JP2014136865A - Earth-retaining wall and construction method thereof - Google Patents

Earth-retaining wall and construction method thereof Download PDF

Info

Publication number
JP2014136865A
JP2014136865A JP2013004266A JP2013004266A JP2014136865A JP 2014136865 A JP2014136865 A JP 2014136865A JP 2013004266 A JP2013004266 A JP 2013004266A JP 2013004266 A JP2013004266 A JP 2013004266A JP 2014136865 A JP2014136865 A JP 2014136865A
Authority
JP
Japan
Prior art keywords
improvement body
ground improvement
retaining wall
ground
underground structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013004266A
Other languages
Japanese (ja)
Other versions
JP6142538B2 (en
Inventor
Kazuhiro Takizawa
和博 瀧澤
Hideki Ishikawa
秀輝 石川
Yusuke Yamashita
勇介 山下
Masanari Noritake
賢成 則武
Junichi Hirose
淳一 廣瀬
Eisaku Kobashi
栄作 小橋
Atsushi Mizutani
篤 水谷
Akihiro Iwata
曉洋 岩田
Yuichi Okoshi
雄一 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Tokyo Electric Power Company Holdings Inc
Original Assignee
Taisei Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Tokyo Electric Power Co Inc filed Critical Taisei Corp
Priority to JP2013004266A priority Critical patent/JP6142538B2/en
Publication of JP2014136865A publication Critical patent/JP2014136865A/en
Application granted granted Critical
Publication of JP6142538B2 publication Critical patent/JP6142538B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an earth-retaining wall capable of shortening a construction term while reducing construction costs.SOLUTION: An earth-retaining wall 1 is constructed surrounding an underground structure 2. The earth-retaining wall 1 comprises: a soil improvement body 10 constructed by ground-improving a ground 3 around the underground structure 2; and steel materials 20 extending substantially in the vertical direction along a wall surface of the soil improvement body 10 on the side opposite to the underground structure 2, and embedded in a ground 3 directly under the soil improvement body 10. Bending tensile force applied to the earth-retaining wall 1 is borne by the steel materials 20. Thus, it is not necessary to enlarge the thickness of the soil improvement body as before and the soil improvement body 10 becomes small in thickness, thereby shortening a construction term while reducing construction costs.

Description

本発明は、山留め壁およびその構築方法に関する。   The present invention relates to a retaining wall and a construction method thereof.

従来より、発電所などの地下構造物を構築するための山留め壁として、地盤改良山留めが提案されている。この地盤改良山留めは、地下構造物の周囲の地盤を地盤改良した地盤改良体である(特許文献1、2参照)。この地盤改良体の厚さは、地盤改良体に作用する転倒モーメント、せん断力、曲げ引張り力を計算し、これらに対する耐力を確保できるように設定される。   Conventionally, ground improvement mountain retaining has been proposed as a retaining wall for constructing underground structures such as power plants. This ground improvement mountain retaining is a ground improvement body obtained by improving the ground around the underground structure (see Patent Documents 1 and 2). The thickness of the ground improvement body is set so that the overturning moment, shearing force and bending tensile force acting on the ground improvement body can be calculated and the yield strength against these can be secured.

特開2002−206239号公報JP 2002-206239 A 特開平11−81317号公報Japanese Patent Laid-Open No. 11-81317

ところで、この地盤改良体の厚さを決定するプロセスにおいては、曲げ引張り力に対する地盤改良体の耐力が最も厳しくなることが多い。この場合、曲げ引張り力に対する耐力を確保できるように、地盤改良体の厚さを決定する。   By the way, in the process of determining the thickness of the ground improvement body, the yield strength of the ground improvement body with respect to bending tensile force is often the most severe. In this case, the thickness of the ground improvement body is determined so that the yield strength against the bending tensile force can be secured.

しかしながら、地盤改良体の厚みが大きくなると、地盤改良を施す土の体積が増大するため、施工費が増大するうえに工期が長期化する、という問題があった。   However, when the thickness of the ground improvement body is increased, the volume of the soil subjected to the ground improvement increases, which causes a problem that the construction cost increases and the construction period is prolonged.

本発明は、施工費を抑制しつつ、工期を短縮できる山留め壁およびその構築方法を提供することを目的とする。   An object of this invention is to provide the mountain retaining wall which can shorten a construction period, and its construction method, suppressing construction cost.

