JP6218130B2 - Seismic reinforcement structure and method for reinforced concrete - Google Patents

Seismic reinforcement structure and method for reinforced concrete Download PDF

Info

Publication number
JP6218130B2
JP6218130B2 JP2012197247A JP2012197247A JP6218130B2 JP 6218130 B2 JP6218130 B2 JP 6218130B2 JP 2012197247 A JP2012197247 A JP 2012197247A JP 2012197247 A JP2012197247 A JP 2012197247A JP 6218130 B2 JP6218130 B2 JP 6218130B2
Authority
JP
Japan
Prior art keywords
reinforced concrete
existing
new
new reinforced
insertion hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012197247A
Other languages
Japanese (ja)
Other versions
JP2014051825A (en
Inventor
篤史 武田
篤史 武田
田中 浩一
浩一 田中
大 岡本
大 岡本
幸裕 谷村
幸裕 谷村
淳一 奥西
淳一 奥西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Railway Technical Research Institute
Original Assignee
Obayashi Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Railway Technical Research Institute filed Critical Obayashi Corp
Priority to JP2012197247A priority Critical patent/JP6218130B2/en
Publication of JP2014051825A publication Critical patent/JP2014051825A/en
Application granted granted Critical
Publication of JP6218130B2 publication Critical patent/JP6218130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、橋脚などの鉄筋コンクリート構造物を耐震補強する際に適用される鉄筋コンクリートの耐震補強構造及び方法に関する。 The present invention relates to a seismic reinforcing structure and method for reinforced concrete applied when a reinforced concrete structure such as a bridge pier is seismically reinforced.

鉄筋コンクリートからなる構造物の耐震性能が十分でない場合、耐震補強によって曲げ耐力やせん断耐力あるいは靭性を高めることが可能であり、その工法としては、既存RC部材の周囲に鉄筋コンクリートや鋼板を巻き立てる、同じく既存RC部材の周囲に炭素繊維シートを巻回するといった工法が知られている。   If the seismic performance of the structure made of reinforced concrete is not sufficient, it is possible to increase the bending strength, shear strength or toughness by seismic reinforcement, and the method is to wind up reinforced concrete or steel plate around the existing RC member A method of winding a carbon fiber sheet around an existing RC member is known.

これらのうち、RC巻立て工法は、鉄筋コンクリート断面を増厚することで耐震性能の向上を図るものであり、比較的低コストでの施工が可能であることから、従来から広く採用されている。   Among these, the RC hoisting method is intended to improve the seismic performance by increasing the cross section of the reinforced concrete, and since it can be constructed at a relatively low cost, it has been widely used.

かかるRC巻立て工法においては、あらたに巻き立てられる鉄筋コンクリートを既存RC部材に一体化させることが重要であり、特に、RC部材の曲げ耐力を高める上では、新旧コンクリートにおける曲げ変形時のズレせん断に対して十分な抵抗力を持たせることが不可欠となる。   In this RC winding method, it is important to integrate the newly reinforced concrete with the existing RC member. Especially, in order to increase the bending strength of the RC member, the shear shear at the time of bending deformation of the old and new concrete is important. It is indispensable to have sufficient resistance against this.

新旧コンクリートのズレせん断に対する抵抗力を高めるには、チッピングやウォータージェットによって既存RC部材の表面を予め目荒らししておく方法が知られているが、騒音振動が大きい、施工可能な場所に制約がある、施工に時間を要する、廃棄物が生じるために環境への負荷が大きいなどの問題があるほか、作業員の熟練の程度によってばらつきが生じるため、品質管理が難しいという問題がある。   In order to increase the resistance to shear between old and new concrete, there is a known method of roughing the surface of the existing RC member in advance by chipping or water jet. There are other problems such as the time required for construction and the heavy load on the environment due to the generation of waste, as well as the problem that quality control is difficult due to variations depending on the level of skill of the workers.

一方、ジベル筋あるいはアンカージベル鉄筋とも称されるアンカー筋を既存RC部材に予め立設しておく方法が知られており、かかる方法によれば、アンカー筋がズレせん断に対する抵抗要素として新旧コンクリートの一体化に寄与するため、既存RC部材の曲げ耐力を確実に向上させることができる。   On the other hand, there is known a method in which an anchor bar, also called a gibber bar or an anchor gibber bar, is erected in advance on an existing RC member. Since it contributes to integration, the bending strength of the existing RC member can be improved reliably.

特開2011−89275号公報JP 2011-89275 A 特開2011−99201号公報JP2011-99201A

しかしながら、アンカー筋を用いた耐震補強工法においては、新旧コンクリートのズレせん断に伴ってアンカー筋に引抜き力が作用するため、該引抜き力に抵抗できるよう、アンカー筋を十分な定着強度をもって既存RC部材に立設しなければならない。   However, in the seismic reinforcement method using anchor bars, the pulling force acts on the anchor bars in accordance with the shear shear between the old and new concrete, so that the existing RC members have sufficient anchor strength to resist the pulling force. Must be erected.

そのため、アンカー筋を立設する際には、アンカー筋を長く形成したり基端側に拡幅部を設けたりすることで定着強度を高めることが必要となり、その結果、既存RC部材の鉄筋が損傷を受けるという問題や、それを回避しようとすると、アンカー筋の取付けに時間を要するという問題を生じていた。   Therefore, when standing the anchor bars, it is necessary to increase the fixing strength by forming the anchor bars long or providing a widened portion on the base end side. As a result, the reinforcing bars of the existing RC members are damaged. There was a problem that it took a long time to attach the anchor muscle when trying to avoid it.

