JP2014160546A - Anisotropic conductive film, connection method and joined body - Google Patents

Anisotropic conductive film, connection method and joined body Download PDF

Info

Publication number
JP2014160546A
JP2014160546A JP2013029645A JP2013029645A JP2014160546A JP 2014160546 A JP2014160546 A JP 2014160546A JP 2013029645 A JP2013029645 A JP 2013029645A JP 2013029645 A JP2013029645 A JP 2013029645A JP 2014160546 A JP2014160546 A JP 2014160546A
Authority
JP
Japan
Prior art keywords
anisotropic conductive
conductive film
terminal
electronic component
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013029645A
Other languages
Japanese (ja)
Other versions
JP5956362B2 (en
Inventor
Takeshi Tamaki
剛志 田巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2013029645A priority Critical patent/JP5956362B2/en
Priority to KR1020140017046A priority patent/KR102193813B1/en
Priority to CN201410054738.6A priority patent/CN103996431B/en
Publication of JP2014160546A publication Critical patent/JP2014160546A/en
Application granted granted Critical
Publication of JP5956362B2 publication Critical patent/JP5956362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Adhesive Tapes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive film or the like which is excellent in storage stability, and connection reliability at the time of connection at a low temperature.SOLUTION: Disclosed is an anisotropic conductive film which performs anisotropic conductive connection between a terminal of a substrate and a terminal of an electrical component. This film has a conductive particle-containing layer containing a conductive particle, a film forming resin, a hardening resin and a hardener, and an insulating adhesive layer containing the film forming resin, the hardening resin and the hardener. Only the insulating adhesive layer contains a thiol compound, and the conductive particle has Cu on the surface.

Description

本発明は、異方性導電フィルム、接続方法、及び接合体に関する。   The present invention relates to an anisotropic conductive film, a connection method, and a joined body.

従来より、電子部品を基板と接続する手段として、導電性粒子が分散された熱硬化性樹脂を剥離フィルムに塗布したテープ状の接続材料(例えば、異方性導電フィルム(ACF;Anisotropic Conductive Film))が用いられている。   Conventionally, as a means for connecting an electronic component to a substrate, a tape-like connection material in which a thermosetting resin in which conductive particles are dispersed is applied to a release film (for example, anisotropic conductive film (ACF)) ) Is used.

この異方性導電フィルムは、例えば、フレキシブルプリント基板(FPC)やIC(Integrated Circuit)チップの端子と、LCD(Liquid Crystal Display)パネルのガラス基板上に形成された電極とを接続する場合を始めとして、種々の端子同士を接着すると共に電気的に接続する場合に用いられている。   This anisotropic conductive film starts, for example, when connecting a terminal of a flexible printed circuit (FPC) or IC (Integrated Circuit) chip and an electrode formed on a glass substrate of an LCD (Liquid Crystal Display) panel. In other words, it is used when various terminals are bonded and electrically connected.

前記異方性導電フィルムを用い基板の端子と電子部品の端子とを電気的に接続する異方性導電接続は、通常、前記基板と前記電子部品とで前記異方性導電フィルムを挟み前記異方性導電フィルムを加熱及び押圧することにより行われる。この際の加熱温度としては、例えば、170℃〜200℃程度である。この熱が基板及び電子部品へ影響を及ぼすことがある。また、基板と電子部品との熱膨張係数の違いに起因して接続時に位置ずれが発生することがある。   The anisotropic conductive connection for electrically connecting the terminal of the substrate and the terminal of the electronic component using the anisotropic conductive film is usually performed by sandwiching the anisotropic conductive film between the substrate and the electronic component. This is done by heating and pressing the isotropic conductive film. As heating temperature in this case, it is about 170 degreeC-200 degreeC, for example. This heat can affect the substrate and electronic components. Further, misalignment may occur at the time of connection due to a difference in thermal expansion coefficient between the substrate and the electronic component.

そこで、低温で基板の端子と電子部品の端子とを異方性導電接続する方法が求められている。例えば、重合性アクリル系化合物、フィルム形成樹脂及び重合開始剤を含有する絶縁性接着層と、重合性アクリル系化合物、フィルム形成樹脂、重合開始剤及び導電性粒子を含有する導電性粒子含有層とが積層されてなる異方性導電フィルムにおいて、該絶縁性接着層及び該導電性粒子含有層が、それぞれチオール化合物を含有する異方性導電フィルムが提案されている(例えば、特許文献1参照)。
この提案の技術では、130℃での接続を行っている。しかし、近年は、更に低温での接続(例えば、110℃)が求められている。この提案の技術では、そのような更に低温で接続しようとすると、接続信頼性が低下するという問題がある。
Therefore, there is a demand for a method for anisotropic conductive connection between the terminal of the substrate and the terminal of the electronic component at a low temperature. For example, an insulating adhesive layer containing a polymerizable acrylic compound, a film-forming resin and a polymerization initiator, and a conductive particle-containing layer containing a polymerizable acrylic compound, a film-forming resin, a polymerization initiator and conductive particles, An anisotropic conductive film in which the insulating adhesive layer and the conductive particle-containing layer each contain a thiol compound has been proposed (see, for example, Patent Document 1). .
In the proposed technique, connection at 130 ° C. is performed. However, in recent years, connection at a lower temperature (for example, 110 ° C.) has been demanded. In the proposed technique, there is a problem that connection reliability is lowered when attempting to connect at such a lower temperature.

また、チオール化合物を含有する異方性導電フィルムは、一般的に、保存安定性が低下するという問題がある。   Moreover, the anisotropic conductive film containing a thiol compound generally has a problem that storage stability is lowered.

したがって、保存安定性、及び低温で接続した際の接続信頼性に優れる異方性導電フィルム、並びに該異方性導電フィルムを用いた接続方法、及び接合体の提供が求められているのが現状である。   Therefore, it is currently required to provide an anisotropic conductive film excellent in storage stability and connection reliability when connected at a low temperature, a connection method using the anisotropic conductive film, and a joined body. It is.

特開2011−32491号公報JP 2011-32491 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、保存安定性、及び低温で接続した際の接続信頼性に優れる異方性導電フィルム、並びに該異方性導電フィルムを用いた接続方法、及び接合体を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention aims to provide an anisotropic conductive film excellent in storage stability and connection reliability when connected at a low temperature, a connection method using the anisotropic conductive film, and a joined body. And

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 基板の端子と電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、
導電性粒子、膜形成樹脂、硬化性樹脂、及び硬化剤を含有する導電性粒子含有層と、
膜形成樹脂、硬化性樹脂、及び硬化剤を含有する絶縁性接着層とを有し、
前記絶縁性接着層のみが、チオール化合物を含有し、
前記導電性粒子が、表面にCuを有することを特徴とする異方性導電フィルムである。
<2> 絶縁性接着層におけるチオール化合物の含有量が、0.25質量%〜15質量%である前記<1>に記載の異方性導電フィルムである。
<3> 導電性粒子が、Cu粒子及びCu被覆樹脂粒子の少なくともいずれかである前記<1>から<2>のいずれかに記載の異方性導電フィルムである。
<4> 基板の端子と電子部品の端子とを異方性導電接続させる接続方法であって、
前記基板の端子上に前記<1>から<3>のいずれかに記載の異方性導電フィルムを配置する第1の配置工程と、
前記異方性導電フィルム上に前記電子部品を、前記電子部品の端子が前記異方性導電フィルムと接するように配置する第2の配置工程と、
前記電子部品を加熱押圧部材により加熱及び押圧する加熱押圧工程とを含むことを特徴とする接続方法である。
<5> 端子を有する基板と、端子を有する電子部品と、前記基板と前記電子部品との間に介在して前記基板の端子と前記の電子部品の端子とを電気的に接続する異方性導電フィルムの硬化物とを有し、
前記異方性導電フィルムが、前記<1>から<3>のいずれかに記載の異方性導電フィルムであることを特徴とする接合体である。
Means for solving the problems are as follows. That is,
<1> An anisotropic conductive film for anisotropically conductively connecting a terminal of a substrate and a terminal of an electronic component,
A conductive particle-containing layer containing conductive particles, a film-forming resin, a curable resin, and a curing agent;
An insulating adhesive layer containing a film-forming resin, a curable resin, and a curing agent;
Only the insulating adhesive layer contains a thiol compound,
The conductive particle is an anisotropic conductive film characterized by having Cu on the surface.
<2> The anisotropic conductive film according to <1>, wherein the content of the thiol compound in the insulating adhesive layer is 0.25% by mass to 15% by mass.
<3> The anisotropic conductive film according to any one of <1> to <2>, wherein the conductive particles are at least one of Cu particles and Cu-coated resin particles.
<4> A connection method for anisotropic conductive connection between a terminal of a substrate and a terminal of an electronic component,
A first disposing step of disposing the anisotropic conductive film according to any one of <1> to <3> on a terminal of the substrate;
A second disposing step of disposing the electronic component on the anisotropic conductive film such that a terminal of the electronic component is in contact with the anisotropic conductive film;
And a heating and pressing step of heating and pressing the electronic component with a heating and pressing member.
<5> A substrate having terminals, an electronic component having terminals, and an anisotropy interposed between the substrate and the electronic component to electrically connect the terminal of the substrate and the terminal of the electronic component A cured product of a conductive film,
The anisotropic conductive film is the anisotropic conductive film according to any one of <1> to <3>.

