JP2014144389A - Method for treating organic waste water - Google Patents

Method for treating organic waste water Download PDF

Info

Publication number
JP2014144389A
JP2014144389A JP2013012959A JP2013012959A JP2014144389A JP 2014144389 A JP2014144389 A JP 2014144389A JP 2013012959 A JP2013012959 A JP 2013012959A JP 2013012959 A JP2013012959 A JP 2013012959A JP 2014144389 A JP2014144389 A JP 2014144389A
Authority
JP
Japan
Prior art keywords
membrane
sheet
chemical solution
cleaning step
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013012959A
Other languages
Japanese (ja)
Inventor
Hiroo Takahata
寛生 高畠
Tamotsu Kitade
有 北出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2013012959A priority Critical patent/JP2014144389A/en
Publication of JP2014144389A publication Critical patent/JP2014144389A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating organic waste water where: a membrane separation unit including a sheet-like membrane in a treatment tank storing a microorganism-containing liquid injected with the organic waste water is immersed; a membrane filtration step to obtain filtered water by performing a membrane filtration treatment with the sheet-like membrane is included; and serious membrane contamination can be suppressed even in a high flux.SOLUTION: A method for treating organic waste water comprises: a first membrane cleaning step to hold a predetermined time in a state of stopping the injection of a first chemical solution and a sheet-like membrane treatment after the first chemical solution containing one or more medicines selected from the group consisting of an acid, an alkali and an oxidizer is injected to the filtered water flow passage side of a sheet-like membrane; and a second membrane cleaning step to hold a predetermined time longer than a time in the first membrane cleaning step in a state of stopping the injection of a second chemical solution and a sheet-like membrane treatment after the second chemical solution containing the same kind of the medicines as the first chemical solution in a higher concentration is injected to the filtered water flow passage side of the sheet-like membrane. The second membrane cleaning step is performed after a membrane filtration step and the first membrane cleaning step are alternately performed a plurality of times.

Description

本発明は、膜分離装置を用いた有機性廃水の処理方法に関し、詳しくは2種類の膜洗浄工程を含むことで、膜ろ過流束を高く設定しても安定運転を実現し、また、全体として薬品使用量を低減することで省エネ・低コストに貢献し、さらには膜の長寿命化を実現可能とする有機性廃水の処理方法に関する。   The present invention relates to a method for treating organic wastewater using a membrane separator, and more specifically, by including two types of membrane washing steps, stable operation can be realized even when the membrane filtration flux is set high, and the whole The present invention relates to a method for treating organic wastewater that contributes to energy saving and low cost by reducing the amount of chemicals used, and that can achieve a longer membrane life.

活性汚泥を収容した処理槽に有機性廃水を流入させ、該処理槽内の活性汚泥に浸漬させるように設置した膜分離装置によって、活性汚泥を固液分離することで生物処理水を得る有機性廃水の処理方法が知られている。   Organic wastewater is obtained by injecting organic wastewater into a treatment tank containing activated sludge, and separating the activated sludge into solid and liquid using a membrane separation device installed so as to be immersed in the activated sludge in the treatment tank. Wastewater treatment methods are known.

前記膜分離装置は、シート状膜(平膜)や中空糸膜などの分離膜を備え、鉛直下方部に設けられた散気装置から供給されるエアのスクラビング効果などによって膜表面への微生物の付着などの膜汚染が進行するのを抑制しながら、吸引や水頭差などによってこの分離膜の1次側と2次側とに圧力差(以下、膜ろ過圧力)を与えることにより、活性汚泥を固液分離し、得られた清浄な分離膜ろ過液を処理槽の外部へ取り出すように構成されている。しかしながら、通常、膜細孔には、微生物未処理物や微生物代謝産物などが次第に蓄積するなど、膜汚染が進行していくため、膜ろ過圧力が次第に高くなったり、単位膜面積あたりの膜ろ過流量(以下、フラックス)が低下したりしてしまう。   The membrane separation device is provided with a separation membrane such as a sheet-like membrane (flat membrane) or a hollow fiber membrane, and microorganisms are applied to the membrane surface by the scrubbing effect of air supplied from an air diffuser provided at a vertically lower portion. While suppressing the progress of membrane contamination such as adhesion, the activated sludge can be removed by applying a pressure difference (hereinafter referred to as membrane filtration pressure) between the primary and secondary sides of the separation membrane by suction or water head difference. Solid-liquid separation is performed, and the resulting clean separation membrane filtrate is taken out of the treatment tank. However, normally, membrane contamination progresses, such as the accumulation of untreated microorganisms and microbial metabolites in the membrane pores. As a result, the membrane filtration pressure gradually increases, and membrane filtration per unit membrane area. The flow rate (hereinafter referred to as flux) decreases.

そのような場合、膜ろ過性能を回復させる方法としては、次亜塩素酸ソーダなどの酸化剤や酸などの薬液をシート状膜のろ過水側から注入し、この薬液をろ過水流路にて一定時間保持することで薬液と膜細孔閉塞物質を接触させるインライン洗浄や、膜分離装置を処理槽外に取り出し、物理洗浄もしくは薬品洗浄する系外洗浄などが一般的に知られている。さらには、例えば、特許文献1のように、次亜塩素酸ソーダなどの酸化剤や酸などの薬液を、シート状膜のろ過水側から注入して膜を透過させ、この薬液をろ過水流路に1〜2時間保持し、その後、薬液とほぼ同量の洗浄水をろ過水側から注入して分離膜を透過させる方法では、より薬液が膜細孔や膜表面に蓄積している汚染物質に接触し易くなるため、洗浄効果が増大する。   In such a case, as a method of recovering membrane filtration performance, a chemical solution such as sodium hypochlorite or acid is injected from the filtrate side of the sheet membrane, and this chemical solution is kept constant in the filtrate channel. In-line cleaning in which a chemical solution and a membrane pore-occluding substance are brought into contact with each other by holding for a period of time, or out-of-system cleaning in which a membrane separation apparatus is taken out of a processing tank to perform physical cleaning or chemical cleaning is generally known. Further, for example, as in Patent Document 1, a chemical solution such as an oxidizing agent such as sodium hypochlorite or an acid is injected from the filtrate side of the sheet-like membrane to permeate the membrane, and this chemical solution is passed through the filtrate water flow path. For 1 to 2 hours, and then injecting approximately the same amount of washing water as the chemical solution from the filtered water side to permeate the separation membrane, the chemical solution accumulates more in the membrane pores and membrane surface. The cleaning effect is increased.