本発明は、上述した事情を考慮してなされたもので、既存RC部材の鉄筋に損傷を与えることなく、新旧コンクリートのズレせん断に対する十分な抵抗機能をアンカー筋に持たせることが可能な鉄筋コンクリートの耐震補強構造及び方法を提供することを目的とする。 The present invention has been made in consideration of the above-described circumstances, and is a reinforced concrete that can provide an anchor bar with a sufficient resistance function against displacement shear of old and new concrete without damaging the reinforcing bar of an existing RC member. An object is to provide a seismic reinforcement structure and method .

上記目的を達成するため、本発明に係る鉄筋コンクリートの耐震補強構造は請求項1に記載したように、既存RC部材の周囲にあらたな鉄筋コンクリートを巻き立てるとともに、前記既存RC部材の表面に穿孔された挿入孔に基端側が挿入され先端側が前記あらたな鉄筋コンクリートに埋設されるように前記既存RC部材と前記あらたな鉄筋コンクリートとの界面近傍にロッド状アンカー部材を配置した鉄筋コンクリートの耐震補強構造において、
前記あらたな鉄筋コンクリートを前記既存RC部材に向けて押圧する載荷手段を該あらたな鉄筋コンクリートの周囲又は内部に配置するとともに、該載荷手段を、前記あらたな鉄筋コンクリートの周囲に巻き立てられる鋼板、前記あらたな鉄筋コンクリートの周囲に巻回される繊維補強シートその他の巻回部材又は前記あらたな鉄筋コンクリートの内部に貫通される引張抵抗材で構成してなり、前記挿入孔の深さを前記既存RC部材の鉄筋かぶり厚さ未満とするとともに、前記載荷手段を、前記鋼板、前記巻回部材又は前記引張抵抗材に初期導入された引張力による押圧力によって、前記既存RC部材と前記あらたな鉄筋コンクリートとの界面に沿った相対変形に起因する前記ロッド状アンカー部材の前記既存RC部材からの抜け出しが抑制されるように構成したものである。
In order to achieve the above object, the reinforced concrete seismic reinforcement structure according to the present invention, as described in claim 1, winds up new reinforced concrete around the existing RC member and is perforated on the surface of the existing RC member. In the reinforced concrete seismic reinforcement structure in which a rod-shaped anchor member is arranged in the vicinity of the interface between the existing RC member and the new reinforced concrete so that the proximal end is inserted into the insertion hole and the distal end side is embedded in the new reinforced concrete,
A loading means for pressing the new reinforced concrete against the existing RC member is disposed around or inside the new reinforced concrete, and the loading means is a steel plate wound around the new reinforced concrete, the new It is composed of a fiber reinforced sheet or other wound member wound around the reinforced concrete, or a tensile resistance material penetrating into the new reinforced concrete, and the depth of the insertion hole is defined by a reinforcing bar cover of the existing RC member. The load means is arranged along the interface between the existing RC member and the new reinforced concrete by the pressing force due to the tensile force initially introduced into the steel plate, the wound member or the tensile resistance material. The rod-like anchor member is prevented from coming off from the existing RC member due to relative deformation. Those configured as.

また、本発明に係る鉄筋コンクリートの耐震補強方法は請求項2に記載したように、既存RC部材の周囲にあらたな鉄筋コンクリートを巻き立てるとともに、前記既存RC部材の表面に穿孔された挿入孔に基端側が挿入され先端側が前記あらたな鉄筋コンクリートに埋設されるように前記既存RC部材と前記あらたな鉄筋コンクリートとの界面近傍にロッド状アンカー部材を配置し、前記あらたな鉄筋コンクリートを前記既存RC部材に向けて押圧する載荷手段を該あらたな鉄筋コンクリートの内部に貫通される引張抵抗材として配置し、前記挿入孔の深さを前記既存RC部材の鉄筋かぶり厚さ未満とするとともに、前記載荷手段を、その押圧力によって、前記既存RC部材と前記あらたな鉄筋コンクリートとの界面に沿った相対変形に起因する前記ロッド状アンカー部材の前記既存RC部材からの抜け出しが抑制されるように構成した鉄筋コンクリートの耐震補強構造を構築する方法であって、前記あらたな鉄筋コンクリートを打設した後に前記引張抵抗材に緊張力を導入するものである。   In addition, the method for seismic reinforcement of reinforced concrete according to the present invention, as described in claim 2, winds up new reinforced concrete around the existing RC member, and has a base end in the insertion hole drilled in the surface of the existing RC member. A rod-shaped anchor member is arranged in the vicinity of the interface between the existing RC member and the new reinforced concrete so that the side is inserted and the tip side is embedded in the new reinforced concrete, and the new reinforced concrete is pressed toward the existing RC member The loading means is arranged as a tensile resistance material penetrating inside the new reinforced concrete, and the depth of the insertion hole is less than the reinforcing bar cover thickness of the existing RC member. Due to relative deformation along the interface between the existing RC member and the new reinforced concrete. A method of constructing a reinforced concrete seismic reinforcement structure configured to prevent the rod-shaped anchor member from being pulled out from the existing RC member, and after the new reinforced concrete is placed, the tensile resistance material is tensioned. It introduces power.

本発明に係る鉄筋コンクリートの耐震補強構造においては、既存RC部材の周囲にあらたな鉄筋コンクリートを巻き立てるにあたり、あらたな鉄筋コンクリートを既存RC部材に向けて押圧する載荷手段を該あらたな鉄筋コンクリートの周囲又は内部に配置してある。   In the seismic reinforcement structure for reinforced concrete according to the present invention, when winding up the new reinforced concrete around the existing RC member, loading means for pressing the new reinforced concrete against the existing RC member is provided around or inside the new reinforced concrete. It is arranged.