本発明によれば、従来における前記諸問題を解決し、前記目的を達成することができ、保存安定性、及び低温で接続した際の接続信頼性に優れる異方性導電フィルム、並びに該異方性導電フィルムを用いた接続方法、及び接合体を提供することができる。   According to the present invention, the anisotropic conductive film which can solve the above-mentioned problems and can achieve the above-mentioned object, and is excellent in storage stability and connection reliability when connected at a low temperature, and the anisotropic A connection method using a conductive film and a joined body can be provided.

図1は、実施例における接続信頼性の測定方法を示す説明図である。FIG. 1 is an explanatory diagram illustrating a connection reliability measurement method in the embodiment. 図2は、実施例における接着強度の測定方法を示す説明図である。FIG. 2 is an explanatory view showing a method of measuring the adhesive strength in the example.

(異方性導電フィルム)
本発明の異方性導電フィルムは、基板の端子と電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、導電性粒子含有層と、絶縁性接着層とを少なくとも有し、更に必要に応じて、その他の層を有する。
前記異方性導電フィルムは、前記絶縁性接着層のみが、チオール化合物を含有する。
前記導電性粒子は、表面にCuを有する。
(Anisotropic conductive film)
The anisotropic conductive film of the present invention is an anisotropic conductive film for anisotropically connecting a terminal of a substrate and a terminal of an electronic component, and has at least a conductive particle-containing layer and an insulating adhesive layer. Furthermore, it has other layers as required.
In the anisotropic conductive film, only the insulating adhesive layer contains a thiol compound.
The conductive particles have Cu on the surface.

<導電性粒子含有層>
前記導電性粒子含有層は、導電性粒子と、膜形成樹脂と、硬化性樹脂と、硬化剤とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
<Conductive particle-containing layer>
The conductive particle-containing layer contains at least conductive particles, a film-forming resin, a curable resin, and a curing agent, and further contains other components as necessary.

−導電性粒子−
前記導電性粒子としては、表面にCuを有する導電性粒子であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、Cu粒子、Cu被覆樹脂粒子などが挙げられる。
-Conductive particles-
The conductive particles are not particularly limited as long as they are conductive particles having Cu on the surface, and can be appropriately selected according to the purpose. Examples thereof include Cu particles and Cu-coated resin particles.

前記Cu被覆樹脂粒子としては、樹脂粒子の表面をCuで被覆した粒子であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記樹脂粒子へのCuの被覆方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無電解めっき法、スパッタリング法などが挙げられる。
前記樹脂粒子の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スチレン−ジビニルベンゼン共重合体、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂、アクリル樹脂、スチレン−シリカ複合樹脂などが挙げられる。
The Cu-coated resin particles are not particularly limited as long as the surfaces of the resin particles are coated with Cu, and can be appropriately selected according to the purpose.
There is no restriction | limiting in particular as the coating method of Cu to the said resin particle, According to the objective, it can select suitably, For example, an electroless-plating method, sputtering method, etc. are mentioned.
There is no restriction | limiting in particular as a material of the said resin particle, According to the objective, it can select suitably, For example, a styrene- divinylbenzene copolymer, a benzoguanamine resin, a crosslinked polystyrene resin, an acrylic resin, a styrene-silica composite resin etc. Is mentioned.

前記導電性粒子は、異方性導電接続の際に、導電性を有していればよい。例えば、前記導電性粒子の表面に絶縁皮膜を施した粒子であっても、異方性導電接続の際にその粒子が変形し、前記導電性粒子が露出するものであれば、前記導電性粒子である。   The conductive particles only need to have conductivity during anisotropic conductive connection. For example, even if the surface of the conductive particles is an insulating film, as long as the particles are deformed and exposed to anisotropic conductive connection, the conductive particles are exposed. It is.

前記導電性粒子の平均粒子径としては、特に制限はなく、目的に応じて適宜選択することができるが、1μm〜30μmが好ましく、2μm〜25μmがより好ましく、3μm〜10μmが特に好ましい。
前記平均粒子径は、任意に10個の導電性粒子について測定した粒子径の平均値である。
前記粒子径は、例えば、走査型電子顕微鏡観察により測定できる。
There is no restriction | limiting in particular as an average particle diameter of the said electroconductive particle, Although it can select suitably according to the objective, 1 micrometer-30 micrometers are preferable, 2 micrometers-25 micrometers are more preferable, and 3 micrometers-10 micrometers are especially preferable.
The average particle diameter is an average value of particle diameters measured for 10 conductive particles arbitrarily.
The particle diameter can be measured, for example, by observation with a scanning electron microscope.

前記導電性粒子含有層における前記導電性粒子の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.1質量%〜30質量%が好ましく、2質量%〜30質量%がより好ましく、2質量%〜20質量%が更により好ましく、2質量%〜10質量%が特に好ましい。   There is no restriction | limiting in particular as content of the said electroconductive particle in the said electroconductive particle content layer, Although it can select suitably according to the objective, 0.1 mass%-30 mass% are preferable, and 2 mass%- 30 mass% is more preferable, 2 mass%-20 mass% is still more preferable, and 2 mass%-10 mass% are especially preferable.

−膜形成樹脂−
前記膜形成樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フェノキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ウレタン樹脂、ブタジエン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂などが挙げられる。前記膜形成樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、製膜性、加工性、接続信頼性の点からフェノキシ樹脂が好ましい。
前記フェノキシ樹脂としては、例えば、ビスフェノールAとエピクロルヒドリンより合成される樹脂などが挙げられる。
前記フェノキシ樹脂は、適宜合成したものを使用してもよいし、市販品を使用してもよい。
-Film forming resin-
There is no restriction | limiting in particular as said film formation resin, According to the objective, it can select suitably, For example, phenoxy resin, unsaturated polyester resin, saturated polyester resin, urethane resin, butadiene resin, polyimide resin, polyamide resin, polyolefin Resin etc. are mentioned. The film forming resin may be used alone or in combination of two or more. Among these, phenoxy resin is preferable from the viewpoint of film forming property, processability, and connection reliability.
Examples of the phenoxy resin include a resin synthesized from bisphenol A and epichlorohydrin.
As the phenoxy resin, an appropriately synthesized product or a commercially available product may be used.

前記導電性粒子含有層における前記膜形成樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、30質量%〜60質量%が好ましく、35質量%〜55質量%がより好ましい。   There is no restriction | limiting in particular as content of the said film formation resin in the said electroconductive particle content layer, Although it can select suitably according to the objective, 30 mass%-60 mass% are preferable, 35 mass%-55 mass% % Is more preferable.

−硬化性樹脂−
前記硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、重合性アクリル化合物などが挙げられる。
-Curable resin-
There is no restriction | limiting in particular as said curable resin, According to the objective, it can select suitably, For example, an epoxy resin, a polymeric acrylic compound, etc. are mentioned.

−−エポキシ樹脂−−
前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、それらの変性エポキシ樹脂、脂環式エポキシ樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
--- Epoxy resin--
There is no restriction | limiting in particular as said epoxy resin, According to the objective, it can select suitably, For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, those modified epoxy resins, alicyclic type An epoxy resin etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together.

