JP5290461B1 - Slope reinforcement method - Google Patents

Slope reinforcement method Download PDF

Info

Publication number
JP5290461B1
JP5290461B1 JP2012264879A JP2012264879A JP5290461B1 JP 5290461 B1 JP5290461 B1 JP 5290461B1 JP 2012264879 A JP2012264879 A JP 2012264879A JP 2012264879 A JP2012264879 A JP 2012264879A JP 5290461 B1 JP5290461 B1 JP 5290461B1
Authority
JP
Japan
Prior art keywords
slope
force
precast
precast plate
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012264879A
Other languages
Japanese (ja)
Other versions
JP2014109158A (en
Inventor
裕 織田
隆 神谷
啓二 服部
和也 桐山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yahagi Construction Co Ltd
Original Assignee
Yahagi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yahagi Construction Co Ltd filed Critical Yahagi Construction Co Ltd
Priority to JP2012264879A priority Critical patent/JP5290461B1/en
Application granted granted Critical
Publication of JP5290461B1 publication Critical patent/JP5290461B1/en
Publication of JP2014109158A publication Critical patent/JP2014109158A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

【課題】プレキャスト板と棒状補強材との連結部近傍への応力集中を緩和させた、素掘り状態の斜面が急勾配であっても崩壊しない斜面補強工法を提供する。
【解決手段】棒状補強材7に作用する軸力Ft を、前記ナット緊締工程におけるナット8の締付け力Tにより調節することで、この軸力Ft によりプレキャスト板1、1a…を斜面2に押さえつけることにより生じる斜面2側の地盤反力により、連結部近傍の応力集中を緩和可能にして、斜面2側の変形を抑止可能にする。
【選択図】図2
The present invention provides a slope reinforcing method in which stress concentration in the vicinity of a connecting portion between a precast plate and a rod-shaped reinforcing member is eased so as not to collapse even if a slope in a bare digging state has a steep slope.
An axial force F t acting on the rod-like reinforcing member 7, by adjusting the fastening force T of the nut 8 in the nut tightening step, the axial force F t precast plates 1, 1a ... to slope 2 By the ground reaction force on the slope 2 side generated by pressing, stress concentration in the vicinity of the connecting portion can be relaxed, and deformation on the slope 2 side can be suppressed.
[Selection] Figure 2

Description

本発明は、斜面、即ち自然な急斜面や切土法面を補強する工法に関する。   The present invention relates to a method for reinforcing a slope, that is, a natural steep slope or a cut slope.

本願出願人は、斜面を安定化させるための補強工法として、プレキャスト板を貫通させ地山側へ打込み状態で定着させた棒状補強材の突端部にナットを螺嵌緊締する前記プレキャスト板の設置作業を上段より下段へ行う所謂『逆巻き施工』に関する特許を保有しており、その内容は、基本的に、図1に示す様に、掘削形成された斜面2にプレキャスト板1、1a…を設置する工程と、各プレキャスト板1、1a…の中央孔を貫通させ斜面2側に削孔する工程と、削孔工程で形成された削孔部5内にグラウト材6を注入する工程と、グラウト材注入工程の前後の何れかで棒状補強材7を削孔部5内に挿入する工程と、グラウト材6の養生硬化後に、棒状補強材7の突端部にナット8を螺嵌緊締する工程とを有しており、一段目のプレキャスト板1、1a…を並列できる高さ分の斜面2を掘削形成してその下部に段部9を形成し、該段部9上にプレキャスト板1、1a…を並列して上記プレキャスト板設置工程以降の工程により斜面2に定着させ、次に上から二段目にプレキャスト板1、1a…を据付けできる高さの次の斜面2を掘削形成して次の段部9を形成し、二段目にプレキャスト板1、1a…を一段目のプレキャスト板1、1a…に吊り下げ配置した後、一段目と同様に二段目のプレキャスト板1、1a…を並列、定着することを三段目以降繰り返すことで、複数段にプレキャスト板を備えた補強斜面を形成可能にし、棒状補強材7及び硬化したグラウト材6により、地盤に馴染んだ杭体10を形成している(例えば、特許文献1〜3参照)。   The applicant of the present application, as a reinforcement method for stabilizing the slope, installed the precast plate by screwing and tightening a nut to a protruding end portion of a rod-shaped reinforcing material that has been penetrated through the precast plate and fixed in a grounded state. We have a patent on the so-called “reverse winding construction” performed from the upper stage to the lower stage, which basically consists of the process of installing the precast plates 1, 1a... On the slope 2 formed by excavation as shown in FIG. A step of penetrating the central hole of each precast plate 1, 1a ... and drilling it on the slope 2 side, a step of injecting the grout material 6 into the hole portion 5 formed in the drilling step, and a grout material injection There are a step of inserting the rod-shaped reinforcing material 7 into the drilling portion 5 either before or after the step, and a step of screwing and tightening the nut 8 to the protruding end portion of the rod-shaped reinforcing material 7 after curing and hardening of the grout material 6. 1st stage precast board 1, 1a Is formed by excavating and forming a step portion 9 at a lower portion thereof, and precast plates 1, 1 a... Are arranged in parallel on the step portion 9 by the steps after the precast plate installation step. 2 is fixed to the second stage, and the next slope 2 is formed by excavating the second slope 2 at a height from which the precast board 1, 1a... Can be installed, and the next stage 9 is formed. , 1a... Are suspended from the first-stage precast plate 1, 1a, and then the second-stage precast plates 1, 1a,. A reinforcing slope having a precast plate in a plurality of stages can be formed, and a pile body 10 adapted to the ground is formed by the rod-shaped reinforcing material 7 and the hardened grout material 6 (see, for example, Patent Documents 1 to 3).

特公平7−26402号公報Japanese Patent Publication No. 7-26402 特許第2530565号公報Japanese Patent No. 2530565 特許第5065227号公報Japanese Patent No. 5065227