請求項1に記載の山留め壁は、地下構造物(例えば、後述の地下構造物2)を構築するための山留め壁(例えば、後述の山留め壁1)であって、当該地下構造物の周囲の地盤(例えば、後述の地盤3)を地盤改良して構築された地盤改良体(例えば、後述の地盤改良体10)と、当該地盤改良体の前記地下構造物とは反対側の壁面に沿って略鉛直方向に延びてかつ前記地盤改良体の直下の地盤に根入れされた引張り材(例えば、後述の鋼材20)と、を備えることを特徴とする。   The mountain retaining wall according to claim 1 is a mountain retaining wall (for example, a mountain retaining wall 1 to be described later) for constructing an underground structure (for example, an underground structure 2 to be described later), and is provided around the underground structure. A ground improvement body (for example, a ground improvement body 10 to be described later) constructed by improving the ground (for example, the ground 3 to be described later) and a wall surface on the opposite side of the ground improvement body from the underground structure. A tensile material (for example, a steel material 20 described later) that extends in a substantially vertical direction and is embedded in the ground immediately below the ground improvement body.

請求項2に記載の山留め壁の構築方法は、地下構造物を構築するための山留め壁の構築方法であって、当該地下構造物の周囲の地盤を地盤改良して地盤改良体を構築する工程と、引張り材を、当該地盤改良体の前記地下構造物とは反対側の壁面に沿って略鉛直方向に打ち込んで、前記地盤改良体の直下の地盤まで根入れする工程と、を備えることを特徴とする。   The method for constructing a retaining wall according to claim 2 is a method for constructing a retaining wall for constructing an underground structure, the step of constructing a ground improvement body by improving the ground around the underground structure. And a step of driving a tensile material in a substantially vertical direction along a wall surface of the ground improvement body opposite to the underground structure, and setting it to a ground immediately below the ground improvement body. Features.

本発明によれば、山留め壁に作用する曲げ引張り力を引張り材が負担する。よって、従来のように地盤改良体の厚さを大きくする必要がなくなり、地盤改良体の厚みが小さくなるので、施工費を抑制しつつ、工期を短縮できる。   According to the present invention, the tensile material bears the bending tensile force acting on the retaining wall. Therefore, it is not necessary to increase the thickness of the ground improvement body as in the conventional case, and the thickness of the ground improvement body is reduced, so that the construction period can be shortened while suppressing the construction cost.

本発明の一実施形態に係る山留め壁の縦断面図および平面図である。It is the longitudinal cross-sectional view and top view of the mountain retaining wall which concern on one Embodiment of this invention. 前記実施形態に係る山留め壁の外部安定の計算に用いる主働側圧を示す図である。It is a figure which shows the main working side pressure used for calculation of the external stability of the retaining wall which concerns on the said embodiment. 前記実施形態に係る山留め壁に作用する転倒モーメントを求めるための図である。It is a figure for calculating | requiring the falling moment which acts on the retaining wall which concerns on the said embodiment. 前記実施形態に係る山留め壁による抵抗モーメントを求めるための図である。It is a figure for calculating | requiring the resistance moment by the retaining wall which concerns on the said embodiment. 前記実施形態に係る山留め壁の内部安定の計算に用いる静止側圧および水圧を示す図である。It is a figure which shows the static side pressure and water pressure which are used for calculation of the internal stability of the retaining wall which concerns on the said embodiment.

以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本発明の一実施形態に係る山留め壁1の縦断面図および平面図である。
山留め壁1は、地下構造物2を構築するためのものである。この山留め壁1は、地下構造物2の周囲の地盤3を深層混合処理工法により地盤改良して構築された地盤改良体10と、この地盤改良体10の外側つまり地下構造物2とは反対側の壁面に沿って設けられた引張り材としての鋼材20と、を備える。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view and a plan view of a mountain retaining wall 1 according to an embodiment of the present invention.
The retaining wall 1 is for constructing the underground structure 2. The retaining wall 1 includes a ground improvement body 10 constructed by improving the ground 3 around the underground structure 2 by a deep mixing treatment method, and the outside of the ground improvement body 10, that is, the side opposite to the underground structure 2. Steel material 20 as a tensile material provided along the wall surface.

地下構造物2の直下には、地盤改良体10と同様に、地盤3を深層混合処理工法により地盤改良して構築された底部地盤改良体30が構築されており、地盤改良体10は、この底部地盤改良体30に連続している。
鋼材20は、略鉛直方向に延びるH鋼であり、水平方向に所定間隔おきに設けられている。これら鋼材20は、地盤改良体10の直下の地盤3に根入れされている。
Immediately below the underground structure 2, similarly to the ground improvement body 10, a bottom ground improvement body 30 constructed by ground improvement of the ground 3 by a deep mixing treatment method is constructed. It continues to the bottom ground improvement body 30.
The steel material 20 is H steel that extends in a substantially vertical direction, and is provided at predetermined intervals in the horizontal direction. These steel materials 20 are embedded in the ground 3 immediately below the ground improvement body 10.