特開平10−66844号公報Japanese Patent Laid-Open No. 10-66844

しかしながら、特許文献1の方法では、膜ろ過性能の低下が著しい状態では、一部の分離膜の細孔閉塞物質が強固な塊として存在していたり、さらには膜表面に強固な汚泥ケークが形成されていたりする場合がある。通常、上記のような膜汚染の進行が著しい分離膜部分と膜汚染があまり進行していない分離膜部分とが偏在し、全体として膜ろ過性能低下として問題が顕在化してくる。このような状態では、前記インライン洗浄や系外洗浄を実施しても、分離膜の抵抗が小さい箇所、即ち膜汚染があまり進行していない分離膜部分では薬液が良く透過し高い洗浄効果が得られるが、分離膜の抵抗が大きい箇所、即ち膜汚染の進行が著しい分離膜部分では膜細孔閉塞や汚泥ケークに十分に接触せず、膜ろ過性能が回復しない問題があった。さらに、前記のような強固な細孔閉塞物質塊や汚泥ケークは、その中心部まで薬液が浸透しにくく、十分に膜ろ過性能が回復しない場合があるという問題があった。このような問題は、フラックスが高い程深刻になりやすい傾向にあり、設計フラックス増加による省エネ・低コストの実現が困難であった。   However, in the method of Patent Document 1, in the state where the membrane filtration performance is remarkably lowered, the pore clogging substances of some separation membranes exist as a strong lump, and furthermore, a strong sludge cake is formed on the membrane surface. It may be done. Usually, the separation membrane portion where the progress of membrane contamination as described above is remarkable and the separation membrane portion where the membrane contamination does not progress so much are unevenly distributed, and the problem becomes apparent as a decrease in membrane filtration performance as a whole. In such a state, even if the in-line cleaning or the out-of-system cleaning is performed, the chemical solution permeates well at the portion where the resistance of the separation membrane is low, that is, the separation membrane portion where the membrane contamination is not advanced so much, and a high cleaning effect is obtained. However, there is a problem that the membrane filtration performance is not recovered at a portion where the resistance of the separation membrane is large, that is, at the separation membrane portion where the membrane contamination is remarkably progressing, and the membrane pores are not sufficiently contacted with the sludge cake. Further, the above-mentioned strong pore-occluding substance lump or sludge cake has a problem that the chemical filtration is difficult to permeate to the central portion and the membrane filtration performance may not be sufficiently recovered. Such a problem tends to become more serious as the flux becomes higher, and it has been difficult to realize energy saving and low cost by increasing the design flux.

したがって、本発明は、高フラックスでも膜汚染が深刻になるのを抑制し得る有機性廃水の処理方法を提供することを課題とする。   Therefore, this invention makes it a subject to provide the processing method of the organic waste water which can suppress that a film | membrane contamination becomes serious even if it is high flux.

前記課題を解決するために、本発明は、以下の(1)〜(7)の構成をとる。   In order to solve the above problems, the present invention has the following configurations (1) to (7).

(1)有機性廃水が注入されてなる微生物含有液を貯留した処理槽内にシート状膜を含む膜分離装置が浸漬設置され、前記シート状膜で膜ろ過処理を行うことでろ過水を得る膜ろ過工程を含む有機性廃水の処理方法であって、前記シート状膜のろ過水流路側に、酸、アルカリ、酸化剤からなる群から選ばれる1種以上の薬剤を含む第1の薬液を注入後、前記第1の薬液の注入および前記膜ろ過処理を停止した状態で、所定時間保持する第1の膜洗浄工程と、前記シート状膜のろ過水流路側に、前記第1の薬液と同じ種類の薬剤を前記第1の薬液よりも高濃度で含む第2の薬液を注入後、前記第2の薬液の注入および前記膜ろ過処理を停止した状態で、前記第1の膜洗浄工程よりも長時間保持する第2の膜洗浄工程とを含み、前記膜ろ過工程と前記第1の膜洗浄工程とを交互に複数回実施した後、前記第2の膜洗浄工程を実施することを特徴とするシート状膜の有機性廃水の処理方法。   (1) A membrane separation device including a sheet-like membrane is immersed in a treatment tank storing a microorganism-containing liquid into which organic waste water has been injected, and filtered water is obtained by performing membrane filtration with the sheet-like membrane. An organic wastewater treatment method including a membrane filtration step, wherein a first chemical solution containing one or more chemicals selected from the group consisting of an acid, an alkali, and an oxidizing agent is injected into the filtered water flow path side of the sheet-like membrane. Then, in the state where the injection of the first chemical solution and the membrane filtration process are stopped, the same type as the first chemical solution is provided on the filtered water flow path side of the sheet-like membrane for a predetermined time. After injecting the second chemical solution containing a higher concentration of the chemical than the first chemical solution, the injection of the second chemical solution and the membrane filtration process are stopped, which is longer than the first membrane cleaning step. A second membrane cleaning step for holding for a time, and the membrane filtration step After a plurality of times and a serial first membrane cleaning step alternately, the method of treating organic waste water of the sheet-like film which comprises carrying out the second membrane cleaning process.

(2)前記第1の薬液の注入速度および前記第2の薬液の注入速度が、前記膜ろ過工程における膜ろ過速度より小さいことを特徴とする(1)に記載のシート状膜の有機性廃水の処理方法。   (2) The organic wastewater for sheet-like membrane according to (1), wherein the injection rate of the first chemical solution and the injection rate of the second chemical solution are smaller than the membrane filtration rate in the membrane filtration step. Processing method.

(3)前記第2の薬液における薬剤濃度が、前記第1の薬液における薬剤濃度の4倍以上40倍以下であることを特徴とする(1)または(2)に記載のシート状膜の有機性廃水の処理方法。   (3) The organic concentration of the sheet-like film according to (1) or (2), wherein the drug concentration in the second drug solution is 4 to 40 times the drug concentration in the first drug solution Of waste water.

(4)前記第2の膜洗浄工程における保持時間が、前記第1の膜洗浄工程における保持時間の4倍以上40倍以下であることを特徴とする(1)〜(3)のいずれかに記載のシート状膜の有機性廃水の処理方法。   (4) The holding time in the second film cleaning step is not less than 4 times and not more than 40 times the holding time in the first film cleaning step. The processing method of the organic waste water of the sheet-like film | membrane as described.

(5)前記シート状膜の膜表面における平均細孔径が0.01μm以上0.2μm以下であることを特徴とする(1)〜(4)のいずれかに記載のシート状膜の有機性廃水の処理方法。   (5) The sheet-like membrane organic wastewater according to any one of (1) to (4), wherein an average pore diameter on the membrane surface of the sheet-like membrane is 0.01 μm to 0.2 μm Processing method.

