JP2014143258A - Surface-mounting type semiconductor device - Google Patents

Surface-mounting type semiconductor device Download PDF

Info

Publication number
JP2014143258A
JP2014143258A JP2013009821A JP2013009821A JP2014143258A JP 2014143258 A JP2014143258 A JP 2014143258A JP 2013009821 A JP2013009821 A JP 2013009821A JP 2013009821 A JP2013009821 A JP 2013009821A JP 2014143258 A JP2014143258 A JP 2014143258A
Authority
JP
Japan
Prior art keywords
conductivity type
type semiconductor
semiconductor region
current density
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013009821A
Other languages
Japanese (ja)
Inventor
Miya Yamazaki
みや 山崎
Yutaka Shogetsu
豊 松月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Origin Electric Co Ltd
Original Assignee
Origin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Origin Electric Co Ltd filed Critical Origin Electric Co Ltd
Priority to JP2013009821A priority Critical patent/JP2014143258A/en
Publication of JP2014143258A publication Critical patent/JP2014143258A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-mounting type semiconductor device capable of alleviating partial current concentration at reverse blocking, and of being miniaturized.SOLUTION: On one surface side of a single first conductivity type semiconductor substrate, a second conductivity type first semiconductor region having an opposite conductivity type to the first conductivity type is formed. Similarly, on one surface side of the single first conductivity type semiconductor substrate, a second conductivity type second semiconductor region is formed separately from the first semiconductor region. On the other surface side of the single first conductivity type semiconductor substrate, a low-resistive layer is formed to alleviate partial current concentration at reverse blocking.

Description

本発明は、2つの半導体素子を単一の半導体上に面実装した面実装型半導体装置に関する。   The present invention relates to a surface-mount type semiconductor device in which two semiconductor elements are surface-mounted on a single semiconductor.

面実装型半導体装置は、半導体素子のPN接合による2個のダイオードを形成し、2個のダイオードを接続導体を用いて逆方向に接続し、逆方向ドロップを利用して双方向バリスタやサージ吸収素子として用いられるものである。この場合、2個のダイオードを接続導体を用いて接続する構造では、部品点数が多く組立治具の構造が複雑になるだけでなく、ハンダ工程を含む組立工程が多くなる。そこで、単一のN形半導体上に2つのPN接合を形成し、同一の半導体素子とすることで、製造が容易で薄形とした面実装型半導体装置がある(特許文献1参照)。   A surface-mount type semiconductor device forms two diodes by PN junction of semiconductor elements, connects the two diodes in the reverse direction using a connection conductor, and uses a reverse drop to absorb a bidirectional varistor or surge absorber. It is used as an element. In this case, in the structure in which two diodes are connected using the connection conductor, not only the number of parts is large and the structure of the assembly jig is complicated, but also the assembly process including the solder process is increased. Therefore, there is a surface-mount type semiconductor device that is easy to manufacture and thin by forming two PN junctions on a single N-type semiconductor to form the same semiconductor element (see Patent Document 1).

図5は、単一の半導体に2つ半導体素子を面実装した面実装型半導体装置の構造図である。単一のN層半導体基板11に2つのP層半導体領域12a、12bを形成し、2つのPN接合による半導体素子を形成している。P層半導体領域12a、12bにはアノード電極13a、13bが取り付けられ、N層半導体基板11は、P層半導体領域12aとのPN接合と、P層半導体領域12bとのPN接合とを直接つなげる構造となっているのでカソード電極は省略され、逆方向に直接接続されている。これにより、カソード電極を形成する工程と、カソード電極を接続する工程を省略することができ、アセンブリ工程の簡略化を実現している。   FIG. 5 is a structural diagram of a surface-mounting type semiconductor device in which two semiconductor elements are surface-mounted on a single semiconductor. Two P-layer semiconductor regions 12a and 12b are formed on a single N-layer semiconductor substrate 11 to form a semiconductor element having two PN junctions. Anode electrodes 13a and 13b are attached to the P layer semiconductor regions 12a and 12b, and the N layer semiconductor substrate 11 directly connects the PN junction with the P layer semiconductor region 12a and the PN junction with the P layer semiconductor region 12b. Therefore, the cathode electrode is omitted and is directly connected in the reverse direction. Thereby, the process of forming the cathode electrode and the process of connecting the cathode electrode can be omitted, and the assembly process is simplified.