山留め壁1は、以下の手順で構築される。
まず、地下構造物2の周囲の地盤を地盤改良して地盤改良体10を構築する。
次に、鋼材20を、地盤改良体10の地下構造物2とは反対側の壁面に沿って略鉛直方向に打ち込んで、地盤改良体10の直下の地盤まで根入れする。
The retaining wall 1 is constructed in the following procedure.
First, the ground improvement body 10 is constructed by improving the ground around the underground structure 2.
Next, the steel material 20 is driven in a substantially vertical direction along the wall surface of the ground improvement body 10 on the side opposite to the underground structure 2, and is rooted to the ground directly below the ground improvement body 10.

以下、山留め壁1に必要な厚みの検討を行う。
山留め壁1の外部安定では、山留め壁1の滑動、転倒、沈下に対する安全性を検討する必要があるが、山留め壁1の地盤改良体10は底部地盤改良体30に連続しているため、滑動および沈下は生じないと考えてよく、滑動および沈下についての検討を省略する。
一方、山留め壁1の内部安定では、山留め壁の水平せん断および曲げ引張りに対する安全性を検討する必要がある。
Hereinafter, the thickness required for the retaining wall 1 will be examined.
In the external stability of the retaining wall 1, it is necessary to consider the safety of the retaining wall 1 against sliding, falling, and subsidence, but the ground improvement body 10 of the retaining wall 1 is continuous with the bottom ground improvement body 30, so that it slides. It may be considered that subsidence does not occur, and the examination on sliding and subsidence is omitted.
On the other hand, for the internal stability of the retaining wall 1, it is necessary to examine the safety of the retaining wall against horizontal shearing and bending tension.

まず、山留め壁1の地盤改良体10および鋼材20について、以下のように設定する。
地盤改良体10の深さ(高さ)をH、厚みをDとする。
また、地盤改良体10の単位体積重量をγ、許容圧縮応力度をσca、許容せん断応力度をτa、許容引張応力度をσtaとする。ここで、許容せん断応力度τaおよび許容引張応力度σtaは、以下の式(1)、(2)で表される。
First, the ground improvement body 10 and the steel material 20 of the retaining wall 1 are set as follows.
The depth (height) of the ground improvement body 10 is H, and the thickness is D.
Further, the unit volume weight of the ground improvement body 10 is γ, the allowable compressive stress is σca, the allowable shear stress is τa, and the allowable tensile stress is σta. Here, the allowable shear stress level τa and the allowable tensile stress level σta are expressed by the following formulas (1) and (2).

Figure 2014136865
Figure 2014136865

また、鋼材20の1本当たりの断面係数をZs、ピッチをL、許容引張応力度をσtasとする。   Further, the section modulus per steel material 20 is Zs, the pitch is L, and the allowable tensile stress is σtas.

[転倒についての検討]
転倒についての計算では、山留め壁の地盤改良体の重量により、側圧による転倒モーメントに抵抗するものとする。
以下、転倒に対して必要な地盤改良体の厚みD1を求める。
[Examination about falls]
In the calculation of overturning, the weight of the ground improvement body of the retaining wall resists the overturning moment due to the side pressure.
Hereinafter, the thickness D1 of the ground improvement body required for the fall is obtained.

外部安定の計算では、側圧として主働側圧Paを用いる。この主働側圧Paを、図2に示すように設定する。すなわち、地盤改良体の上端の主働側圧をPa0、地盤改良体の下端の主働側圧をPaHとし、主働側圧Paは台形状に分布しているものとする。
転倒モーメントMpaの想定する回転中心Oは、地盤改良体の地下構造物側の壁面の下端となる。
すると、転倒モーメントMpaは、以下の式(3)で表される。式(3)では、図3に示すように、主働側圧Paの分布を2つに分割して求めている。
In the calculation of external stability, the main working side pressure Pa is used as the side pressure. This main working side pressure Pa is set as shown in FIG. That is, the main working side pressure at the upper end of the ground improvement body is Pa0, the main working side pressure at the lower end of the ground improvement body is PaH, and the main working side pressure Pa is distributed in a trapezoidal shape.
The rotation center O assumed by the overturning moment Mpa is the lower end of the wall surface of the ground improvement body on the underground structure side.
Then, the overturning moment Mpa is represented by the following formula (3). In the expression (3), as shown in FIG. 3, the distribution of the working side pressure Pa is obtained by dividing it into two.

