JP5825232B2 - Combined steel walls and design methods for combined steel walls - Google Patents

Combined steel walls and design methods for combined steel walls Download PDF

Info

Publication number
JP5825232B2
JP5825232B2 JP2012196900A JP2012196900A JP5825232B2 JP 5825232 B2 JP5825232 B2 JP 5825232B2 JP 2012196900 A JP2012196900 A JP 2012196900A JP 2012196900 A JP2012196900 A JP 2012196900A JP 5825232 B2 JP5825232 B2 JP 5825232B2
Authority
JP
Japan
Prior art keywords
steel
sheet pile
wall
steel sheet
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012196900A
Other languages
Japanese (ja)
Other versions
JP2014051821A (en
Inventor
直也 永尾
直也 永尾
田中 宏征
宏征 田中
覚太 藤原
覚太 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012196900A priority Critical patent/JP5825232B2/en
Publication of JP2014051821A publication Critical patent/JP2014051821A/en
Application granted granted Critical
Publication of JP5825232B2 publication Critical patent/JP5825232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、土留め工、締切工、護岸、埋立、堤防等で用いられる組合せ鋼製壁に関する。   The present invention relates to a combined steel wall used for earth retaining work, deadline work, revetment, landfill, embankment and the like.

組合せ鋼製壁とは、鋼矢板とH形鋼や鋼管を組合せて壁体を構築するものであり、H形鋼や鋼管などの補剛材と鋼矢板壁を組み合わせることによって、剛性を高めることができ、壁高の高い領域で適用可能な構造である。また、鋼矢板壁を嵌合させて壁体を構築することで、継手の遊間が比較的大きい鋼管矢板に比べて、止水性を向上させることが可能になる。
組合せ鋼製壁の中でも、鋼管を補剛材として適用した場合は、様々な施工上の長所を有する。H形鋼を補剛材として用いる場合、H形鋼を地盤に打ち込む際に地盤の抵抗によりフランジ部分が変形しやすい等の課題があるが、鋼管の場合はH形鋼のフランジのように突出部分を有していないため、安定した施工がしやすい。また、鋼管を用いることで回転させながら地盤に打設することもできる。
鋼管と鋼矢板を組み合わせてなる鋼製壁の一例として特許文献1および特許文献2に記載のものが知られている。
A combination steel wall is a structure that combines a steel sheet pile with an H-section steel or steel pipe to construct a wall, and increases rigidity by combining a stiffener such as an H-section steel or steel pipe with a steel sheet pile wall. It is a structure that can be applied in areas with high wall height. Further, by constructing the wall body by fitting the steel sheet pile walls, it is possible to improve the water stoppage as compared with the steel pipe sheet pile having a relatively large gap between the joints.
Among the combined steel walls, when a steel pipe is applied as a stiffener, it has various construction advantages. When H-shaped steel is used as a stiffener, there is a problem that the flange part tends to deform due to the resistance of the ground when the H-shaped steel is driven into the ground, but in the case of a steel pipe, it protrudes like a flange of H-shaped steel. Since there is no part, stable construction is easy. Moreover, it can also be driven to the ground while rotating by using a steel pipe.
The thing of patent document 1 and patent document 2 is known as an example of the steel wall which combines a steel pipe and a steel sheet pile.

特許文献1に記載の鋼製壁は、鋼矢板の表裏面の少なくともいずれか一方の面に補剛材嵌合用の加工治具を設け、この加工治具を介してH形鋼や鋼管矢板などの補剛材を設置するものである。補剛材として鋼管矢板を適用する場合には、補剛材嵌合用に鋼矢板に取り付けた加工冶具に、鋼管矢板の継手を嵌合させて壁体を構成するものであり、鋼管と鋼矢板との荷重伝達は鋼管矢板の継手を介して行われる。
特許文献2に記載の鋼製壁は、複数の鋼矢板が継手により連結されて壁体が設けられるとともに、前記壁体の全てまたは一部の前記鋼矢板に鋼管がその長手方向を前記鋼矢板の長手方向に沿わせて接していることを特徴とする。鋼管と鋼矢板とを組み合わせた壁体とすることで、高い止水性と高い剛性を兼ね備えた鋼製壁を提供することができる。
The steel wall described in Patent Document 1 is provided with a processing jig for fitting a stiffener on at least one of the front and back surfaces of a steel sheet pile, and through this processing jig, an H-shaped steel, a steel pipe sheet pile, etc. A stiffener is installed. When a steel pipe sheet pile is applied as a stiffener, a wall is formed by fitting a joint of a steel pipe sheet pile to a processing jig attached to the steel sheet pile for fitting a stiffener. Is transmitted through a steel pipe sheet pile joint.
In the steel wall described in Patent Document 2, a plurality of steel sheet piles are connected by joints to provide a wall body, and a steel pipe has its longitudinal direction on all or part of the steel sheet piles of the wall body. It touches along the longitudinal direction of this. By making it a wall body combining a steel pipe and a steel sheet pile, a steel wall having both high water-stopping properties and high rigidity can be provided.

特開2005−299202号公報JP-A-2005-299202 国際公開第2011/142047号パンフレットInternational Publication No. 2011/142047 Pamphlet

特許文献1及び特許文献2では、1つの実施形態として鋼管などの補剛材のピッチを飛ばす構成が記載されている。壁体として必要な剛性・耐力に応じて、ピッチを飛ばす構成は、適切な鋼管やH形鋼などの補剛材を選択して鋼矢板と組み合わせることにより、合理的な構造を実現しうるが、一方で、ピッチを飛ばし過ぎると、壁体が不安定な挙動を示し、所用の性能を発揮できなくなる可能性がある。   In patent document 1 and patent document 2, the structure which skips the pitch of stiffeners, such as a steel pipe, is described as one embodiment. Depending on the rigidity and proof strength required for the wall body, a reasonable structure can be realized by selecting a suitable stiffener such as a steel pipe or H-shaped steel and combining it with a steel sheet pile. On the other hand, if the pitch is skipped too much, the wall body may show an unstable behavior, and the desired performance may not be exhibited.