しかし、上記従来技術にあっては、下記の通り、解決せねばならない課題があった。
(1) 次段にプレキャスト板1、1a…を設置するために素掘り状態の斜面2が一定期間発生し、前段のプレキャスト板1、1a…は下支えが無くなり、その自重により下がろうとする作用に起因して、プレキャスト板1、1a…と杭体10との連結部近傍に応力集中して、杭体10の定着部近傍に過大な剪断力が作用し、更に次段のプレキャスト板1、1a…は上段のプレキャスト板1、1a…に吊り下げられることが一般的で、杭体10の1本が吊り下げる荷重はプレキャスト板1、1a…2枚分相当となって更に負担が増大してしまうため、プレキャスト板1、1a…と斜面2との間に基段補助杭を打設してプレキャスト板の自重を支えたり、棒状補強材の設置間隔を狭くし杭体10の本数を増して杭体10の1本当たりに作用する力を小さくしたりして対応する必要性に迫られ、その結果工程や作業量が増加して作業性が悪くなる。
(2) 素掘り状態の斜面2は、急勾配になるほど崩壊する危険性が高く、一旦崩壊が発生すると、設置済のプレキャスト板1、1a…が大きく沈下して、連結部近傍の応力集中が更に大きくなってしまう。
However, the above-described prior art has a problem to be solved as described below.
(1) In order to install the precast plates 1, 1a, etc. in the next stage, a slope 2 in an unearthed state is generated for a certain period of time, and the precast plates 1, 1a, etc. in the previous stage have no support and are intended to descend due to their own weight. As a result, stress concentrates in the vicinity of the connecting portion between the precast plates 1, 1 a... And the pile body 10, and an excessive shearing force acts near the fixing portion of the pile body 10 . 1a ... is usually suspended from the upper precast plate 1, 1a ... The load that one of the piles 10 suspends is equivalent to two precast plates 1, 1a ... and the load is further increased. Therefore, a base auxiliary pile is placed between the precast plate 1, 1a ... and the slope 2 to support the weight of the precast plate, and the installation interval of the rod-shaped reinforcing material is narrowed to increase the number of pile bodies 10. Need to respond by reducing the force acting on each pile 10 As a result, the process and the amount of work increase, resulting in poor workability.
(2) The slope 2 of the bare digging state has a higher risk of collapsing as it becomes steep, and once the collapse occurs, the precast plates 1, 1a, etc. that have already been installed will sink greatly, causing stress concentration near the connecting part. It gets bigger.

本発明は、上記従来技術に基づく、プレキャスト板と棒状補強材との連結部近傍に応力集中し易く、且つ素掘り状態の斜面は急勾配になるほど崩壊し易い課題に鑑み、掘削形成された斜面にプレキャスト板を設置する工程と、各プレキャスト板を貫通させ斜面側に削孔する工程と、削孔工程で形成された削孔部内全体にグラウト材を注入する工程と、グラウト材注入工程の前後の何れかで棒状補強材を削孔部内に挿入する工程と、グラウト材の養生硬化後に、棒状補強材の突端部にナットを螺嵌緊締する工程とを有しており、一段目のプレキャスト板を並列できる高さ分の斜面を掘削形成してその下部に段部を形成し、該段部上にプレキャスト板を並列して上記プレキャスト板設置工程以降の工程により斜面に定着させ、次に上から二段目にプレキャスト板を据付けできる逆巻き掘削高さの次の斜面を掘削形成して次の段部を形成し、二段目にプレキャスト板を一段目のプレキャスト板に吊り下げ配置した後、一段目と同様に二段目のプレキャスト板を並列、定着することを三段目以降繰り返す逆巻き施工法であって、下段のプレキャスト板を吊り下げた段階での上段のプレキャスト板における、前記棒状補強材と硬化したグラウト材により形成された杭体に作用する軸力を、上段のプレキャスト板での前記ナット緊締工程におけるナットの締め付けにより前記杭体に作用する軸力前記プレキャスト板を斜面に押さえつけることにより生じる斜面側の地盤反力により、素掘り状態の斜面を崩壊させない様に維持可能にして、連結部近傍の応力集中を緩和する斜面補強工法で、前記締付け力及び前記斜面の逆巻き掘削高さを、2枚のプレキャスト板の自重の他に、施工時に作用する軸力、引き止め効果の力、移動土塊重量、プレキャスト板背面摩擦力及びグランドアーチ力の各々のベクトルをX成分(水平成分)とY成分(鉛直成分)に分けて合算したF X 及びF Y の合力F sum の角度θと、主働崩壊角ωの直角方向の角度(ω−90°)が、θ=tan -1 ( F Y /F X ) ≧(ω−90°)となる様に決定し、前記引き止め効果の力は、主働領域土塊が滑動しようとするのを引き止める、杭体により作用する力とし、前記移動土塊重量は、前記プレキャスト板1枚の長さ当りの主働領域内の土塊の重量とし、前記グランドアーチ力は、地山における主働領域が滑ろうとする滑動力に対し、法先から、杭体に軸力を与えることにより締め付け効果が発揮されるプレキャスト板の背面間にかけてアーチ構造が形成されて斜面崩壊に対して抵抗する力としたことによって、斜面側の変形を抑止可能にして、上記課題を解決する。 In view of the problem that the present invention is based on the above prior art, stress is likely to concentrate in the vicinity of the connecting portion between the precast plate and the rod-shaped reinforcing material, and the slope in the unexcavated state tends to collapse as the slope becomes steep. Before and after the process of installing the precast plate, the step of penetrating each precast plate and drilling on the slope side, the step of injecting the grout material into the entire hole formed in the drilling step, and the grout material injection step A step of inserting a rod-shaped reinforcing material into the drilled hole portion and a step of screwing and tightening a nut to the protruding end portion of the rod-shaped reinforcing material after curing and hardening of the grout material. Excavating and forming a slope with a height that can be juxtaposed, forming a step at the bottom, fixing a precast plate on the step and fixing it to the slope by the steps after the precast plate installation step, and then To the second stage Rekyasuto plate installation can backwound the next slope excavation height drilling formed to form the next stage unit, after placing suspended precast plate precast plate of the first stage to the second stage, like the first stage It is a reverse winding method that repeats the third and subsequent stages of fixing the second stage precast plate in parallel and fixing , and in the upper stage precast plate when the lower stage precast plate is suspended, the rod-shaped reinforcing material and the hardened grout the axial force acting on the pile body formed by wood, slant side caused by pressing the precast plate slopes in axial force acting on the pile body by tightening of the nut in the nut tightening step at the upper precast plate of the ground reaction force, the slope of the dug state and enables maintenance so as not to collapse in the slope reinforcing construction method to alleviate the stress concentration near a connection part, wherein Attaching force and reverse-winding excavation height of the slope, in addition to the weight of the two precast plates, each of the axial force acting at the time of construction, the force of the retaining effect, the weight of the moving clot, the friction force of the back surface of the precast plate and the ground arch force Is divided into an X component (horizontal component) and a Y component (vertical component), and an angle θ of the resultant force F sum of F X and F Y and an angle (ω−90 °) in the direction perpendicular to the main decay angle ω. ) Is determined so that θ = tan −1 (F Y / F X ) ≧ (ω−90 °), and the force of the anti-traction effect is a pile that prevents the main active mass from trying to slide. The weight of the moving clot is the weight of the clot in the main working area per length of the precast plate, and the ground arch force is the sliding force that the main working area in the natural ground tries to slide. Tightening by applying axial force to the pile body from the law By forming an arch structure between the back surfaces of the precast plate that exerts a beating effect and resisting the slope collapse, the deformation on the slope side can be suppressed, and the above-described problems are solved.