Figure 2014136865
Figure 2014136865

転倒に対する抵抗モーメントMwは、図4に示すように、以下の式(4)で表される。   The resistance moment Mw with respect to overturning is represented by the following equation (4) as shown in FIG.

Figure 2014136865
Figure 2014136865

例えば安全率をFsとすると、転倒モーメントMpaおよび抵抗モーメントMwを用いて、以下の式(5)を満たすように、地盤改良体の厚みD1を設定すればよい。   For example, when the safety factor is Fs, the thickness D1 of the ground improvement body may be set so as to satisfy the following expression (5) using the overturning moment Mpa and the resistance moment Mw.

Figure 2014136865
Figure 2014136865

[水平せん断についての検討]
水平せん断についての計算では、山留め壁の地盤改良体により、側圧による総せん断力に抵抗するものとする。
以下、地盤改良体の水平せん断に対して必要な厚みD2を求める。
内部安定の計算では、側圧として、静止側圧および水圧を用いる。これら静止側圧および水圧を、図5に示すように設定する。
すなわち、水位を深さHwとすると、水圧は三角形状に分布する。すると、上端の水圧Pw1、下端の水圧Pw2は、以下の式(6)、(7)で表される。
[Study on horizontal shearing]
In the calculation for horizontal shear, the ground improvement body of the retaining wall resists the total shear force due to lateral pressure.
Hereinafter, the thickness D2 required for the horizontal shearing of the ground improvement body is obtained.
In calculating internal stability, static side pressure and water pressure are used as side pressures. These static side pressure and water pressure are set as shown in FIG.
That is, when the water level is the depth Hw, the water pressure is distributed in a triangular shape. Then, the water pressure Pw1 at the upper end and the water pressure Pw2 at the lower end are represented by the following equations (6) and (7).

Figure 2014136865
Figure 2014136865

よって、水圧による総せん断力Pwは、以下の式(8)で表される。   Therefore, the total shearing force Pw by water pressure is expressed by the following formula (8).

Figure 2014136865
Figure 2014136865

また、地盤改良体の上端の静止側圧をPko1、水位の位置の静止側圧をPko2、地盤改良体の下端の静止側圧をPko3とし、静止側圧は略台形状に分布しているものとする。
これら静止側圧Pko1、Pko2、Pko3は、側圧係数ko、上載加重Ps、上述の地盤改良体の単位体積重量γを用いて、以下の式(9)〜(11)で表される。
Further, it is assumed that the stationary side pressure at the upper end of the ground improvement body is Pko1, the stationary side pressure at the water level is Pko2, the stationary side pressure at the lower end of the ground improvement body is Pko3, and the stationary side pressure is distributed in a substantially trapezoidal shape.
These static side pressures Pko1, Pko2, and Pko3 are expressed by the following formulas (9) to (11) using the side pressure coefficient ko, the loading weight Ps, and the unit volume weight γ of the ground improvement body described above.

Figure 2014136865
Figure 2014136865

よって、静止側圧による総せん断力Pkoは、以下の式(12)で表される。式(12)では、図5(a)に示すように、静止側圧の分布を4つに分割して求めている。   Therefore, the total shearing force Pko due to static side pressure is expressed by the following equation (12). In Expression (12), as shown in FIG. 5A, the distribution of the static side pressure is obtained by dividing it into four.

Figure 2014136865
Figure 2014136865

以上より、総せん断応力度τhは、以下の式(13)で表される。式(13)中の1.0は、地盤改良体の単位幅を表す。   As described above, the total shear stress τh is expressed by the following equation (13). 1.0 in Formula (13) represents the unit width of the ground improvement body.

Figure 2014136865
Figure 2014136865

したがって、地盤改良体の許容せん断応力度τa>総せん断応力度τhとなるように、地盤改良体の厚みD2を設定すればよい。   Therefore, the thickness D2 of the ground improvement body may be set so that the allowable shear stress level τa of the ground improvement body> the total shear stress level τh.