鋼矢板と補剛材を組み合わせた壁体の剛性・耐力は、厳密には補剛材の設置位置やその近傍と、隣り合う補剛材の中間付近など場所によっても異なるが、これを平均化した剛性で評価できると仮定すれば、1本あたりの鋼管径やH形鋼のサイズを大きくして、ピッチを大きくするほど、使用する鋼材重量を低減することができる。
しかし、補剛材のピッチを大きくしていくと、鋼矢板壁に対する補剛効果が均等に及ばなくなり、隣り合う補剛材の中間付近で鋼矢板壁の変形が大きくなって、壁体としての変形は壁の幅方向に不均一になる。さらに、ピッチを大きくし過ぎると、もはや隣り合う補剛材の中間付近の鋼矢板には、補剛効果が及ばない状態になる。すなわち、補剛材近傍では鋼矢板壁と補剛材とを組み合わせた剛性の高い壁として挙動するが、隣り合う補剛材の中間付近では鋼矢板壁単体としての挙動、あるいはそれに近い挙動を示すことになる。この場合、壁体としての剛性を平均化して取り扱うことはできず、隣り合う補剛材の中間付近では、鋼矢板壁が塑性化したり、場合によっては局所的に過度な変形を生じて、壁体としての安定性を維持できず倒壊する事態も考えられる。
前記既往の発明では、鋼矢板壁に対して補剛材の効果が適切に得られるピッチの範囲などについては言及されていない。
Strictly speaking, the rigidity and proof stress of a wall body that combines steel sheet piles and stiffeners vary depending on the location of the stiffener and its vicinity, and the vicinity of the middle of adjacent stiffeners, but this is averaged. Assuming that the rigidity can be evaluated, it is possible to reduce the weight of the steel material to be used as the steel pipe diameter per one piece and the size of the H-shaped steel are increased and the pitch is increased.
However, as the pitch of the stiffener increases, the stiffening effect on the steel sheet pile wall does not reach evenly, and the deformation of the steel sheet pile wall increases near the middle of adjacent stiffeners. The deformation becomes non-uniform in the width direction of the wall. Furthermore, if the pitch is increased too much, the steel sheet pile near the middle of adjacent stiffeners will no longer have a stiffening effect. In other words, near the stiffener, it behaves as a highly rigid wall that combines the steel sheet pile wall and stiffener, but near the middle of the adjacent stiffeners it behaves as a steel sheet pile wall alone or close to it. It will be. In this case, the rigidity of the wall cannot be averaged and handled, and the steel sheet pile wall becomes plastic in the vicinity of the middle of adjacent stiffeners. There is a possibility that the body will not be stable and will collapse.
In the previous invention, there is no mention of a pitch range or the like in which the effect of the stiffener can be appropriately obtained for the steel sheet pile wall.

また、鋼矢板壁と補剛材を組み合わせた「組合せ鋼製壁」において、補剛材として鋼管を用いる方が様々な施工上の長所を有する。H形鋼を補剛材として用いる場合、H形鋼を地盤に打ち込む際に地盤の抵抗によりフランジ部分が変形しやすい等の課題があるが、鋼管の場合はH形鋼のフランジのように突出部分を有していないため、安定した施工がしやすい。また、鋼管を回転させながら地盤に打設することもできる。さらに、鋼矢板の波型の凹部分に円形の鋼管を配置すれば、鋼矢板壁に対して鋼管の補剛効果が均等に及びやすくなる。
そこで、本発明では、鋼管と鋼矢板との組み合わせ鋼製壁に構造を絞って検討することとし、その組合せ鋼製壁において、壁体を挟んで地盤面の高い側(背面側)に鋼管を配置し、鋼管のピッチを飛ばした構造に対して、室内模型試験を行い、鋼矢板壁に対して鋼管の補剛効果が適切に得られるピッチの範囲について検討を行った。
Further, in a “combination steel wall” in which a steel sheet pile wall and a stiffener are combined, the use of a steel pipe as a stiffener has various advantages in construction. When H-shaped steel is used as a stiffener, there is a problem that the flange part tends to deform due to the resistance of the ground when the H-shaped steel is driven into the ground, but in the case of a steel pipe, it protrudes like a flange of the H-shaped steel. Since there is no part, stable construction is easy. Moreover, it can also be placed on the ground while rotating the steel pipe. Furthermore, if a circular steel pipe is arrange | positioned to the corrugated recessed part of a steel sheet pile, the stiffening effect of a steel pipe will become easy to spread equally with respect to a steel sheet pile wall.
Therefore, in the present invention, the structure is limited to a combined steel wall made of a steel pipe and a steel sheet pile, and in the combined steel wall, the steel pipe is placed on the high side of the ground surface (back side) across the wall body. An indoor model test was performed on the structure in which the pitch of the steel pipe was set and the pitch of the steel pipe was skipped.

この室内模型試験は以下のとおりである。
図1に示すように、幅1957×高さ1000×奥行き940mmの剛な土槽D内の中央に、アクリルの供試体Kを接着剤により下端固定し、左右にケイ砂5号(乾燥砂)Sを空中落下法により設置し、この状態より、掘削側を下端まで掘り下げて壁体(アクリルの供試体K)の挙動を確認した。
This indoor model test is as follows.
As shown in FIG. 1, an acrylic specimen K is fixed at the lower end with an adhesive in the center of a rigid earth tub D having a width of 1957 × height of 1000 × depth of 940 mm, and silica sand No. 5 (dry sand) on the left and right S was installed by the air drop method, and from this state, the excavation side was dug down to the lower end, and the behavior of the wall body (acrylic specimen K) was confirmed.

アクリルの供試体Kは、鋼矢板を模擬した波形の板K1と鋼管を模擬したパイプK2の組合せで壁体を構成するもので、頭部にコーピングを設置することを模擬して板を貼り付けて両者を連結している。
なお、鋼管を配置した反対側(前面側)を掘削し、鋼管側から土圧が作用するケースに着目して試験を実施することとし、鋼管と鋼矢板の接触状況、頭部コーピングの有無による影響について検討するために、下記の表にまとめたように条件を変えて試験を実施した。なお、鋼管と鋼矢板が接触していない(ケース(3))についても、鋼矢板壁の中心位置と鋼矢板の外周が一致するようにして鋼矢板壁の凹部に鋼管の一部が入り込むようにしており、いずれのケースにおいても鋼矢板壁の凹部に鋼管の一部が入りこむように設置されている。試験にあたっては、鋼管に対しては土層中央部に配置した鋼管の矢板設置反対側の外周面と、鋼矢板に対しては中央部に配置した鋼管を含む隣り合う2本の鋼管に挟まれた中間位置のウェブ中央部にひずみゲージを貼りつけ、掘削により発生したひずみを計測した。
また、中央部に配置した鋼管では、鋼管の上部に変位計測用の冶具を取り付けて、下端から1050mmの位置で頭部の変位を計測した。






Acrylic specimen K consists of a corrugated plate K1 simulating a steel sheet pile and a pipe K2 simulating a steel pipe, and a wall is formed. Are connected.
Examine the opposite side (front side) where the steel pipe is placed, and perform the test focusing on the case where earth pressure acts from the steel pipe side, depending on the contact situation between the steel pipe and the steel sheet pile, and the presence of head coping. In order to examine the effect, the test was conducted under different conditions as summarized in the table below. In addition, even if the steel pipe and the steel sheet pile are not in contact with each other (case (3)), the center position of the steel sheet pile wall coincides with the outer periphery of the steel sheet pile so that a part of the steel pipe enters the concave portion of the steel sheet pile wall. In any case, the steel pipe is installed so that a part of the steel pipe enters the recess of the steel sheet pile wall. In the test, the steel pipe is sandwiched between two adjacent steel pipes, including the steel pipe arranged on the opposite side of the sheet pile placed in the center of the soil layer, and the steel pipe placed adjacent to the center of the steel sheet pile. A strain gauge was attached to the center of the web at the intermediate position, and the strain generated by excavation was measured.
Moreover, in the steel pipe arrange | positioned in the center part, the jig for displacement measurement was attached to the upper part of the steel pipe, and the displacement of the head was measured in the position of 1050 mm from the lower end.