このようにすると、既存RC部材とあらたな鉄筋コンクリートとの界面に沿って相対変形、いうなればズレせん断が生じるとともにそれに起因してロッド状アンカー部材が既存RC部材から抜け出そうとしたとき、その動きは、あらたな鉄筋コンクリートを介して作用する載荷手段からの押圧力で抑制される。   If it does in this way, when the rod-shaped anchor member tries to slip out from the existing RC member while the relative deformation along the interface between the existing RC member and the new reinforced concrete, that is, the shear shear occurs, the movement is Suppressed by the pressing force from the loading means acting through the new reinforced concrete.

そのため、ズレせん断に伴う既存RC部材からのロッド状アンカー部材の抜け出しが防止されることとなり、かくしてロッド状アンカー部材は、シヤキーとしての本来の機能を十分に発揮して既存RC部材とあらたな鉄筋コンクリートとを強固に一体化する。   Therefore, the rod-shaped anchor member is prevented from coming off from the existing RC member due to the shear shear, and thus the rod-shaped anchor member sufficiently exhibits its original function as a shear key and newly reinforced concrete with the existing RC member. Are firmly integrated.

また、載荷手段によってロッド状アンカー部材の抜け出しが防止されることにより、従来のように、ロッド状アンカー部材を長く形成したり基端側に拡幅部を設けたりすることで定着強度を高める必要がなくなる。   Further, since the rod-shaped anchor member is prevented from being pulled out by the loading means, it is necessary to increase the fixing strength by forming the rod-shaped anchor member long or providing a widened portion on the proximal end side as in the conventional case. Disappear.

そのため、ロッド状アンカー部材を短くかつ長さ方向にわたって同一断面となるように形成することができるとともに、それに伴って既存RC部材に穿孔すべき挿入孔も、浅くて細い孔で足りることとなり、かくして既存RC部材の鉄筋に損傷を与える懸念がほとんどなくなるとともに、挿入孔の深さを既存RC部材の鉄筋かぶり厚さ未満とすれば、穿孔作業における作業能率を何ら低下させることなく、既存RC部材に埋設された鉄筋への損傷リスクを皆無にすることができる。   Therefore, the rod-shaped anchor member can be formed to be short and have the same cross section over the length direction, and accordingly, the insertion hole to be drilled in the existing RC member is also required to be a shallow and thin hole. There is almost no fear of damaging the reinforcing bars of the existing RC member, and if the depth of the insertion hole is less than the reinforcing bar cover thickness of the existing RC member, the existing RC member can be made without any reduction in work efficiency in the drilling operation. The risk of damage to the buried reinforcing bars can be eliminated.

なお、上述した押圧力は、既存RC部材を周囲から拘束する作用を発揮するため、結果として、既存RC部材をせん断補強しあるいは靭性補強することにもなる。   In addition, since the pressing force mentioned above exhibits the effect | action which restrains the existing RC member from the periphery, it will also carry out the shear reinforcement or the toughness reinforcement of the existing RC member as a result.

既存RC部材は、曲げ変形を生じるすべてのRC部材が包摂されるものであり、曲げ圧縮材である橋脚等の柱部材をはじめ、曲げ材である梁などが既存RC部材に該当する。   The existing RC member includes all RC members that cause bending deformation, and a beam member such as a bridge member such as a bridge pier that is a bending compression material corresponds to the existing RC member.

ロッド状アンカー部材は、長さ方向に沿って断面がほぼ同一のロッド材、例えば短鉄筋がその代表的な構成となるが、既存RC部材に穿孔形成された挿入孔に挿入される部分の断面がほぼ同一であれば足りるものであって、該挿入孔にボルト本体が挿入される形であれば、頭部付きのボルト類で構成することも可能である。   The rod-shaped anchor member has a representative configuration of a rod material having substantially the same cross section along the length direction, for example, a short rebar, but a cross section of a portion inserted into an insertion hole formed in the existing RC member. Are substantially the same, and if the bolt body is inserted into the insertion hole, it is possible to use bolts with a head.

載荷手段は、あらたな鉄筋コンクリートを既存RC部材に向けて押圧する、換言すれば既存RC部材とあらたな鉄筋コンクリートとの界面に対してほぼ垂直にあらたな鉄筋コンクリートを押圧することができる限り、その具体的な構成は任意であり、例えば、あらたな鉄筋コンクリートの周囲に鋼板を巻き立て、あるいはその周囲に繊維補強シートその他の巻回部材を巻回するといった構成や、あらたな鉄筋コンクリートの内部に引張抵抗材を貫通配置するといった構成が可能である。   The loading means presses the new reinforced concrete toward the existing RC member, in other words, as long as it can press the new reinforced concrete almost perpendicular to the interface between the existing RC member and the new reinforced concrete. For example, a structure in which a steel plate is wound around a new reinforced concrete, or a fiber reinforced sheet or other winding member is wound around the new reinforced concrete, or a tensile resistance material is provided inside the new reinforced concrete. A configuration of penetrating arrangement is possible.