[曲げ引張りについての検討]
曲げ引張りについての計算では、側圧による曲げモーメントに対して、鋼材にかかる引張り力のみで抵抗し、山留め壁1の地盤改良体10による抵抗は考慮しないものとする。
以下、地盤改良体の曲げ引張りに対して必要な鋼材の仕様およびピッチを求める。
曲げ引張りについては、回転中心Oに対する水圧による曲げモーメントMpwは、水圧による総せん断力Pwを用いて、以下の式(14)で表される。
[Examination of bending tension]
In the calculation for bending tension, the bending moment due to the lateral pressure is resisted only by the tensile force applied to the steel material, and the resistance by the ground improvement body 10 of the retaining wall 1 is not considered.
Hereinafter, the specifications and pitches of steel materials necessary for bending tension of the ground improvement body are obtained.
Regarding bending tension, a bending moment Mpw due to water pressure with respect to the rotation center O is expressed by the following equation (14) using a total shearing force Pw due to water pressure.

Figure 2014136865
Figure 2014136865

回転中心Oに対する静止側圧による曲げモーメントMpkoは、静止側圧による総せん断力Pkoを用いて、以下の式(15)で表される。式(15)では、図5(a)に示すように、静止側圧の分布を4つに分割して求めている。   The bending moment Mpko due to the static side pressure with respect to the rotation center O is expressed by the following equation (15) using the total shearing force Pko due to the static side pressure. In Expression (15), as shown in FIG. 5A, the distribution of the static side pressure is obtained by dividing it into four.

Figure 2014136865
Figure 2014136865

以上より、総曲げモーメントMは、以下の式(16)で表される。   From the above, the total bending moment M is expressed by the following formula (16).

Figure 2014136865
Figure 2014136865

一方、鋼材の単位幅当たりの断面係数Zは、鋼材の断面係数Zsおよび鋼材のピッチLを用いて、以下の式(17)で表される。   On the other hand, the section modulus Z per unit width of the steel material is expressed by the following formula (17) using the section modulus Zs of the steel material and the pitch L of the steel material.

Figure 2014136865
Figure 2014136865

よって、鋼材に作用する引張応力度σhsは、以下の式(18)で表される。   Therefore, the tensile stress degree σhs acting on the steel material is represented by the following formula (18).

Figure 2014136865
Figure 2014136865

したがって、鋼材の許容引張応力度σtas>鋼材に作用する引張応力度σhsとなるように、鋼材の仕様および間隔を設定すればよい。   Therefore, the specification and interval of the steel material may be set so that the allowable tensile stress level σtas of the steel material> the tensile stress level σhs acting on the steel material.

さらに、鋼材にかかる引張り力については、鋼材と地盤改良体との付着力、および、鋼材と地盤との摩擦力についても検討し、これら鋼材と地盤改良体との付着力、および、鋼材と地盤との摩擦力が、鋼材に作用する引張応力度σhsを上回ることを確認しておく必要がある。   Furthermore, with regard to the tensile force applied to the steel material, the adhesion force between the steel material and the ground improvement body and the friction force between the steel material and the ground improvement body were also examined, and the adhesion force between these steel material and the ground improvement body, and the steel material and the ground improvement material. It is necessary to confirm that the frictional force exceeds the tensile stress σhs acting on the steel material.

[鋼材を設けない場合の曲げ引張りについての検討]
比較のため、鋼材を設けない場合の曲げ引張りについても検討する。この場合、山留め壁1の地盤改良体10により、側圧による曲げモーメントに抵抗するものとする。
以下、地盤改良体の曲げ引張りに対して必要な厚みD3を求める。
地盤改良体の単位幅当たりの断面係数Zは、以下の式(19)で表される。
[Examination of bending tension when steel is not provided]
For comparison, the bending tension when no steel material is provided is also examined. In this case, it is assumed that the ground improvement body 10 of the retaining wall 1 resists the bending moment due to the side pressure.
Hereinafter, the thickness D3 required for the bending tension of the ground improvement body is obtained.
The section modulus Z per unit width of the ground improvement body is represented by the following formula (19).

Figure 2014136865
Figure 2014136865

よって、地盤改良体に作用する引張応力度σhaは、以下の式(20)で表される。   Therefore, the tensile stress degree σha acting on the ground improvement body is expressed by the following formula (20).

Figure 2014136865
Figure 2014136865

したがって、地盤改良体の許容引張応力度σta>地盤改良体に作用する引張応力度σhaとなるように、D3を設定すればよい。   Therefore, D3 may be set so that the allowable tensile stress σta of the ground improvement body> the tensile stress σha acting on the ground improvement body.

