processing unit. 前記複数の補強リブを平行に配置して前記基板処理部の上面の上に結合したことを特徴とする請求項7に記載のバッチ式基板処理装置。   The batch type substrate processing apparatus according to claim 7, wherein the plurality of reinforcing ribs are arranged in parallel and coupled on an upper surface of the substrate processing unit. 前記基板処理部の外周面および上面にヒータが設けられたことを特徴とする請求項1に記載のバッチ式基板処理装置。   The batch type substrate processing apparatus according to claim 1, wherein heaters are provided on an outer peripheral surface and an upper surface of the substrate processing unit. 前記ヒータは、板状に形成されたことを特徴とする請求項10に記載のバッチ式基板処理装置。   The batch type substrate processing apparatus according to claim 10, wherein the heater is formed in a plate shape. 前記基板処理部の上面に設けられた前記ヒータは、
Figure 2014165500
が順次に連続して繰り返される形状であることを特徴とする請求項11に記載のバッチ式基板処理装置。
The heater provided on the upper surface of the substrate processing unit,
Figure 2014165500
The batch type substrate processing apparatus according to claim 11, wherein the shape is a shape that is sequentially and continuously repeated.
前記基板処理部の外周面に設けられた前記ヒータは、下側および上側にそれぞれ配置され、対向して対をなす第1ヒータおよび第2ヒータを有し、
対をなす前記第1ヒータおよび前記第2ヒータは、前記基板処理部の円周方向に沿って複数個設けられたことを特徴とする請求項11に記載のバッチ式基板処理装置。
The heaters provided on the outer peripheral surface of the substrate processing unit have a first heater and a second heater which are disposed on the lower side and the upper side, respectively, and are opposed to each other.
The batch type substrate processing apparatus according to claim 11, wherein a plurality of the first heater and the second heater forming a pair are provided along a circumferential direction of the substrate processing unit.
前記第1ヒータは、前記第1ヒータの左側から互いに対向して上下方向に向ける一対の第1左側垂直板と、前記第1ヒータの右側から互いに対向して上下方向に向け、前記第1左側垂直板と同じ長さを有する一対の第1右側垂直板と、前記第1ヒータの中央から互いに対向して上下方向に向け、前記第1左側垂直板および前記第1右側垂直板より短く形成され、前記第1左側垂直板および前記第1右側垂直板の間に配置された一対の第1中央垂直板と、前記一対の第1左側垂直板の上側部分および前記一対の第1右側垂直板の上側部分をそれぞれ連結する一対の第1上側連結板と、前記一対の第1中央垂直板と互いに隣接する前記第1左側垂直板および前記第1右側垂直板の下側部分をそれぞれ連結する第1下側連結板と、前記一対の第1中央垂直板の上側部分を連結する第1中央連結板とを有し、
前記第2ヒータは、前記第2ヒータの左側から互いに対向して上下方向に向ける一対の第2左側垂直板と、前記第2ヒータの右側から互いに対向して上下方向に向け、前記第2左側垂直板と同じ長さを有する一対の第2右側垂直板と、前記第2ヒータの中央から互いに対向して上下方向に向け、前記第2左側垂直板および前記第2右側垂直板より長く形成され、前記第2左側垂直板および前記第2右側垂直板の間に配置された一対の第2中央垂直板と、前記一対の第2左側垂直板の下側部分および前記一対の第2右側垂直板の下側部分をそれぞれ連結する一対の第2中央連結板と、前記一対の第2中央垂直板と互いに隣接する前記第2左側垂直板および前記第2右側垂直板の上側部分をそれぞれ連結する第2上側連結板と、前記一対の第2中央垂直板の下側部分を連結する第2下側連結板とを有し、
前記第1上側連結板の上面と前記第2中央連結板の下面は互いに対向し、前記第2下側連結板の下面は前記第1中央連結板の上面と互いに対向しつつ、前記第2下側連結板は前記第1左側垂直板と前記第1右側垂直板との間に位置することを特徴とする請求項13に記載のバッチ式基板処理装置。
The first heater includes a pair of first left vertical plates facing each other from the left side of the first heater and facing upward and downward, and a pair of first left vertical plates facing each other from the right side of the first heater and facing upward and downward. A pair of first right vertical plates having the same length as the vertical plates, and are formed shorter than the first left vertical plate and the first right vertical plate, facing each other from the center of the first heater in the vertical direction. A pair of first central vertical plates disposed between the first left vertical plate and the first right vertical plate; an upper portion of the pair of first left vertical plates; and an upper portion of the pair of first right vertical plates A pair of first upper connection plates, and a first lower side connecting the first left vertical plate and the lower portion of the first right vertical plate, which are adjacent to the pair of first central vertical plates, respectively. A connecting plate and the first pair of first And a first center connection plate for connecting the upper portion of the vertical plate,