(6)前記シート状膜が、多層構造からなり、有機性廃水側の膜表面における平均細孔径が、ろ過水流路側の膜表面における平均細孔径よりも小さいことを特徴とする(1)〜(5)のいずれかに記載のシート状膜の有機性廃水の処理方法。   (6) The sheet-like membrane has a multilayer structure, and the average pore size on the membrane surface on the organic waste water side is smaller than the average pore size on the membrane surface on the filtrate channel side (1) to ( The processing method of the organic waste water of the sheet-like film | membrane in any one of 5).

(7)前記ろ過水を半透膜処理することを特徴とする(1)〜(6)のいずれかに記載のシート状膜の有機性廃水の処理方法。   (7) The method for treating organic wastewater of a sheet-like membrane according to any one of (1) to (6), wherein the filtered water is subjected to a semipermeable membrane treatment.

本発明では、膜ろ過工程と第1の膜洗浄工程とを繰り返すことによって、膜ろ過性能の低下が顕著になる前に薬液洗浄を行うことになるので、第1の薬液が分離膜全体に効果的に行き渡り、膜汚染物質を除去し、膜汚染の深刻化を抑制できる。その結果、膜を長寿命化し、フラックスを高く設定することができるため、運転コストおよび消費動力の低減に寄与できる。また、第1の薬液の濃度は、第2の薬液と比して小さく、第2の膜洗浄工程の実施頻度を大きく低減できるため、全体として薬液使用量も低減できる。   In the present invention, by repeating the membrane filtration step and the first membrane washing step, the chemical solution is washed before the deterioration of the membrane filtration performance becomes significant. Therefore, the first chemical solution is effective over the entire separation membrane. It is possible to spread and remove membrane pollutants, thereby suppressing the seriousness of membrane contamination. As a result, the life of the membrane can be extended and the flux can be set high, which can contribute to a reduction in operating cost and power consumption. Moreover, since the density | concentration of a 1st chemical | medical solution is small compared with a 2nd chemical | medical solution and the implementation frequency of a 2nd film | membrane washing | cleaning process can be reduced significantly, the amount of chemical | medical solution usage can also be reduced as a whole.

さらに、膜ろ過水を半透膜処理する場合、膜汚染が深刻な場合には膜ろ過水の水質が悪化し、後段の半透膜処理のパフォーマンスが低下する傾向がある。本発明では、膜汚染の深刻化を抑制できるため、後段の半透膜処理のパフォーマンスを高く維持できる。   Further, when the membrane filtrate is subjected to a semipermeable membrane treatment, when the membrane contamination is serious, the quality of the membrane filtrate water tends to deteriorate, and the performance of the subsequent semipermeable membrane treatment tends to deteriorate. In the present invention, since serious membrane contamination can be suppressed, the performance of the subsequent semipermeable membrane treatment can be maintained high.

本発明の有機性廃水の処理方法を実施するための廃水処理装置の一例を示す概略図である。It is the schematic which shows an example of the waste water treatment apparatus for enforcing the processing method of the organic waste water of this invention. 膜分離装置における2枚の隣接する膜エレメントを示す概略斜視図である。It is a schematic perspective view which shows two adjacent membrane elements in a membrane separator.

以下、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

図1は、本発明の有機性廃水の処理方法を実施するための廃水処理装置の一例を示す概略図である。   FIG. 1 is a schematic view showing an example of a wastewater treatment apparatus for carrying out the organic wastewater treatment method of the present invention.

図1において、有機性廃水1は、処理槽3aに貯留されている活性汚泥2に注入される。活性汚泥2は、次の処理槽3に移送され、処理槽3には膜分離装置4が浸漬設置されている。処理槽3の活性汚泥2は、ポンプ32によって汚泥循環ライン31を介して処理槽3aに返送循環される。ここで、処理槽3と処理槽3aを一つの処理槽としてもよい。この場合は、汚泥返送ライン31およびポンプ32を省略することも可能である。また、膜分離装置4には、膜5が備えられており、その鉛直下方部には散気装置6が設置されている。散気装置6には、ブロア7から気体が供給され、散気装置6から気泡が発生する。この気泡発生によって生起される気液混合流が膜5の表面を洗浄し、活性汚泥2中の微生物や微量物質が膜5の表面に付着するのを抑制する。また、ポンプ8によって膜ろ過側を吸引減圧することで、膜5の一次側(活性汚泥2側)と二次側(膜ろ過水側)との圧力差を生じさせ、活性汚泥2を膜ろ過することで膜ろ過水9を得る。これを膜ろ過工程という。膜ろ過工程では、常に膜ろ過を継続する連続ろ過でも良いが、一定時間毎に膜ろ過を停止する間欠ろ過でもよい。   In FIG. 1, the organic waste water 1 is inject | poured into the activated sludge 2 currently stored by the processing tank 3a. The activated sludge 2 is transferred to the next treatment tank 3, and a membrane separation device 4 is immersed in the treatment tank 3. The activated sludge 2 in the treatment tank 3 is returned and circulated by the pump 32 to the treatment tank 3a through the sludge circulation line 31. Here, it is good also considering the processing tank 3 and the processing tank 3a as one processing tank. In this case, the sludge return line 31 and the pump 32 can be omitted. Further, the membrane separation device 4 is provided with a membrane 5, and an air diffuser 6 is installed in a vertically lower part thereof. Gas is supplied from the blower 7 to the air diffuser 6, and bubbles are generated from the air diffuser 6. The gas-liquid mixed flow generated by the generation of bubbles cleans the surface of the membrane 5 and suppresses microorganisms and trace substances in the activated sludge 2 from adhering to the surface of the membrane 5. Moreover, the suction filtration of the membrane filtration side by the pump 8 causes a pressure difference between the primary side (active sludge 2 side) of the membrane 5 and the secondary side (membrane sludge water side), and the activated sludge 2 is subjected to membrane filtration. By doing so, membrane filtration water 9 is obtained. This is called a membrane filtration step. In the membrane filtration step, continuous filtration in which membrane filtration is always continued may be used, but intermittent filtration in which membrane filtration is stopped every predetermined time may be used.