次に、上述の式に具体的な数値を適用して本発明の効果を検証する。鋼材を設けた場合を実施例とし、鋼材を設けない場合を比較例とする。
[実施例]
H=6(m)、γ=19(kN/m)、σca=400(kN/m)とすると、σta=60(kN/m)、τa=200(kN/m)となる。
Next, the effect of the present invention is verified by applying specific numerical values to the above formula. A case where the steel material is provided is an example, and a case where the steel material is not provided is a comparative example.
[Example]
If H = 6 (m), γ = 19 (kN / m 3 ), and σca = 400 (kN / m 2 ), then σta = 60 (kN / m 2 ) and τa = 200 (kN / m 2 ). .

1.転倒についての検討
Pa0=5.30(kN)、PaH=65.72(kN)とすると、Mpa=457.92(kNm)となる。
また、Mw=57.00(D1)となる。
よって、Fs=1.2とすると、D1=3.10(m)となる。
1. Consideration of falls When Pa0 = 5.30 (kN) and PaH = 65.72 (kN), Mpa = 457.92 (kNm).
Further, Mw = 57.00 (D1) 2 .
Therefore, when Fs = 1.2, D1 = 3.10 (m).

2.水平せん断についての検討
Pw=80.0(kN)となる。
また、ko=0.5、Ps=10.0(kN)とすると、Pko1=5.0(kN)、Pko2=24.0(kN)、Pko3=42.0(kN)となり、Pko=161.0(kN)となる。
よって、τh=241.0/D2(kN/m)となるので、D2=1.21(m)となる。
2. Study on horizontal shearing Pw = 80.0 (kN).
If ko = 0.5 and Ps = 10.0 (kN), then Pko1 = 5.0 (kN), Pko2 = 24.0 (kN), Pko3 = 42.0 (kN), and Pko = 161 0 (kN).
Therefore, since τh = 241.0 / D2 (kN / m 2 ), D2 = 1.21 (m).

3.曲げ引張りについての検討
Mpw=106.67(kNm)、Mpko=378.67(kNm)となり、M=485.34(kNm)となる。
また、鋼材としてH−400×400を用いて、この鋼材を1m間隔で設置するものとする。すると、Zs=0.00295(m)、L=1.0(m)、σtas=188000(kN/m)となる。
さらに、σhs=164522.01(kN/m2)となるので、σhs<σtasとなり、H−400×400を1m間隔で設置することにより、曲げ引張りに対する耐力を確保できることが判る。
3. Study on bending tension Mpw = 106.67 (kNm), Mpko = 378.67 (kNm), and M = 485.34 (kNm).
Moreover, this steel material shall be installed at 1-m intervals using H-400x400 as a steel material. Then, Zs = 0.00295 (m 3 ), L = 1.0 (m), and σtas = 188000 (kN / m 2 ).
Furthermore, since σhs = 164522.01 (kN / m2), σhs <σtas, and it can be seen that the strength against bending tension can be ensured by installing H-400 × 400 at intervals of 1 m.

以上より、実施例では、地盤改良体の厚みは、曲げ引張りに対する耐力に影響を受けず、3.10(m)となる。   As mentioned above, in an Example, the thickness of a ground improvement body is not influenced by the yield strength with respect to bending tension, and is set to 3.10 (m).

[比較例]
鋼材を設けない場合、曲げ引張りについて検討すると、σha=60(kN/m)となるD3を求めればよいので、D3=7.00(m)となる。
よって、地盤改良体の厚みは、曲げ引張りに対する耐力で決定されて、7.0mとなる。
[Comparative example]
When a steel material is not provided, when bending tension is examined, D3 that satisfies σha = 60 (kN / m 2 ) may be obtained, and thus D3 = 7.00 (m).
Therefore, the thickness of the ground improvement body is determined by the yield strength against bending tension and becomes 7.0 m.

したがって、実施例では、比較例に比べて、地盤改良体の厚みを約半分にできることが判る。   Therefore, in an Example, it turns out that the thickness of a ground improvement body can be reduced to about half compared with a comparative example.

本実施形態によれば、以下のような効果がある。
(1)山留め壁1に作用する曲げ引張り力を鋼材20が負担する。よって、従来のように地盤改良体の厚さを大きくする必要がなくなり、地盤改良体10の厚みが小さくなるので、施工費を抑制しつつ、工期を短縮できる。
According to this embodiment, there are the following effects.
(1) The steel material 20 bears the bending tensile force acting on the retaining wall 1. Therefore, it is not necessary to increase the thickness of the ground improvement body as in the conventional case, and the thickness of the ground improvement body 10 is reduced, so that the construction period can be shortened while suppressing the construction cost.