要するに本発明は、掘削形成された斜面にプレキャスト板を設置する工程と、各プレキャスト板を貫通させ斜面側に削孔する工程と、削孔工程で形成された削孔部内全体にグラウト材を注入する工程と、グラウト材注入工程の前後の何れかで棒状補強材を削孔部内に挿入する工程と、グラウト材の養生硬化後に、棒状補強材の突端部にナットを螺嵌緊締する工程とを有しており、一段目のプレキャスト板を並列できる高さ分の斜面を掘削形成してその下部に段部を形成し、該段部上にプレキャスト板を並列して上記プレキャスト板設置工程以降の工程により斜面に定着させ、次に上から二段目にプレキャスト板を据付けできる逆巻き掘削高さの次の斜面を掘削形成して次の段部を形成し、二段目にプレキャスト板を一段目のプレキャスト板に吊り下げ配置した後、一段目と同様に二段目のプレキャスト板を並列、定着することを三段目以降繰り返す逆巻き施工法であって、下段のプレキャスト板を吊り下げた段階での上段のプレキャスト板における、前記棒状補強材と硬化したグラウト材により形成された杭体に作用する軸力を、上段のプレキャスト板での前記ナット緊締工程におけるナットの締め付けにより前記杭体に作用する軸力前記プレキャスト板を斜面に押さえつけることにより生じる斜面側の地盤反力により、素掘り状態の斜面を崩壊させない様に維持可能にして、連結部近傍の応力集中を緩和するので、前記プレキャスト板の自重による下方ズレを完全に防止することが出来、斜面の滑動力、土の局所的な変形を抑えることが出来るため、素掘り状態の斜面をそのままの状態に維持することが出来る。
而も、プレキャスト板を使用することにより、逆巻き1段ごとに法面工を完成させることで、施工中1段完了毎に杭体に締付け力を作用させることができるため、地山側の反力を有効に発生させることができる。
In short, the present invention includes a step of installing a precast plate on an excavated slope, a step of penetrating each precast plate and drilling holes on the slope side, and injecting grout material into the entire drilling portion formed in the drilling step. A step of inserting the rod-shaped reinforcing material into the drilled hole part before or after the grout material injecting step, and a step of screwing and tightening a nut to the protruding end portion of the rod-shaped reinforcing material after curing of the grout material. And having a step portion formed at the lower portion thereof by excavating and forming a slope having a height that allows the first-stage precast plates to be juxtaposed. The process is fixed on the slope, and then the next slope of the reverse winding excavation height that allows the precast board to be installed in the second stage from the top is excavated to form the next stage, and the precast board is the first stage in the second stage. On the precast board After lowering disposed Ri, the first stage as well as parallel precast plate of the second stage, a reverse-wound construction methods to repeat the third stage subsequent to fixing, the upper precast at the stage in which suspended lower precast plate wherein in the plate, the axial force acting on the pile body formed by grout cured with the bar reinforcement by tightening the nut in the nut tightening step at the upper precast plates in axial force acting on the pile body the ground reaction force slope side caused by pressing the precast plate slope, the slope of the dug state and enables maintenance so as not to collapse, since the stress concentration near a connection part, the lower due to the weight of the precast plate The displacement can be completely prevented, and the sliding force of the slope and local deformation of the soil can be suppressed. It can be maintained in the state.
However, by using a precast plate, it is possible to apply a tightening force to the pile body every time one stage of construction is completed by completing the slope work for each stage of reverse winding. Can be generated effectively.

前記締付け力及び前記斜面の逆巻き掘削高さを、2枚のプレキャスト板の自重の他に、施工時に作用する軸力、引き止め効果の力、移動土塊重量、プレキャスト板背面摩擦力及びグランドアーチ力の各々のベクトルをX成分(水平成分)とY成分(鉛直成分)に分けて合算したFX 及びFY の合力Fsum の角度θと、主働崩壊角ωの直角方向の角度(ω−90°)が、θ=tan-1( FY /FX ) ≧(ω−90°)となる様に決定し、前記引き止め効果の力は、主働領域土塊が滑動しようとするのを引き止める、杭体により作用する力とし、前記移動土塊重量は、前記プレキャスト板1枚の長さ当りの主働領域内の土塊の重量とし、前記グランドアーチ力は、プレキャスト板背面摩擦力及び地山における主働領域が滑ろうとする滑動力に対し、法先から、杭体に軸力を与えることにより締め付け効果が発揮されるプレキャスト板の背面間にかけてアーチ構造が形成されて斜面崩壊に対して抵抗する力としたので、規定の数値を入力すれば、自ずと前記締付け力及び前記斜面の逆巻き掘削高さを決定することが出来る等その実用的効果甚だ大である。 In addition to the self-weight of the two precast plates , the tightening force and the reverse winding excavation height of the slope include the axial force acting at the time of construction, the force of the retaining effect, the weight of the moving clot, the friction force of the back surface of the precast plate and the ground arch force . Each vector is divided into an X component (horizontal component) and a Y component (vertical component), and an angle θ of a resultant force Fsum of F X and F Y and a perpendicular angle (ω−90) of the main decay angle ω. Is determined so that θ = tan −1 (F Y / F X ) ≧ (ω−90 °), and the force of the detent effect is to prevent the active region soil mass from attempting to slide, The force acting by the pile body is the weight of the moving mass, the mass of the mass within the main working area per length of the precast plate, and the ground arch force is the precast plate back friction force and the main ground Is there a tip for the sliding force that the working area tries to slide? , Since the force of resistance to the arch structure is formed landslides toward between the back of the precast plate effect clamping by applying axial force to the pile body is exhibited, by entering a number of provisions, naturally the The practical effect of the tightening force and the reverse winding excavation height of the slope can be determined.

本発明に係る斜面補強工法で、次段のプレキャスト板を設置する前の状態を示す断面図である。It is sectional drawing which shows the state before installing the precast board of the next step by the slope reinforcement construction method which concerns on this invention. 図1の状態での作用力の方向を表す図である。It is a figure showing the direction of the acting force in the state of FIG.

本発明に係る斜面補強工法は、上記従来技術と同様の逆巻き施工法で、具体的には、プレキャスト板1、1a…の斜面2への設置工程と、プレキャスト板1、1a…の裏面と斜面2との隙間への裏込め材4の注入工程と、各プレキャスト板1、1a…を貫通させ斜面2側に削孔する工程と、この削孔工程で形成された削孔部5内へのグラウト材6の注入工程と、このグラウト材注入工程の前後の何れかでの棒状補強材7の削孔部5内への挿入工程と、グラウト材6の養生硬化後の、棒状補強材7の突端部へのナット8の螺嵌緊締工程とを有しているが、設置対象の地盤定数及び勾配により、ナット8の螺嵌緊締工程でナット8を所定の締付け力Tで緊締し杭体10に所定の軸力Ft を付与することで、プレキャスト板1、1a…を斜面2に押し付け、プレキャスト板1、1a…が鉛直に沈下しようとする作用力(自重)を、前記軸力と合成し地山内部方向に向かう合力に変換することにより、プレキャスト板1、1a…の背面と斜面2の法尻との間に反力が作用して、土の局所的な変形を抑えて素掘り状態の掘削面を安定させる様にしている。 The slope reinforcing method according to the present invention is the reverse winding construction method similar to the above prior art, specifically, the step of installing the precast plates 1, 1a ... on the slope 2, the back side and the slope of the precast plates 1, 1a ... 2, the step of injecting the backfill material 4 into the gap between the two, the step of drilling the precast plates 1, 1 a... To the slope 2 side, and the inside of the drilled portion 5 formed by this drilling step. The step of injecting the grout material 6, the step of inserting the rod-shaped reinforcing material 7 into the drilled portion 5 either before or after the grout material injecting step, and the curing of the bar-shaped reinforcing material 7 after curing and hardening of the grout material 6. Although and a threaded fitting tightening process of the nut 8 to the projecting end, the soil constants and the gradient of installation target, and tightening the nut 8 with a predetermined clamping force T at threaded fitting tightening process of the nut 8 Kuitai 10 to to confer predetermined axial force F t, pressing a precast plate 1, 1a ... to slope 2, Pureki By converting the acting force (self-weight) that strikes plate 1, 1a ... to sink vertically into the resultant force that is combined with the axial force and goes toward the inside of the natural ground, the back surface and slope 2 of precast plate 1, 1a ... A reaction force acts between the butt and the bottom of the soil to suppress local deformation of the soil and stabilize the excavated surface in the bare digging state.