ここで、第1の膜洗浄工程では、膜ろ過を停止し、第1の薬液10を膜5のろ過水側から、ポンプ11などを利用して注入する。その後、第1の薬液10の注入を停止し、所定時間保持する。本発明では、第1の膜洗浄工程と膜ろ過工程とを複数回繰り返す。第1の膜洗浄工程は、膜5のろ過性能低下状況に依らず、週2回〜月1回の所定期間ごとに定期的に実施することが好ましい。これにより、膜汚染が深刻になるのを抑制することができる。また、第1の膜洗浄工程を、膜ろ過圧力が所定値以上(例えば、運転開始初期値より2〜5kPa以上)となったとき、もしくは膜ろ過流量が所定値以下(例えば、運転開始初期値より2〜5%以上低下)となったときに実施することも好ましい。このように膜汚染が深刻になる前に、第1の膜洗浄工程を実施することで、高フラックス運転時でも膜汚染の深刻化を抑制し、省エネ・低コストを実現できる。   Here, in the first membrane cleaning step, membrane filtration is stopped, and the first chemical solution 10 is injected from the filtered water side of the membrane 5 using the pump 11 or the like. Thereafter, the injection of the first chemical 10 is stopped and held for a predetermined time. In the present invention, the first membrane cleaning step and the membrane filtration step are repeated a plurality of times. The first membrane cleaning step is preferably carried out periodically every predetermined period from twice a week to once a month regardless of the state of filtration performance deterioration of the membrane 5. Thereby, it can suppress that film | membrane contamination becomes serious. Further, in the first membrane cleaning step, when the membrane filtration pressure becomes a predetermined value or more (for example, 2 to 5 kPa or more from the operation start initial value), or the membrane filtration flow rate becomes a predetermined value or less (for example, the operation start initial value). It is also preferable to carry out when it is 2-5% or more lower. By performing the first film cleaning step before the film contamination becomes serious in this way, it is possible to suppress the film contamination from becoming serious even during high flux operation, thereby realizing energy saving and low cost.

また、第2の膜洗浄工程では、膜ろ過を停止し、シート状膜のろ過水流路側に、第1の薬液と同じ種類の薬剤を第1の薬液よりも高濃度で含む第2の薬液を注入後、第2の薬液の注入および膜ろ過処理を停止した状態で、第1の膜洗浄工程よりも長時間保持する。本発明では、第1の膜洗浄工程と膜ろ過工程とを複数回繰り返した後に、第2の膜洗浄工程を実施する。第2の膜洗浄工程は、第1の膜洗浄工程実施の膜ろ過性能回復が小さくなってきたとき(例えば、第1の膜洗浄工程実施直後の膜ろ過圧力が運転開始初期値より2〜5kPa以上となったとき)や、第1の膜洗浄工程を膜ろ過圧力が所定値以上となったとき、もしくは膜ろ過流量が所定値以下となったときに実施し、第1の膜洗浄工程の実施間隔が小さくなってきたとき(例えば、最初の第1の膜洗浄工程の半分以下となったとき)や、膜ろ過圧力が所定値以上(例えば、運転開始初期値より10〜20kPa以上上昇)となったときや、膜ろ過流量が所定値以下(例えば、運転開始初期値より10〜20%以上低下)となったときなどに実施することが好ましい。これにより、第1の膜洗浄工程でも除去しきれなかった膜汚染物質を除去し、膜ろ過性能を回復できる。   In the second membrane cleaning step, the membrane filtration is stopped, and the second chemical solution containing the same type of drug as the first chemical solution at a higher concentration than the first chemical solution is provided on the filtered water flow path side of the sheet-like membrane. After the injection, the second chemical solution injection and the membrane filtration treatment are stopped, and the holding is performed for a longer time than the first membrane cleaning step. In the present invention, after the first membrane cleaning step and the membrane filtration step are repeated a plurality of times, the second membrane cleaning step is performed. In the second membrane cleaning step, when the membrane filtration performance recovery of the first membrane cleaning step is reduced (for example, the membrane filtration pressure immediately after the first membrane cleaning step is 2-5 kPa from the initial operation start value). Or when the membrane filtration pressure becomes equal to or higher than a predetermined value, or when the membrane filtration flow rate becomes equal to or lower than a predetermined value, the first membrane cleaning step When the execution interval becomes smaller (for example, when it becomes less than half of the first first membrane cleaning step), or the membrane filtration pressure is equal to or higher than a predetermined value (for example, 10 to 20 kPa or more higher than the initial operation start value). It is preferable to carry out the process when the flow rate of the membrane becomes equal to or less than a predetermined value (for example, 10 to 20% or more lower than the initial operation start value). Thereby, membrane contaminants that could not be removed even in the first membrane cleaning step can be removed, and membrane filtration performance can be recovered.

ここで、第2の薬液に含まれる「第1の薬液と同じ種類の薬剤」とは、第1の薬液に含まれる1または複数の薬剤のうち、モル濃度で最も大きい薬剤が第2の薬液にも含まれていることを指す。このとき、薬液のpHや薬液に含まれる他成分の影響によって、水素イオン(H)や水酸化物イオン(OH)が電離・結合しているものも同じ種類の薬剤であるとする。 Here, “the same type of drug as the first drug solution” included in the second drug solution means that the drug having the largest molar concentration among the one or more drugs included in the first drug solution is the second drug solution. It also includes that. At this time, it is assumed that the drugs of the same kind are ionized and bonded with hydrogen ions (H + ) and hydroxide ions (OH ) due to the pH of the chemical solution and the influence of other components contained in the chemical solution.

また、膜ろ過水9は、半透膜処理することが好ましい。図1では、膜ろ過水9は高圧ポンプ41を介して半透膜装置40に供給され、半透膜装置40に内蔵される半透膜によって処理されることで、膜ろ過水9より塩濃度が小さい半透膜透過水42と、膜ろ過水9より塩濃度が大きい半透膜濃縮水43とに分離される。この処理によって、得られる半透膜透過水42は、工業用水、農業用水、灌漑用水、地下水補給水、間接飲料水、修景用水などに利用可能である。   The membrane filtrate 9 is preferably subjected to a semipermeable membrane treatment. In FIG. 1, the membrane filtrate 9 is supplied to the semipermeable membrane device 40 via the high-pressure pump 41 and processed by the semipermeable membrane incorporated in the semipermeable membrane device 40, so that the salt concentration is higher than the membrane filtrate 9. Is separated into a semipermeable membrane permeated water 42 having a small salt concentration and a semipermeable membrane concentrated water 43 having a salt concentration larger than that of the membrane filtrate 9. The semipermeable membrane permeated water 42 obtained by this treatment can be used for industrial water, agricultural water, irrigation water, groundwater replenishment water, indirect drinking water, landscape water, and the like.

ここで、有機性廃水1は、有機物を含有する廃水であれば特に限定されるものではなく、例えば、下水、農村集落廃水、有機系の産業廃水等が挙げられる。有機性廃水は水で希釈されていてもよい。   Here, the organic waste water 1 is not particularly limited as long as it is a waste water containing organic matter, and examples thereof include sewage, rural settlement waste water, and organic industrial waste water. The organic waste water may be diluted with water.