Figure 0005825232
Figure 0005825232

各ケースにおいて鋼管に発生する鉛直方向ひずみの深度方向の分布を図2に示す。グラフ内の鋼管(パイプK2)に発生するひずみは引張側を正としている。なお、グラフ内には、鋼管(パイプK2)を下端固定の片持ち梁として、全土圧が作用すると仮定した場合に算出されるひずみについても併記している。その時のひずみ算出用の土圧については、別途鋼矢板(波形の板K1)のみで同様の試験を行い、その結果から土圧を算出している。また、表2に中央に配置した鋼管の下端から1050mm位置で計測された変位を示す。   The distribution in the depth direction of the vertical strain generated in the steel pipe in each case is shown in FIG. The strain generated in the steel pipe (pipe K2) in the graph is positive on the tension side. In the graph, the strain calculated when assuming that the steel pipe (pipe K2) is a cantilever with a fixed lower end and the whole earth pressure acts is also shown. Regarding the earth pressure for strain calculation at that time, the same test was separately performed using only a steel sheet pile (corrugated board K1), and the earth pressure was calculated from the result. Table 2 shows the displacement measured at a position of 1050 mm from the lower end of the steel pipe arranged at the center.

Figure 0005825232
Figure 0005825232

図2より、鋼管に発生する鉛直方向のひずみについては、いずれのケースにおいても、鋼管(パイプK2)に全土圧が作用したと仮定した場合と同様の挙動を示している。また、表2に示す通り鋼管の変位に関してもケースによらず、ほぼ同等の値を示しており、鋼矢板(波形の板K1)と鋼管(パイプK2)との接触条件、コーピングの有無に関わらず、鋼管に全土圧が作用したような挙動を示していたと考えられる。   From FIG. 2, the vertical strain generated in the steel pipe shows the same behavior as in the case where it is assumed that the whole earth pressure is applied to the steel pipe (pipe K2) in any case. In addition, as shown in Table 2, the displacement of the steel pipe is almost the same regardless of the case, regardless of the contact condition between the steel sheet pile (corrugated plate K1) and the steel pipe (pipe K2), and the presence or absence of coping. However, it is thought that the behavior of the whole earth pressure acting on the steel pipe was shown.

各ケースにおける、隣り合う鋼管の中間位置での鋼矢板に発生する鉛直方向ひずみの深度方向の分布を図3に示す。グラフ内の鋼矢板(波形の板K1)に発生するひずみは圧縮側を正とし、鋼矢板(波形の板K1)を下端固定の片持ち梁として算出されるひずみについても併記している。なお、計算にあたり考慮する土圧については、図4に示す通り鋼管のピッチをL、鋼管径をDとし、鋼管と重複しない部分の長さを(L−D)とした場合、図5に示すように壁体に作用する最深部の荷重をpとする三角形分布の土圧に対して、(L−D)/L・pの三角形分布の土圧(幅分の換算土圧)が作用すると仮定している。   The distribution in the depth direction of the vertical strain generated in the steel sheet pile at the intermediate position between adjacent steel pipes in each case is shown in FIG. The strain generated in the steel sheet pile (corrugated plate K1) in the graph is also shown for the strain calculated with the compression side as positive and the steel sheet pile (corrugated plate K1) as a cantilever with a fixed lower end. In addition, about the earth pressure considered in calculation, as shown in FIG. 4, when the pitch of a steel pipe is set to L, the diameter of a steel pipe is set to D, and the length of the part which does not overlap with a steel pipe is set to (LD), it shows in FIG. Thus, when the earth pressure of the triangular distribution of (LD) / L · p (converted earth pressure for the width) acts on the earth pressure of the triangle distribution with the deepest load acting on the wall as p Assumes.

図3より、鋼管と鋼矢板とを頭部で連結しない場合については、鋼管と重複しない部分の長さ(L−D)に作用する土圧を鋼管のピッチLに均して考慮(幅分の換算土圧を考慮)することで、隣り合う鋼管の中間位置における鋼矢板の鉛直方向のひずみ分布を表現できる。
これに対し、鋼管と鋼矢板とを頭部で連結した場合には、鋼矢板壁の壁体浅部で壁体深部とは逆向きの曲げモーメントが発生している。これは、鋼矢板に対しては頭部で鋼管により支えられたような挙動を示しているからであると考えられる。そこで、図6に示すように、下端固定の片持ち梁として考慮していた鋼矢板壁に対して、さらに頭部で水平方向に単純支持されたとして鉛直方向に発生するひずみ計算した。その結果と各ケースにおいて計測された鉛直方向ひずみの深度方向の分布と併せて図7に示す。なお、計算にあたって考慮する土圧については、上記と同様幅分の換算土圧を考慮している。
From FIG. 3, when the steel pipe and the steel sheet pile are not connected at the head, the earth pressure acting on the length (LD) of the portion that does not overlap with the steel pipe is considered to be equal to the pitch L of the steel pipe (for the width). ), The vertical strain distribution of the steel sheet pile at the intermediate position between adjacent steel pipes can be expressed.
On the other hand, when the steel pipe and the steel sheet pile are connected at the head, a bending moment in the direction opposite to the wall deep portion is generated in the shallow wall portion of the steel sheet pile wall. This is presumably because the steel sheet pile shows a behavior supported by a steel pipe at the head. Therefore, as shown in FIG. 6, the strain generated in the vertical direction was calculated assuming that the steel sheet pile wall considered as a cantilever fixed at the lower end was further simply supported in the horizontal direction by the head. FIG. 7 shows the results and the distribution in the depth direction of the vertical strain measured in each case. As for the earth pressure considered in the calculation, the equivalent earth pressure corresponding to the width is taken into consideration as described above.