そして、アノード電極13aとアノード電極13bとの間に、アノード電極13b側のN層半導体基板11及びP層半導体領域12bによるPN接合の降伏電圧以上の電圧が印加されると(サージ吸収時には)、矢印に示すように、アノード電極13aから、P層半導体領域12a、N層半導体基板11、P層半導体領域12bを通って、アノード電極13bに電流Iが流れる。これにより、面実装型半導体装置はサージ吸収素子として働く。   When a voltage higher than the breakdown voltage of the PN junction by the N layer semiconductor substrate 11 and the P layer semiconductor region 12b on the anode electrode 13b side is applied between the anode electrode 13a and the anode electrode 13b (at the time of surge absorption), As indicated by an arrow, a current I flows from the anode electrode 13a to the anode electrode 13b through the P layer semiconductor region 12a, the N layer semiconductor substrate 11, and the P layer semiconductor region 12b. As a result, the surface mount semiconductor device functions as a surge absorbing element.

特許第3238825号公報Japanese Patent No. 3238825

しかし、図5に示す面実装型半導体装置の小型化を図るべく、図6に示すように、アノード電極13aとアノード電極13bとの間の距離を短くした場合、逆方向阻止時にはアノード電極13bのP層半導体領域12bの端部12b1に電流Iが集中し、破壊が起こるという問題がある。   However, when the distance between the anode electrode 13a and the anode electrode 13b is shortened as shown in FIG. 6 in order to reduce the size of the surface mount semiconductor device shown in FIG. There is a problem that the current I concentrates on the end portion 12b1 of the P-layer semiconductor region 12b, causing destruction.

すなわち、逆方向阻止時には、P層半導体領域12aとP層半導体領域12bとの距離が短いところに電流が集中しやすいため、P層半導体領域12bの端部12b1の電流密度が上がり、部品の信頼性が低くなるという問題がある。   That is, at the time of blocking in the reverse direction, current tends to concentrate at a short distance between the P-layer semiconductor region 12a and the P-layer semiconductor region 12b. There is a problem that the property becomes low.

本発明の目的は、逆方向阻止時に部分的な電流集中を緩和でき、しかも小型化を図ることができる面実装型半導体装置を提供することである。   An object of the present invention is to provide a surface-mounting type semiconductor device that can alleviate partial current concentration when blocking in the reverse direction and that can be reduced in size.

請求項1の発明に係る面実装型半導体装置は、単一の第一導電型の半導体基板の一方の面側に形成され前記第一導電型とは逆の導電型である第二導電型の第1の半導体領域と、前記単一の第一導電型の半導体基板の一方の面側に前記第1の半導体領域と離れて形成された第二導電型の第2の半導体領域と、前記単一の第一導電型の半導体基板の他方の面側に形成された低抵抗層とを備えたことを特徴とする。   The surface mount type semiconductor device according to the invention of claim 1 is a second conductivity type formed on one surface side of a single first conductivity type semiconductor substrate and having a conductivity type opposite to the first conductivity type. A first semiconductor region; a second semiconductor region of a second conductivity type formed on one surface side of the single semiconductor substrate of the first conductivity type and spaced apart from the first semiconductor region; And a low resistance layer formed on the other surface side of the first conductive type semiconductor substrate.

請求項2の発明に係る面実装型半導体装置は、請求項1の発明において、前記低抵抗層は、前記単一の第一導電型の半導体基板の半導体より、高不純物濃度で低抵抗の第一導電型層または導体であることを特徴とする。   According to a second aspect of the present invention, there is provided a surface mount type semiconductor device according to the first aspect of the invention, wherein the low resistance layer has a higher impurity concentration and lower resistance than the semiconductor of the single first conductivity type semiconductor substrate. It is one conductivity type layer or conductor.