−−重合性アクリル化合物−−
前記重合性アクリル化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールジアクリレート、リン酸エステル型アクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート、イソブチルアクリレート、t−ブチルアクリレート、イソオクチルアクリレート、ビスフェノキシエタノールフルオレンジアクリレート、2−アクリロイロキシエチルコハク酸、ラウリルアクリレート、ステアリルアクリレート、イソボルニルアクリレート、トリシクロデカンジメタノールジメタクリレート、シクロヘキシルアクリレート、トリス(2−ヒドロキシエチル)イソシアヌレートトリアクリレート、テトラヒドロフルフリルアクリレート、o−フタル酸ジグリシジルエーテルアクリレート、エトキシ化ビスフェノールAジメタクリレート、ビスフェノールA型エポキシアクリレート、ウレタンアクリレート、エポキシアクリレートなど、及びこれらに相当するメタクリレートを挙げることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
--Polymerizable acrylic compound--
There is no restriction | limiting in particular as said polymeric acrylic compound, According to the objective, it can select suitably, For example, polyethyleneglycol diacrylate, phosphate ester type acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4 -Hydroxybutyl acrylate, isobutyl acrylate, t-butyl acrylate, isooctyl acrylate, bisphenoxyethanol full orange acrylate, 2-acryloyloxyethyl succinic acid, lauryl acrylate, stearyl acrylate, isobornyl acrylate, tricyclodecane dimethanol dimethacrylate , Cyclohexyl acrylate, tris (2-hydroxyethyl) isocyanurate triacrylate, tetrahydrofurfuryl acrylate DOO, o- phthalic acid diglycidyl ether acrylate, ethoxylated bisphenol A dimethacrylate, bisphenol A type epoxy acrylate, urethane acrylate, epoxy acrylate, and can be exemplified methacrylate corresponding thereto. These may be used individually by 1 type and may use 2 or more types together.

前記導電性粒子含有層における前記硬化性樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、30質量%〜80質量%が好ましく、35質量%〜65質量%がより好ましい。   There is no restriction | limiting in particular as content of the said curable resin in the said electroconductive particle content layer, Although it can select suitably according to the objective, 30 to 80 mass% is preferable, and 35 to 65 mass% is preferable. % Is more preferable.

−硬化剤−
前記硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イミダゾール類、有機過酸化物、アニオン系硬化剤、カチオン系硬化剤などが挙げられる。
-Curing agent-
There is no restriction | limiting in particular as said hardening | curing agent, According to the objective, it can select suitably, For example, imidazoles, an organic peroxide, an anionic hardening | curing agent, a cationic hardening | curing agent etc. are mentioned.

前記イミダゾール類としては、例えば、2−エチル4−メチルイミダゾールなどが挙げられる。
前記有機過酸化物としては、例えば、ラウロイルパーオキサイド、ブチルパーオキサイド、ベンジルパーオキサイド、ジラウロイルパーオキサイド、ジブチルパーオキサイド、パーオキシジカーボネート、ベンゾイルパーオキサイドなどが挙げられる。
前記アニオン系硬化剤としては、例えば、有機アミン類などが挙げられる。
前記カチオン系硬化剤としては、例えば、スルホニウム塩、オニウム塩、アルミニウムキレート剤などが挙げられる。
これらの中でも、保存安定性に優れる点で、有機過酸化物が好ましく、ジラウロイルパーオキサイドがより好ましい。
Examples of the imidazoles include 2-ethyl 4-methylimidazole.
Examples of the organic peroxide include lauroyl peroxide, butyl peroxide, benzyl peroxide, dilauroyl peroxide, dibutyl peroxide, peroxydicarbonate, and benzoyl peroxide.
Examples of the anionic curing agent include organic amines.
Examples of the cationic curing agent include a sulfonium salt, an onium salt, and an aluminum chelating agent.
Among these, an organic peroxide is preferable and dilauroyl peroxide is more preferable in terms of excellent storage stability.

前記硬化性樹脂と前記硬化剤との組合せとしては、特に制限はなく、目的に応じて適宜選択することができるが、前記エポキシ樹脂と前記カチオン系硬化剤との組合せ、前記重合性アクリル化合物と前記有機過酸化物との組合せが好ましい。   The combination of the curable resin and the curing agent is not particularly limited and may be appropriately selected depending on the purpose. The combination of the epoxy resin and the cationic curing agent, the polymerizable acrylic compound, A combination with the organic peroxide is preferred.

前記導電性粒子含有層における前記硬化剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%〜10質量%が好ましく、2質量%〜5質量%がより好ましい。   There is no restriction | limiting in particular as content of the said hardening | curing agent in the said electroconductive particle content layer, Although it can select suitably according to the objective, 1 mass%-10 mass% are preferable, and 2 mass%-5 mass% are preferable. Is more preferable.

−その他の成分−
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シランカップリング剤、充填剤、軟化剤、硬化促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などが挙げられる。
前記その他の成分の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
-Other ingredients-
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, a silane coupling agent, a filler, a softening agent, a hardening accelerator, anti-aging agent, a coloring agent (a pigment, dye) ), Organic solvents, ion catchers and the like.
There is no restriction | limiting in particular as content of the said other component, According to the objective, it can select suitably.

前記導電性粒子含有層の平均厚みとしては、特に制限はなく、前記導電性粒子の平均粒子径、前記絶縁性接着層の平均厚みとの関係で、適宜選択することができるが、5μm〜30μmが好ましく、10μm〜25μmがより好ましい。前記平均厚みが、5μm未満であると、基板の端子と電子部品の端子の間に導電性粒子が十分に充填されないことがあり、30μmを超えると、接続不良の原因となることがある。
ここで、前記平均厚みは、任意に前記導電性粒子含有層の5箇所の厚みを測定した際の平均値である。
There is no restriction | limiting in particular as average thickness of the said electroconductive particle content layer, Although it can select suitably by the relationship with the average particle diameter of the said electroconductive particle, and the average thickness of the said insulating contact bonding layer, 5 micrometers-30 micrometers. Is preferable, and 10 μm to 25 μm is more preferable. When the average thickness is less than 5 μm, the conductive particles may not be sufficiently filled between the terminals of the substrate and the terminals of the electronic component, and when it exceeds 30 μm, it may cause connection failure.
Here, the said average thickness is an average value at the time of measuring the thickness of five places of the said electroconductive particle content layer arbitrarily.

<絶縁性接着層>
前記絶縁性接着層は、チオール化合物と、膜形成樹脂と、硬化性樹脂と、硬化剤とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
<Insulating adhesive layer>
The insulating adhesive layer contains at least a thiol compound, a film-forming resin, a curable resin, and a curing agent, and further contains other components as necessary.

−チオール化合物−
前記チオール化合物としては、チオール基(メルカプト基)を含有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができるが、反応性、及び保存安定性の点からペンタエリスリトールテトラキス(3−メルカプトプロピオネート)(PEMP)、トリス−[(3−メルカプトプロピオニルオキシ)−エチル]−イソシアヌレート(TEMPIC)、トリメチロールプロパントリス(3−メルカプトプロピオネート)(TMMP)、ジペンタエリスリトールヘキサキス(3−メルカプトプロピオネート)(DPMP)、2−エチルヘキシル−3−メルカプトプロピオネート(EHMP)、テトラエチレングリコールビス(3−メルカプトプロピオネート)(EGMP−4)が好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-Thiol compound-
The thiol compound is not particularly limited as long as it is a compound containing a thiol group (mercapto group) and can be appropriately selected according to the purpose. However, from the viewpoint of reactivity and storage stability, pentaerythritol tetrakis is preferable. (3-mercaptopropionate) (PEMP), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate (TEMPIC), trimethylolpropane tris (3-mercaptopropionate) (TMMP), dipenta Erythritol hexakis (3-mercaptopropionate) (DPMP), 2-ethylhexyl-3-mercaptopropionate (EHMP), and tetraethylene glycol bis (3-mercaptopropionate) (EGMP-4) are preferred. These may be used individually by 1 type and may use 2 or more types together.

前記絶縁性接着層における前記チオール化合物の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、0.25質量%〜15質量%が好ましく、0.25質量%〜10質量%がより好ましく、0.5質量%〜10質量%が更に好ましく、2質量%〜7質量%が特に好ましい。   There is no restriction | limiting in particular as content of the said thiol compound in the said insulating contact bonding layer, Although it can select suitably according to the objective, 0.25 mass%-15 mass% are preferable, 0.25 mass%- 10 mass% is more preferable, 0.5 mass%-10 mass% is still more preferable, and 2 mass%-7 mass% is especially preferable.

−膜形成樹脂−
前記膜形成樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記導電性粒子含有層の説明において例示した前記膜形成樹脂などが挙げられる。好ましい態様も同様である。
-Film forming resin-
There is no restriction | limiting in particular as said film formation resin, According to the objective, it can select suitably, For example, the said film formation resin etc. which were illustrated in description of the said electroconductive particle content layer are mentioned. The preferred embodiment is also the same.