図7より、鋼管と鋼矢板とを頭部で連結した場合(ケース(2)・(3))には、隣り合う鋼管の中間位置における鋼矢板の鉛直方向のひずみ分布は、鋼矢板壁単体を下端固定で頭部単純支持した梁として、鋼管と重複しない部分の長さ(L−D)に作用する土圧を鋼管のピッチLに均して考慮(幅分の換算土圧を考慮)して計算した値より正方向に若干大きくなる傾向を示している。ここで、計算値より実験値の方がひずみ分布で正方向に大きな値を示すのは、鋼管にも変位が発生することにより、頭部での拘束が低減されることが理由として考えられる。また、頭部を自由にした場合の計算値と実験値を比較すると、実験値の方が深部のひずみで小さな値を示している。   From FIG. 7, when the steel pipe and the sheet pile are connected at the head (cases (2) and (3)), the vertical strain distribution of the steel sheet pile at the intermediate position between the adjacent steel pipes is as follows. Considering the earth pressure acting on the length (LD) of the part that does not overlap with the steel pipe as the beam with the head simply supported by fixing the lower end to the pitch L of the steel pipe (considering the equivalent earth pressure for the width) It shows a tendency to become slightly larger in the positive direction than the calculated value. Here, the reason why the experimental value shows a larger value in the positive direction in the strain distribution than the calculated value is thought to be because the restraint at the head is reduced due to the displacement of the steel pipe. In addition, when the calculated value and the experimental value when the head is set free are compared, the experimental value shows a smaller value due to deeper strain.

以上より、鋼管と鋼矢板との組み合わせ鋼製壁において、壁体を挟んで地盤面の高い側(背面側)に鋼管を配置し、鋼管と鋼矢板の頭部を連結した場合には、鋼管による鋼矢板の拘束の大小によって支持条件が異なるが、隣り合う鋼管の中間位置における鋼矢板の鉛直方向のひずみ分布は、鋼矢板壁単体を下端固定の梁として、頭部を自由にした場合と、単純支持した場合の間の挙動を示している。また、その時、鋼矢板壁の凹部に鋼管の一部が入りこんで設置されていることで、見掛け上、鋼矢板に作用する土圧が減少したような挙動を示し、鋼管のピッチをL、鋼管径をDとし、鋼管と重複しない部分の長さを(L−D)とした場合、(L−D)/L倍の土圧(幅分の換算土圧)を作用させることで概ね表現できている。
図6に示すように、鋼矢板壁単体を下端固定して頭部を単純支持した梁と仮定して(L−D)/L倍の土圧を作用させた場合、鋼矢板に発生する曲げモーメントの最大値Msfmaxは下記(1)式で求められる。
As mentioned above, in the combination steel wall of the steel pipe and the steel sheet pile, when the steel pipe is arranged on the high side (back side) with the wall in between and the head of the steel pipe and the steel sheet pile is connected, Although the support conditions differ depending on the size of the steel sheet pile restraint due to, the vertical strain distribution of the steel sheet pile at the middle position between adjacent steel pipes is the same as when the head is freed with the steel sheet pile wall as a single fixed beam. The behavior during simple support is shown. At that time, a part of the steel pipe is installed in the concave part of the steel sheet pile wall, so that it seems that the earth pressure acting on the steel sheet pile is reduced, the pitch of the steel pipe is L, the steel pipe If the diameter is D and the length of the part that does not overlap with the steel pipe is (LD), it can be roughly expressed by applying earth pressure (converted earth pressure for the width) of (LD) / L times. ing.
As shown in FIG. 6, when a steel sheet pile wall is fixed at the lower end and the beam is simply supported by the head, the bending that occurs in the steel sheet pile when (LD) / L times earth pressure is applied. The maximum value M sfmax of the moment is obtained by the following equation (1).

Figure 0005825232
sfmax:下端固定・頭部単純支持の梁に作用する曲げモーメントの最大値
p:三角形分布荷重の最大値
L:鋼管のピッチ
D:鋼管径
H:壁の高さ
Figure 0005825232
M sfmax : Maximum value of the bending moment acting on the beam with the lower end fixed and the head simply supported p: Maximum value of the triangular distributed load L: Steel pipe pitch D: Steel pipe diameter H: Wall height

したがって、鋼矢板壁単体を下端固定して頭部を単純支持した梁と仮定して(L−D)/L倍の土圧を作用させた場合に発生する曲げモーメントの最大値Msfmaxは、図6(a)に示すように最深部の荷重をpとする三角形分布荷重が壁体に作用すると考えた時の最大曲げモーメントMmax(=pH/6)を用いて下記(2)式のように表わされる。 Therefore, the maximum value M sfmax of the bending moment generated when the earth pressure of ( LD ) / L times is applied assuming that the steel sheet pile wall is fixed at the lower end and the head is simply supported. Figure 6 using the maximum when the load of the deepest, as shown in (a) were considered triangular distributed load to p acts on wall bending moment Mmax (= pH 2/6) the following equation (2) of It is expressed as follows.

Figure 0005825232
Mmax:壁体に発生する最大曲げモーメント(=pH/6)
前述した通り、鋼管と鋼矢板との組み合わせ鋼製壁において、壁体を挟んで地盤面の高い側(背面側)に鋼管を配置し、鋼管と鋼矢板の頭部を連結した場合には、隣り合う鋼管の中間位置における鋼矢板の鉛直挙動は、鋼矢板壁単体を下端固定の梁として、頭部を自由にした場合と、単純支持した場合の間の挙動を示す。したがって、図5(a)及び図6(a)に示すように壁体に最深部の荷重をpとする三角形分布荷重が作用する場合、鋼管から最も離れた位置で鋼矢板に発生する曲げモーメントの最大値Msmaxは下記(3)式で表わされる。
Figure 0005825232
Mmax: maximum bending moment generated in the wall (= pH 2/6)
As described above, in the combined steel wall of steel pipe and steel sheet pile, when placing the steel pipe on the high side (back side) of the ground surface across the wall, and connecting the head of the steel pipe and steel sheet pile, The vertical behavior of the steel sheet pile at an intermediate position between adjacent steel pipes shows the behavior between the case where the steel sheet pile wall itself is a beam fixed at the lower end and the head is freed and the case where it is simply supported. Therefore, as shown in FIGS. 5 (a) and 6 (a), when a triangular distributed load with the deepest load p is applied to the wall, the bending moment generated in the steel sheet pile at the position furthest away from the steel pipe. The maximum value M smax of is expressed by the following equation (3).