請求項3の発明に係る面実装型半導体装置は、請求項1または2の発明において、前記低抵抗層の厚さは、前記低抵抗層を厚くしていったとき、前記第二導電型の第1の半導体領域または前記第二導電型の第2の半導体領域の電流集中発生箇所の電流密度が収束するときの電流密度を基準にして許容電流密度範囲を定め、その許容電流密度範囲を満たす厚さとすることを特徴とする。   According to a third aspect of the present invention, there is provided the surface mount type semiconductor device according to the first or second aspect of the invention, wherein the thickness of the low resistance layer is the second conductivity type when the low resistance layer is increased. An allowable current density range is defined based on the current density when the current density at the current concentration occurrence point of the first semiconductor region or the second conductivity type second semiconductor region converges, and the allowable current density range is satisfied. It is characterized by a thickness.

請求項1の発明によれば、単一の第一導電型の半導体基板の他方の面側に低抵抗層を形成するので、逆方向阻止時には低抵抗層に電流を分散することができる。従って、電流密度を低く抑えることができ、局所的な温度上昇を抑えることができるので装置の信頼性を向上できる
請求項2の発明によれば、請求項1の発明の効果に加え、低抵抗層は高不純物濃度で低抵抗の第一導電型層または導体とするので、より電流を分散することができる。導体として金属を用いた場合には放熱性も向上する。
According to the first aspect of the present invention, since the low resistance layer is formed on the other surface side of the single semiconductor substrate of the first conductivity type, current can be dispersed in the low resistance layer when blocking in the reverse direction. Accordingly, the current density can be kept low and the local temperature rise can be restrained, so that the reliability of the apparatus can be improved. According to the invention of claim 2, in addition to the effect of the invention of claim 1, a low resistance Since the layer is a first conductivity type layer or conductor having a high impurity concentration and a low resistance, the current can be more dispersed. When metal is used as the conductor, heat dissipation is also improved.

請求項3の発明によれば、請求項1または2の発明の効果に加え、低抵抗層の厚さは、電流密度が収束するときの電流密度を基準にして定めた許容電流密度範囲を満たす厚さとするので、低抵抗層の厚さは厚くなりすぎず、しかも電流集中を抑制できる。   According to the invention of claim 3, in addition to the effect of the invention of claim 1 or 2, the thickness of the low resistance layer satisfies an allowable current density range determined based on the current density when the current density converges. Because of the thickness, the thickness of the low resistance layer does not become too thick, and current concentration can be suppressed.

本発明の実施形態に係る面実装型半導体装置の実施例1の構成図。The block diagram of Example 1 of the surface-mount type semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る面実装型半導体装置の実施例2の構成図。The block diagram of Example 2 of the surface-mount type semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る面実装型半導体装置の実施例3の構成図。The block diagram of Example 3 of the surface-mount type semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る面実装型半導体装置における低抵抗層厚さと電流集中発生箇所での電流密度との関係を示すグラフ。The graph which shows the relationship between the low resistance layer thickness in the surface mount-type semiconductor device which concerns on embodiment of this invention, and the current density in an electric current concentration generation location. 従来の面実装型半導体装置の一例を示す構造図。FIG. 6 is a structural diagram illustrating an example of a conventional surface-mount semiconductor device. 従来の面実装型半導体装置の小型化を図った場合の一例を示す構造図。FIG. 6 is a structural diagram showing an example when a conventional surface mount semiconductor device is miniaturized.

以下、本発明の実施形態を説明する。以下の説明では、第一導電型の半導体はN型、第二導電型の半導体はP型であるとし、電極はアノード電極であるとして説明する。なお、この逆、つまり、第一導電型の半導体がP型、第二導電型の半導体がN型、電極がカソード電極となるように構成してもよい。   Embodiments of the present invention will be described below. In the following description, it is assumed that the first conductivity type semiconductor is N-type, the second conductivity type semiconductor is P-type, and the electrode is an anode electrode. Note that this may be reversed, that is, the first conductivity type semiconductor may be a P type, the second conductivity type semiconductor may be an N type, and the electrode may be a cathode electrode.