前記絶縁性接着層における前記膜形成樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、30質量%〜60質量%が好ましく、35質量%〜55質量%がより好ましい。   There is no restriction | limiting in particular as content of the said film formation resin in the said insulating contact bonding layer, Although it can select suitably according to the objective, 30 mass%-60 mass% are preferable, 35 mass%-55 mass% Is more preferable.

−硬化性樹脂−
前記硬化性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂、重合性アクリル化合物などが挙げられる。
前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記導電性粒子含有層の説明において例示した前記エポキシ樹脂などが挙げられる。
前記重合性アクリル化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記導電性粒子含有層の説明において例示した前記重合性アクリル化合物などが挙げられる。
-Curable resin-
There is no restriction | limiting in particular as said curable resin, According to the objective, it can select suitably, For example, an epoxy resin, a polymeric acrylic compound, etc. are mentioned.
There is no restriction | limiting in particular as said epoxy resin, According to the objective, it can select suitably, For example, the said epoxy resin etc. which were illustrated in description of the said electroconductive particle content layer are mentioned.
There is no restriction | limiting in particular as said polymeric acrylic compound, According to the objective, it can select suitably, For example, the said polymeric acrylic compound etc. which were illustrated in description of the said electroconductive particle content layer are mentioned.

前記絶縁性接着層における前記硬化性樹脂の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、30質量%〜80質量%が好ましく、35質量%〜65質量%がより好ましい。   There is no restriction | limiting in particular as content of the said curable resin in the said insulating contact bonding layer, Although it can select suitably according to the objective, 30 mass%-80 mass% are preferable, and 35 mass%-65 mass% are preferable. Is more preferable.

−硬化剤−
前記硬化剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記導電性粒子含有層の説明において例示した前記硬化剤などが挙げられる。好ましい態様も同様である。
-Curing agent-
There is no restriction | limiting in particular as said hardening | curing agent, According to the objective, it can select suitably, For example, the said hardening | curing agent etc. which were illustrated in description of the said electroconductive particle content layer are mentioned. The preferred embodiment is also the same.

前記硬化性樹脂と前記硬化剤との組合せとしては、特に制限はなく、目的に応じて適宜選択することができるが、前記エポキシ樹脂と前記カチオン系硬化剤との組合せ、前記重合性アクリル化合物と前記有機過酸化物との組合せが好ましい。   The combination of the curable resin and the curing agent is not particularly limited and may be appropriately selected depending on the purpose. The combination of the epoxy resin and the cationic curing agent, the polymerizable acrylic compound, A combination with the organic peroxide is preferred.

前記絶縁性接着層における前記硬化剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1質量%〜10質量%が好ましく、2質量%〜5質量%がより好ましい。   There is no restriction | limiting in particular as content of the said hardening | curing agent in the said insulating contact bonding layer, Although it can select suitably according to the objective, 1 mass%-10 mass% are preferable, and 2 mass%-5 mass% are preferable. More preferred.

−その他の成分−
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シランカップリング剤、充填剤、軟化剤、硬化促進剤、老化防止剤、着色剤(顔料、染料)、有機溶剤、イオンキャッチャー剤などが挙げられる。
前記その他の成分の含有量としては、特に制限はなく、目的に応じて適宜選択することができる。
-Other ingredients-
There is no restriction | limiting in particular as said other component, According to the objective, it can select suitably, For example, a silane coupling agent, a filler, a softening agent, a hardening accelerator, anti-aging agent, a coloring agent (a pigment, dye) ), Organic solvents, ion catchers and the like.
There is no restriction | limiting in particular as content of the said other component, According to the objective, it can select suitably.

前記絶縁性接着層の平均厚みとしては、特に制限はなく、適宜選択することができるが、5μm〜30μmが好ましく、10μm〜25μmがより好ましい。前記平均厚みが、5μm未満であると、端子間における樹脂充填率が減少することがあり、30μmを超えると、接続不良の発生の原因となることがある。
ここで、前記平均厚みは、任意に前記絶縁性接着層の5箇所の厚みを測定した際の平均値である。
There is no restriction | limiting in particular as average thickness of the said insulating contact bonding layer, Although it can select suitably, 5 micrometers-30 micrometers are preferable, and 10 micrometers-25 micrometers are more preferable. When the average thickness is less than 5 μm, the resin filling rate between the terminals may decrease, and when it exceeds 30 μm, connection failure may occur.
Here, the said average thickness is an average value at the time of measuring the thickness of five places of the said insulating contact bonding layers arbitrarily.

<基板>
前記基板としては、端子を有し、前記異方性導電フィルムを用いた異方性導電接続の対象となる基板であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、端子を有するガラス基板、端子を有するプラスチック基板などが挙げられる。前記基板は、プリント配線板(PWB)であってもよい。
前記端子を有するガラス基板としては、例えば、ITO(Indium Tin Oxide)ガラス基板、IZO(Indium Zinc Oxide)ガラス基板、その他のガラスパターン基板などが挙げられる。これらの中でも、ITOガラス基板、IZOガラス基板が好ましい。
前記端子を有するプラスチック基板の材質、構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、端子を有するリジット基板、端子を有するフレキシブル基板などが挙げられる。
<Board>
The substrate is not particularly limited as long as it is a substrate that has terminals and is an object of anisotropic conductive connection using the anisotropic conductive film, and can be appropriately selected according to the purpose. , Glass substrates having terminals, plastic substrates having terminals, and the like. The substrate may be a printed wiring board (PWB).
Examples of the glass substrate having the terminal include an ITO (Indium Tin Oxide) glass substrate, an IZO (Indium Zinc Oxide) glass substrate, and other glass pattern substrates. Among these, an ITO glass substrate and an IZO glass substrate are preferable.
There is no restriction | limiting in particular as a material and structure of the plastic substrate which has the said terminal, According to the objective, it can select suitably, For example, the rigid board | substrate which has a terminal, the flexible substrate which has a terminal, etc. are mentioned.

前記基板の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、0.1mm〜1.0mmが好ましく、0.2mm〜0.8mmがより好ましい。
前記平均厚みは、前記基板の任意の10箇所の厚みを測定した際の平均値である。
There is no restriction | limiting in particular as average thickness of the said board | substrate, Although it can select suitably according to the objective, 0.1 mm-1.0 mm are preferable, and 0.2 mm-0.8 mm are more preferable.
The said average thickness is an average value at the time of measuring the thickness of arbitrary 10 places of the said board | substrate.

<電子部品>
前記電子部品としては、端子を有し、前記異方性導電材料を用いた異方性導電接続の対象となる電子部品であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、IC(Integrated Circuit)、TAB(Tape Automated Bonding)テープ、COF(Chip−on−Flex、チップオンフレックス)、TCP(Tape carrier package、テープ・キャリア・パッケージ)、液晶パネルなどが挙げられる。前記ICとしては、例えば、フラットパネルディスプレイ(FPD)における液晶画面制御用ICチップなどが挙げられる。
前記電子部品の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、上面から見た場合に、長方形、正方形などが挙げられる。
<Electronic parts>
The electronic component is not particularly limited as long as the electronic component has a terminal and is an object of anisotropic conductive connection using the anisotropic conductive material, and can be appropriately selected according to the purpose. Examples thereof include IC (Integrated Circuit), TAB (Tape Automated Bonding) tape, COF (Chip-on-Flex, chip on flex), TCP (Tape carrier package, tape carrier package), and liquid crystal panel. Examples of the IC include a liquid crystal screen control IC chip in a flat panel display (FPD).
There is no restriction | limiting in particular as a shape of the said electronic component, According to the objective, it can select suitably, For example, when it sees from an upper surface, a rectangle, a square, etc. are mentioned.

(接続方法)
本発明の接続方法は、第1の配置工程と、第2の配置工程と、加熱押圧工程とを少なくとも含み、更に必要に応じて、その他の工程を含む。
前記接続方法は、基板の端子と電子部品の端子とを異方性導電接続させる方法である。
(Connection method)
The connection method of the present invention includes at least a first arrangement step, a second arrangement step, and a heating and pressing step, and further includes other steps as necessary.
The connection method is a method in which the terminals of the substrate and the terminals of the electronic component are anisotropically conductively connected.

前記基板、及び前記電子部品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記異方性導電フィルムの説明で例示した前記基板、及び前記電子部品がそれぞれ挙げられる。   There is no restriction | limiting in particular as said board | substrate and said electronic component, According to the objective, it can select suitably, For example, the said board | substrate illustrated by description of the said anisotropic conductive film of this invention, and the said electronic component are Each is listed.