微生物含有液は、活性汚泥2に例示されるように、微生物を含んでいる液体であれば、微生物の種類や濃度などは特に限定しない。有機性廃水に含まれる有機物を効率良く処理できる微生物あるいは微生物群集構造であることが好ましく、通常、有機性廃水の注入によって馴養できる。   As long as the microorganism-containing liquid is a liquid containing microorganisms as exemplified by the activated sludge 2, the type and concentration of microorganisms are not particularly limited. It is preferably a microorganism or microbial community structure that can efficiently treat organic substances contained in organic wastewater, and can usually be acclimatized by injecting organic wastewater.

処理槽3は、活性汚泥2などの微生物含有液を貯留できるものであれば、形状および素材は特に限定されない。一般的には、矩形のコンクリート製もしくは鋼板製が良く用いられる。   The shape and material of the treatment tank 3 are not particularly limited as long as the treatment tank 3 can store a microorganism-containing liquid such as the activated sludge 2. In general, rectangular concrete or steel plate is often used.

膜分離装置4は、図1では膜5で示されるシート状膜が、その膜面が上下方向に平行となり、また互いの膜面同士が所定の間隔を空けて平行となるように並列に配置されている。例えば、図2に示すように、樹脂や金属等で形成されたフレーム401の表裏両面に、シート状の分離膜5を配置し、分離膜5とフレーム401で囲まれた内部空間に連通する処理水出口402をフレーム401の上部に設けた構造の膜エレメント400を、隣り合う膜5が所定の間隔を空けるように複数配置されている構造などがある。シート状膜の鉛直下方部には、散気装置6が配置されている。散気装置6は、ブロア7などのガス供給装置によって供給されたガスを気泡として散気させる構造であればよい。例えば、配管に孔を設けたものや、ゴムシートに微細スリットを設けた微細気泡散気管などが適用できる。   The membrane separation device 4 is arranged in parallel so that the sheet-like membrane shown by the membrane 5 in FIG. 1 is parallel to the membrane surface in the vertical direction, and the membrane surfaces are parallel to each other with a predetermined interval. Has been. For example, as shown in FIG. 2, a sheet-like separation membrane 5 is disposed on both the front and back surfaces of a frame 401 formed of resin, metal, or the like, and communicates with the internal space surrounded by the separation membrane 5 and the frame 401. There is a structure in which a plurality of membrane elements 400 having a structure in which a water outlet 402 is provided on an upper portion of a frame 401 are arranged so that adjacent membranes 5 are spaced apart from each other. An air diffuser 6 is disposed in a vertically lower part of the sheet-like film. The air diffuser 6 may have any structure that diffuses gas supplied by a gas supply device such as the blower 7 as bubbles. For example, a pipe provided with a hole or a fine bubble diffuser pipe provided with a fine slit in a rubber sheet can be applied.

本発明では、膜5はシート状の分離膜である。1次側の面積が2次側より大きい中空糸膜とは異なり、シート状膜は、膜の1次側と2次側の面積が同じであるため、シート状膜を用いることによって、ろ過水流路側から注入した第1の薬液および第2の薬液が、短時間でも効率よく膜細孔および膜表面に拡散浸透し、膜に付着した汚れ成分の洗浄効果を高められる。特にシート状膜のろ過抵抗が小さい方が薬液の浸透速度が高く、洗浄効果が高まるため、シート状膜が多層構造からなり、有機性廃水側の膜表面における平均細孔径が、ろ過水流路側の膜表面における平均細孔径よりも小さいことが好ましい。   In the present invention, the membrane 5 is a sheet-like separation membrane. Unlike hollow fiber membranes, where the primary side area is larger than the secondary side, the sheet-like membrane has the same area on the primary side and secondary side of the membrane. The first chemical solution and the second chemical solution injected from the roadside efficiently diffuse and penetrate into the membrane pores and the membrane surface even in a short time, and the cleaning effect of the dirt component adhering to the membrane can be enhanced. In particular, the smaller the filtration resistance of the sheet membrane, the higher the permeation rate of the chemical solution and the higher the cleaning effect, so the sheet membrane has a multilayer structure, and the average pore diameter on the membrane surface on the organic waste water side is It is preferably smaller than the average pore diameter on the membrane surface.

また、シート状膜の膜表面における平均細孔径が0.01μm以上0.2μm以下であることが好ましい。平均細孔径が0.01μm以上では、膜ろ過抵抗の増加を抑制し、膜ろ過工程でのろ過効率が向上するだけでなく、洗浄工程での薬液浸透が大きくなり、洗浄効果が向上する。また、被ろ過液である微生物含有液には微生物が含まれているが、平均細孔径が0.2μm以下であれば、微生物は基本的に膜細孔内部に侵入することはなく膜表面に留まる。即ち、膜細孔内部の汚染物質は、微生物代謝産物や微小未処理物質などであり、汚染物質量は小さくなるため、洗浄に必要な薬液量が小さくて済む。つまり、薬液濃度が小さく高頻度で実施する第1の洗浄工程での洗浄効果が高くなる。また、第1および第2の膜洗浄工程終了後に膜ろ過工程を開始した際、膜洗浄工程終了直後から一定時間、膜ろ過水の水質が悪化する傾向がある。平均細孔径が大きいほど、この水質悪化の度合いが大きく、回復するまでに要する時間は長くなり、膜ろ過水を半透膜処理する場合、水質が回復するまでは半透膜処理できなくなり、半透膜処理量が小さく稼働率が低下してしまう。特に、平均細孔径が0.2μmを超えると、膜細孔への微生物の侵入有無が重要であるため、その影響は大きくなる。したがって、平均細孔径が0.2μm以下のシート状膜を利用することで、膜洗浄工程終了後の水質回復時間が短くなり、半透膜処理稼働率を高く維持できる。   Moreover, it is preferable that the average pore diameter in the film | membrane surface of a sheet-like film | membrane is 0.01 micrometer or more and 0.2 micrometers or less. When the average pore diameter is 0.01 μm or more, an increase in membrane filtration resistance is suppressed and not only the filtration efficiency in the membrane filtration step is improved, but also the chemical solution penetration in the washing step is increased, and the washing effect is improved. In addition, the microorganism-containing liquid which is the liquid to be filtered contains microorganisms, but if the average pore diameter is 0.2 μm or less, the microorganisms basically do not enter the inside of the membrane pores and do not enter the membrane surface. stay. That is, the contaminants inside the membrane pores are microbial metabolites, minute untreated substances, and the like, and the amount of contaminants is small, so that the amount of chemicals required for cleaning can be small. That is, the cleaning effect in the first cleaning process performed with a small chemical solution concentration and high frequency is increased. Moreover, when the membrane filtration process is started after the completion of the first and second membrane cleaning processes, the quality of the membrane filtrate water tends to deteriorate for a certain time immediately after the completion of the membrane cleaning process. The larger the average pore diameter, the greater the degree of water quality deterioration and the longer it takes to recover.When membrane filtration water is subjected to semipermeable membrane treatment, semipermeable membrane treatment cannot be performed until the water quality is restored. The amount of permeable membrane treatment is small and the operating rate is lowered. In particular, when the average pore diameter exceeds 0.2 μm, since the presence or absence of microorganisms into the membrane pores is important, the influence becomes large. Therefore, by using a sheet-like membrane having an average pore diameter of 0.2 μm or less, the water quality recovery time after completion of the membrane cleaning step is shortened, and the semipermeable membrane treatment operation rate can be maintained high.