図1は本発明の実施形態に係る面実装型半導体装置の実施例1の構成図である。この第1実施形態は、小型化を図った図6に示す従来例に対し、単一の第一導電型の半導体基板14における第二導電型の半導体領域15a、15b及び電極16a、16bが形成された反対側の面に低抵抗層17を設けたものである。   FIG. 1 is a configuration diagram of Example 1 of a surface-mount semiconductor device according to an embodiment of the present invention. In the first embodiment, the second conductive type semiconductor regions 15a and 15b and the electrodes 16a and 16b in the single first conductive type semiconductor substrate 14 are formed compared to the conventional example shown in FIG. The low resistance layer 17 is provided on the opposite surface.

図1において、単一の第一導電型の半導体基板14の一方面には、第二導電型の第1の半導体領域15a及び第二導電型の第2の半導体領域15bが形成されている。第二導電型の第1の半導体領域15aには電極16aが取り付けられ、第二導電型の第2の半導体領域15bには電極16bが取り付けられている。   In FIG. 1, a second conductive type first semiconductor region 15 a and a second conductive type second semiconductor region 15 b are formed on one surface of a single first conductive type semiconductor substrate 14. An electrode 16a is attached to the second conductivity type first semiconductor region 15a, and an electrode 16b is attached to the second conductivity type second semiconductor region 15b.

電極16a、16bは、例えばアルミニウムAlが用いられるが、電極を形成できる金属であれば、ニッケルNi、金Au、銀Agなどでもよい。   For example, aluminum Al is used for the electrodes 16a and 16b, but nickel Ni, gold Au, silver Ag, or the like may be used as long as the metal can form the electrodes.

第一導電型の半導体基板14の他方面には、第二導電型の半導体領域15aとのPN接合と、第二導電型の半導体領域15bとのPN接合とが、第一導電型の半導体基板14で直接つなげられ、さらに、低抵抗層17でつなげられている。これにより、2つのPN接合の2つの半導体素子(ダイオード)を形成している。図1では、低抵抗層17は導体で形成した場合を示している。導体としては金属が用いられ、例えばアルミニウムAlが用いられるが、ニッケルNi、金Au、銀Agなどでもよい。   On the other surface of the first conductivity type semiconductor substrate 14, a PN junction with the second conductivity type semiconductor region 15a and a PN junction with the second conductivity type semiconductor region 15b are provided. 14, and a low resistance layer 17. Thus, two semiconductor elements (diodes) having two PN junctions are formed. FIG. 1 shows a case where the low resistance layer 17 is formed of a conductor. A metal is used as the conductor. For example, aluminum Al is used, but nickel Ni, gold Au, silver Ag, or the like may be used.

ここで、電極16a、16b間に、PN接合の降伏電圧以上の電圧が印加されると、第1の半導体領域15aの端部15a1や第2の半導体領域15bの端部15b1に電流Iが集中するが、本発明の実施形態の実施例1では、第一導電型の半導体基板14の他方面に低抵抗層17を形成するので、電流集中を抑制できる。   Here, when a voltage higher than the breakdown voltage of the PN junction is applied between the electrodes 16a and 16b, the current I is concentrated on the end 15a1 of the first semiconductor region 15a and the end 15b1 of the second semiconductor region 15b. However, in Example 1 of the embodiment of the present invention, since the low resistance layer 17 is formed on the other surface of the first conductivity type semiconductor substrate 14, current concentration can be suppressed.

例えば、電極16a、16b間に、第一導電型の半導体基板14から第二導電型の半導体領域15bの向きに、PN接合の降伏電圧以上の電圧が印加されると、第一導電型の半導体基板14に電流I1、低抵抗層17に電流I2を分流して流すことができる。これにより、低抵抗層17として導体を用いた場合には、第一導電型の半導体基板14に流れる電流I1は小さくなる。従って、第二導電型の第2の半導体領域15bの端部15b1の電流密度を低く抑えることができ、面実装型半導体装置の小型化を図ることができる。また、低抵抗層17として導体を用いた場合には、放熱性も向上する。   For example, when a voltage higher than the breakdown voltage of the PN junction is applied between the electrodes 16a and 16b in the direction from the first conductive type semiconductor substrate 14 to the second conductive type semiconductor region 15b, the first conductive type semiconductor A current I1 can be supplied to the substrate 14 and a current I2 can be supplied to the low resistance layer 17 in a divided manner. Thereby, when a conductor is used as the low resistance layer 17, the current I1 flowing through the first conductivity type semiconductor substrate 14 is reduced. Therefore, the current density at the end 15b1 of the second conductivity type second semiconductor region 15b can be kept low, and the surface mount semiconductor device can be downsized. Further, when a conductor is used as the low resistance layer 17, heat dissipation is also improved.