<第1の配置工程>
前記第1の配置工程としては、前記基板の端子上に本発明の前記異方性導電フィルムを配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記第1の配置工程においては、通常、前記異方性導電フィルムの前記導電性粒子含有層が前記基板の端子に接触するように、前記異方性導電フィルムを前記基板の端子上に配置する。
前記配置の際には、仮止めのための加熱及び加圧を行ってもよい。この際の加熱温度は、前記異方性導電フィルムを硬化させない加熱温度が好ましい。
<First arrangement step>
The first disposing step is not particularly limited as long as it is a step of disposing the anisotropic conductive film of the present invention on the terminal of the substrate, and can be appropriately selected according to the purpose.
In the first arrangement step, the anisotropic conductive film is usually arranged on the terminal of the substrate so that the conductive particle-containing layer of the anisotropic conductive film is in contact with the terminal of the substrate. .
In the arrangement, heating and pressurization for temporary fixing may be performed. The heating temperature at this time is preferably a heating temperature at which the anisotropic conductive film is not cured.

<第2の配置工程>
前記第2の配置工程としては、前記異方性導電フィルム上に前記電子部品を、前記電子部品の端子が前記異方性導電フィルムと接するように配置する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記第2の配置工程においては、通常、前記異方性導電フィルムの前記絶縁性接着層が前記電子部品の端子に接触するように、前記電子部品を前記異方性導電フィルム上に配置する。
<Second arrangement step>
The second placement step is not particularly limited as long as it is a step of placing the electronic component on the anisotropic conductive film so that terminals of the electronic component are in contact with the anisotropic conductive film, It can be appropriately selected according to the purpose.
In the second arranging step, the electronic component is usually arranged on the anisotropic conductive film so that the insulating adhesive layer of the anisotropic conductive film is in contact with a terminal of the electronic component.

<加熱押圧工程>
前記加熱押圧工程としては、前記電子部品を加熱押圧部材により加熱及び押圧する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記加熱押圧部材としては、例えば、加熱機構を有する押圧部材などが挙げられる。前記加熱機構を有する押圧部材としては、例えば、ヒートツールなどが挙げられる。
前記加熱の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、110℃〜140℃が好ましい。
前記押圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5MPa〜10MPaが好ましい。
前記加熱及び押圧の時間としては、特に制限はなく、目的に応じて適宜選択することができるが、0.5秒間〜10秒間が好ましい。
<Heat pressing process>
The heating and pressing step is not particularly limited as long as it is a step of heating and pressing the electronic component with a heating and pressing member, and can be appropriately selected according to the purpose.
Examples of the heating and pressing member include a pressing member having a heating mechanism. Examples of the pressing member having the heating mechanism include a heat tool.
There is no restriction | limiting in particular as the temperature of the said heating, Although it can select suitably according to the objective, 110 to 140 degreeC is preferable.
There is no restriction | limiting in particular as the pressure of the said press, Although it can select suitably according to the objective, 0.5 Mpa-10 Mpa are preferable.
There is no restriction | limiting in particular as time of the said heating and a press, Although it can select suitably according to the objective, 0.5 second-10 second are preferable.

(接合体)
本発明の接合体は、基板と、電子部品と、異方性導電フィルムの硬化物とを少なくとも有し、更に必要に応じて、その他の部材を有する。
(Joint)
The joined body of the present invention includes at least a substrate, an electronic component, and a cured product of an anisotropic conductive film, and further includes other members as necessary.

前記基板、及び前記電子部品としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の前記異方性導電フィルムの説明で例示した前記基板、及び前記電子部品がそれぞれ挙げられる。   There is no restriction | limiting in particular as said board | substrate and said electronic component, According to the objective, it can select suitably, For example, the said board | substrate illustrated by description of the said anisotropic conductive film of this invention, and the said electronic component are Each is listed.

前記異方性導電フィルムは、本発明の前記異方性導電フィルムである。
前記異方性導電フィルムの硬化物は、前記基板と前記電子部品との間に介在して前記基板の端子と前記電子部品の端子とを電気的に接続している。
The anisotropic conductive film is the anisotropic conductive film of the present invention.
The cured product of the anisotropic conductive film is interposed between the substrate and the electronic component to electrically connect the terminal of the substrate and the terminal of the electronic component.

前記接合体は、例えば、本発明の前記接続方法により製造できる。   The joined body can be manufactured, for example, by the connection method of the present invention.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(実施例1)
<異方性導電フィルムの作製>
−導電性粒子含有層の作製−
フェノキシ樹脂(品名:YP50、新日鐵化学株式会社製)40質量部、2官能アクリルモノマー(ポリエチレングリコール#200ジアクリレート、品名:A−200、新中村化学工業株式会社製)30質量部、ウレタンアクリレート(品名:U−2PPA、新中村化学工業株式会社製)20質量部、リン酸エステル型アクリレート(品名:PM−2、日本化薬株式会社製)2質量部、有機過酸化物(ジラウロイルパーオキサイド)3質量部、及び導電性粒子(Cu粒子、平均粒子径5μm)5質量部を、撹拌装置(自転公転ミキサー、あわとり練太郎、シンキー社製)を用いて均一に混合した。混合後の配合物をシリコーン処理したPET(ポリエチレンテレフタレート)上に乾燥後の平均厚みが17μmとなるように塗布し、70℃で5分間乾燥し、導電性粒子含有層を作製した。
Example 1
<Preparation of anisotropic conductive film>
-Production of conductive particle-containing layer-
Phenoxy resin (product name: YP50, manufactured by Nippon Steel Chemical Co., Ltd.) 40 parts by mass, bifunctional acrylic monomer (polyethylene glycol # 200 diacrylate, product name: A-200, manufactured by Shin-Nakamura Chemical Co., Ltd.) 30 parts by mass, urethane 20 parts by mass of acrylate (product name: U-2PPA, manufactured by Shin-Nakamura Chemical Co., Ltd.), 2 parts by mass of phosphate ester acrylate (product name: PM-2, manufactured by Nippon Kayaku Co., Ltd.), organic peroxide (dilauroyl) 3 parts by mass of peroxide) and 5 parts by mass of conductive particles (Cu particles, average particle diameter: 5 μm) were uniformly mixed using a stirrer (automatic revolution mixer, Aritori Nertaro, manufactured by Shinky Corporation). The blended composition was applied onto a silicone-treated PET (polyethylene terephthalate) so that the average thickness after drying was 17 μm, and dried at 70 ° C. for 5 minutes to prepare a conductive particle-containing layer.

−絶縁性接着層の作製−
フェノキシ樹脂(品名:YP50、新日鐵化学株式会社製)45質量部、2官能アクリルモノマー(ポリエチレングリコール#200ジアクリレート、品名:A−200、新中村化学工業株式会社製)30質量部、ウレタンアクリレート(品名:U−2PPA、新中村化学工業株式会社製)20質量部、リン酸エステル型アクリレート(品名:PM−2、日本化薬株式会社製)2質量部、有機過酸化物(ジラウロイルパーオキサイド)3質量部、及びチオール化合物(ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)、表1に示す含有量となる量)を、撹拌装置(自転公転ミキサー、あわとり練太郎、シンキー社製)を用いて均一に混合した。混合後の配合物をシリコーン処理したPET(ポリエチレンテレフタレート)上に乾燥後の平均厚みが18μmとなるように塗布し、70℃で5分間乾燥し、絶縁性接着層を作製した。
-Production of insulating adhesive layer-
Phenoxy resin (product name: YP50, manufactured by Nippon Steel Chemical Co., Ltd.) 45 parts by mass, bifunctional acrylic monomer (polyethylene glycol # 200 diacrylate, product name: A-200, manufactured by Shin-Nakamura Chemical Co., Ltd.) 30 parts by mass, urethane 20 parts by mass of acrylate (product name: U-2PPA, manufactured by Shin-Nakamura Chemical Co., Ltd.), 2 parts by mass of phosphate ester acrylate (product name: PM-2, manufactured by Nippon Kayaku Co., Ltd.), organic peroxide (dilauroyl) 3 parts by mass of peroxide) and a thiol compound (pentaerythritol tetrakis (3-mercaptopropionate), the amount corresponding to the content shown in Table 1) were mixed with a stirrer (spinning revolving mixer, Aritori Kentaro, manufactured by Shinky Corporation) ) To mix evenly. The blended mixture was applied onto silicone-treated PET (polyethylene terephthalate) so that the average thickness after drying was 18 μm, and dried at 70 ° C. for 5 minutes to produce an insulating adhesive layer.