ちなみに、上述した鋼板、巻回部材あるいは引張抵抗材においては、それらの面内方向あるいは材軸方向に生じる引張力の作用方向があらたな鉄筋コンクリートの周面に沿った位置あるいはその内側を通る断面内の位置によって変化し、その変化によって生じる曲率中心への力が既存RC部材に向かう押圧力となる。   By the way, in the above-mentioned steel plate, wound member or tensile resistance material, the direction of the tensile force generated in the in-plane direction or the axial direction of the material is a position along the circumferential surface of the new reinforced concrete or in the cross section passing through the inside thereof. The force to the center of curvature generated by the change becomes the pressing force toward the existing RC member.

ここで、載荷手段は、既存RC部材とあらたな鉄筋コンクリートとの間にズレせん断が発生しようとしたとき、そのズレせん断の発生に応答する形で押圧力を発生させる構成としてもよいし、ズレせん断の発生とは関係なく、押圧力を常時発生させるように構成してもよい。   Here, the loading means may be configured to generate a pressing force in a form in response to the occurrence of the shear shear when the shear shear is about to occur between the existing RC member and the new reinforced concrete. Regardless of the occurrence of this, the pressing force may be always generated.

上述した例で言えば、鋼板や巻回部材あるいは引張抵抗材に引張力を初期導入しない場合には、ズレせん断の発生に応答する形で押圧力を発生させる構成となり、それらに引張力を初期導入する場合には、押圧力を常時発生させる構成となる。   In the example described above, when the tensile force is not initially introduced into the steel plate, the wound member, or the tensile resistance material, the pressing force is generated in response to the occurrence of the shear shear, and the initial tensile force is applied to them. In the case of introduction, the pressing force is always generated.

一方、載荷手段は、鋼板や巻回部材あるいは引張抵抗材による引張力で押圧力を生じさせる構成に限定されるものではなく、例えばあらたな鉄筋コンクリートの周囲に拡がる地盤で構成し、該地盤から作用する土圧を押圧力とすることが可能である。   On the other hand, the loading means is not limited to a configuration that generates a pressing force by a tensile force generated by a steel plate, a winding member, or a tensile resistance material. It is possible to set the earth pressure to be a pressing force.

本実施形態に係る鉄筋コンクリートの耐震補強構造1の全体断面図。1 is an overall cross-sectional view of a reinforced concrete seismic reinforcement structure 1 according to the present embodiment. 本実施形態に係る鉄筋コンクリートの耐震補強構造1の詳細図であり、(a)はA−A線に沿う詳細断面図、(b)はB−B線に沿う詳細断面図。It is detail drawing of the reinforced concrete seismic reinforcement structure 1 which concerns on this embodiment, (a) is detailed sectional drawing which follows the AA line, (b) is detailed sectional drawing which follows the BB line. 本実施形態に係る鉄筋コンクリートの耐震補強構造1の構築手順を示した図。The figure which showed the construction procedure of the seismic reinforcement structure 1 of the reinforced concrete which concerns on this embodiment. 本実施形態に係る鉄筋コンクリートの耐震補強構造1の作用を示した説明図であり、(a)は水平断面図、(b)はC−C線に沿う鉛直断面図。It is explanatory drawing which showed the effect | action of the reinforced concrete seismic reinforcement structure 1 which concerns on this embodiment, (a) is a horizontal sectional view, (b) is a vertical sectional view along CC line. 変形例に係る鉄筋コンクリートの耐震補強構造の図であり、(a)は水平断面図、(b)はD−D線に沿う鉛直断面図。It is a figure of the reinforced concrete seismic reinforcement structure which concerns on a modification, (a) is a horizontal sectional view, (b) is a vertical sectional view which follows a DD line. 変形例に係る鉄筋コンクリートの耐震補強構造の図であり、(a)は配置図、(b)はE−E線に沿う水平断面図。It is a figure of the reinforced concrete seismic reinforcement structure which concerns on a modification, (a) is a layout, (b) is a horizontal sectional view which follows the EE line.

以下、本発明に係る鉄筋コンクリートの耐震補強構造及び方法の実施の形態について、添付図面を参照して説明する。 DESCRIPTION OF EMBODIMENTS Embodiments of a reinforced concrete seismic reinforcement structure and method according to the present invention will be described below with reference to the accompanying drawings.

図1は、本実施形態に係る鉄筋コンクリートの耐震補強構造を示した全体断面図、図2は同じく詳細断面図である。図1でわかるように、本実施形態に係る鉄筋コンクリートの耐震補強構造1は、既存RC部材としての橋脚2の周囲にあらたな鉄筋コンクリート3を巻き立てるとともに、該鉄筋コンクリートの周囲に鋼板4を巻き立てて構成してあり、橋脚2とあらたな鉄筋コンクリート3との界面近傍には図2に示すように、ロッド状アンカー部材としての短鉄筋12を水平鉛直2方向に離間配置してある。   FIG. 1 is an overall cross-sectional view showing a reinforced concrete seismic reinforcement structure according to the present embodiment, and FIG. 2 is a detailed cross-sectional view. As can be seen in FIG. 1, the reinforced concrete seismic reinforcement structure 1 according to this embodiment winds a new reinforced concrete 3 around a pier 2 as an existing RC member, and winds a steel plate 4 around the reinforced concrete. In the vicinity of the interface between the bridge pier 2 and the new reinforced concrete 3, short reinforcing bars 12 as rod-shaped anchor members are spaced apart in two horizontal and vertical directions as shown in FIG.