なお、本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.

1…山留め壁
2…地下構造物
3…地盤
10…地盤改良体
20…鋼材(引張り材)
30…底部地盤改良体
H…地盤改良体の高さ(深さ)
D、D1、D2、D3…地盤改良体の厚み
γ…地盤改良体の単位体積重量
σca…地盤改良体の許容圧縮応力度
τa…地盤改良体の許容せん断応力度
σta…地盤改良体の許容引張応力度
Z…鋼材の単位幅当たりの断面係数
Zs…鋼材の1本当たりの断面係数
L…鋼材のピッチ
σtas…鋼材の許容引張応力度
O…回転中心
Mpa…転倒モーメント
Mw…抵抗モーメント
Fs…安全率
Pa…主働側圧
Hw…水位の深さ
Pw…水圧による総せん断力
ko…側圧係数
Ps…上載加重
Pko…静止側圧による総せん断力
τh…総せん断応力度
Mpw…水圧による曲げモーメント
Mpko…静止側圧によるモーメント
M…総曲げモーメント
σhs…鋼材に作用する引張応力度
σha…地盤改良体に作用する引張応力度
DESCRIPTION OF SYMBOLS 1 ... Mountain retaining wall 2 ... Underground structure 3 ... Ground 10 ... Ground improvement body 20 ... Steel material (tensile material)
30 ... Bottom ground improvement body H ... Height (depth) of ground improvement body
D, D1, D2, D3: Thickness of ground improvement body γ: Unit volume weight of ground improvement body σca: Permissible compressive stress level of ground improvement body τa: Permissible shear stress level of ground improvement body σta: Permissible tension of ground improvement body Stress Z: Section modulus per unit width of steel material Zs: Section modulus per steel material L: Steel pitch σtas: Permissible tensile stress of steel material O: Center of rotation Mpa: Falling moment Mw: Resistance moment Fs: Safety Rate Pa ... Active side pressure Hw ... Water level depth Pw ... Total shear force due to water pressure ko ... Side pressure coefficient Ps ... Overload Pko ... Total shear force due to static side pressure τh ... Total shear stress level Mpw ... Bending moment due to water pressure Mpko ... Stationary Moment due to lateral pressure M: Total bending moment σhs: Tensile stress acting on steel material σha: Tensile stress acting on ground improvement body

Claims (2)

地下構造物を構築するための山留め壁であって、
当該地下構造物の周囲の地盤を地盤改良して構築された地盤改良体と、当該地盤改良体の前記地下構造物とは反対側の壁面に沿って略鉛直方向に延びてかつ前記地盤改良体の直下の地盤に根入れされた引張り材と、を備えることを特徴とする山留め壁。
A retaining wall for building an underground structure,
The ground improvement body constructed by improving the ground around the underground structure, and the ground improvement body extending in a substantially vertical direction along the wall surface of the ground improvement body opposite to the underground structure. A retaining wall comprising: a tension member rooted in the ground immediately below.
地下構造物を構築するための山留め壁の構築方法であって、
当該地下構造物の周囲の地盤を地盤改良して地盤改良体を構築する工程と、
引張り材を、当該地盤改良体の前記地下構造物とは反対側の壁面に沿って略鉛直方向に打ち込んで、前記地盤改良体の直下の地盤まで根入れする工程と、を備えることを特徴とする山留め壁の構築方法。
A method for constructing a retaining wall for constructing an underground structure,
Improving the ground around the underground structure to construct a ground improved body;
A step of driving a tensile material in a substantially vertical direction along a wall surface on the opposite side of the underground structure of the ground improvement body, and rooting to a ground directly below the ground improvement body, How to construct a retaining wall.
JP2013004266A 2013-01-15 2013-01-15 Mountain retaining wall Active JP6142538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013004266A JP6142538B2 (en) 2013-01-15 2013-01-15 Mountain retaining wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013004266A JP6142538B2 (en) 2013-01-15 2013-01-15 Mountain retaining wall

Publications (2)

Publication Number Publication Date
JP2014136865A true JP2014136865A (en) 2014-07-28
JP6142538B2 JP6142538B2 (en) 2017-06-07

Family

ID=51414546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013004266A Active JP6142538B2 (en) 2013-01-15 2013-01-15 Mountain retaining wall

Country Status (1)