上記で得られた導電性粒子含有層と絶縁性接着層とをロールラミネータを用いて、ロール温度45℃にてラミネートし、異方性導電フィルム(ACF)を得た。   The conductive particle-containing layer and the insulating adhesive layer obtained above were laminated at a roll temperature of 45 ° C. using a roll laminator to obtain an anisotropic conductive film (ACF).

<接合体の製造>
以下の方法により接合体を製造した。
COF(チップオンフレックス)として、評価用COF(デクセリアルズ株式会社評価用基材、200μmP(ピッチ)、Cu8μmt(厚み)−Snめっき、38μmt(厚み)−S’perflex基材)を用いた。
PWB(プリント配線板)として、評価用PWB(デクセリアルズ株式会社評価用基材、200μmP(ピッチ)、Cu35μmt(厚み)−Auめっき、FR−4基材)を用いた。
前記評価用PWB上に、幅2mmにスリットした前記異方性導電フィルムを、前記導電性粒子含有層が前記評価用PWBに接するように配置した。配置する際、80℃、1MPa、1秒間で貼り付けた。続いて、その異方性導電フィルム上に、前記評価用COFを前記異方性導電フィルムからはみ出さないように配置した。続いて、緩衝材(シリコーンラバー、厚み0.25mm)を介して、加熱ツール(幅2.0mm)により110℃、3MPa、5秒間の条件で、前記評価用COPを加熱及び押圧し、接合体を得た。
<Manufacture of joined body>
The joined body was manufactured by the following method.
As COF (chip-on-flex), COF for evaluation (Dexerials Corporation evaluation base material, 200 μm P (pitch), Cu 8 μmt (thickness) -Sn plating, 38 μmt (thickness) —S′perflex base material) was used.
As PWB (printed wiring board), PWB for evaluation (Dexerials Corporation evaluation base material, 200 μm P (pitch), Cu 35 μmt (thickness) —Au plating, FR-4 base material) was used.
On the evaluation PWB, the anisotropic conductive film slit to a width of 2 mm was arranged so that the conductive particle-containing layer was in contact with the evaluation PWB. When arranging, it was pasted at 80 ° C., 1 MPa, and 1 second. Subsequently, the evaluation COF was disposed on the anisotropic conductive film so as not to protrude from the anisotropic conductive film. Subsequently, the evaluation COP is heated and pressed under the conditions of 110 ° C., 3 MPa, and 5 seconds with a heating tool (width 2.0 mm) through a buffer material (silicone rubber, thickness 0.25 mm) to obtain a joined body. Got.

<評価>
以下の評価を行った。結果を表1に示す。
<Evaluation>
The following evaluation was performed. The results are shown in Table 1.

<<接続信頼性(導通抵抗)>>
得られた接合体の初期の抵抗値、並びに85℃及び85%RHで500時間放置した後の抵抗値を以下の方法で測定した。
具体的には、図1に示すようにして、デジタルマルチメーター(品番:デジタルメルチメータ7555、横河電機株式会社製)を用いて4端子法にて電流1mAを流したときの抵抗値を測定した。30チャンネルについて抵抗値を測定し、最大の抵抗値を測定値とした。測定結果について、下記評価基準で評価した。
〔評価基準〕
A:2Ω未満
B:2Ω以上5Ω未満
C:5Ω以上
<< Connection reliability (conducting resistance) >>
The initial resistance value of the obtained bonded body and the resistance value after being allowed to stand at 85 ° C. and 85% RH for 500 hours were measured by the following method.
Specifically, as shown in FIG. 1, a resistance value when a current of 1 mA is passed by a four-terminal method using a digital multimeter (product number: Digital Melchometer 7555, manufactured by Yokogawa Electric Corporation) is measured. did. The resistance value was measured for 30 channels, and the maximum resistance value was taken as the measured value. The measurement results were evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
A: Less than 2Ω B: 2Ω or more and less than 5Ω C: 5Ω or more

<<接着強度>>
作製した接合体を、図2に示すようにして、剥離試験機(株式会社エー・アンド・デイ製)を用いて、剥離速度50mm/分間で、90度剥離試験(JIS K6854−1)を行い、ピール強度を接着強度として測定した。測定結果について、下記評価基準で評価した。
〔評価基準〕
A:8N/cm以上
B:5N/cm以上8N/cm未満
C:5N/cm未満
<< Adhesive strength >>
As shown in FIG. 2, the manufactured joined body was subjected to a 90 degree peel test (JIS K6854-1) at a peel speed of 50 mm / min using a peel tester (manufactured by A & D Co., Ltd.). The peel strength was measured as the adhesive strength. The measurement results were evaluated according to the following evaluation criteria.
〔Evaluation criteria〕
A: 8 N / cm or more B: 5 N / cm or more and less than 8 N / cm C: Less than 5 N / cm

<<保存安定性>>
作製した異方性導電フィルムを、40℃のオーブンに24時間放置した。放置した後の異方性導電フィルムを用いて、上記の方法で接合体を作製し、上記接続信頼性(初期)及び接着強度の評価を行った。
<< Storage stability >>
The produced anisotropic conductive film was left in an oven at 40 ° C. for 24 hours. Using the anisotropic conductive film after being allowed to stand, a joined body was produced by the above method, and the connection reliability (initial) and the adhesive strength were evaluated.

<<絶縁性>>
異方性導電フィルムを2mm幅にスリットし、50μmピッチの電極を有するCOFと50μmピッチのPWBに、110℃、3MPa、5秒間の条件で加熱及び押圧し、サンプルを作製した。同じサンプルを100枚作製し、ショート発生率を測定した。
<< Insulation >>
A sample was prepared by slitting an anisotropic conductive film to a width of 2 mm, and heating and pressing COF having electrodes of 50 μm pitch and PWB of 50 μm pitch under conditions of 110 ° C., 3 MPa, and 5 seconds. 100 identical samples were prepared and the occurrence rate of short circuit was measured.

(実施例2〜20、及び比較例1〜5)
実施例1において、導電性粒子含有層(A層)中の導電性粒子の種類、及び含有量、導電性粒子含有層中のチオール化合物の種類、及び含有量、絶縁性接着層(N層)のチオール化合物の種類、及び含有量、並びに、導電性粒子含有層、及び絶縁性接着層中の有機過酸化物の種類を、表1〜表3に示す、導電性粒子含有層中の導電性粒子の種類、及び含有量、導電性粒子含有層中のチオール化合物の種類、及び含有量、絶縁性接着層中のチオール化合物の種類、及び含有量、並びに、導電性粒子含有層、及び絶縁性接着層中の有機過酸化物の種類に変えた以外は、実施例1と同様にして、異方性導電フィルムを得た。
得られた異方性導電フィルムを用いて実施例1と同様にして接合体を作製するとともに、評価に供した。結果を表1〜表3に示す。
(Examples 2 to 20 and Comparative Examples 1 to 5)
In Example 1, the kind and content of the conductive particles in the conductive particle-containing layer (A layer), the kind and content of the thiol compound in the conductive particle-containing layer, the insulating adhesive layer (N layer) Table 1 to Table 3 show the types and contents of the thiol compounds and the types of the organic peroxides in the conductive particle-containing layer and the insulating adhesive layer. Kind and content of particles, kind and content of thiol compound in conductive particle-containing layer, kind and content of thiol compound in insulating adhesive layer, and conductive particle-containing layer and insulating property An anisotropic conductive film was obtained in the same manner as in Example 1 except that the type of the organic peroxide in the adhesive layer was changed.
A bonded body was prepared in the same manner as in Example 1 using the obtained anisotropic conductive film and subjected to evaluation. The results are shown in Tables 1 to 3.

表1〜表3中、A層は、導電性粒子含有層を表す。N層は、絶縁性接着層を表す。含有量は、その層における含有量(質量%)を表す。   In Tables 1 to 3, the A layer represents a conductive particle-containing layer. The N layer represents an insulating adhesive layer. Content represents content (mass%) in the layer.