加えて、上記合力のベクトル方向を、棒状補強材7の軸線方向に近づけることにより、連結部近傍に作用する応力集中を緩和させることが可能になり、上記合力の方向は主働崩壊角ωに対し直角方向の傾斜角(ω−90°)の基準線BLより上向きになる様に締付け力と逆巻き掘削高さを決定すれば、斜面2の滑動力を抑えることができ、斜面2全体を安定側に保つことができる。   In addition, by bringing the vector direction of the resultant force closer to the axial direction of the rod-shaped reinforcing member 7, it is possible to relax the stress concentration acting in the vicinity of the connecting portion, and the direction of the resultant force is the main collapse angle ω. On the other hand, if the tightening force and reverse winding excavation height are determined so as to be higher than the reference line BL of the inclination angle (ω-90 °) at right angles, the sliding force of the slope 2 can be suppressed, and the entire slope 2 is stabilized. Can be kept to the side.

施工時に作用する力のベクトルは、例えば図2に示すものがあり(方向のみを説明するものであって、各ベクトルの大きさは実値に則したものではない)、全てのベクトルの合力Fsum は、各ベクトルをX成分(水平成分)とY成分(鉛直成分)に分けて合算したものをFX 及びFY とすると、次の(1)式で算定出来る。

sum =√( FX 2 +FY 2) ……(1)
For example, the force vector acting at the time of construction is shown in FIG. 2 (only the direction is explained, and the magnitude of each vector is not based on the actual value), and the resultant force F of all the vectors Sum can be calculated by the following equation (1), where F X and F Y are obtained by dividing each vector into an X component (horizontal component) and a Y component (vertical component).

F sum = √ (F X 2 + F Y 2 ) (1)

又、合力Fsum の方向角θは、上記FX 及びFY を用いて、次の(2)式で算定出来る。

θ=tan-1( FY /FX ) ……(2)
Further, the direction angle θ of the resultant force F sum can be calculated by the following equation (2) using the above F X and F Y.

θ = tan −1 (F Y / F X ) (2)

そして、上記(2)式で算出されたθと(ω−90°)の関係が、θ≧(ω−90°)になれば、土の局所的な変形を抑えて素掘りの掘削面を安全側に保ち、かつ、パネルと杭体10の連結部近傍に作用する応力集中を緩和することが可能で、θ<(ω−90°)になると主働崩壊線に沿って滑ろうとする力が作用するようになる。 If the relationship between θ and (ω−90 °) calculated by the above equation (2) is θ ≧ (ω−90 °), the local excavation surface of the unearthed digging is suppressed while suppressing local deformation of the soil. It is possible to relax the stress concentration acting on the vicinity of the connection part between the panel and the pile body 10 while keeping it on the safe side, and when θ <(ω−90 °), it is the force that tries to slide along the main failure line Comes to work.

具体的には、前記(1)、(2)式のFX とFY は、以下に示す( 3) 〜( 7) 式を用いて算定可能な軸力Ft 、引き止め効果の力Fn 、移動土塊重量Ws 、プレキャスト板重量Wp 、プレキャスト板背面摩擦力Ff 、グランドアーチ力Fg のX成分とY成分を合算することで算定される。 Specifically, F X and F Y in the expressions (1) and (2) are the axial force F t that can be calculated using the following expressions (3) to (7), and the force F n of the detent effect. It is calculated by adding the X component and the Y component of the moving clot weight W s , the precast plate weight W p , the precast plate back friction force F f , and the ground arch force F g .

「引き止め効果の力」とは、主働領域土塊が滑動しようとするのを引き止める、杭体10により作用する力のことを指す。   The “strengthening effect force” refers to a force acting on the pile body 10 that prevents the main active area block from sliding.

「移動土塊重量」は、プレキャスト板1、1a…1枚の長さ当りの主働領域内の土塊の重量のことを指す。   The “moving clot weight” refers to the weight of the clot in the active region per length of the precast plate 1, 1a.

「グランドアーチ力」は、地山における主働領域が滑ろうとする滑動力に対し、法先から、補強材に軸力を与えることにより締め付け効果が発揮されるプレキャスト板1、1a…の背面間にかけて、アーチ構造が形成されて斜面崩壊に対して抵抗する力であり、本発明では、グランドアーチ力は、逆巻き掘削高さHに作用する主働土圧合力と補強材定着軸力Ft の鉛直成分によるブーシネスク合力により発生する地盤反力を指している。
但し、プレキャスト板1、1a…と杭体10により面的に変形拘束されている施工済みの部分は安定するため、逆巻き掘削された素掘り状態の斜面2の主働土圧のみを考慮している。
そして、グランドアーチ力の方向は、土塊内の応力が集中する主働崩壊線とグランドアーチの交点でのアーチ接線となり、水平面と成す角は主働崩壊角ωと同じとなる。
“Ground arch force” is the distance between the back of the precast plates 1 and 1a, where the effect of tightening is exerted by applying axial force to the reinforcing material from the tip to the sliding force in which the main area in the natural ground tries to slide. over the arch structure is formed a force resisting against landslides, in the present invention, the ground arch force, vertical main acting counter-wound excavation height H働土pressure merging force and reinforcement fixing axial force F t It refers to the ground reaction force generated by the combined force of the bousinesque.
However, in order to stabilize the part that has been deformed and constrained by the precast plates 1, 1 a, and the pile body 10, only the main earth pressure on the slope 2 of the unexcavated slope 2 is considered. .
The direction of the ground arch force is the arch tangent at the intersection of the main failure line where the stress in the mass is concentrated and the ground arch, and the angle formed with the horizontal plane is the same as the main failure angle ω.