なお、シート状膜の材質としては、例えばポリエチレン、ポリプロピレン、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリスルホン、ポリエーテルスルホン(PES)、ポリエーテル−エーテルケトン(PEEK)、ポリフェニレンスルフィドスルホン(PPSS)、ポリフェニレンスルホン(PPSO)、ポリビニルアルコール、セルロースアセテート、ポリアクリロニトリル、ポリアミド、ポリイミドなどの有機物、セラミック、金属などの無機物等を挙げることができる。特に、耐薬品性に優れているポリフッ化ビニリデン(PVDF)膜が好ましい。   Examples of the material for the sheet-like film include polyethylene, polypropylene, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polysulfone, polyethersulfone (PES), polyether-etherketone (PEEK), and polyphenylene sulfide. Examples thereof include organic substances such as sulfone (PPSS), polyphenylene sulfone (PPSO), polyvinyl alcohol, cellulose acetate, polyacrylonitrile, polyamide, and polyimide, and inorganic substances such as ceramic and metal. In particular, a polyvinylidene fluoride (PVDF) film having excellent chemical resistance is preferable.

ここで、本発明では、膜表面の平均細孔径は分離膜表層部における細孔径の平均値であり、走査型電子顕微鏡観察によって分離膜の表面を観察し、得られた画像から、分離膜の表面に観察される孔径を測定し、その平均値を平均細孔径とする。   Here, in the present invention, the average pore diameter of the membrane surface is the average value of the pore diameter in the surface portion of the separation membrane, and the surface of the separation membrane is observed by observation with a scanning electron microscope. The pore diameter observed on the surface is measured, and the average value is defined as the average pore diameter.

第1の薬液10および第2の薬液20は、酸、アルカリ、酸化剤からなる群から選ばれる1種以上の薬剤を含む。酸にはクエン酸、シュウ酸、硫酸、アルカリには苛性ソーダ、酸化剤には次亜塩素酸ソーダ、クロラミンなどが好適に利用される。微生物含有液には有機物が多く含まれるので、コストと洗浄効果から次亜塩素酸ソーダが特に好適である。   The 1st chemical | medical solution 10 and the 2nd chemical | medical solution 20 contain 1 or more types of chemical | medical agents chosen from the group which consists of an acid, an alkali, and an oxidizing agent. As the acid, citric acid, oxalic acid, sulfuric acid, caustic soda as the alkali, and sodium hypochlorite, chloramine as the oxidizing agent are preferably used. Since the microorganism-containing liquid contains a large amount of organic substances, sodium hypochlorite is particularly suitable from the viewpoint of cost and cleaning effect.

第1の薬液および前記第2の薬液は、図1ではそれぞれポンプ11およびポンプ22によってろ過水流路側に注入されるが、このとき、ポンプに依らず重力差を利用して注入してもよい。   In FIG. 1, the first chemical solution and the second chemical solution are injected into the filtrate flow path side by the pump 11 and the pump 22, respectively. However, at this time, the first chemical solution and the second chemical solution may be injected using a gravity difference regardless of the pump.

また、第1の薬液の注入速度および第2の薬液の注入速度が、膜ろ過工程における膜ろ過速度より小さいことが好ましい。これにより、薬液が効率よく膜汚染物質に接触し薬液が有効活用できるだけでなく、微生物含有液に流出してしまう薬液量を抑制し、薬液による微生物の損傷、不活化、死滅などを抑制できる。   Moreover, it is preferable that the injection | pouring rate of a 1st chemical | medical solution and the injection | pouring rate of a 2nd chemical | medical solution are smaller than the membrane filtration rate in a membrane filtration process. Thereby, not only can the chemical solution contact the membrane contaminant efficiently and the chemical solution can be effectively utilized, but also the amount of the chemical solution that flows out into the microorganism-containing liquid can be suppressed, and damage, inactivation, death, etc. of the microorganism due to the chemical solution can be suppressed.

また、第2の薬液における薬剤濃度が、第1の薬液における薬剤濃度の4倍以上40倍以下であることも好ましい。4倍より小さい場合には、第1の薬液濃度が高すぎるため、膜を通して微生物含有液に流出する薬液量が多くなり、微生物の損傷、不活化、死滅を招いてしまい、その後の微生物含有液の膜ろ過性の低下を招いてしまったり、全体として使用する薬液量が多くなってしまい、薬液量削減効果が得られなくなったりする。もしくは、第2の薬液濃度が低すぎるため、第1の膜洗浄工程でも残存する膜汚染物質が第2の膜洗浄工程でも除去できない場合が多い。一方、40倍より大きい場合には、第1の薬液濃度が低すぎるため、第1の膜洗浄工程での膜洗浄効果が小さく、高フラックスでの安定運転ができなくなってしまう場合がある。もしくは、第2の薬液濃度が高すぎるため、第1の薬液濃度が高すぎるため、膜を通して微生物含有液に流出する薬液量が多くなり、微生物の損傷、不活化、死滅を招いてしまい、その後の微生物含有液の膜ろ過性の低下を招いてしまう。例えば、第1および第2の薬液として次亜塩素酸ナトリウムを用いる場合、第2の薬液濃度が4000mg/Lならば、第1の薬液濃度は100〜1000mg/Lに設定することが好ましい。   Moreover, it is also preferable that the chemical | medical agent density | concentration in a 2nd chemical | medical solution is 4 to 40 times the chemical | medical agent concentration in a 1st chemical | medical solution. If the concentration is smaller than four times, the concentration of the first chemical solution is too high, so that the amount of the chemical solution flowing out to the microorganism-containing solution through the membrane increases, leading to damage, inactivation, or death of the microorganism, and the subsequent microorganism-containing solution. The membrane filterability may be deteriorated, or the amount of the chemical solution used as a whole may be increased, and the effect of reducing the chemical amount may not be obtained. Alternatively, since the concentration of the second chemical solution is too low, the film contaminants remaining even in the first film cleaning process cannot often be removed in the second film cleaning process. On the other hand, if it is larger than 40 times, the concentration of the first chemical solution is too low, so that the film cleaning effect in the first film cleaning process is small, and stable operation with high flux may not be possible. Or, since the second chemical concentration is too high, the first chemical concentration is too high, so the amount of chemical flowing out to the microorganism-containing liquid through the membrane increases, leading to damage, inactivation, and death of the microorganism, This causes a decrease in the membrane filterability of the microorganism-containing liquid. For example, when sodium hypochlorite is used as the first and second chemical solutions, if the second chemical concentration is 4000 mg / L, the first chemical concentration is preferably set to 100 to 1000 mg / L.