The second heater includes a pair of second left vertical plates facing each other from the left side of the second heater and facing upward and downward, and a pair of second left vertical plates facing each other from the right side of the second heater and facing upward and downward. A pair of second right vertical plates having the same length as the vertical plates, and are formed longer than the second left vertical plate and the second right vertical plate, facing each other from the center of the second heater and facing in the vertical direction. , A pair of second central vertical plates disposed between the second left vertical plate and the second right vertical plate, a lower portion of the pair of second left vertical plates and a pair of the second right vertical plates A pair of second center connecting plates that respectively connect the side portions; a second upper side that connects the second left vertical plate and the upper portion of the second right vertical plate adjacent to the pair of second center vertical plates; A connecting plate and the second pair of second And a second lower connecting plate for connecting the lower portion of the vertical plate,
The upper surface of the first upper connecting plate and the lower surface of the second central connecting plate face each other, and the lower surface of the second lower connecting plate faces the upper surface of the first central connecting plate, while the second lower connecting plate The batch type substrate processing apparatus of claim 13, wherein the side connecting plate is located between the first left vertical plate and the first right vertical plate.
前記基板処理部の下面は開放され、
前記基板処理部およびガス供給部を取り囲む形態で下面が開放されたハウジングが設けられ、
前記複数の基板を前記基板処理部にローディングし、昇降可能に設けられた基板積載部をさらに含むことを特徴とする請求項1に記載のバッチ式基板処理装置。
The lower surface of the substrate processing unit is opened,
A housing having a lower surface opened in a form surrounding the substrate processing unit and the gas supply unit is provided,
The batch type substrate processing apparatus according to claim 1, further comprising a substrate stacking unit that is capable of loading the plurality of substrates into the substrate processing unit and capable of moving up and down.
前記基板積載部は、昇降しながら、前記基板処理部の下端面および前記ガス供給部の下端面にその上端面が結合されたマニホールドの下端面に着脱可能に結合され、
前記基板積載部が前記マニホールドの下端面に結合されると、前記基板が前記基板処理部にローディングされることを特徴とする請求項15に記載のバッチ式基板処理装置。
The substrate stacking unit is detachably coupled to the lower end surface of the manifold, the upper end surface of which is coupled to the lower end surface of the substrate processing unit and the lower end surface of the gas supply unit, while moving up and down.
The batch type substrate processing apparatus of claim 15, wherein when the substrate stacking unit is coupled to a lower end surface of the manifold, the substrate is loaded on the substrate processing unit.
前記吐出孔および前記排出孔は、前記複数の基板が積層された前記基板積載部が前記基板処理部に収容された時、前記基板積載部に支持された、互いに隣接する前記基板と基板との間の間隔にそれぞれ位置することを特徴とする請求項5に記載のバッチ式基板処理装置。   The discharge hole and the discharge hole are formed between the substrate and the substrate adjacent to each other supported by the substrate stacking unit when the substrate stacking unit in which the plurality of substrates are stacked is accommodated in the substrate processing unit. The batch type substrate processing apparatus according to claim 5, wherein the batch type substrate processing apparatus is located at an interval between each other. 前記基板処理部は、石英(Quartz)、ステンレススチール(SUS)、アルミニウム(Aluminium)、グラファイト(Graphite)、シリコンカーバイド(Silicon carbide)、または酸化アルミニウム(Aluminium oxide)のうちの少なくともいずれか1つを含むことを特徴とする請求項1に記載のバッチ式基板処理装置。   The substrate processing unit includes at least one of quartz, stainless steel (SUS), aluminum (Aluminium), graphite (Graphite), silicon carbide (Silicon carbide), and aluminum oxide (Aluminium oxide). The batch type substrate processing apparatus according to claim 1, further comprising: 前記ヒータは、グラファイト(Graphite)、カーボン(Carbon)複合体、シリコンカーバイド(Silicon carbide)、モリブデン、またはカンタル(Kanthal)のうちの少なくともいずれか1つで形成されたことを特徴とする請求項10に記載のバッチ式基板処理装置。   The heater is formed of at least one of graphite, carbon composite, silicon carbide, molybdenum, and Kanthal. The batch type substrate processing apparatus according to 1.
JP2014033926A 2013-02-26 2014-02-25 Batch substrate processing apparatus Pending JP2014165500A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130020431A KR101396601B1 (en) 2013-02-26 2013-02-26 Batch type apparatus for processing substrate
KR10-2013-0020431 2013-02-26