「地盤定数」には、単位体積重量γ(kN/ m3 )、内部摩擦角φ(°)、粘着力C(kN/ m2 )、主働崩壊角ω(°)がある。
「内部摩擦角φ」は、土の剪断強さの成分のうち、土粒子の内部摩擦に起因する摩擦抵抗は、一般に剪断面に働く垂直応力に比例し、その比例定数をtan φとしたときの角度φのことである。
「粘着力C」は、粘土などにある主応力、即ち抗力=0でも剪断に抵抗する力のことで、土の剪断強さτを示すクーロンの方程式「τ=C+p×tanφ(p:垂直応力)」における「C」で示される部分である。
「主働崩壊角ω」は、土塊が破壊しない状態で達成できる土圧の中での最小値で、土圧がこれよりも小さくなろうとすると土塊は主働崩壊し、そのときのすべり面の角度のことで、ω=45°+φ/2で算定される。
“Ground constant” includes unit volume weight γ (kN / m 3 ), internal friction angle φ (°), adhesive force C (kN / m 2 ), and main collapse angle ω (°).
“Internal friction angle φ” is a component of soil shear strength, and the frictional resistance caused by the internal friction of soil particles is generally proportional to the normal stress acting on the shear surface, and the proportionality constant is tan φ. The angle φ.
“Adhesive strength C” is a principal stress in clay or the like, that is, a force that resists shearing even when drag = 0, and Coulomb's equation “τ = C + p × tanφ (p: normal stress) indicating the shear strength τ of soil. ) ”Is a portion indicated by“ C ”.
The “main failure angle ω” is the minimum value of the earth pressure that can be achieved in a state where the earth mass does not break. If the earth pressure tries to become smaller than this, the earth mass will undergo the main failure, and the slip surface at that time The angle is calculated as ω = 45 ° + φ / 2.

そして、「内部摩擦角φ」及び「粘着力C」を導き出す方法としては、一軸圧縮試験、三軸圧縮試験、一面剪断試験、ねじり剪断試験などの土質試料の力学試験をする方法や、ボーリングのロッド先端に抵抗装置を設置してこれを地中に挿入し、貫入や回転によって土質性状を調べるサウンディングや、既往の調査資料や統計的に分析したデータ(例えば、『建築基準設計のための地盤調査計画指針』)に基づき設定する方法などがあり、現場に応じて適宜選択する。   And, as a method of deriving “inner friction angle φ” and “adhesive strength C”, a mechanical test of soil samples such as a uniaxial compression test, a triaxial compression test, a single shear test, a torsional shear test, A resistance device is installed at the tip of the rod, and this is inserted into the ground. Sounding to check the soil properties by penetration and rotation, past survey data and statistically analyzed data (for example, “Ground for building standard design” There are methods to set based on the survey plan guideline ”), and so on.

〔軸力Ft (kN)」の算定式〕

t =T/( k×d) ……(3)
T:締付け力(N・ m)、k:トルク係数、d:ネジ径(m)
[Calculation formula of axial force F t (kN)]

F t = T / (k × d) (3)
T: Tightening force (N · m), k: Torque coefficient, d: Screw diameter (m)

〔引き止め効果の力Fn (kN)」の算定式〕

n =AP ×qd ……(4)
P :抵抗面積(m2 )=杭体10の径B(m)×主働領域内の杭体10の長さL
主働領域内に位置する杭体10の投影面積のこと。
d :極限支圧応力度(kN/ m2
地盤が剪断破壊を生じずに支え得る最大荷重あるいは荷重強度のこと。
d =C・ NC +q・ Nq +( γ・ B/2)・Nγ
C 、Nq 、Nγ :支持力係数(下記表1のテルツァギーの支持力係数表から代入)
q=γ・ Df
f :土被り(m)
主働領域内に位置する杭体10に対する土被り厚さ。
[Calculation formula of the force F n (kN) of the retaining effect]

F n = A P × q d (4)
A P : resistance area (m 2 ) = diameter B (m) of the pile body 10 × length L of the pile body 10 in the active region
The projected area of the pile 10 located in the main working area.
q d : Ultimate bearing stress (kN / m 2 )
The maximum load or load strength that the ground can support without causing shear failure.
q d = C · N C + q · N q + (γ · B / 2) · Nγ
N C , N q , Nγ: bearing capacity coefficient (substitute from the bearing capacity coefficient table of Tertzagi in Table 1 below)
q = γ · D f
D f : Soil cover (m)
Soil cover thickness for pile body 10 located in the main working area.

Figure 0005290461
Figure 0005290461

〔移動土塊重量Ws (kN)の算定式〕

s =S×b×γ ……(5)
S:移動土塊断面積(m2 )、b:プレキャスト板横幅(m)
[Calculation formula for moving soil mass W s (kN)]

W s = S × b × γ (5)
S: Moving mass block cross-sectional area (m 2 ), b: Precast board width (m)

〔プレキャスト板背面摩擦力Ff (kN)の算定式〕

f =μ×( Ft +Wp ・ sin|α|) ……(6)
μ:斜面の摩擦係数(=tanφ)、α:棒状補強材7の角度(°)
[Calculation formula for precast plate back friction force F f (kN)]

F f = μ × (F t + W p · sin | α |) (6)
μ: Friction coefficient of slope (= tan φ), α: Angle of rod-shaped reinforcing material 7 (°)

〔グランドアーチ力:Fg (kN)の算定式〕

g =〔( γ×H2 ×Ka ) /2−2×C×H×√( Ka ) +( σzu+σzd) ×H/2〕×b
……(7)
H:逆巻き掘削高さ(m)
a :主働土圧係数(=tan2 (45°−φ/2))
γ×H2 ×Ka /2−2×C×H×√( Ka ) :主働土圧合力
σzu:逆巻き掘削の上側でのブーシネスクによる鉛直応力
σzu=3×Ft ×sin|α|/( 2×π×z2)
σzd:逆巻き掘削の下側でのブーシネスクによる鉛直応力
σzd=3×Ft ×sin|α|/〔2×π×( z+H)2
z:棒状補強材7とプレキャスト板1、1a…との結合点から同プレキャスト板1、1a… の下端までの鉛直高さ(m)
[Grand arch force: Formula for F g (kN)]

F g = [(γ × H 2 × K a ) / 2-2 × C × H × √ (K a ) + (σ zu + σ zd ) × H / 2] × b
...... (7)
H: Reverse winding excavation height (m)
K a : main earth pressure coefficient (= tan 2 (45 ° −φ / 2))
γ × H 2 × K a / 2-2 × C × H × √ (K a ): active earth pressure combined force σ zu : vertical stress due to Boussinesq on the upper side of reverse winding excavation σ zu = 3 × F t × sin | α | / (2 × π × z 2 )
σ zd : Vertical stress due to Boussinesque under the reverse winding excavation σ zd = 3 × F t × sin | α | / [2 × π × (z + H) 2 ]
z: Vertical height (m) from the connection point between the rod-shaped reinforcing member 7 and the precast plates 1, 1a ... to the lower end of the precast plates 1, 1a ...

つまり、施工による変数は「逆巻き掘削高さH」と「補強材定着軸力Ft 」のみであり、その他の要素は地盤定数や製品仕様、もしくは「H」、「Ft 」から自ずと定まる値である。 In other words, the only variables due to construction are “reverse winding excavation height H” and “reinforcement anchoring axial force F t ”, and other factors are values determined by ground constants, product specifications, or “H” and “F t ”. It is.