Figure 0005825232
Msmax:隣り合う鋼管の中間付近の鋼矢板に発生する曲げモーメントの最大値
L:鋼管のピッチ
D:鋼管径
Mmax:壁体に発生する最大曲げモーメント(=pH/6)
Figure 0005825232
MSmax: maximum value of the bending moment generated in the steel sheet pile near the middle of the adjacent steel pipe L: the pitch D of the steel pipe: steel pipe size Mmax: maximum bending moment generated in the wall (= pH 2/6)

以上より、鋼管のピッチを飛ばす程、隣り合う鋼管の中間位置における鋼矢板に発生する曲げモーメントは大きくなるが、(L−D)/L≦0.9が成立すれば、隣り合う鋼管の中間位置における鋼矢板においても、鋼矢板壁単体で用いる場合に比べて10%〜60%程度の曲げモーメントの低減効果があり、実用上も鋼矢板の型式を落とす、あるいは強度の低い材料を選択できるなど、効果が見られると考えられる。現在、一般的に用いられている鋼矢板の型式には例えば表3のようなものがある。例えば、10Hの断面係数は25Hの断面係数の56%、IVwの断面係数はVLの断面係数の86%となっており、10%から40%程度曲げモーメントを低減できれば、より型式の低い鋼矢板を選択することができる可能性がある。また、降伏強度では一般的に295N/mmと390N/mmのものが2種類用いられており、25%程度以上曲げモーメント低減できれば、より降伏強度の低い鋼矢板を適用できる可能性がある。 From the above, as the pitch of the steel pipe is increased, the bending moment generated in the steel sheet pile at the intermediate position between the adjacent steel pipes increases, but if (LD) /L≦0.9 is established, the middle of the adjacent steel pipes. The steel sheet pile at the position also has an effect of reducing the bending moment of about 10% to 60% compared to the case where the steel sheet pile wall is used alone, and the material of the steel sheet pile can be dropped in practice or a material with low strength can be selected. It is thought that the effect is seen. Currently, there are steel sheet pile types generally used as shown in Table 3, for example. For example, the section modulus of 10H is 56% of the section modulus of 25H, and the section modulus of IVw is 86% of the section modulus of VL. If the bending moment can be reduced by about 10% to 40%, the steel sheet pile of lower model There is a possibility that can be selected. In general, two types of yield strengths of 295 N / mm 2 and 390 N / mm 2 are used. If the bending moment can be reduced by about 25% or more, a steel sheet pile having a lower yield strength may be applicable. .

Figure 0005825232
Figure 0005825232

以上より、鋼管のピッチL、鋼管径Dに関して、(L−D)/L≦0.9が成立すれば、壁体の幅方向にわたって鋼管の補剛効果があると考えられる。
したがって、鋼管のピッチLが下記(4)式を満たせば、隣り合う鋼管の中間付近における鋼矢板の発生応力を低減し、鋼管と組み合せる効果が見られる。つまり、壁体の幅方向にわたって鋼管の補剛効果が発揮できる。
L≦10D・・・(4)
From the above, it can be considered that if (LD) /L≦0.9 is established with respect to the pitch L and the steel pipe diameter D of the steel pipe, the steel pipe has a stiffening effect over the width direction of the wall body.
Therefore, if the pitch L of the steel pipe satisfies the following formula (4), the effect of reducing the generated stress of the steel sheet pile near the middle of the adjacent steel pipes and combining with the steel pipes can be seen. That is, the stiffening effect of the steel pipe can be exhibited over the width direction of the wall body.
L ≦ 10D (4)

次に、鋼管が安全性、健全性を確保するように設定されている場合に、壁体の幅方向にわたって壁体が安全性、健全性を確保するという観点から検討を加える。鋼矢板壁に対しては、隣り合う鋼管の中間付近で鋼矢板に対する鋼管の補剛効果が最も小さくなり、その部分で大きな応力が発生する。前述の通り、壁体を挟んで地盤面の高い側(背面側)に鋼管を配置し、鋼管のピッチをL、鋼管径をDとした場合は、隣り合う鋼管の中間付近の鋼矢板の応力は、図7に示すように鋼矢板壁単体を片持ち梁として全体の(L−D)/L倍の土圧を作用させる場合に発生する応力より小さくなる。すなわち、下記(5)式が成り立つ。   Next, in the case where the steel pipe is set to ensure safety and soundness, a study is made from the viewpoint that the wall body secures safety and soundness over the width direction of the wall body. For the steel sheet pile wall, the stiffening effect of the steel pipe against the steel sheet pile is minimized near the middle of the adjacent steel pipes, and a large stress is generated at that portion. As described above, when steel pipes are arranged on the high ground side (back side) across the wall, and the steel pipe pitch is L and the steel pipe diameter is D, the stress of the steel sheet pile near the middle of the adjacent steel pipes Is smaller than the stress generated when the earth pressure of (LD) / L times of the whole is applied with a steel sheet pile wall as a cantilever as shown in FIG. That is, the following formula (5) is established.

Figure 0005825232
Msmax:隣り合う鋼管の中間付近の鋼矢板に発生する最大曲げモーメント
σs:隣り合う鋼管の中間付近の鋼矢板に発生する最大応力
:鋼矢板壁の壁幅1mあたりの断面係数
L:鋼管のピッチ
p:三角形分布荷重の最大値
D:鋼管径
Mmax:壁体に発生する最大曲げモーメント
Figure 0005825232
Msmax: Maximum bending moment generated in a steel sheet pile near the middle of adjacent steel pipes
σ s : Maximum stress generated in the steel sheet pile near the middle of adjacent steel pipes
Z s : Section modulus per 1m wall width of steel sheet pile wall
L: Steel pipe pitch
p: Maximum value of triangular distribution load
D: Steel pipe diameter
Mmax: Maximum bending moment generated in the wall

(5)式の右辺が鋼矢板の降伏応力σy以下であれば、壁体を挟んで地盤面の高い側(背面側)に鋼管を配置し、鋼管のピッチをLとした場合、隣り合う鋼管の中間付近の鋼矢板に発生する最大応力は降伏応力σy以下となる。つまり、(6)式または(7)式が成立すれば、壁体の幅方向にわたって鋼矢板が降伏に至ることはなく、壁体としての安全性、健全性を確保できる。   If the right side of equation (5) is equal to or less than the yield stress σy of the steel sheet pile, the steel pipes are arranged on the high side (back side) across the wall and the pitch of the steel pipes is L. The maximum stress generated in the steel sheet pile near the middle of is less than the yield stress σy. That is, if Formula (6) or Formula (7) is established, the steel sheet pile will not yield over the width direction of the wall body, and safety and soundness as the wall body can be ensured.

Figure 0005825232
σy:鋼矢板の降伏応力
Figure 0005825232
σ y : Yield stress of steel sheet pile

以上より、鋼管と鋼矢板とを組み合わせる「組合せ鋼製壁」であって、壁体を挟んで地盤面の高い側(前面側)に鋼管を配置して、鋼管が鋼矢板の凹部に入り込んでいる構造であっては、鋼管のピッチLに対して(4)式及び(6)式または(7)式が成立すれば、隣り合う鋼管の中間付近における鋼矢板の発生応力を低減し、鋼管と組合せる効果を発揮できるとともに、壁体の幅方向にわたって鋼矢板が降伏することはなく、壁体としての安全性、健全性を確保できる。   From the above, it is a “combination steel wall” that combines a steel pipe and a steel sheet pile, and the steel pipe is placed on the high side of the ground surface (front side) across the wall, and the steel pipe enters the recess of the steel sheet pile. If the formula (4) and the formula (6) or (7) are established with respect to the pitch L of the steel pipe, the generated stress of the steel sheet pile near the middle of the adjacent steel pipes is reduced. The steel sheet pile does not yield over the width direction of the wall body, and safety and soundness as the wall body can be secured.