Country Link
JP (1) JP6142538B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031562A (en) * 2015-07-29 2017-02-09 鹿島建設株式会社 Construction method of continuous underground wall
JP2017089319A (en) * 2015-11-16 2017-05-25 鹿島建設株式会社 Vertical shaft construction method
JP2017119952A (en) * 2015-12-28 2017-07-06 株式会社竹中工務店 Sheeting wall
JP2018035597A (en) * 2016-09-01 2018-03-08 株式会社淺沼組 Improved columnar earth-retainer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065825A (en) * 1983-09-22 1985-04-15 Asuku Kenkyusho:Kk Method of constructing landslide protection wall having newel pile
JPS62148628U (en) * 1986-03-13 1987-09-19
JPH0656134U (en) * 1993-12-28 1994-08-05 株式会社大林組 Deep mixed consolidation reinforced soil structure
JPH0849236A (en) * 1994-05-13 1996-02-20 Haseko Corp Sheathing construction method
JPH10131175A (en) * 1996-10-31 1998-05-19 Tenox Corp Earth retaining wall and construction method thereof
JPH1171748A (en) * 1997-08-29 1999-03-16 Dia Consultant:Kk Structure in periphery of underground structure in soft ground and method of construction thereof
JP2012140826A (en) * 2011-01-05 2012-07-26 Takenaka Komuten Co Ltd Bracing wall and building

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065825A (en) * 1983-09-22 1985-04-15 Asuku Kenkyusho:Kk Method of constructing landslide protection wall having newel pile
JPS62148628U (en) * 1986-03-13 1987-09-19
JPH0656134U (en) * 1993-12-28 1994-08-05 株式会社大林組 Deep mixed consolidation reinforced soil structure
JPH0849236A (en) * 1994-05-13 1996-02-20 Haseko Corp Sheathing construction method
JPH10131175A (en) * 1996-10-31 1998-05-19 Tenox Corp Earth retaining wall and construction method thereof
JPH1171748A (en) * 1997-08-29 1999-03-16 Dia Consultant:Kk Structure in periphery of underground structure in soft ground and method of construction thereof
JP2012140826A (en) * 2011-01-05 2012-07-26 Takenaka Komuten Co Ltd Bracing wall and building

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031562A (en) * 2015-07-29 2017-02-09 鹿島建設株式会社 Construction method of continuous underground wall
JP2017089319A (en) * 2015-11-16 2017-05-25 鹿島建設株式会社 Vertical shaft construction method
JP2017119952A (en) * 2015-12-28 2017-07-06 株式会社竹中工務店 Sheeting wall
JP2018035597A (en) * 2016-09-01 2018-03-08 株式会社淺沼組 Improved columnar earth-retainer

Also Published As

Publication number Publication date
JP6142538B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6142538B2 (en) Mountain retaining wall
KR102249717B1 (en) The pre-stress conctete pile preventing pre-stress loss in case of cutting pile-head
KR101493495B1 (en) reinforcement structure for PHC pile and constructing method of PHC pile using thereof
JP5290461B1 (en) Slope reinforcement method
JP5582885B2 (en) Junction structure
JP6664697B2 (en) Foundation structure using existing piles
KR101742110B1 (en) A method of Safety Maintenance only with Soil sheating work
JP2010025583A (en) Calculation method of shearing force distribution in joint surface between steel product and concrete member, calculation method of maximum shearing proof stress in joint surface between steel product and concrete member, calculation method of shearing force working on stud, and support structure of reversely driven column
JP6589634B2 (en) Evaluation method of piles made of soil cement column walls
JP6432764B2 (en) Column connection structure
JP5463043B2 (en) Method for reinforcing concrete structures
JP6031632B1 (en) Displacement limiting device used for seismic isolation structure and method of introducing pre-compression
CN207420605U (en) A kind of classification pressure-release anchor cable
JP6218130B2 (en) Seismic reinforcement structure and method for reinforced concrete
JP5825232B2 (en) Combined steel walls and design methods for combined steel walls
JP6499834B2 (en) Building foundation structure
JP2009074315A (en) Method of designing structure provided for transmitting load of upper structure to ground, and structure
CN211113655U (en) Underground structure
RU2529977C2 (en) Foundation with projections by foot portion
JP2012149455A (en) Ground anchor
KR20120042161A (en) Structure connection apparatus and outrigger structure using the same
JP6169659B2 (en) Displacement limiting device used for seismic isolation structure and method of introducing pre-compression
JP2008266935A (en) Existing foundation reinforcing structure and reinforcing method
JP4681887B2 (en) Basic design method of crane gantry
JP2018053618A (en) Structure of pile head joining part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20170424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6142538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250