短鉄筋12は、橋脚2の表面に穿孔された挿入孔11に基端側が挿入された状態で該橋脚にあらたな鉄筋コンクリート3を巻き立てることにより、基端側が橋脚2に埋設され、先端側があらたな鉄筋コンクリート3に埋設されるように配置してあり、橋脚2とあらたな鉄筋コンクリート3との界面に沿った相対変形であるズレせん断に対し、シヤキーとして抵抗するようになっている。   The short reinforcing bar 12 is wound with a new reinforced concrete 3 in the state where the base end side is inserted into the insertion hole 11 drilled in the surface of the pier 2 so that the base end side is embedded in the pier 2 and the front end side is exposed. It is arranged so as to be buried in the new reinforced concrete 3, and resists shear shear, which is a relative deformation along the interface between the pier 2 and the new reinforced concrete 3, as a shear key.

鋼板4は、橋脚2やあらたな鉄筋コンクリート3がそれらの曲げ変形に起因して互いの界面に沿った方向に相対変形しようとする際、橋脚2やあらたな鉄筋コンクリート3の膨張変形の反力として該鋼板の周方向に生じる引張力により、あらたな鉄筋コンクリート3を橋脚2に向けて押圧する載荷手段として機能する。   When the steel pier 2 and the new reinforced concrete 3 are to be deformed relative to each other in the direction along the interface due to their bending deformation, the steel pier 4 and the new reinforced concrete 3 have the It functions as a loading means for pressing the new reinforced concrete 3 toward the pier 2 by the tensile force generated in the circumferential direction of the steel plate.

本実施形態に係る鉄筋コンクリートの耐震補強構造1を構築するには、まず、図3(a)に示すように、短鉄筋12の配置予定箇所に合わせて該短鉄筋が挿入される挿入孔11を橋脚2の表面13に穿孔する。   In order to construct the reinforced concrete seismic reinforcement structure 1 according to the present embodiment, first, as shown in FIG. 3 (a), the insertion hole 11 into which the short reinforcing bar 12 is inserted is arranged in accordance with the planned location of the short reinforcing bar 12. The surface 13 of the pier 2 is drilled.

挿入孔11を穿孔するにあたっては、その深さD2が橋脚2の鉄筋21のかぶり厚さD1未満となるように設定する。 In drilling the insertion hole 11, the depth D 2 is set to be less than the cover thickness D 1 of the reinforcing bar 21 of the pier 2.

次に、図3(b)に示すように、挿入孔11に無収縮モルタルやエポキシ樹脂等の硬化剤22を充填し、次いで、短鉄筋12が橋脚2の表面13から突出する形で該橋脚に立設されるように、短鉄筋12の基端側を挿入孔11に挿入する。   Next, as shown in FIG. 3B, the insertion hole 11 is filled with a hardener 22 such as non-shrink mortar or epoxy resin, and then the short reinforcing bar 12 protrudes from the surface 13 of the pier 2 so that the pier The proximal end side of the short reinforcing bar 12 is inserted into the insertion hole 11 so as to stand upright.

硬化剤22が硬化して短鉄筋12が挿入孔11に固着されたならば、橋脚2の周囲に配筋を施すとともに該橋脚の表面13から離間するように鋼板4を建て込み、次いで、鋼板4を型枠材としてその内側にフレッシュコンクリートを打設することにより、短鉄筋12の先端側が該フレッシュコンクリートに埋設された状態で橋脚2と鋼板4との間にあらたな鉄筋コンクリート3を構築する。   When the hardener 22 is hardened and the short reinforcing bar 12 is fixed to the insertion hole 11, the steel plate 4 is erected so as to be arranged around the pier 2 and separated from the surface 13 of the pier. By placing fresh concrete 4 on the inside of the frame 4 as a mold material, a new reinforced concrete 3 is constructed between the bridge pier 2 and the steel plate 4 with the front end side of the short rebar 12 embedded in the fresh concrete.

本実施形態に係る鉄筋コンクリートの耐震補強構造1においては、橋脚2の周囲にあらたな鉄筋コンクリート3を巻き立てるにあたり、あらたな鉄筋コンクリート3を橋脚2に向けて押圧する載荷手段としての鋼板4を該あらたな鉄筋コンクリートの周囲に巻き立ててある。   In the seismic reinforcement structure 1 for reinforced concrete according to the present embodiment, when the new reinforced concrete 3 is wound around the pier 2, the new steel plate 4 is loaded as a loading means for pressing the new reinforced concrete 3 toward the pier 2. It is wound around reinforced concrete.

このようにすると、橋脚2やあらたな鉄筋コンクリート3が、交番荷重である地震時水平力を繰り返し受けることで外側にはらみ出しながら曲げ変形するとともに該曲げ変形に起因してそれらの界面に沿った方向に相対変形しようとする際、鋼板4には図4に示すように、橋脚2やあらたな鉄筋コンクリート3の膨張変形の反力として周方向の引張力が発生し、該引張力が押圧力としてあらたな鉄筋コンクリート3を橋脚2に向けて押圧する。   In this way, the bridge pier 2 and the new reinforced concrete 3 are bent and deformed while projecting outward by repeatedly receiving the horizontal force at the time of the earthquake, which is an alternating load, and the direction along the interface due to the bending deformation. As shown in FIG. 4, the steel plate 4 generates a tensile force in the circumferential direction as a reaction force against the expansion and deformation of the pier 2 and the new reinforced concrete 3, and the tensile force appears as a pressing force. The reinforced concrete 3 is pressed toward the pier 2.

そのため、橋脚2とあらたな鉄筋コンクリート3とのズレせん断に起因して短鉄筋12が橋脚2から抜け出そうとしたとき、その動きは図4(b)でよくわかるように、あらたな鉄筋コンクリート3を介して作用する鋼板4からの押圧力で抑制される。   Therefore, when the short rebar 12 tries to come out of the bridge pier 2 due to the shear shear between the pier 2 and the new reinforced concrete 3, the movement is via the new reinforced concrete 3 as shown in FIG. 4 (b). It is suppressed by the pressing force from the steel plate 4 acting.