Publications (1)

Publication Number Publication Date
JP2014165500A true JP2014165500A (en) 2014-09-08

Family

ID=50894567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014033926A Pending JP2014165500A (en) 2013-02-26 2014-02-25 Batch substrate processing apparatus

Country Status (4)

Country Link
JP (1) JP2014165500A (en)
KR (1) KR101396601B1 (en)
CN (1) CN104005005A (en)
TW (1) TWI602937B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017120883A (en) * 2015-12-28 2017-07-06 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing device
WO2017138087A1 (en) * 2016-02-09 2017-08-17 株式会社日立国際電気 Substrate treatment apparatus and method for manufacturing semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101659560B1 (en) * 2014-08-26 2016-09-23 주식회사 테라세미콘 Reactor of apparatus for processing substrate
JP6578243B2 (en) * 2015-07-17 2019-09-18 株式会社Kokusai Electric Gas supply nozzle, substrate processing apparatus, semiconductor device manufacturing method and program
KR101826814B1 (en) * 2015-09-23 2018-02-08 주식회사 테라세미콘 Reactor of apparatus for processing substrate
CN108203815A (en) * 2016-12-19 2018-06-26 北京北方华创微电子装备有限公司 Processing chamber and semiconductor processing equipment

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322523A (en) * 1989-06-20 1991-01-30 Fujitsu Ltd Vapor growth device
JPH04155828A (en) * 1990-10-18 1992-05-28 Tokyo Electron Sagami Ltd Heat treatment device
JP2000294511A (en) * 1999-04-09 2000-10-20 Ftl:Kk Manufacture for semiconductor device
JP2001210631A (en) * 2000-01-28 2001-08-03 Tokyo Electron Ltd Heat-treating apparatus
JP2001291708A (en) * 2000-03-17 2001-10-19 Samsung Electronics Co Ltd Equipment for manufacturing processing tube including slit-type process gas inlet and waste gas exhaust of porous structure, and equipment for manufacturing semiconductor element
JP2002222806A (en) * 2001-01-26 2002-08-09 Ebara Corp Substrate processor
JP2003324045A (en) * 2002-02-28 2003-11-14 Tokyo Electron Ltd Thermal treatment equipment
JP2004014543A (en) * 2002-06-03 2004-01-15 Hitachi Kokusai Electric Inc Semiconductor manufacturing apparatus and manufacturing method of semiconductor device
JP2005158939A (en) * 2003-11-25 2005-06-16 Kyoshin Engineering:Kk Annealing apparatus having divided heaters, and method for annealing using the same
JP2006080098A (en) * 2002-09-20 2006-03-23 Hitachi Kokusai Electric Inc Substrate processor and manufacturing method of semiconductor device
JP2006080256A (en) * 2004-09-09 2006-03-23 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2007109711A (en) * 2005-10-11 2007-04-26 Tokyo Electron Ltd Processing apparatus and method, and storage medium
JP2007194584A (en) * 2006-01-16 2007-08-02 Tera Semicon Corp Heating method and heating system for batch-type reaction chamber
JP2008172205A (en) * 2006-12-12 2008-07-24 Hitachi Kokusai Electric Inc Substrate treating equipment, method of manufacturing semiconductor device, and reactor vessel
JP2009055001A (en) * 2007-07-10 2009-03-12 Applied Materials Inc Method and equipment for batch process in vertical reactor
JP2009124005A (en) * 2007-11-16 2009-06-04 Sukegawa Electric Co Ltd Soaking high-speed elevator pit
JP2009218600A (en) * 2008-01-31 2009-09-24 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device
JP2009536460A (en) * 2006-05-05 2009-10-08 アプライド マテリアルズ インコーポレイテッド Batch processing chamber with diffusion plate and spray assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060082142A (en) * 2005-01-10 2006-07-18 국제엘렉트릭코리아 주식회사 Equipment for atomic layer deposition
JP2007201357A (en) * 2006-01-30 2007-08-09 Tokyo Electron Ltd Deposition device and deposition method
JP5233562B2 (en) * 2008-10-04 2013-07-10 東京エレクトロン株式会社 Film forming method and film forming apparatus
KR101141069B1 (en) * 2010-01-26 2012-05-10 주식회사 엔씨디 Batch type atomic layer depositing apparatus
JP2012099765A (en) * 2010-11-05 2012-05-24 Hitachi Kokusai Electric Inc Substrate processing apparatus
TW201245514A (en) * 2010-12-07 2012-11-16 Hitachi Int Electric Inc Method of manufacturing substrate, method of manufacturing semiconductor device, and substrate processing apparatus