次に、図2は本発明の実施形態に係る面実装型半導体装置の実施例2の構成図である。この実施例2は、図1に示した実施例1に対し、低抵抗層17として導体に代えて、高不純物濃度で厚い低抵抗第一導電型層Nとし、第一導電型の半導体基板14は第一導電型層Nとしたものである。 Next, FIG. 2 is a configuration diagram of Example 2 of the surface mount semiconductor device according to the embodiment of the present invention. The second embodiment is different from the first embodiment shown in FIG. 1 in that a low resistance first conductive type layer N + having a high impurity concentration is used instead of the conductor as the low resistance layer 17 and the first conductive type semiconductor substrate is used. 14 is obtained by the first conductivity type layer N-.

この場合も、第一導電型の半導体基板14に電流I3、低抵抗層17に電流I4を分流して流すことができ、第一導電型の半導体基板14に流れる電流I3は、低抵抗層17の厚い低抵抗第一導電型層Nを流れる電流I4より小さくなる。従って、第二導電型の第2の半導体領域15bの端部15b1の電流密度を低く抑えることができ、面実装型半導体装置の小型化を図ることができる。 Also in this case, the current I3 can be shunted through the first conductivity type semiconductor substrate 14 and the current I4 can be shunted through the low resistance layer 17, and the current I3 flowing through the first conductivity type semiconductor substrate 14 is divided into the low resistance layer 17 Less than the current I4 flowing through the thick low resistance first conductivity type layer N + . Therefore, the current density at the end 15b1 of the second conductivity type second semiconductor region 15b can be kept low, and the surface mount semiconductor device can be downsized.

次に、図3は本発明の実施形態に係る面実装型半導体装置の実施例3の構成図である。この実施例3は、図1に示した実施例1に対し、低抵抗層17として、導体18に加えて低抵抗第一導電型層N19を設け、第一導電型の半導体基板14は第一導電型層Nとしたものである。 Next, FIG. 3 is a configuration diagram of Example 3 of the surface mount semiconductor device according to the embodiment of the present invention. The third embodiment is different from the first embodiment shown in FIG. 1 in that a low resistance first conductivity type layer N + 19 is provided in addition to the conductor 18 as the low resistance layer 17. is obtained by the first conductivity type layer N-.

この場合も、第一導電型の半導体基板14に電流I5、低抵抗層17に電流I6を分流して流すことができる。第一導電型の半導体基板14に流れる電流I5は、低抵抗層17の導体18及び低抵抗第一導電型層N19を流れる電流I6より小さくなる。従って、第二導電型の第2の半導体領域15bの端部15b1の電流密度を低く抑えることができ、面実装型半導体装置の小型化を図ることができる。 Also in this case, the current I5 can be shunted through the first conductivity type semiconductor substrate 14 and the current I6 can be shunted through the low resistance layer 17. The current I5 flowing through the first conductivity type semiconductor substrate 14 is smaller than the current I6 flowing through the conductor 18 of the low resistance layer 17 and the low resistance first conductivity type layer N + 19. Therefore, the current density at the end 15b1 of the second conductivity type second semiconductor region 15b can be kept low, and the surface mount semiconductor device can be downsized.

次に、低抵抗層17の厚さについて説明する。図4は、本発明の実施形態に係る面実装型半導体装置における低抵抗層厚さDと電流集中発生箇所での電流密度比J/J0との関係の一例を示すグラフである。   Next, the thickness of the low resistance layer 17 will be described. FIG. 4 is a graph showing an example of the relationship between the low resistance layer thickness D and the current density ratio J / J0 at the location where current concentration occurs in the surface mount semiconductor device according to the embodiment of the present invention.