(a)地盤定数
γ=18kN/ m3
φ=30°
C=0kN/ m2
の場合、
ω=45°+30°/2=60°
となる。

(b)使用材料
プレキャスト板1、1a…
重量Wp =8kN
縦幅a=1.2m
横幅b=1.8m
厚さt=0.12m
斜面2の角度β=73.3°(斜面勾配1:0.3)

棒状補強材7
種類:D29
長さ:5m(端部ネジ処理)
ネジ径d=0.027m(M27)
杭体10の径B=0.09m
打設角度α=−16.7°(343.3°)
主働領域内の杭体10の長さL=0.5m

(c)施工条件の仮設定
下段のプレキャスト板1、1a…を吊り下げ、掘削高さH=1.3mでの施工を検討する。

(d)検算
〔軸力Ft
d=0.027m、トルク係数k=0.2を上記(3)式に代入すると、
t =0.186・T(kN)
となる。

〔引き止め効果の力Fn
B=0.09m、L=0.5mを次式に代入すると、
抵抗面積AP (m2 )=B×L=0.045m2
又、土被りDf =0.6mとすれば、
q=γ・ Df =18×0.6=10.8kN/m2
となる。
C=0kN/ m2 、γ=18kN/ m3 、B=0.09mで、φ=30°のため、上記表1により、NC =37.2、Nq =22. 5、Nγ =20. 0となる。
よって、これらを次式に代入すると、
極限支圧応力度qd (kN/ m2
=C・ NC +q・ Nq +( γ・ B/2)・Nγ
=0×37.2+10.8×22.5+(18×0.09/2)×20.0
=259.2kN/ m2
となる。
そして、上記AP 及びqd を上記(4)式に代入すると、
n =11. 664(kN)
となる。
〔プレキャスト板重量Wp
プレキャスト板を吊り下げた状態を想定し、
p =8kN×2枚=16(kN)
となる。

〔移動土塊重量Ws
移動土塊断面積S=0.77m2 とし、b=1.8m、γ=18kN/ m3 を上記(5)式に代入すると、
s =24.948(kN)
となる。

〔プレキャスト板背面摩擦力Ff
p =16kNで、μ=tanφ=tan30°=0.577のため、これらを上記(6)式に代入すると、
f =0.577・Ft +2.653(kN)
となる。

〔グランドアーチ力Fg
H=1.3m
a =tan2 (45°−φ/2)
=tan2 30°
=0.333
のため、
主働土圧合力
=γ×H2 ×Ka /2−2×C×H×√( Ka )
=18×1.32 ×0.333/2−2×0×1.3×√0.333
=5.065

z=0.575mとした場合、
σzu=3×Ft ×sin|α|/( 2×π×z2)
=3×Ft ×0.287÷( 2×π×0.5752)
=0.415・Ft (kN/m2
σzd=3×Ft ×sin|α|/〔2×π×( z+H)2
=3×Ft ×0.287÷( 2×π×1.8752)
=0.039・Ft (kN/m2
となる。

そして、これらを上記(7)式に代入すると、
g =9.117+0.531・Ft (kN)
となる。
(A) Ground constant γ = 18kN / m 3
φ = 30 °
C = 0kN / m 2
in the case of,
ω = 45 ° + 30 ° / 2 = 60 °
It becomes.

(B) Used material precast plate 1, 1a ...
Weight W p = 8kN
Vertical width a = 1.2m
Width b = 1.8m
Thickness t = 0.12m
Slope 2 angle β = 73.3 ° (slope gradient 1: 0.3)

Rod-shaped reinforcement 7
Type: D29
Length: 5m (end screw processing)
Screw diameter d = 0.027m (M27)
Pile 10 diameter B = 0.09m
Placing angle α = −16.7 ° (343.3 °)
Length L of pile 10 in the main working area = 0.5m

(C) Temporary setting of construction conditions Lower precast plates 1, 1a, etc. are suspended, and construction at an excavation height H of 1.3 m is examined.

(D) Verification [Axial force F t ]
Substituting d = 0.027 m and torque coefficient k = 0.2 into the above equation (3),
F t = 0.186 · T (kN)
It becomes.

[The Power of detained effect F n]
Substituting B = 0.09m and L = 0.5m into the following equation,
Resistance area A P (m 2 ) = B × L = 0.045 m 2
Moreover, if the earth covering D f = 0.6 m,
q = γ · D f = 18 × 0.6 = 10.8 kN / m 2
It becomes.
Since C = 0 kN / m 2 , γ = 18 kN / m 3 , B = 0.09 m, and φ = 30 °, according to Table 1, N C = 37.2, N q = 22.5, Nγ = 20 0.
Therefore, if these are substituted into the following equation,
Ultimate bearing stress q d (kN / m 2 )
= C · N C + q · N q + (γ · B / 2) · Nγ
= 0 × 37.2 + 10.8 × 22.5 + (18 × 0.09 / 2) × 20.0
= 259.2kN / m 2
It becomes.
Substituting the above A P and q d into the above equation (4),
F n = 11.664 (kN)
It becomes.
[Precast plate weight W p]
Assuming the state where the precast board is suspended,
W p = 8 kN × 2 sheets = 16 (kN)
It becomes.

[Moving soil weight W s ]
When the moving mass sectional area S = 0.77 m 2 and b = 1.8 m and γ = 18 kN / m 3 are substituted into the above equation (5),
W s = 24.948 (kN)
It becomes.

[Precast plate back friction force F f ]
Since W p = 16 kN and μ = tan φ = tan 30 ° = 0.777, when these are substituted into the above equation (6),
F f = 0.577 · F t +2.653 (kN)
It becomes.

[Ground arch force F g ]
H = 1.3m
K a = tan 2 (45 ° −φ / 2)
= Tan 2 30 °
= 0.333
for,
Main earth compaction force = γ × H 2 × K a / 2-2 × C × H × √ (K a )
= 18 × 1.3 2 × 0.333 / 2-2 × 0 × 1.3 × √0.333
= 5.065

When z = 0.575m,
σ zu = 3 × F t × sin | α | / (2 × π × z 2 )
= 3 × F t × 0.287 ÷ (2 × π × 0.575 2 )
= 0.415 · F t (kN / m 2 )
σ zd = 3 × F t × sin | α | / [2 × π × (z + H) 2 ]
= 3 × F t × 0.287 ÷ (2 × π × 1.875 2 )
= 0.039 · F t (kN / m 2 )
It becomes.

And if these are substituted into the above equation (7),
F g = 9.117 + 0.531 · F t (kN)
It becomes.

よって、合力Fsum のX成分であるFX を算定すると、
X =Ft ×cos343.3°+Fn ×cos90°+Wp ×cos270°+Ws × cos270°+Ff ×cos73.3°+Fg ×cos120°
=0.858・Ft −3.797(kN)
となり、Y成分であるFY を算定すると、
Y =Ft ×sin343.3°+Fn ×sin90°+Wp ×sin270°+Ws × sin270°+Ff ×sin73.3°+Fg ×sin120°
=0.726・Ft −18.847(kN)
となる。
Therefore, if F X that is the X component of the resultant force F sum is calculated,
F x = F t × cos 343.3 ° + F n × cos 90 ° + W p × cos 270 ° + W s × cos 270 ° + F f × cos 73.3 ° + F g × cos 120 °
= 0.858 · F t -3.797 (kN)
And calculating the Y component, F Y ,
F Y = F t × sin 343.3 ° + F n × sin 90 ° + W p × sin 270 ° + W s × sin 270 ° + F f × sin 73.3 ° + F g × sin 120 °
= 0.726 · F t -18.847 (kN)
It becomes.