さらに、第2の膜洗浄工程における保持時間が、第1の膜洗浄工程における保持時間の4倍以上40倍以下であることも好ましい。4倍より小さい場合には、第2の膜洗浄工程で薬液と膜汚染物質が接触する時間が不十分となり、第1の膜洗浄工程でも残存する膜汚染物質が第2の膜洗浄工程でも除去できない場合が多い。もしくは、第1の膜洗浄工程で薬液と膜汚染物質が接触する時間が長すぎるため、膜ろ過を停止する時間が多くなってしまい、非効率的である。一方、40倍より大きい場合には、第1の膜洗浄工程で薬液と膜汚染物質が接触する時間が短すぎるため、第1の膜洗浄工程での膜洗浄効果が小さく、高フラックスでの安定運転ができなくなってしまう場合がある。例えば、第2の洗浄工程における保持時間が4時間の場合、第1の洗浄工程における保持時間は6分〜1時間に設定することが好ましい。   Furthermore, it is preferable that the holding time in the second film cleaning step is not less than 4 times and not more than 40 times the holding time in the first film cleaning step. If it is less than four times, the time for the chemical solution and the membrane contaminants to contact with each other in the second membrane cleaning step becomes insufficient, and the membrane contaminants remaining in the first membrane cleaning step are also removed in the second membrane cleaning step. There are many cases where this is not possible. Alternatively, since the time for the chemical solution and the membrane contaminant to contact in the first membrane cleaning step is too long, the time for stopping the membrane filtration increases, which is inefficient. On the other hand, if it is larger than 40 times, the time for the chemical solution and the film contaminant to contact in the first film cleaning process is too short, so the film cleaning effect in the first film cleaning process is small and stable at high flux. It may become impossible to drive. For example, when the holding time in the second cleaning step is 4 hours, the holding time in the first cleaning step is preferably set to 6 minutes to 1 hour.

また、半透膜処理では、通常、半透膜を収容し、原水(固形分除去水)と透過水(生産水)とを構造的に分離し、透過水を集水する機能を有する膜分離素子が利用される。膜分離素子の形態は特に限定しないが、中空糸膜の場合は、複数の中空糸を束ねて端部を透過水集水部と接着させた構造、平膜の場合は、複数の平膜を封筒状にし、端部を集水管となる中心パイプと接着し、平膜を巻囲して固定したスパイラル型の構造が挙げられる。さらに1以上の膜分離素子を圧力耐久容器内に収容し、原水(固形分除去水)側から加圧することにより、透過水および濃縮水を得ることができる。その際、複数の圧力耐久容器の接続構成(透過水または濃縮水をさらに異なる圧力耐久容器に接続する構成など)、透過水の回収率や濃縮水の濃縮倍率、処理時間、処理温度等の処理条件などは、装置の規模、生産能力、要求水質などによって種々適宜変更される。半透膜の材質としては、例えば酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマー等の高分子材料が挙げられる。またその膜構造としては膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜、非対称膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合膜等が挙げられる。   In the semipermeable membrane treatment, the membrane separation usually has a function of containing the semipermeable membrane, structurally separating the raw water (solid content removal water) and the permeated water (product water), and collecting the permeated water. Elements are used. The form of the membrane separation element is not particularly limited. However, in the case of a hollow fiber membrane, a structure in which a plurality of hollow fibers are bundled and an end is bonded to a permeate collecting part. Examples include a spiral structure in which an envelope is formed, an end is bonded to a central pipe serving as a water collecting pipe, and a flat membrane is wound around and fixed. Furthermore, permeated water and concentrated water can be obtained by accommodating one or more membrane separation elements in a pressure-resistant container and pressurizing from the raw water (solid content removal water) side. At that time, the connection configuration of multiple pressure-resistant containers (such as a configuration in which permeated water or concentrated water is connected to a different pressure-resistant container), recovery rate of permeated water, concentration rate of concentrated water, processing time, processing temperature, etc. Conditions and the like are variously changed depending on the scale of the apparatus, production capacity, required water quality, and the like. Examples of the material of the semipermeable membrane include polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, and vinyl polymer. In addition, the membrane structure has a dense layer on at least one side of the membrane, and an asymmetric membrane having fine pores with gradually increasing pore diameters from the dense layer to the inside of the membrane or the other side, and a dense membrane on the asymmetric membrane. And a composite membrane having a very thin separation functional layer formed of the above material.

1 有機性廃水
2 活性汚泥
3,3a 処理槽
4 膜分離装置
5 膜
6 散気装置
7 ブロア
8,11,21,32 ポンプ
9 膜ろ過水
10 第1の薬液
20 第2の薬液
31 汚泥循環ライン
40 半透膜装置
41 高圧ポンプ
42 半透膜透過水
43 半透膜濃縮水
400 膜エレメント
401 フレーム
402 処理水出口
DESCRIPTION OF SYMBOLS 1 Organic waste water 2 Activated sludge 3, 3a Treatment tank 4 Membrane separation device 5 Membrane 6 Air diffuser 7 Blower 8, 11, 21, 32 Pump 9 Membrane filtrate 10 First chemical solution 20 Second chemical solution 31 Sludge circulation line 40 Semipermeable membrane device 41 High pressure pump 42 Semipermeable membrane permeated water 43 Semipermeable membrane concentrated water 400 Membrane element 401 Frame 402 Treated water outlet

Claims (7)