低抵抗層厚さDと、電流集中発生箇所(例えば、第1の半導体領域15aの端部15a1や第2の半導体領域15bの端部15b1)の電流密度Jとの関係は、低抵抗層17の抵抗値、第一導電型の半導体基板14の厚さや耐量、第二導電型の半導体領域の大きさなどで異なってくる。   The relationship between the low resistance layer thickness D and the current density J at the current concentration occurrence point (for example, the end 15a1 of the first semiconductor region 15a or the end 15b1 of the second semiconductor region 15b) is as follows. Of the first conductivity type semiconductor substrate 14, the thickness and withstand capability of the first conductivity type semiconductor substrate 14, and the size of the second conductivity type semiconductor region.

そこで、低抵抗層厚さDを厚くしていったとき、電流集中箇所の電流密度Jは、Dを∞とした時の電流密度J0に収束していく。したがって、電流密度Jが最も小さくなる電流密度比J/J0の理想値は、Dを∞とした時の「1.00」である。この電流密度Jが収束するときの電流密度J0を基準にして、低抵抗層厚さDの範囲を定める。まず、電流密度Jの許容上限値として電流密度Jb(電流密度比Jb/J0)を定める。この電流密度Jbは電流集中発生箇所で破壊が生じない電流密度に余裕値を減算した値以下に定められる。このときの低抵抗層厚さは図4からDb以上と定まる。一方、現実的な低抵抗層厚さDの限界値を「1.00」とした場合、これを超えないDの値としてDa以下が定まる。これにより、低抵抗層厚さDは厚くなりすぎず、しかも電流集中発生箇所で破壊が生じない電流密度以下となるように定められる。   Therefore, when the thickness D of the low resistance layer is increased, the current density J at the current concentration portion converges to the current density J0 when D is ∞. Therefore, the ideal value of the current density ratio J / J0 at which the current density J is the smallest is “1.00” when D is ∞. The range of the low resistance layer thickness D is determined with reference to the current density J0 when the current density J converges. First, the current density Jb (current density ratio Jb / J0) is determined as the allowable upper limit value of the current density J. This current density Jb is determined to be equal to or less than a value obtained by subtracting a margin value from a current density at which no breakdown occurs at a current concentration occurrence location. The low resistance layer thickness at this time is determined to be Db or more from FIG. On the other hand, when the practical limit value of the low resistance layer thickness D is “1.00”, the value of D not exceeding this is determined to be Da or less. Thereby, the low resistance layer thickness D is determined not to be too thick and to be equal to or less than the current density at which no breakdown occurs at the location where current concentration occurs.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

11…N層半導体基板、12…P層半導体領域、13…アノード電極、14…第一導電型の半導体基板、15…第二導電型の半導体領域、16…電極、17…低抵抗層、18…導体、19…低抵抗第一導電型層 DESCRIPTION OF SYMBOLS 11 ... N layer semiconductor substrate, 12 ... P layer semiconductor region, 13 ... Anode electrode, 14 ... First conductivity type semiconductor substrate, 15 ... Second conductivity type semiconductor region, 16 ... Electrode, 17 ... Low resistance layer, 18 ... conductor, 19 ... low resistance first conductivity type layer

Claims (3)