そして、上記FX 、FY を上記(2)式に代入すると、
θ=tan-1( 0.726・Ft −18.847)/(0.858・Ft −3.797 )
即ち
tanθ=( 0.726・Ft −18.847)/(0.858・Ft −3.797 )
となり、
ω−90°=60°−90°=−30°
である。
よって、
tanθ≧tan(−30°)=−0.577
で、
( 0.726・Ft −18.847)/(0.858・Ft −3.797 )
≧−0.577
となるため、
T≧92.634(N・m)
となり、算定値以上の締め付け力Tで緊結すれば良いことになる。
Substituting the above F X and F Y into the above equation (2),
θ = tan −1 (0.726 · F t −18.847) / (0.858 · F t −3.797)
That is, tan θ = (0.726 · F t -18.847) / (0.858 · F t −3.797)
And
ω-90 ° = 60 ° -90 ° = -30 °
It is.
Therefore,
tan θ ≧ tan (−30 °) = − 0.577
so,
(0.726 · F t -18.847) / (0.858 · F t -3.797)
≧ −0.577
So that
T ≧ 92.634 (N · m)
Thus, the tightening force T is equal to or greater than the calculated value.

尚、上記範囲内のT=100(N・m)で作業した場合、合力Fsum の角度θが(ω−90°)より大きくなるのは明らかで、
t =18.6(kN)
となって、
X =0.858・Ft −3.797(kN)=12.162(kN)
Y =0.726・Ft −18.847(kN)=−5.343(kN)
となるため、これらを上記(1)式に代入すると、
sum =√(12.1622 +(−5.343)2
=13.284(kN)
となる。
In addition, when working at T = 100 (N · m) within the above range, it is clear that the angle θ of the resultant force F sum is larger than (ω−90 °).
F t = 18.6 (kN)
Become
F X = 0.858 · F t −3.797 (kN) = 12.262 (kN)
F Y = 0.726 · F t -18.847 (kN) = − 5.343 (kN)
Therefore, if these are substituted into the above equation (1),
F sum = √ (12.162 2 + (− 5.343) 2 )
= 13.284 (kN)
It becomes.

1、1a… プレキャスト板
2 斜面
7 棒状補強材
8 ナット
f プレキャスト板背面摩擦力
g グランドアーチ力
n 引き止め効果の力
t 軸力
X 合力のX成分
Y 合力のY成分
sum 合力
H 逆巻き掘削高さ
T 締付け力
p プレキャスト板重量
s 移動土塊重量
θ 合力の方向角
ω 主働崩壊角
1, 1a ... Precast plate 2 Slope 7 Bar-shaped reinforcement 8 Nut F f Precast plate back friction force F g Ground arch force F n Anti-faulting force F t Axial force F X component of X resultant force F Y component of Y resultant force F sum Combined force H Reverse winding excavation height T Tightening force W p Precast plate weight W s Moving mass weight θ Direction angle of resultant force ω Main collapse angle

Claims (1)

掘削形成された斜面にプレキャスト板を設置する工程と、各プレキャスト板を貫通させ斜面側に削孔する工程と、削孔工程で形成された削孔部内全体にグラウト材を注入する工程と、グラウト材注入工程の前後の何れかで棒状補強材を削孔部内に挿入する工程と、グラウト材の養生硬化後に、棒状補強材の突端部にナットを螺嵌緊締する工程とを有しており、一段目のプレキャスト板を並列できる高さ分の斜面を掘削形成してその下部に段部を形成し、該段部上にプレキャスト板を並列して上記プレキャスト板設置工程以降の工程により斜面に定着させ、次に上から二段目にプレキャスト板を据付けできる逆巻き掘削高さの次の斜面を掘削形成して次の段部を形成し、二段目にプレキャスト板を一段目のプレキャスト板に吊り下げ配置した後、一段目と同様に二段目のプレキャスト板を並列、定着することを三段目以降繰り返す逆巻き施工法であって、
下段のプレキャスト板を吊り下げた段階での上段のプレキャスト板における、前記棒状補強材と硬化したグラウト材により形成された杭体に作用する軸力を、上段のプレキャスト板での前記ナット緊締工程におけるナットの締め付けにより前記杭体に作用する軸力前記プレキャスト板を斜面に押さえつけることにより生じる斜面側の地盤反力により、素掘り状態の斜面を崩壊させない様に維持可能にして、連結部近傍の応力集中を緩和する斜面補強工法で、
前記締付け力及び前記斜面の逆巻き掘削高さを、2枚のプレキャスト板の自重の他に、施工時に作用する軸力、引き止め効果の力、移動土塊重量、プレキャスト板背面摩擦力及びグランドアーチ力の各々のベクトルをX成分(水平成分)とY成分(鉛直成分)に分けて合算したF X 及びF Y の合力F sum の角度θと、主働崩壊角ωの直角方向の角度(ω−90°)が、θ=tan -1 ( F Y /F X ) ≧(ω−90°)となる様に決定し、前記引き止め効果の力は、主働領域土塊が滑動しようとするのを引き止める、杭体により作用する力とし、前記移動土塊重量は、前記プレキャスト板1枚の長さ当りの主働領域内の土塊の重量とし、前記グランドアーチ力は、地山における主働領域が滑ろうとする滑動力に対し、法先から、杭体に軸力を与えることにより締め付け効果が発揮されるプレキャスト板の背面間にかけてアーチ構造が形成されて斜面崩壊に対して抵抗する力としたことを特徴とする斜面補強工法。
A step of installing a precast plate on a slope formed by excavation, a step of penetrating each precast plate to drill a hole on the slope side, a step of injecting a grout material into the entire drilled portion formed in the drilling step, and a grout A step of inserting the rod-shaped reinforcing material into the drilled hole portion before or after the material injection step, and a step of screwing and tightening a nut to the protruding end portion of the rod-shaped reinforcing material after curing and curing of the grout material, A slope with a height sufficient to allow the first precast plates to be juxtaposed is formed, a step is formed below the slope, and the precast plates are placed in parallel on the step and fixed to the slope by the steps after the precast plate installation process. Next, the next slope of the reverse winding excavation height where the precast board can be installed in the second stage from the top is excavated to form the next stage, and the precast board is suspended from the first stage in the second stage. After placing First stage as well as parallel precast plate of the second stage, a reverse-wound construction methods to repeat the third stage subsequent to fixing,
The axial force acting on the pile formed by the rod-shaped reinforcing material and the hardened grout material in the upper precast plate at the stage where the lower precast plate is suspended is the nut tightening step in the upper precast plate . the ground reaction force slope side caused by the axial force acting on the pile body by tightening of the nut presses the precast plate on the slopes, and enables maintaining as not to disrupt the slope unlined state, connection portion near In slope reinforcement method to relieve stress concentration ,
In addition to the self-weight of the two precast plates, the tightening force and the reverse winding excavation height of the slope include the axial force acting at the time of construction, the force of the retaining effect, the weight of the moving clot, the friction force of the back surface of the precast plate and the ground arch force. Each vector is divided into an X component (horizontal component) and a Y component (vertical component), and an angle θ of a resultant force Fsum of F X and F Y and a perpendicular angle (ω−90) of the main decay angle ω. Is determined so that θ = tan −1 (F Y / F X ) ≧ (ω−90 °), and the force of the detent effect is to prevent the active region soil mass from attempting to slide, The force acting by the pile body, the moving mass weight is the weight of the mass within the main working area per length of the one precast plate, and the ground arch force is the main working area in the natural ground trying to slide. To give the pile body axial force against the sliding force Slope reinforcement construction method, characterized in that Ri clamping effect is the force that resists against the arch structure is formed landslides toward between the back of the precast panel exerted.
JP2012264879A 2012-12-04 2012-12-04 Slope reinforcement method Active JP5290461B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012264879A JP5290461B1 (en) 2012-12-04 2012-12-04 Slope reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012264879A JP5290461B1 (en) 2012-12-04 2012-12-04 Slope reinforcement method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013084580A Division JP5671090B2 (en) 2013-04-15 2013-04-15 Slope reinforcement method