以上説明したように、本実施形態に係る鉄筋コンクリートの耐震補強構造1によれば、橋脚2の周囲にあらたな鉄筋コンクリート3を巻き立てるにあたり、あらたな鉄筋コンクリート3を橋脚2に向けて押圧する載荷手段としての鋼板4を該あらたな鉄筋コンクリートの周囲に巻き立てるようにしたので、橋脚2からの短鉄筋12の抜け出しは、上述したように、あらたな鉄筋コンクリート3を介して作用する鋼板4からの押圧力によって防止されることとなり、かくして短鉄筋12は、シヤキーとしての本来の機能を十分に発揮して橋脚2とあらたな鉄筋コンクリート3とを強固に一体化する。   As described above, according to the reinforced concrete seismic reinforcement structure 1 according to the present embodiment, when the new reinforced concrete 3 is wound around the pier 2, as a loading means for pressing the new reinforced concrete 3 toward the pier 2. Since the steel plate 4 is wound around the new reinforced concrete, the short bar 12 is pulled out from the pier 2 by the pressing force from the steel plate 4 acting through the new reinforced concrete 3 as described above. Thus, the short reinforcing bar 12 fully exhibits the original function as a shear key and firmly integrates the pier 2 and the new reinforced concrete 3.

また、鋼板4によって短鉄筋12の抜け出しが防止されることにより、従来のように、ロッド状アンカー部材を長く形成したり基端側に拡幅部を設けたりすることで定着強度を高める必要がなくなる。   Further, since the steel bars 4 prevent the short reinforcing bars 12 from coming out, it is not necessary to increase the fixing strength by forming a long rod-shaped anchor member or providing a widened portion on the base end side as in the prior art. .

そのため、短くかつ長さ方向にわたって同一断面となるように形成された短鉄筋12でロッド状アンカー部材を形成することができるとともに、それに伴って橋脚2に穿孔すべき挿入孔11も、浅くて細い孔で足りることとなり、加えて、本実施形態の場合、挿入孔11の深さD2を橋脚2の鉄筋かぶり厚さD1未満としたので、挿入孔11の穿孔作業における作業能率を何ら低下させることなく、橋脚2に埋設された鉄筋21への損傷リスクを皆無にすることができる。 Therefore, the rod-like anchor member can be formed with the short reinforcing bars 12 that are short and have the same cross section over the length direction, and the insertion hole 11 to be drilled in the pier 2 is also shallow and thin. In addition, in this embodiment, since the depth D 2 of the insertion hole 11 is less than the reinforcing bar cover thickness D 1 of the pier 2, the work efficiency in drilling the insertion hole 11 is reduced at all. Without making it, the risk of damage to the reinforcing bars 21 embedded in the pier 2 can be eliminated.

また、本実施形態に係る鉄筋コンクリートの耐震補強構造1によれば、鋼板4の押圧力が、橋脚2の膨張変形を周囲から拘束する作用も果たすため、橋脚2のせん断補強及び靭性補強も可能となる。   Moreover, according to the seismic reinforcement structure 1 of the reinforced concrete according to the present embodiment, the pressing force of the steel plate 4 also serves to restrain the expansion deformation of the pier 2 from the surroundings, so that shear reinforcement and toughness reinforcement of the pier 2 are possible. Become.

本実施形態では、載荷手段として鋼板4を採用したが、これに代えて、巻回部材としての繊維補強シートをあらたな鉄筋コンクリート3の周囲に巻回するようにしてもよいし、図5に示すように、PCストランドとして用いられる引張抵抗材51をあらたな鉄筋コンクリート3の断面内に貫通配置するようにしてもよい。   In the present embodiment, the steel plate 4 is employed as the loading means, but instead, a fiber reinforced sheet as a winding member may be wound around a new reinforced concrete 3 as shown in FIG. As described above, the tensile resistance material 51 used as the PC strand may be disposed through the section of the new reinforced concrete 3.

かかる構成においても上述の実施形態と同様、あらたな鉄筋コンクリート3を介して作用する引張抵抗材51からの押圧力によって、橋脚2からの短鉄筋12の抜け出しが防止される。   Even in such a configuration, the short reinforcing bar 12 is prevented from coming out of the pier 2 by the pressing force from the tensile resistance material 51 acting through the new reinforced concrete 3 as in the above-described embodiment.

また、本実施形態及びその変形例では、引張力を初期導入しない形で鋼板4をあらたな鉄筋コンクリート3の周囲に巻き立てるようにし、あるいは繊維補強シートや引張抵抗材51をあらたな鉄筋コンクリート3の周囲に巻回し、あるいはその断面内に貫通配置するようにしたが、これらに代えて、繊維補強シートや引張抵抗材51を所定の緊張力であらたな鉄筋コンクリート3の周囲に巻回し、あるいはその断面内に貫通配置するようにしてもかまわない。   Further, in the present embodiment and its modification, the steel plate 4 is wound around the new reinforced concrete 3 without initially introducing the tensile force, or the fiber reinforced sheet and the tensile resistance material 51 are wound around the new reinforced concrete 3. However, instead of these, a fiber reinforced sheet or a tensile resistance material 51 is wound around a new reinforced concrete 3 with a predetermined tension, or in the cross section. You may make it arrange | position through.