表1〜表3中、実施例及び比較例における「Cu粒子」は、アトマイズ法で製造した銅粒子(平均粒子径5μm)である。
実施例20における「樹脂粒子」は、平均粒子径4.8μmのベンゾグアナミン樹脂粒子を無電解銅メッキすることで得られた銅メッキ樹脂粒子である。
比較例4における「Ni粒子」は、アトマイズ法で製造したニッケル粒子(平均粒子径5μm)である。
比較例5における「Au/Ni粒子」は、ニッケル粒子を無電解金メッキすることで得られた金メッキニッケル粒子(平均粒子径5μm)である。
In Tables 1 to 3, “Cu particles” in Examples and Comparative Examples are copper particles (average particle diameter of 5 μm) produced by an atomizing method.
The “resin particles” in Example 20 are copper plating resin particles obtained by electroless copper plating of benzoguanamine resin particles having an average particle diameter of 4.8 μm.
“Ni particles” in Comparative Example 4 are nickel particles (average particle diameter of 5 μm) produced by the atomization method.
“Au / Ni particles” in Comparative Example 5 are gold-plated nickel particles (average particle diameter of 5 μm) obtained by electroless gold plating of nickel particles.

表1〜表3中、「ラウロイル」は、ジラウロイルパーオキサイドである。「BPO」は、ベンゾイルパーオキサイドである。   In Tables 1 to 3, “lauroyl” is dilauroyl peroxide. “BPO” is benzoyl peroxide.

表1〜表3中、チオール化合物の種類は、以下のとおりである。
PEMP:、ペンタエリスリトールテトラキス(3−メルカプトプロピオネート)
TEMPIC:トリス−[(3−メルカプトプロピオニルオキシ)−エチル]−イソシアヌレート
TMMP:トリメチロールプロパントリス(3−メルカプトプロピオネート)
DPMP:ジペンタエリスリトールヘキサキス(3−メルカプトプロピオネート)
EHMP:2−エチルヘキシル−3−メルカプトプロピオネート
EGMP−4:テトラエチレングリコールビス(3−メルカプトプロピオネート)
上記チオール化合物は、いずれもSC有機化学株式会社製である。
In Tables 1 to 3, the types of thiol compounds are as follows.
PEMP: Pentaerythritol tetrakis (3-mercaptopropionate)
TEMPIC: Tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate TMMP: Trimethylolpropane tris (3-mercaptopropionate)
DPMP: dipentaerythritol hexakis (3-mercaptopropionate)
EHMP: 2-ethylhexyl-3-mercaptopropionate EGMP-4: Tetraethylene glycol bis (3-mercaptopropionate)
All of the above thiol compounds are manufactured by SC Organic Chemical Co., Ltd.

実施例1〜20では、絶縁性接着層にチオール化合物を含有し、導電性粒子含有層にCuを表面に有する導電性粒子を含有することにより、保存安定性と、110℃という非常に低温で接続した際の接続信頼性とを両立できることが確認できた。また、接着強度にも優れていた。   In Examples 1 to 20, the insulating adhesive layer contains a thiol compound, and the conductive particle-containing layer contains conductive particles having Cu on the surface, thereby maintaining storage stability and a very low temperature of 110 ° C. It was confirmed that the connection reliability when connecting was compatible. Also, the adhesive strength was excellent.

110℃などの温度領域では、通常、硬化性が悪く接続信頼性が低下する。チオール化合物を用いた場合でも、130℃で接続した際の接続信頼性を満足できても、110℃という更に低温で接続した際の接続信頼性を満足することは難しい。
本発明の異方性導電フィルムは、チオール化合物を含有するとともに、Cuを表面に有する導電性粒子を含有している。このように、チオール化合物と併用してCuを表面に有する導電性粒子を用いることで、110℃という低温で接続した際の接続信頼性を満足していると考えられる。ところが、チオール化合物と、Cuを表面に有する導電性粒子とを単純に併用すると、保存安定性が低下する。これは、硬化性が高くなるために保存時にも硬化が進行するためと考えられる。そこで、本発明のように、絶縁性接着層のみにチオール化合物を含有し、導電性粒子含有層にCuを表面に有する導電性粒子を含有することにより、接続時にのみ、チオール化合物とCuを表面に有する導電性粒子とが接触するようになり、保存安定性と、110℃という非常に低温で接続した際の接続信頼性とを両立できる。
In a temperature region such as 110 ° C., the curability is usually poor and the connection reliability is lowered. Even when a thiol compound is used, even if connection reliability when connected at 130 ° C. can be satisfied, it is difficult to satisfy connection reliability when connected at a lower temperature of 110 ° C.
The anisotropic conductive film of the present invention contains a thiol compound and conductive particles having Cu on the surface. Thus, it is thought that the connection reliability at the time of connecting at low temperature of 110 degreeC is satisfied by using together with the thiol compound and using the electroconductive particle which has Cu on the surface. However, when the thiol compound and the conductive particles having Cu on the surface are simply used together, the storage stability is lowered. This is considered to be because curing proceeds during storage due to high curability. Therefore, as in the present invention, the thiol compound is contained only in the insulating adhesive layer, and the conductive particle-containing layer contains conductive particles having Cu on the surface, so that the thiol compound and Cu are surfaced only at the time of connection. The conductive particles in contact with each other come into contact with each other, and both storage stability and connection reliability when connected at a very low temperature of 110 ° C. can be achieved.

前記絶縁性接着層における前記チオール化合物の含有量が2質量%〜7質量%の場合には、接続信頼性、接着強度、及び保存安定性の全てが非常に優れていた(例えば、実施例3及4)。
前記硬化剤としては、ベンゾイルパーオキサイドよりもジラウロイルパーオキサイドの方が、接続信頼性、接着強度、及び保存安定性の全てにおいて優れていた(例えば、実施例3及び10)。
前記導電性粒子の平均粒子径を3μm〜10μmの範囲内で変動させても、ほとんど影響は無かった。
前記導電性粒子含有層における前記導電性粒子の含有量が2質量%〜30質量%の場合には、接続信頼性、接着強度、及び保存安定性の全てが非常に優れていた(例えば、実施例12及19)。
When the content of the thiol compound in the insulating adhesive layer was 2% by mass to 7% by mass, all of connection reliability, adhesive strength, and storage stability were excellent (for example, Example 3). And 4).
As the curing agent, dilauroyl peroxide was superior to benzoyl peroxide in all of connection reliability, adhesive strength, and storage stability (for example, Examples 3 and 10).
Even if the average particle diameter of the conductive particles was varied within the range of 3 μm to 10 μm, there was almost no effect.
When the content of the conductive particles in the conductive particle-containing layer was 2% by mass to 30% by mass, all of connection reliability, adhesive strength, and storage stability were excellent (for example, implementation) Examples 12 and 19).

前記チオール化合物を含有しない場合には、反応性が不十分であった(例えば、比較例1)。
前記導電性粒子含有層及び前記絶縁性接着層の両層に前記チオール化合物を含有する場合には、保存安定性が不十分であった(例えば、比較例2)。
前記導電性粒子含有層にのみ前記チオール化合物を含有する場合には、反応性、及び保存安定性が不十分であった(例えば、比較例3)。
導電性粒子としてCuを表面に有する導電性粒子以外の粒子(例えば、Ni粒子、Au/Ni粒子)の場合には、反応性が不十分であった(例えば、比較例4及び5)。
When the thiol compound was not contained, the reactivity was insufficient (for example, Comparative Example 1).
When the thiol compound was contained in both the conductive particle-containing layer and the insulating adhesive layer, the storage stability was insufficient (for example, Comparative Example 2).
When the thiol compound was contained only in the conductive particle-containing layer, the reactivity and storage stability were insufficient (for example, Comparative Example 3).
In the case of particles (for example, Ni particles, Au / Ni particles) other than the conductive particles having Cu on the surface as the conductive particles, the reactivity was insufficient (for example, Comparative Examples 4 and 5).

本発明の異方性導電フィルムは、保存安定性、及び低温で接続した際の接続信頼性に優れることから、低温での基板の端子と電子部品の端子との異方性導電接続に好適に用いることができる。   Since the anisotropic conductive film of the present invention is excellent in storage stability and connection reliability when connected at low temperature, it is suitable for anisotropic conductive connection between a terminal of a substrate and a terminal of an electronic component at a low temperature. Can be used.