上記目的を達成するために、本願の請求項1に係る組合せ鋼製壁は、複数の鋼矢板が継手により連結されて壁体が設けられるとともに、前記壁体に対して複数の鋼管が背面側(壁体を挟んで地盤面の高い側)にその長手方向が前記鋼矢板の長手方向と略平行となるよう、かつ前記壁体の幅方向に所定ピッチで鋼管の一部が鋼矢板壁の凹部に入り込むように配置されており、頭部で鋼管と鋼矢板が連結部材を用いて連結させている組合せ鋼製壁であって、
前記壁体の前記鋼管のピッチをL、鋼管径をDとすると、L≦10Dとなっており、
前記鋼矢板の降伏応力をσy、鋼矢板壁の壁幅1mあたりの断面係数をZs、
壁体に作用する最大曲げモーメントをMmaxとすると、下記(7)式が成立するように鋼管のピッチが設定されていることを特徴とする。
L≦10Dとすることで、隣り合う鋼管の中間付近の鋼矢板においても発生するひずみを鋼矢板のみの場合に比べて低減でき、鋼管と鋼矢板を組み合わせる効果が発揮できる。
本願の請求項2に係る組合せ鋼製壁の設計方法は、
複数の鋼矢板が継手により連結されて壁体が設けられるとともに、前記壁体に対して複数の鋼管が壁体を挟んで地盤面の高い側にその長手方向が前記鋼矢板の長手方向と略平行となるよう、かつ前記壁体の幅方向に所定ピッチで鋼管の一部が鋼矢板壁の凹部に入り込むように配置されており、前記鋼矢板と前記鋼管の頭部を連結している組合せ鋼製壁の設計方法であって、
前記壁体の前記鋼管のピッチをL、鋼管径をDとすると、L≦10Dとなっており、
前記鋼矢板の降伏応力をσy、鋼矢板壁の壁幅1mあたりの断面係数をZs、
壁体に作用する最大曲げモーメントをMmaxとすると、下記(7)式が成立するように鋼管のピッチを設定することを特徴とする。
In order to achieve the above object, a combination steel wall according to claim 1 of the present application is provided with a wall body by connecting a plurality of steel sheet piles by joints, and a plurality of steel pipes on the back side with respect to the wall body. A part of the steel pipe of the steel sheet pile wall has a predetermined pitch in the width direction of the wall body so that its longitudinal direction is substantially parallel to the longitudinal direction of the steel sheet pile (on the high side of the ground surface across the wall body). It is arranged so as to enter the recess, and is a combined steel wall in which the steel pipe and the steel sheet pile are connected using a connecting member at the head,
When the pitch of the steel pipe of the wall body is L and the steel pipe diameter is D, L ≦ 10D ,
The yield stress of the steel sheet pile is σy, the section modulus per 1 m wall width of the steel sheet pile wall is Zs,
When the maximum bending moment acting on the wall is Mmax, the pitch of the steel pipe is set so that the following expression (7) is established .
By setting L ≦ 10D, the strain generated in the steel sheet pile near the middle between adjacent steel pipes can be reduced as compared to the case of only the steel sheet pile, and the effect of combining the steel pipe and the steel sheet pile can be exhibited.
The method for designing a combined steel wall according to claim 2 of the present application is as follows:
A plurality of steel sheet piles are connected by a joint to provide a wall body, and a plurality of steel pipes sandwich the wall body with respect to the wall body, and the longitudinal direction of the steel sheet pile is substantially the same as the longitudinal direction of the steel sheet pile. A combination in which the steel sheet pile and the head of the steel pipe are connected to each other so that a part of the steel pipe enters the concave portion of the steel sheet pile wall at a predetermined pitch in the width direction of the wall body. A method for designing a steel wall,
When the pitch of the steel pipe of the wall body is L and the steel pipe diameter is D, L ≦ 10D,
The yield stress of the steel sheet pile is σy, the section modulus per 1 m wall width of the steel sheet pile wall is Zs,
When the maximum bending moment acting on the wall is Mmax, the pitch of the steel pipe is set so that the following expression (7) is satisfied .

Figure 0005825232
(7)式が成立することで、壁体の幅方向にわたって鋼矢板が降伏することはなく、壁体としての安全性、健全性を確保できる。


Figure 0005825232
Since the formula (7) is established, the steel sheet pile does not yield over the width direction of the wall body, and safety and soundness as the wall body can be ensured.


本発明によれば、鋼管と鋼矢板とを組み合わせる「組合せ鋼製壁」であって、壁体を挟んで地盤面の高い側(背面側)に鋼管を配置して、鋼管の一部が鋼矢板の凹部に入り込んでいる構造であっては、隣り合う鋼管の中間付近における鋼矢板の発生応力を低減し、鋼管と組合せる効果を発揮できるとともに、壁体の幅方向にわたって鋼矢板が降伏することはなく、壁体としての安全性、健全性を確保できる。   According to the present invention, a “combined steel wall” is a combination of a steel pipe and a steel sheet pile, and the steel pipe is disposed on the high side (back side) of the ground surface across the wall, and a part of the steel pipe is made of steel. In the structure that has entered the recess of the sheet pile, the steel sheet pile yields over the width direction of the wall body while reducing the generated stress of the steel sheet pile near the middle of adjacent steel pipes and exhibiting the effect of combining with the steel pipe There is nothing, and safety and soundness as a wall can be secured.