このようにすれば、橋脚2に向かう押圧力が常時、あらたな鉄筋コンクリート3に作用するため、橋脚2からの短鉄筋12の抜け出しをより確実に防止することが可能となる。   In this way, since the pressing force toward the pier 2 always acts on the new reinforced concrete 3, it is possible to more reliably prevent the short reinforcing bar 12 from coming out of the pier 2.

また、本実施形態及びその変形例では、鋼板4や巻回部材あるいは引張抵抗材51による引張力で押圧力を生じさせる構成としたが、これに代えて図6に示すように、フーチング62に立設された橋脚2をその立ち上がり箇所で耐震補強する必要がある場合において、該立ち上がり箇所近傍で十分な大きさの土圧を期待できる場合には、橋脚2の立ち上がり箇所を適宜開削してあらたな鉄筋コンクリート3を巻き立て、しかる後、開削箇所を埋め戻して十分に締め固めることにより、あらたな鉄筋コンクリート3の周囲に拡がる地盤61からの土圧を押圧力として該あらたな鉄筋コンクリートに作用させる構成を採用することができる。   Further, in the present embodiment and the modification thereof, the pressing force is generated by the tensile force generated by the steel plate 4, the winding member, or the tensile resistance material 51. However, instead of this, as shown in FIG. When it is necessary to seismically reinforce the standing pier 2 at its rising position, if a sufficient earth pressure can be expected in the vicinity of the rising position, the rising position of the pier 2 is appropriately cut off. A structure in which a new reinforced concrete 3 is wound up, and then the excavated portion is backfilled and sufficiently compacted so that the earth pressure from the ground 61 spreading around the new reinforced concrete 3 acts as a pressing force on the new reinforced concrete. Can be adopted.

1 鉄筋コンクリートの耐震補強構造
2 橋脚(既存RC部材)
3 あらたな鉄筋コンクリート
4 鋼板(載荷手段)
11 挿入孔
12 短鉄筋(ロッド状アンカー部材)
51 引張抵抗材
61 地盤
1 Seismic reinforcement structure of reinforced concrete 2 Pier (existing RC member)
3 New reinforced concrete 4 Steel plate (loading means)
11 Insertion Hole 12 Short Rebar (Rod Anchor Member)
51 Tensile resistance material 61 Ground

Claims (2)

既存RC部材の周囲にあらたな鉄筋コンクリートを巻き立てるとともに、前記既存RC部材の表面に穿孔された挿入孔に基端側が挿入され先端側が前記あらたな鉄筋コンクリートに埋設されるように前記既存RC部材と前記あらたな鉄筋コンクリートとの界面近傍にロッド状アンカー部材を配置した鉄筋コンクリートの耐震補強構造において、
前記あらたな鉄筋コンクリートを前記既存RC部材に向けて押圧する載荷手段を該あらたな鉄筋コンクリートの周囲又は内部に配置するとともに、該載荷手段を、前記あらたな鉄筋コンクリートの周囲に巻き立てられる鋼板、前記あらたな鉄筋コンクリートの周囲に巻回される繊維補強シートその他の巻回部材又は前記あらたな鉄筋コンクリートの内部に貫通される引張抵抗材で構成してなり、前記挿入孔の深さを前記既存RC部材の鉄筋かぶり厚さ未満とするとともに、前記載荷手段を、前記鋼板、前記巻回部材又は前記引張抵抗材に初期導入された引張力による押圧力によって、前記既存RC部材と前記あらたな鉄筋コンクリートとの界面に沿った相対変形に起因する前記ロッド状アンカー部材の前記既存RC部材からの抜け出しが抑制されるように構成したことを特徴とする鉄筋コンクリートの耐震補強構造。
The reinforced concrete is wound around the existing RC member, and the proximal end side is inserted into the insertion hole drilled in the surface of the existing RC member and the distal end side is embedded in the new reinforced concrete and the new RC member. In the reinforced concrete seismic reinforcement structure where rod-shaped anchor members are arranged near the interface with new reinforced concrete,
A loading means for pressing the new reinforced concrete against the existing RC member is disposed around or inside the new reinforced concrete, and the loading means is a steel plate wound around the new reinforced concrete, the new It is composed of a fiber reinforced sheet or other wound member wound around the reinforced concrete, or a tensile resistance material penetrating into the new reinforced concrete, and the depth of the insertion hole is defined by a reinforcing bar cover of the existing RC member. The load means is arranged along the interface between the existing RC member and the new reinforced concrete by the pressing force due to the tensile force initially introduced into the steel plate, the wound member or the tensile resistance material. The rod-like anchor member is prevented from coming off from the existing RC member due to relative deformation. Retrofit structure of reinforced concrete which is characterized by being configured as.
既存RC部材の周囲にあらたな鉄筋コンクリートを巻き立てるとともに、前記既存RC部材の表面に穿孔された挿入孔に基端側が挿入され先端側が前記あらたな鉄筋コンクリートに埋設されるように前記既存RC部材と前記あらたな鉄筋コンクリートとの界面近傍にロッド状アンカー部材を配置し、前記あらたな鉄筋コンクリートを前記既存RC部材に向けて押圧する載荷手段を該あらたな鉄筋コンクリートの内部に貫通される引張抵抗材として配置し、前記挿入孔の深さを前記既存RC部材の鉄筋かぶり厚さ未満とするとともに、前記載荷手段を、その押圧力によって、前記既存RC部材と前記あらたな鉄筋コンクリートとの界面に沿った相対変形に起因する前記ロッド状アンカー部材の前記既存RC部材からの抜け出しが抑制されるように構成した鉄筋コンクリートの耐震補強構造を構築する方法であって、前記あらたな鉄筋コンクリートを打設した後に前記引張抵抗材に緊張力を導入することを特徴とする鉄筋コンクリートの耐震補強方法。 The reinforced concrete is wound around the existing RC member, and the proximal end side is inserted into the insertion hole drilled in the surface of the existing RC member and the distal end side is embedded in the new reinforced concrete and the new RC member. A rod-shaped anchor member is arranged in the vicinity of the interface with the new reinforced concrete, and a loading means for pressing the new reinforced concrete against the existing RC member is arranged as a tensile resistance material penetrating into the new reinforced concrete, The depth of the insertion hole is less than the reinforcing bar cover thickness of the existing RC member, and the loading means is caused by relative deformation along the interface between the existing RC member and the new reinforced concrete by the pressing force. So that the rod-like anchor member is prevented from coming off from the existing RC member. A method of constructing a seismic reinforcement structure configured reinforced concrete, earthquake-proof reinforcement method of reinforced concrete, characterized by introducing the tensioning force in the tension resistive material the new reinforced concrete after Da設.
JP2012197247A 2012-09-07 2012-09-07 Seismic reinforcement structure and method for reinforced concrete Active JP6218130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197247A JP6218130B2 (en) 2012-09-07 2012-09-07 Seismic reinforcement structure and method for reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197247A JP6218130B2 (en) 2012-09-07 2012-09-07 Seismic reinforcement structure and method for reinforced concrete