単一の第一導電型の半導体基板の一方の面側に形成され前記第一導電型とは逆の導電型である第二導電型の第1の半導体領域と、
前記単一の第一導電型の半導体基板の一方の面側に前記第1の半導体領域と離れて形成された第二導電型の第2の半導体領域と、
前記単一の第一導電型の半導体基板の他方の面側に形成された低抵抗層とを備えたことを特徴とする面実装型半導体装置。
A first semiconductor region of a second conductivity type formed on one surface side of a single semiconductor substrate of a first conductivity type and having a conductivity type opposite to the first conductivity type;
A second conductivity type second semiconductor region formed on one surface side of the single first conductivity type semiconductor substrate and spaced apart from the first semiconductor region;
A surface mount type semiconductor device comprising: a low resistance layer formed on the other surface side of the single first conductivity type semiconductor substrate.
前記低抵抗層は、前記単一の第一導電型の半導体基板の半導体より、高不純物濃度で低抵抗の第一導電型層または導体であることを特徴とする請求項1記載の面実装型半導体装置。   2. The surface-mounting type according to claim 1, wherein the low-resistance layer is a first-conductivity-type layer or conductor having a higher impurity concentration and lower resistance than a semiconductor of the single first-conductivity-type semiconductor substrate. Semiconductor device. 前記低抵抗層の厚さは、前記低抵抗層を厚くしていったとき、前記第二導電型の第1の半導体領域または前記第二導電型の第2の半導体領域の電流集中発生箇所の電流密度が収束するときの電流密度を基準にして許容電流密度範囲を定め、その許容電流密度範囲を満たす厚さとすることを特徴とする請求項1または2記載の面実装型半導体装置。   When the thickness of the low-resistance layer is increased, the thickness of the low-resistance layer is the same as that of the current concentration occurrence portion of the second conductive type first semiconductor region or the second conductive type second semiconductor region. 3. The surface-mount type semiconductor device according to claim 1, wherein an allowable current density range is determined with reference to a current density when the current density converges, and the thickness satisfies the allowable current density range.
JP2013009821A 2013-01-23 2013-01-23 Surface-mounting type semiconductor device Pending JP2014143258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013009821A JP2014143258A (en) 2013-01-23 2013-01-23 Surface-mounting type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013009821A JP2014143258A (en) 2013-01-23 2013-01-23 Surface-mounting type semiconductor device

Publications (1)

Publication Number Publication Date
JP2014143258A true JP2014143258A (en) 2014-08-07

Family

ID=51424346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013009821A Pending JP2014143258A (en) 2013-01-23 2013-01-23 Surface-mounting type semiconductor device

Country Status (1)

Country Link
JP (1) JP2014143258A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225875A (en) * 1985-03-29 1986-10-07 Origin Electric Co Ltd Surge absorbing semiconductor device
JPH02156684A (en) * 1988-12-09 1990-06-15 Sanken Electric Co Ltd Composite diode device
JPH07254620A (en) * 1994-03-16 1995-10-03 Origin Electric Co Ltd Surface mounted semiconductor device
JP2012059978A (en) * 2010-09-10 2012-03-22 On Semiconductor Trading Ltd Protective device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225875A (en) * 1985-03-29 1986-10-07 Origin Electric Co Ltd Surge absorbing semiconductor device
JPH02156684A (en) * 1988-12-09 1990-06-15 Sanken Electric Co Ltd Composite diode device
JPH07254620A (en) * 1994-03-16 1995-10-03 Origin Electric Co Ltd Surface mounted semiconductor device
JP2012059978A (en) * 2010-09-10 2012-03-22 On Semiconductor Trading Ltd Protective device

Similar Documents

Publication Publication Date Title
JP6413104B2 (en) Surge protection element
JP2006158185A (en) Power semiconductor device
JP2013115223A (en) Semiconductor device
CN103178817B (en) Semiconductor module
JP2008235856A (en) Semiconductor device
JP2014187086A (en) Semiconductor device
JP2017038020A (en) Semiconductor module
JP2012248736A (en) Semiconductor device
JP2014143258A (en) Surface-mounting type semiconductor device
JP2008172035A (en) Schottky diode
JP5414019B2 (en) Diamond electronic device with barrier height control
JP2012169389A (en) Nitride semiconductor device
JP2019165044A (en) Semiconductor device
JP6123738B2 (en) Semiconductor device
JP2011023527A (en) Semiconductor device
JP2008235588A (en) Schottky barrier diode
JP2014123633A (en) Semiconductor device
JP2018190838A (en) diode
JP2012195428A (en) Composite semiconductor device
JP2010251482A (en) Schottky barrier diode
JP6169908B2 (en) ESD protection circuit
TWM484865U (en) Surge suppressor with negative clamping voltage
JP2016219460A (en) Power semiconductor device
JPH05275687A (en) Planar-type two-terminal bidirectional thyristor
TWI602308B (en) Schottky barrier diode component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150626

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170131