本発明に係る鋼製壁の鋼管のピッチについて検討するために実施した室内模型試験装置を示し、(a)は平面図、(b)は側断面図である。The laboratory model testing apparatus implemented in order to examine about the pitch of the steel pipe of the steel wall which concerns on this invention is shown, (a) is a top view, (b) is a sectional side view. 図1に示す室内模型試験装置による試験結果を説明するためのもので、各ケースにおける鋼管の鉛直方向のひずみ分布を示すグラフである。It is for demonstrating the test result by the indoor model test apparatus shown in FIG. 1, and is a graph which shows the strain distribution of the perpendicular direction of the steel pipe in each case. 同、鋼管と鋼矢板とを連結していないケース(1)の隣り合う鋼管の中間位置における鋼矢板の鉛直方向のひずみ分布を示すグラフである。It is a graph which shows the strain distribution of the perpendicular direction of the steel sheet pile in the intermediate position of the steel pipe which adjoins the case (1) which has not connected the steel pipe and the steel sheet pile. 同、鋼製壁に土圧が作用している状態を模式的に示した図である。It is the figure which showed typically the state in which earth pressure is acting on steel walls. 同、鋼矢板壁単体を下端固定の梁と仮定して、幅分の換算土圧(全土圧の(L−D)/L倍)を作用させる計算方法を模式的に示した図である。It is the figure which showed typically the calculation method to which the equivalent earth pressure for a width | variety ((L-D) / L times of total earth pressure) acts on the assumption that a steel sheet pile wall single-piece | unit is a beam fixed to a lower end. 同、鋼矢板壁単体を下端固定・頭部単純支持の梁と仮定して幅分の換算土圧(全土圧の(L−D)/L倍)を作用させる計算方法を模式的に示した図である。The calculation method for applying the equivalent earth pressure for the width ((L-D) / L times the total earth pressure) assuming that the steel sheet pile wall is a beam with a fixed bottom and a simple head is shown. FIG. 同、室内模型試験における鉛直方向のひずみ分布と、鋼矢板壁単体を下端固定の梁及び下端固定・頭部単純支持の梁と仮定して幅分の換算土圧(全土圧のL−D)/L倍)を作用させた場合の計算値との比較を示すグラフである。Same as above, vertical strain distribution in laboratory model test, and equivalent earth pressure of width (LD of total earth pressure) assuming steel sheet pile wall as a beam fixed at the lower end and a beam fixed at the lower end and simply supported at the head. It is a graph which shows the comparison with the calculated value at the time of making / L times act. 本発明に係る鋼製壁の実施の形態の一例を示すもので、(a)は要部の概略平面図、(b)は同側断面図、(c)は鋼管と鋼矢板の頭部に鋼板を溶接することによって連結した例を示す要部の概略平面図である。It shows an example of embodiment of the steel wall which concerns on this invention, (a) is a schematic plan view of the principal part, (b) is the same sectional side view, (c) is the head of a steel pipe and a steel sheet pile It is a schematic plan view of the principal part which shows the example connected by welding a steel plate.

以下、図面を参照して本発明の実施の形態について説明する。
図8は本発明の第1実施形態に係る組合せ鋼製壁の例である。
図8に示すように、この実施形態の鋼製壁3は、鋼矢板としてのハット形鋼矢板1と鋼管2とを組み合わせて構成されている。ハット形鋼矢板1の長手方向に、長手方向を沿わせて鋼管2が接しており、鋼管2は背面側(壁体を挟んで地盤面の高い側)に配置されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 8 is an example of a combined steel wall according to the first embodiment of the present invention.
As shown in FIG. 8, the steel wall 3 of this embodiment is configured by combining a hat-shaped steel sheet pile 1 and a steel pipe 2 as steel sheet piles. A steel pipe 2 is in contact with the longitudinal direction of the hat-shaped steel sheet pile 1 along the longitudinal direction, and the steel pipe 2 is arranged on the back side (the side with the higher ground surface across the wall).

ハット形鋼矢板1は、ウェブ1aと、ウェブ1aの両側縁からそれぞれ互いに広がるように斜めに延出する一対のフランジ1bと、左右のフランジ1bの先端からウェブ1aと平行に左右に延出する一対のアーム1cと、アーム1cの先端に設けられた継手1dとを備えている。鋼管2は、ハット形鋼矢板1の凹部に一部入り込んだ状態でウェブ1aに接しており、鋼管と鋼矢板の頭部を両者に跨って設置されたコンクリートによって連結されている。   The hat-shaped steel sheet pile 1 extends to the left and right in parallel with the web 1a from the front end of the web 1a, a pair of flanges 1b extending obliquely so as to spread from both side edges of the web 1a, and the left and right flanges 1b. A pair of arms 1c and a joint 1d provided at the tip of the arm 1c are provided. The steel pipe 2 is in contact with the web 1a in a state where the steel pipe 2 partially enters the recess of the hat-shaped steel sheet pile 1, and is connected by concrete installed across the head of the steel pipe and the steel sheet pile.

なお、鋼管は鋼矢板壁の凹部に一部入り込んだ状態としておけば、鋼矢板と鋼管が離れて設置されもよい。離れて設置する場合には、施工上の騒音や振動を抑制し、施工中に鋼矢板と鋼管が接触して変形することもなくなる上、鋼矢板が鋼管と接触しないため、バイブロハンマ工法などの振動工法の採用も可能となる。また、鋼矢板と鋼管は嵌合用の冶具や継手などを設置せず、そのまま離れて設置されているため、鋼管を回転させて打設する回転圧入工法などを適用することも可能になる。また、鋼管のピッチを飛ばして鋼管を打設する場合、複数の打設済鋼管から反力を取って鋼管を油圧圧入または回転圧入で施工しようとすると、反力用の把持装置が大きくなる上、反力を取る鋼管と打設する鋼管との距離が長くなるため、施工が不安定となってしまうが、その場合は打設済の鋼矢板を把持してそこから反力を取ることで、鋼管のピッチを飛ばしても安定した打設が可能になる。   In addition, if a steel pipe is made into the state which entered into the recessed part of the steel sheet pile wall, a steel sheet pile and a steel pipe may be installed apart. When installed remotely, the construction noise and vibration are suppressed, the steel sheet pile and the steel pipe do not contact and deform during construction, and the steel sheet pile does not contact the steel pipe. The construction method can also be adopted. Moreover, since the steel sheet pile and the steel pipe are installed apart from each other without installing fitting jigs and joints, it is possible to apply a rotary press-fitting method in which the steel pipe is rotated and driven. In addition, when steel pipes are driven by skipping the pitch of the steel pipe, if a reaction force is taken from a plurality of already-placed steel pipes and the steel pipe is to be constructed by hydraulic press-fitting or rotary press-fitting, the gripping device for the reaction force will increase. Because the distance between the steel pipe that takes the reaction force and the steel pipe to be cast becomes long, the construction becomes unstable.In that case, by gripping the cast steel sheet pile and taking the reaction force from there Even if the pitch of the steel pipe is skipped, stable placement is possible.

また、鋼管と鋼矢板とを連結する連結用部材としては、鋼矢板と鋼管の両者に跨って設置したコンクリート、鋼矢板と鋼管の両者に溶接接合、ボルト、またはドリルねじで取り付けた鋼板または鉄筋、あるいはいずれかの組合せを用いることができる。また、溶接接合や、コンクリートで結合して、鋼矢板と鋼管との鉛直方向のせん断ズレを抑制すれば、壁体としての剛性や耐力を向上させることも可能となり、壁体の変位を低減し安全性を高め、より経済的な鋼管と鋼矢板の組合せを選択することができる。また、頭部であれば、鋼矢板と鋼管を別々に打設後に連結作業を行いやすい。   In addition, as a connecting member that connects a steel pipe and a steel sheet pile, concrete installed across both the steel sheet pile and the steel pipe, a steel sheet or a reinforcing bar attached to both the steel sheet pile and the steel pipe by welding, bolts, or drill screws Or any combination can be used. In addition, if the shear displacement in the vertical direction between the steel sheet pile and the steel pipe is suppressed by welding connection or concrete, it will be possible to improve the rigidity and proof stress of the wall body, reducing the displacement of the wall body. It is possible to select a combination of a steel pipe and a steel sheet pile that is safer and more economical. Moreover, if it is a head, it will be easy to perform a connection operation | work after driving a steel sheet pile and a steel pipe separately.