Publications (2)

Publication Number Publication Date
JP2014051825A JP2014051825A (en) 2014-03-20
JP6218130B2 true JP6218130B2 (en) 2017-10-25

Family

ID=50610532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197247A Active JP6218130B2 (en) 2012-09-07 2012-09-07 Seismic reinforcement structure and method for reinforced concrete

Country Status (1)

Country Link
JP (1) JP6218130B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528906A (en) * 2019-09-07 2019-12-03 深圳洲际建筑装饰集团有限公司 A kind of ancient building metope method for repairing and constructing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2796501B2 (en) * 1994-09-05 1998-09-10 鹿島建設株式会社 Reinforcement structure for existing concrete structures
JPH0972108A (en) * 1995-09-05 1997-03-18 Shimizu Corp Reinforcing method of existing column body
JP2916674B2 (en) * 1995-10-06 1999-07-05 株式会社総研設計 Seismic isolation repair method for existing buildings
JPH10131516A (en) * 1996-10-30 1998-05-19 Kumagai Gumi Co Ltd Reinforcing structure of existing building
US7180080B2 (en) * 2002-02-20 2007-02-20 Loma Linda University Medical Center Method for retrofitting concrete structures
JP4636995B2 (en) * 2005-10-26 2011-02-23 鹿島建設株式会社 Composite concrete structure
JP2007297826A (en) * 2006-04-28 2007-11-15 East Japan Railway Co Method for reinforcing bridge pier with steel plate
JP5213248B2 (en) * 2008-12-15 2013-06-19 前田建設工業株式会社 Seismic reinforcement structure for existing buildings
JP2011089275A (en) * 2009-10-21 2011-05-06 Tobishima Corp Construction method for asceismic reinforcement of existing reinforced concrete bridge pier
JP5429812B2 (en) * 2010-03-25 2014-02-26 株式会社大林組 Joining structure and method of shaft member and RC member
JP5725476B2 (en) * 2012-08-31 2015-05-27 一般社団法人 レトロフィットジャパン協会 Concrete column reinforcement structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528906A (en) * 2019-09-07 2019-12-03 深圳洲际建筑装饰集团有限公司 A kind of ancient building metope method for repairing and constructing

Also Published As

Publication number Publication date
JP2014051825A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
KR20080105509A (en) Concrete retaining wall with dual wall jointed by anchor and construction method using the same
JP6189597B2 (en) Columnar structure reinforcement structure and columnar structure reinforcement method
EP3135821B1 (en) Structure of permanent anchor
KR101175112B1 (en) Multipurpose nailing anchor and construction method thereof
JP6218130B2 (en) Seismic reinforcement structure and method for reinforced concrete
JP2008088638A (en) Ground anchor and ground anchor method
JP4780781B2 (en) Seismic reinforcement method for existing concrete pier
JP4181192B2 (en) Ground anchor and ground anchor method
KR100793510B1 (en) Tension soil nail and construction method of underground wall using the same
KR100862387B1 (en) Tensional kit for top-down constructing of acupressure lasting anchor and top-down constructing method of acupressure lasting anchor using this
JP2005307512A (en) Building and construction method of the same
JP6172499B2 (en) PC tank and its construction method
JP6474118B2 (en) Seismic reinforcement structure and method for reinforced concrete
JP5201719B2 (en) Column construction method and column structure
JP5423134B2 (en) Foundation structure
JP2010031568A (en) Aseismatic reinforcing construction method for existing foundation and aseismatic reinforcing structure of existing foundation
JP3857257B2 (en) Seismic reinforcement structure for bridge piers
JP5972709B2 (en) Pile head semi-rigid joint structure of new building and its construction method
JP6296963B2 (en) Natural ground reinforcement method and structure
JP5504463B2 (en) Reinforcing method of concrete frame
JP2018104944A (en) Column base structure, and construction method for the same
JP2013036188A (en) Pile structure
JP5889050B2 (en) Main column made of reinforced concrete
JP2020094395A (en) Reinforcing structure of structure and reinforcing method of structure
JP6840457B2 (en) Reinforcement method for single column structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170919

R150 Certificate of patent or registration of utility model

Ref document number: 6218130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250