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322523A (en) * 1989-06-20 1991-01-30 Fujitsu Ltd Vapor growth device
JPH04155828A (en) * 1990-10-18 1992-05-28 Tokyo Electron Sagami Ltd Heat treatment device
JP2000294511A (en) * 1999-04-09 2000-10-20 Ftl:Kk Manufacture for semiconductor device
JP2001210631A (en) * 2000-01-28 2001-08-03 Tokyo Electron Ltd Heat-treating apparatus
JP2001291708A (en) * 2000-03-17 2001-10-19 Samsung Electronics Co Ltd Equipment for manufacturing processing tube including slit-type process gas inlet and waste gas exhaust of porous structure, and equipment for manufacturing semiconductor element
JP2002222806A (en) * 2001-01-26 2002-08-09 Ebara Corp Substrate processor
JP2003324045A (en) * 2002-02-28 2003-11-14 Tokyo Electron Ltd Thermal treatment equipment
JP2004014543A (en) * 2002-06-03 2004-01-15 Hitachi Kokusai Electric Inc Semiconductor manufacturing apparatus and manufacturing method of semiconductor device
JP2006080098A (en) * 2002-09-20 2006-03-23 Hitachi Kokusai Electric Inc Substrate processor and manufacturing method of semiconductor device
JP2005158939A (en) * 2003-11-25 2005-06-16 Kyoshin Engineering:Kk Annealing apparatus having divided heaters, and method for annealing using the same
JP2006080256A (en) * 2004-09-09 2006-03-23 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP2007109711A (en) * 2005-10-11 2007-04-26 Tokyo Electron Ltd Processing apparatus and method, and storage medium
JP2007194584A (en) * 2006-01-16 2007-08-02 Tera Semicon Corp Heating method and heating system for batch-type reaction chamber
JP2009536460A (en) * 2006-05-05 2009-10-08 アプライド マテリアルズ インコーポレイテッド Batch processing chamber with diffusion plate and spray assembly
JP2008172205A (en) * 2006-12-12 2008-07-24 Hitachi Kokusai Electric Inc Substrate treating equipment, method of manufacturing semiconductor device, and reactor vessel
JP2009055001A (en) * 2007-07-10 2009-03-12 Applied Materials Inc Method and equipment for batch process in vertical reactor
JP2009124005A (en) * 2007-11-16 2009-06-04 Sukegawa Electric Co Ltd Soaking high-speed elevator pit
JP2009218600A (en) * 2008-01-31 2009-09-24 Hitachi Kokusai Electric Inc Method for manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017120883A (en) * 2015-12-28 2017-07-06 ユ−ジーン テクノロジー カンパニー.リミテッド Substrate processing device
US10364494B2 (en) 2015-12-28 2019-07-30 Eugene Technology Co., Ltd. Substrate processing apparatus
WO2017138087A1 (en) * 2016-02-09 2017-08-17 株式会社日立国際電気 Substrate treatment apparatus and method for manufacturing semiconductor device
JPWO2017138087A1 (en) * 2016-02-09 2018-11-29 株式会社Kokusai Electric Substrate processing apparatus and semiconductor device manufacturing method

Also Published As

Publication number Publication date
CN104005005A (en) 2014-08-27
TWI602937B (en) 2017-10-21
KR101396601B1 (en) 2014-05-20
TW201441395A (en) 2014-11-01

Similar Documents

Publication Publication Date Title
JP2014165500A (en) Batch substrate processing apparatus
US10358721B2 (en) Semiconductor manufacturing system including deposition apparatus
US10822695B2 (en) Thin film deposition apparatus
TWI671792B (en) Substrate processing apparatus
US10190214B2 (en) Deposition apparatus and deposition system having the same
US20150144060A1 (en) Cluster-batch type system for processing substrate
TW201637837A (en) Ceramic gas distribution plate with embedded electrode
JP2009503876A (en) Semiconductor processing deposition equipment
KR20090004629A (en) Thermal batch reactor with removable susceptors
KR20140108564A (en) Self-contained heating element
CN104878367A (en) Reaction cavity and chemical vapor deposition equipment
KR20220116517A (en) Showerhead for ALD Precursor Delivery
KR101396602B1 (en) Batch type apparatus for processing substrate
TW201611155A (en) Reactor of substrate processing apparatus
KR102208882B1 (en) Apparatus for selective gas injection and extraction
KR101512329B1 (en) Batch type apparatus for processing substrate
CN109075109B (en) Full area counter flow heat exchange substrate support
TWI787380B (en) Reactor of apparatus for processing substrate
KR101524251B1 (en) Cluster-batch type system for processing substrate
KR101385676B1 (en) Batch type apparatus
KR20150003118A (en) Cluster-batch type system for processing substrate
KR101385659B1 (en) Batch type apparatus
KR101452336B1 (en) Batch type system for processing substrate
JP7116239B2 (en) Ceramic shower head and chemical vapor deposition apparatus equipped with the same
KR101377751B1 (en) Batch type apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181030