JP2014151207A5 - - Google Patents

Download PDF

Info

Publication number
JP2014151207A5
JP2014151207A5 JP2014023250A JP2014023250A JP2014151207A5 JP 2014151207 A5 JP2014151207 A5 JP 2014151207A5 JP 2014023250 A JP2014023250 A JP 2014023250A JP 2014023250 A JP2014023250 A JP 2014023250A JP 2014151207 A5 JP2014151207 A5 JP 2014151207A5
Authority
JP
Japan
Prior art keywords
magnetic field
gradient
field
compensation
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014023250A
Other languages
English (en)
Japanese (ja)
Other versions
JP6308794B2 (ja
JP2014151207A (ja
Filing date
Publication date
Priority claimed from DE102013202217.4A external-priority patent/DE102013202217B4/de
Application filed filed Critical
Publication of JP2014151207A publication Critical patent/JP2014151207A/ja
Publication of JP2014151207A5 publication Critical patent/JP2014151207A5/ja
Application granted granted Critical
Publication of JP6308794B2 publication Critical patent/JP6308794B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

JP2014023250A 2013-02-12 2014-02-10 パルス状の補償傾斜磁場を有するmr装置 Active JP6308794B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013202217.4 2013-02-12
DE102013202217.4A DE102013202217B4 (de) 2013-02-12 2013-02-12 MR-Anlage mit gepulsten Ausgleichsmagnetfeldgradienten

Publications (3)

Publication Number Publication Date
JP2014151207A JP2014151207A (ja) 2014-08-25
JP2014151207A5 true JP2014151207A5 (enExample) 2017-02-09
JP6308794B2 JP6308794B2 (ja) 2018-04-11

Family

ID=51275972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014023250A Active JP6308794B2 (ja) 2013-02-12 2014-02-10 パルス状の補償傾斜磁場を有するmr装置

Country Status (5)

Country Link
US (1) US9689952B2 (enExample)
JP (1) JP6308794B2 (enExample)
KR (1) KR101565678B1 (enExample)
CN (1) CN103983929B (enExample)
DE (1) DE102013202217B4 (enExample)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014220776B4 (de) * 2014-10-14 2016-06-30 Siemens Healthcare Gmbh Verfahren zur Magnetresonanz-Bildgebung
DE112015005479B4 (de) * 2014-12-04 2024-09-19 General Electric Company Verfahren und System zur verbesserten Klassifizierung von Bestandsmaterialien
TW202012951A (zh) * 2018-07-31 2020-04-01 美商超精細研究股份有限公司 低場漫射加權成像
MX2021011114A (es) * 2019-03-25 2021-10-13 Promaxo Inc Sistemas y metodos de adquisicion volumetrica en un sistema de formacion de imagenes por resonancia magnetica (mri) de un solo lado.
JP7557741B2 (ja) * 2021-02-25 2024-09-30 富士フイルム株式会社 磁気共鳴イメージング装置、画像補正方法、および静磁場不均一補正方法
EP4300121A1 (en) * 2022-06-29 2024-01-03 Siemens Healthcare GmbH Magnetic resonance imaging device with a gradient coil assembly
CN117930101A (zh) 2022-10-25 2024-04-26 无锡鸣石峻致医疗科技有限公司 一种非均匀场下实现空间选择的信号饱和方法和介质