Publications (2)

Publication Number Publication Date
JP5290461B1 true JP5290461B1 (en) 2013-09-18
JP2014109158A JP2014109158A (en) 2014-06-12

Family

ID=49396691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012264879A Active JP5290461B1 (en) 2012-12-04 2012-12-04 Slope reinforcement method

Country Status (1)

Country Link
JP (1) JP5290461B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895094A (en) * 2015-05-18 2015-09-09 三峡大学 Automatic water level adjusting drainage anti-slide pile and construction method thereof
CN113175298A (en) * 2021-04-02 2021-07-27 远强地基工程(天津)股份有限公司 Soil nail wall, rotary jet drilling machine for construction of soil nail wall and construction process
CN115045305A (en) * 2022-07-18 2022-09-13 安徽厚普建设工程有限公司 Ecological side slope system of town road

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726402B2 (en) * 1992-08-07 1995-03-22 矢作建設工業株式会社 Reinforcement method such as cut slope
JPH07331666A (en) * 1994-06-14 1995-12-19 Techno Kogyo Kk Slope cutting method
JP2530565B2 (en) * 1993-07-16 1996-09-04 矢作建設工業株式会社 Reinforced earthwork method such as cut slope and concrete precast plate used for it
JPH1161840A (en) * 1997-08-08 1999-03-05 Akira Nishimura Bearing plate lock bolt inverted lining method and lock bolt bearing plate device
JP2003313878A (en) * 2002-04-25 2003-11-06 Nittoc Constr Co Ltd Working scaffold for anchor construction
JP5065227B2 (en) * 2008-10-28 2012-10-31 矢作建設工業株式会社 Slope reinforcement method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726402B2 (en) * 1992-08-07 1995-03-22 矢作建設工業株式会社 Reinforcement method such as cut slope
JP2530565B2 (en) * 1993-07-16 1996-09-04 矢作建設工業株式会社 Reinforced earthwork method such as cut slope and concrete precast plate used for it
JPH07331666A (en) * 1994-06-14 1995-12-19 Techno Kogyo Kk Slope cutting method
JPH1161840A (en) * 1997-08-08 1999-03-05 Akira Nishimura Bearing plate lock bolt inverted lining method and lock bolt bearing plate device
JP2003313878A (en) * 2002-04-25 2003-11-06 Nittoc Constr Co Ltd Working scaffold for anchor construction
JP5065227B2 (en) * 2008-10-28 2012-10-31 矢作建設工業株式会社 Slope reinforcement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012066760; 社団法人日本道路協会: のり面工斜面安定工指針 改訂版第15刷, 20070315, P.263〜269、図3-55, 社団法人日本道路協会 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895094A (en) * 2015-05-18 2015-09-09 三峡大学 Automatic water level adjusting drainage anti-slide pile and construction method thereof
CN113175298A (en) * 2021-04-02 2021-07-27 远强地基工程(天津)股份有限公司 Soil nail wall, rotary jet drilling machine for construction of soil nail wall and construction process
CN113175298B (en) * 2021-04-02 2023-02-28 远强地基工程(天津)股份有限公司 Soil nail wall, rotary jet drilling machine for construction of soil nail wall and construction process
CN115045305A (en) * 2022-07-18 2022-09-13 安徽厚普建设工程有限公司 Ecological side slope system of town road
CN115045305B (en) * 2022-07-18 2024-03-29 安徽厚普建设工程有限公司 Ecological side slope system of municipal road

Also Published As

Publication number Publication date
JP2014109158A (en) 2014-06-12

Similar Documents

Publication Publication Date Title
Sun et al. Design method for stabilization of earth slopes with micropiles
Miyata et al. Performance of three geogrid-reinforced soil walls before and after foundation failure
Sharma et al. Soil nailing: an effective slope stabilization technique
Maleki et al. Seismic performance of deep excavations restrained by anchorage system using quasi static approach
Seo et al. Optimization of soil nailing design considering three failure modes
JP5290461B1 (en) Slope reinforcement method
CN113204828A (en) Integral reinforcement design method considering landslide bottom building stability
Seo et al. Net load–displacement estimation in soil-nail pullout tests
CN115688243A (en) Method for calculating ultimate supporting force of tunnel excavation face based on integral analysis method
Schlosser et al. Soil nailing in France: research and practice
KR20120090502A (en) The soil-nailing apparatus
JP5671090B2 (en) Slope reinforcement method
Jeon Pull-out tests and slope stability analyses of nailing systems comprising single and multi rebars with grouted cement
Güler et al. The effect of upward nail inclination to the stability of soil nailed structures
Huang et al. Simplified approach for assessing seismic displacements of soil-retaining walls. Part II: Geosynthetic-reinforced walls with rigid panel facing
Ibrahim et al. Effect of historical earthquakes on pre-stressed anchor tie back diaphragm wall and on near-by building
JP2019105117A (en) Pressure receiving plate, pressure receiving structure and slope stable structure
Abbas et al. Numerical analysis of soil nail walls in hybrid retaining wall systems
KR101520828B1 (en) Annalysis method for pile haning variated section
Rollins et al. Reduced lateral resistance of abutment piles near MSE walls based on full-scale tests
Niroumand et al. Design and construction of helical anchors in soils
Luo et al. Elastoplastic analysis of pull-out resistance of soil nails in dilatant soils
Lima et al. Deformability analysis of nailed soil slopes
Liang et al. Design method for drilled shaft stabilization of unstable slopes
Azeiteiro et al. The combined use of geostructures and ground improvement to the rehabilitation of existing quay walls

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5290461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250