Claims (5)

基板の端子と電子部品の端子とを異方性導電接続させる異方性導電フィルムであって、
導電性粒子、膜形成樹脂、硬化性樹脂、及び硬化剤を含有する導電性粒子含有層と、
膜形成樹脂、硬化性樹脂、及び硬化剤を含有する絶縁性接着層とを有し、
前記絶縁性接着層のみが、チオール化合物を含有し、
前記導電性粒子が、表面にCuを有することを特徴とする異方性導電フィルム。
An anisotropic conductive film for anisotropic conductive connection between a terminal of a substrate and a terminal of an electronic component,
A conductive particle-containing layer containing conductive particles, a film-forming resin, a curable resin, and a curing agent;
An insulating adhesive layer containing a film-forming resin, a curable resin, and a curing agent;
Only the insulating adhesive layer contains a thiol compound,
An anisotropic conductive film, wherein the conductive particles have Cu on the surface.
絶縁性接着層におけるチオール化合物の含有量が、0.25質量%〜15質量%である請求項1に記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1, wherein the content of the thiol compound in the insulating adhesive layer is 0.25% by mass to 15% by mass. 導電性粒子が、Cu粒子及びCu被覆樹脂粒子の少なくともいずれかである請求項1から2のいずれかに記載の異方性導電フィルム。   The anisotropic conductive film according to claim 1, wherein the conductive particles are at least one of Cu particles and Cu-coated resin particles. 基板の端子と電子部品の端子とを異方性導電接続させる接続方法であって、
前記基板の端子上に請求項1から3のいずれかに記載の異方性導電フィルムを配置する第1の配置工程と、
前記異方性導電フィルム上に前記電子部品を、前記電子部品の端子が前記異方性導電フィルムと接するように配置する第2の配置工程と、
前記電子部品を加熱押圧部材により加熱及び押圧する加熱押圧工程とを含むことを特徴とする接続方法。
A method of connecting anisotropically conductively connecting a terminal of a substrate and a terminal of an electronic component,
A first disposing step of disposing the anisotropic conductive film according to any one of claims 1 to 3 on a terminal of the substrate;
A second disposing step of disposing the electronic component on the anisotropic conductive film such that a terminal of the electronic component is in contact with the anisotropic conductive film;
And a heating and pressing step of heating and pressing the electronic component with a heating and pressing member.
端子を有する基板と、端子を有する電子部品と、前記基板と前記電子部品との間に介在して前記基板の端子と前記の電子部品の端子とを電気的に接続する異方性導電フィルムの硬化物とを有し、
前記異方性導電フィルムが、請求項1から3のいずれかに記載の異方性導電フィルムであることを特徴とする接合体。
A substrate having a terminal; an electronic component having a terminal; and an anisotropic conductive film that is interposed between the substrate and the electronic component and electrically connects the terminal of the substrate and the terminal of the electronic component. A cured product,
The joined body, wherein the anisotropic conductive film is the anisotropic conductive film according to claim 1.
JP2013029645A 2013-02-19 2013-02-19 Anisotropic conductive film, connection method, and joined body Active JP5956362B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013029645A JP5956362B2 (en) 2013-02-19 2013-02-19 Anisotropic conductive film, connection method, and joined body
KR1020140017046A KR102193813B1 (en) 2013-02-19 2014-02-14 Anisotropic conductive film, connecting method, and joined structure
CN201410054738.6A CN103996431B (en) 2013-02-19 2014-02-18 anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013029645A JP5956362B2 (en) 2013-02-19 2013-02-19 Anisotropic conductive film, connection method, and joined body

Publications (2)

Publication Number Publication Date
JP2014160546A true JP2014160546A (en) 2014-09-04
JP5956362B2 JP5956362B2 (en) 2016-07-27

Family

ID=51310569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013029645A Active JP5956362B2 (en) 2013-02-19 2013-02-19 Anisotropic conductive film, connection method, and joined body

Country Status (3)

Country Link
JP (1) JP5956362B2 (en)
KR (1) KR102193813B1 (en)
CN (1) CN103996431B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140409A (en) * 2014-01-29 2015-08-03 日立化成株式会社 Adhesive composition, electronic member using the adhesive composition and manufacturing method of semiconductor device
JP2016076341A (en) * 2014-10-03 2016-05-12 デクセリアルズ株式会社 Anisotropic conductive film, connection method and joined body
CN114729234A (en) * 2019-12-03 2022-07-08 迪睿合株式会社 Method for producing film-wound body and connected body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101845129B1 (en) * 2015-05-13 2018-04-03 삼성에스디아이 주식회사 Anisotropic conductive film and the semiconductor device using thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221557A (en) * 2002-01-31 2003-08-08 Hitachi Chem Co Ltd Adhesive composition, adhesive composition for connecting circuit and method for connecting circuit
JP2011032491A (en) * 2010-11-09 2011-02-17 Sony Chemical & Information Device Corp Anisotropic electro-conductive film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10168412A (en) * 1996-12-10 1998-06-23 Sumitomo Bakelite Co Ltd Anisotropically conductive adhesive
CN101483080A (en) * 2003-12-04 2009-07-15 旭化成电子材料元件株式会社 Anisotropic conductive adhesive sheet and coupling structure
KR100929593B1 (en) * 2007-09-20 2009-12-03 제일모직주식회사 Anisotropic conductive adhesive composition and an anisotropic conductive film containing the same
TWI389999B (en) * 2007-12-18 2013-03-21 Cheil Ind Inc Adhesive composition and anisotropic conductive film using the same
JP5677727B2 (en) * 2009-04-20 2015-02-25 株式会社ブリヂストン Thiol group-containing adhesive resin composition
JP5398455B2 (en) 2009-09-30 2014-01-29 デクセリアルズ株式会社 Anisotropic conductive film and manufacturing method thereof
JP5833809B2 (en) * 2010-02-01 2015-12-16 デクセリアルズ株式会社 Anisotropic conductive film, joined body and connection method
JP5695881B2 (en) * 2010-10-28 2015-04-08 デクセリアルズ株式会社 Electronic component connection method and connection structure
JP5823117B2 (en) * 2010-11-16 2015-11-25 デクセリアルズ株式会社 Anisotropic conductive film, bonded body, and manufacturing method of bonded body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003221557A (en) * 2002-01-31 2003-08-08 Hitachi Chem Co Ltd Adhesive composition, adhesive composition for connecting circuit and method for connecting circuit
JP2011032491A (en) * 2010-11-09 2011-02-17 Sony Chemical & Information Device Corp Anisotropic electro-conductive film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140409A (en) * 2014-01-29 2015-08-03 日立化成株式会社 Adhesive composition, electronic member using the adhesive composition and manufacturing method of semiconductor device
JP2016076341A (en) * 2014-10-03 2016-05-12 デクセリアルズ株式会社 Anisotropic conductive film, connection method and joined body
CN114729234A (en) * 2019-12-03 2022-07-08 迪睿合株式会社 Method for producing film-wound body and connected body

Also Published As

Publication number Publication date
JP5956362B2 (en) 2016-07-27
KR20140103855A (en) 2014-08-27
CN103996431B (en) 2017-04-12
KR102193813B1 (en) 2020-12-22
CN103996431A (en) 2014-08-20

Similar Documents

Publication Publication Date Title
KR102161430B1 (en) Anisotropic conductive film, connecting method, and joined structure
KR101380454B1 (en) Conductive material and connection structure
JP6180159B2 (en) Anisotropic conductive film, connection method, and joined body
KR20090092796A (en) Anisotropic conductive film and method for producing the same, and bonded body
KR20120113784A (en) Anisotropic conductive film
JP2009007443A (en) Adhesion film
JP7347576B2 (en) adhesive film
KR20130069908A (en) Anisotropic conductive film
CN111512502B (en) Connection structure and method for manufacturing same
KR20120106789A (en) Anisotropic conductive film, united object, and process for producing united object
JP5956362B2 (en) Anisotropic conductive film, connection method, and joined body
WO2020054495A1 (en) Adhesive composition
KR20120042635A (en) Manufacturing method of mounting device, connecting method and anisotropic conductive film
JP2010232184A (en) Anisotropic conductive film, and method of manufacturing the same
JP2018092943A (en) Conductive material and connection structure
KR102114802B1 (en) Anisotropic conductive film, connection method, and connected body
JP6271048B2 (en) Anisotropic conductive film, connection method, and joined body
TWI540195B (en) A circuit connecting material and a connecting method using the same, and a connecting structure
WO2016052130A1 (en) Anisotropic conductive film and bonding method
JP2010024384A (en) Anisotropically electroconductive composition
JP2003249287A (en) Anisotropically conductive adhesive, heat seal connector and connection structure
KR101731677B1 (en) A composition for use of anisotropic conductive film, anisotropic conductive film, and semiconductor device
WO2024090129A1 (en) Connection material, connection structure, and method for producing connection structure
KR102207299B1 (en) Anisotropic conductive film, display device comprising the same and/or semiconductor device comprising the same
JP4720814B2 (en) Wiring board connection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160616

R150 Certificate of patent or registration of utility model

Ref document number: 5956362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250