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647858A (en) * 1985-07-29 1987-03-03 General Electric Company Methods for overcoming transient magnetic field inhomogeneity in nuclear magnetic resonance imaging
WO1989004478A1 (en) * 1987-11-05 1989-05-18 University Of Queensland Magnetic field homogenization in nmr spectroscopy
EP0545465B1 (en) * 1991-11-29 1998-05-20 Koninklijke Philips Electronics N.V. Magnetic resonance device
US5345178A (en) * 1992-04-21 1994-09-06 Siemens Aktiengesellschaft Method for setting the current through shim coils and gradient coils in a nuclear magnetic resonance apparatus
DE4437443C2 (de) 1994-10-19 1996-09-12 Siemens Ag Verfahren zum Betrieb eines Kernspintomographiegerätes mit dynamisch lokalisierter Shimmung des Grundmagnetfeldes
DE19511791C1 (de) 1995-03-30 1996-08-22 Siemens Ag Verfahren zur Shimmung eines Magnetsystems eines Kernspintomographen und Vorrichtung zur Durchführung des Verfahrens
CA2234601A1 (en) * 1997-04-10 1998-10-10 Qing-San Xiang Method of correction for magnetic field inhomogeneity in magnetic resonance imaging
US20010054898A1 (en) 1999-03-10 2001-12-27 Andrew Li Magnetic resonance imaging compensated for very rapid variations in static magnetic field
US6448773B1 (en) * 2000-02-24 2002-09-10 Toshiba America Mri, Inc. Method and system for measuring and compensating for eddy currents induced during NMR imaging operations
DE10030142C1 (de) 2000-06-20 2002-01-17 Siemens Ag Verfahren zum Betrieb eines Magnetresonanzgeräts mit einem aktiven Shim-System
JP2002062490A (ja) 2000-08-14 2002-02-28 Canon Inc 干渉性変調素子
JP2006527621A (ja) * 2003-06-19 2006-12-07 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 磁気共鳴において主磁場をシミングするための方法
US20050154291A1 (en) * 2003-09-19 2005-07-14 Lei Zhao Method of using a small MRI scanner
TWI237934B (en) * 2004-08-02 2005-08-11 Univ Feng Chia Method of increasing surface work function of the ITO film by irradiation treatment of the excimer laser
US7944206B2 (en) * 2005-12-21 2011-05-17 Yeda Research And Development Co. Ltd. Method and apparatus for acquiring high resolution spectral data or high definition images in inhomogeneous environments
JP4890945B2 (ja) * 2006-05-29 2012-03-07 国立大学法人九州大学 磁気共鳴イメージング装置
GB2456159A (en) * 2008-01-04 2009-07-08 Siemens Magnet Technology Ltd Magnetic Coil Former
GB0820043D0 (en) * 2008-10-31 2008-12-10 Emscan Ltd Electromagnet assembly
US8710839B2 (en) 2008-12-12 2014-04-29 Yale University O-space imaging: highly efficient parallel imaging using complementary nonlinear encoding gradient fields and receive coil geometries
US8319496B2 (en) * 2009-04-01 2012-11-27 Yigitcan Eryaman Magnetic resonance method and apparatus for reducing RF heating in the patient
CN102483450A (zh) * 2009-09-08 2012-05-30 皇家飞利浦电子股份有限公司 沿弯曲辐条k空间轨线的RF匀场的MRI切片激励
DE102009048302B4 (de) 2009-10-05 2011-07-07 Siemens Aktiengesellschaft, 80333 Korrektur von Trunkierungen bei einer MR-Bildgebung
WO2011087847A2 (en) 2009-12-22 2011-07-21 Yale University Accelerated mri with nonlineear spatial encoding gradients
DE102011005728B4 (de) 2011-03-17 2012-10-31 Siemens Aktiengesellschaft Verzeichnungsfreies Bestimmen von Magnetresonanzdaten
EP2506026A1 (en) * 2011-03-29 2012-10-03 Universitätsklinikum Freiburg Method of dynamically compensating for magnetic field heterogeneity in magnetic resonance imaging
WO2012138902A1 (en) * 2011-04-08 2012-10-11 The United States Of America As Represented By The Secretary, Department Of Health & Human Services B0-based modulation of b1 excitation in mri
CN102866369B (zh) * 2011-12-12 2014-12-24 中国科学院深圳先进技术研究院 磁共振的主磁场漂移矫正方法和系统
JP5802163B2 (ja) * 2012-03-29 2015-10-28 株式会社日立メディコ 磁場均一度調整方法、磁石装置及び磁気共鳴撮像装置

Similar Documents

Publication Publication Date Title
JP2014151207A5 (enExample)
KR101663365B1 (ko) 자기 공명 제어 시퀀스 결정
US9720066B2 (en) Magnetic resonance imaging apparatus and control method thereof
CN102998642B (zh) 磁共振设备内检查对象的部分区域的成像方法
JP6608564B1 (ja) 勾配インパルス応答関数マッピング
US9086446B2 (en) Method and system for B1 field mapping in magnetic resonance imaging
JP6072825B2 (ja) Mr画像法において高次のbo場の不均一性を補正するための傾斜磁場コイルの使用
JP2013215575A5 (enExample)
US10156619B2 (en) Magnetic resonance imaging system, static magnetic field homogeneity adjusting system, magnetic field homogeneity adjusting method, and magnetic field homogeneity adjusting program
JP6308794B2 (ja) パルス状の補償傾斜磁場を有するmr装置
JPWO2013002231A1 (ja) 磁気共鳴イメージング装置および高周波磁場決定方法
JP2017537763A5 (enExample)
CN104094105B (zh) 核磁共振成像装置以及核磁共振成像方法
KR101617937B1 (ko) Mr 데이터를 획득하고 b1 자기장을 판단하는 방법 및 이에 대응하여 설계된 자기 공명 시스템
JP6495071B2 (ja) 磁気共鳴イメージング装置及び磁気共鳴イメージング方法
KR101627706B1 (ko) 자기 공명 기법에서 측정 볼륨 내의 검사 대상의 대상-특정 b1 분포를 결정하는 방법, 자기 공명 시스템, 및 컴퓨터 판독가능한 기록 매체
TWI540330B (zh) 偵測動態磁場變化之方法與裝置
Bartusek et al. Determination of pre-emphasis constants for eddy current reduction
JP5595759B2 (ja) 磁気共鳴イメージング装置
JP4388019B2 (ja) 磁気共鳴イメージング装置
JP5121773B2 (ja) 磁気共鳴イメージング装置
JP6546837B2 (ja) 磁気共鳴イメージング装置、及び方法
JP5064685B2 (ja) 磁気共鳴イメージング装置
JP2012095891A (ja) 磁気共鳴イメージング装置
Haeberlin et al. Motion Correction of EPI sequences using their intrinsic high-frequency content