有機性廃水が注入されてなる微生物含有液を貯留した処理槽内にシート状膜を含む膜分離装置が浸漬設置され、前記シート状膜で膜ろ過処理を行うことでろ過水を得る膜ろ過工程を含む有機性廃水の処理方法であって、
前記シート状膜のろ過水流路側に、酸、アルカリ、酸化剤からなる群から選ばれる1種以上の薬剤を含む第1の薬液を注入後、前記第1の薬液の注入および前記膜ろ過処理を停止した状態で、所定時間保持する第1の膜洗浄工程と、
前記シート状膜のろ過水流路側に、前記第1の薬液と同じ種類の薬剤を前記第1の薬液よりも高濃度で含む第2の薬液を注入後、前記第2の薬液の注入および前記膜ろ過処理を停止した状態で、前記第1の膜洗浄工程よりも長時間保持する第2の膜洗浄工程とを含み、
前記膜ろ過工程と前記第1の膜洗浄工程とを交互に複数回実施した後、前記第2の膜洗浄工程を実施することを特徴とするシート状膜の有機性廃水の処理方法。
A membrane filtration step in which a membrane separation device including a sheet-like membrane is immersed in a treatment tank storing a microorganism-containing liquid into which organic waste water is injected, and membrane filtration is performed with the sheet-like membrane to obtain filtered water A method for treating organic wastewater containing
After injecting the first chemical liquid containing one or more kinds of drugs selected from the group consisting of acids, alkalis, and oxidants into the filtered water flow path side of the sheet-like membrane, the injection of the first chemical liquid and the membrane filtration treatment are performed. A first film cleaning step of holding for a predetermined time in a stopped state;
After injecting a second chemical solution containing the same type of drug as the first chemical solution at a higher concentration than the first chemical solution into the filtered water flow path side of the sheet-like membrane, the injection of the second chemical solution and the membrane Including a second membrane cleaning step of holding the filtration process for a longer time than the first membrane cleaning step,
An organic wastewater treatment method for a sheet-like membrane, wherein the membrane filtration step and the first membrane washing step are alternately carried out a plurality of times, and then the second membrane washing step is carried out.
前記第1の薬液の注入速度および前記第2の薬液の注入速度が、前記膜ろ過工程における膜ろ過速度より小さいことを特徴とする請求項1に記載のシート状膜の有機性廃水の処理方法。 The method for treating organic wastewater of a sheet-like membrane according to claim 1, wherein the injection rate of the first chemical solution and the injection rate of the second chemical solution are smaller than the membrane filtration rate in the membrane filtration step. . 前記第2の薬液における薬剤濃度が、前記第1の薬液における薬剤濃度の4倍以上40倍以下であることを特徴とする請求項1または2に記載のシート状膜の有機性廃水の処理方法。 3. The method for treating organic wastewater of a sheet-like film according to claim 1, wherein the drug concentration in the second chemical solution is 4 to 40 times the drug concentration in the first chemical solution. . 前記第2の膜洗浄工程における保持時間が、前記第1の膜洗浄工程における保持時間の4倍以上40倍以下であることを特徴とする請求項1〜3のいずれかに記載のシート状膜の有機性廃水の処理方法。 The sheet-like film according to any one of claims 1 to 3, wherein the holding time in the second film cleaning step is 4 to 40 times the holding time in the first film cleaning step. Treatment method of organic wastewater. 前記シート状膜の膜表面における平均細孔径が0.01μm以上0.2μm以下であることを特徴とする請求項1〜4のいずれかに記載のシート状膜の有機性廃水の処理方法。 The method for treating organic wastewater of a sheet-like membrane according to any one of claims 1 to 4, wherein an average pore diameter on the membrane surface of the sheet-like membrane is 0.01 µm or more and 0.2 µm or less. 前記シート状膜が、多層構造からなり、有機性廃水側の膜表面における平均細孔径が、ろ過水流路側の膜表面における平均細孔径よりも小さいことを特徴とする請求項1〜5のいずれかに記載のシート状膜の有機性廃水の処理方法。 The sheet-like membrane has a multilayer structure, and the average pore size on the membrane surface on the organic waste water side is smaller than the average pore size on the membrane surface on the filtrate channel side. The processing method of the organic waste water of the sheet-like film | membrane as described in 2. 前記ろ過水を半透膜処理することを特徴とする請求項1〜6のいずれかに記載のシート状膜の有機性廃水の処理方法。 The method for treating organic wastewater of a sheet-like membrane according to any one of claims 1 to 6, wherein the filtrate is subjected to a semipermeable membrane treatment.
JP2013012959A 2013-01-28 2013-01-28 Method for treating organic waste water Pending JP2014144389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013012959A JP2014144389A (en) 2013-01-28 2013-01-28 Method for treating organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013012959A JP2014144389A (en) 2013-01-28 2013-01-28 Method for treating organic waste water

Publications (1)

Publication Number Publication Date
JP2014144389A true JP2014144389A (en) 2014-08-14

Family

ID=51425113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013012959A Pending JP2014144389A (en) 2013-01-28 2013-01-28 Method for treating organic waste water

Country Status (1)

Country Link
JP (1) JP2014144389A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105129972A (en) * 2015-08-17 2015-12-09 北京金控数据技术股份有限公司 Optimized chemical dosing method of membrane subassembly backwashing of membrane bioreactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105129972A (en) * 2015-08-17 2015-12-09 北京金控数据技术股份有限公司 Optimized chemical dosing method of membrane subassembly backwashing of membrane bioreactor

Similar Documents

Publication Publication Date Title
JP5453711B2 (en) Cleaning method for external pressure hollow fiber membrane module
EP1885475B1 (en) Chemical clean for membrane filter
WO2012147715A1 (en) Method for cleaning membrane module
CN115121124A (en) Method and apparatus for cleaning filtration membrane, and water treatment system
WO2012077506A1 (en) Chemical cleaning method for immersed membrane element
WO2015156242A1 (en) Water treatment method and water treatment apparatus each using membrane
JP5467793B2 (en) Operation method of submerged membrane separator
WO2011158559A1 (en) Method for cleaning membrane modules
JP4867180B2 (en) Immersion membrane separator and chemical cleaning method therefor
JPWO2012098969A1 (en) Membrane module cleaning method, fresh water generation method and fresh water generation device
JP2009247936A (en) Method of inline-cleaning immersion type membrane-separation device
WO2014192433A1 (en) Filtration device and immersed filtration method using same
JP5024158B2 (en) Membrane filtration method
JP2009101349A (en) Cleaning method of immersion type membrane module
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP2014144389A (en) Method for treating organic waste water
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP2009214062A (en) Operation method of immersion type membrane module
JP2011041907A (en) Water treatment system
JP2008302333A (en) Method and apparatus for production of fresh water
JP5119989B2 (en) Storage method of solid-liquid separation membrane
JP5251472B2 (en) Membrane module cleaning method
JP2004130307A (en) Method for filtration of hollow fiber membrane
JP2005103510A (en) Method for cleaning liquid chemical
JP4853454B2 (en) Removal method of filtration membrane element