図8に示す鋼製壁3では、全てのハット形鋼矢板1に対し鋼管2がそれぞれ沿わせて設置されている構造とはなっておらず、図8(a)に示すように、ハット形鋼矢板1を2枚に対して鋼管2を1本配置する構造となっており、図8(b)に示すように鋼管と鋼矢板を跨るように頭部にコンクリートを設置して連結している。また、図8(c)に示すようにハット形鋼矢板1の継手部に対面するように鋼管を配置して、鋼管と鋼矢板の頭部に鋼板を溶接することで連結しても良い。
鋼製壁3の必要とされる剛性から必要に応じて鋼管の径、板厚、ピッチ等を設定し、鋼管2のピッチをL、鋼製壁3の高さをHとすると、L≦10Dとなるように鋼管のピッチを設定すれば良い。
The steel wall 3 shown in FIG. 8 does not have a structure in which the steel pipes 2 are installed along all the hat-shaped steel sheet piles 1, and as shown in FIG. It has a structure in which one steel pipe 2 is arranged for two steel sheet piles 1 and, as shown in FIG. 8 (b), concrete is installed and connected to the head so as to straddle the steel pipe and the steel sheet pile. Yes. Moreover, as shown in FIG.8 (c), a steel pipe may be arrange | positioned so that the joint part of the hat-shaped steel sheet pile 1 may be faced, and it connects by welding a steel plate to the head of a steel pipe and a steel sheet pile.
From the required rigidity of the steel wall 3, if the diameter, thickness, pitch, etc. of the steel pipe are set as required, the pitch of the steel pipe 2 is L, and the height of the steel wall 3 is H, L ≦ 10D What is necessary is just to set the pitch of a steel pipe so that it may become.

例えば、鋼製壁3の壁高Hが5000mm、鋼管径が800mmで、土圧による荷重は三角形分布で下端での荷重pが27kN・m、鋼矢板の降伏応力σaを295N/mmとした場合に、鋼管のピッチを1800mmとすれば、(1)式及び(4)式も満たしているので、隣り合う鋼管の中間付近における鋼矢板の発生応力を低減し、鋼管と組合せる効果を発揮できるとともに、壁体の幅方向にわたって鋼矢板が降伏することはなく、壁体としての安全性、健全性を確保できる。 For example, the wall height H of the steel wall 3 is 5000 mm, the steel pipe diameter is 800 mm, the load due to earth pressure is triangular distribution, the load p at the lower end is 27 kN · m 2 , and the yield stress σa of the steel sheet pile is 295 N / mm 2 In this case, if the pitch of the steel pipe is 1800 mm, the formulas (1) and (4) are also satisfied, so the effect of reducing the generated stress of the steel sheet pile near the middle of the adjacent steel pipes and combining with the steel pipe The steel sheet pile does not yield over the width direction of the wall body, and safety and soundness as the wall body can be secured.

なお、本実施の形態では、ハット形鋼矢板1を2枚に対して鋼管2を1本配置する構造を示したが、本発明はこれに限ることなく、(1)式を満たすことを条件に、鋼管2のピッチを適宜設定することができる。また、ハット形鋼矢板に限らず、U形鋼矢板、Z形鋼矢板、直線鋼矢板を用いた組合せとしても良い。   In addition, in this Embodiment, although the structure which arrange | positions one steel pipe 2 with respect to two pieces of the hat-shaped steel sheet piles 1 was shown, this invention is not restricted to this, It is conditional on satisfy | filling (1) Formula. In addition, the pitch of the steel pipe 2 can be set as appropriate. Moreover, it is good also as a combination using not only a hat-shaped steel sheet pile but a U-shaped steel sheet pile, a Z-shaped steel sheet pile, and a linear steel sheet pile.

1 ハット形鋼矢板(鋼矢板)
2 鋼管
3 鋼製壁
4 壁体
1 Hat-shaped steel sheet pile (steel sheet pile)
2 Steel pipe 3 Steel wall 4 Wall body

Claims (2)

複数の鋼矢板が継手により連結されて壁体が設けられるとともに、前記壁体に対して複数の鋼管が壁体を挟んで地盤面の高い側にその長手方向が前記鋼矢板の長手方向と略平行となるよう、かつ前記壁体の幅方向に所定ピッチで鋼管の一部が鋼矢板壁の凹部に入り込むように配置されており、前記鋼矢板と前記鋼管の頭部を連結している組合せ鋼製壁であって、
前記壁体の前記鋼管のピッチをL、鋼管径をDとすると、L≦10Dとなっており、
前記鋼矢板の降伏応力をσy、鋼矢板壁の壁幅1mあたりの断面係数をZs、
壁体に作用する最大曲げモーメントをMmaxとすると、下記(7)式が成立するように鋼管のピッチが設定されていることを特徴とする組合せ鋼製壁。
Figure 0005825232
A plurality of steel sheet piles are connected by a joint to provide a wall body, and a plurality of steel pipes sandwich the wall body with respect to the wall body, and the longitudinal direction of the steel sheet pile is substantially the same as the longitudinal direction of the steel sheet pile. A combination in which the steel sheet pile and the head of the steel pipe are connected to each other so that a part of the steel pipe enters the concave portion of the steel sheet pile wall at a predetermined pitch in the width direction of the wall body. A steel wall,
When the pitch of the steel pipe of the wall body is L and the steel pipe diameter is D, L ≦ 10D ,
The yield stress of the steel sheet pile is σy, the section modulus per 1 m wall width of the steel sheet pile wall is Zs,
A combined steel wall, wherein the pitch of the steel pipe is set so that the following equation (7) is established, where Mmax is the maximum bending moment acting on the wall.
Figure 0005825232
複数の鋼矢板が継手により連結されて壁体が設けられるとともに、前記壁体に対して複数の鋼管が壁体を挟んで地盤面の高い側にその長手方向が前記鋼矢板の長手方向と略平行となるよう、かつ前記壁体の幅方向に所定ピッチで鋼管の一部が鋼矢板壁の凹部に入り込むように配置されており、前記鋼矢板と前記鋼管の頭部を連結している組合せ鋼製壁の設計方法であって、
前記壁体の前記鋼管のピッチをL、鋼管径をDとすると、L≦10Dとなっており、
記鋼矢板の降伏応力をσy、鋼矢板壁の壁幅1mあたりの断面係数をZs、
壁体に作用する最大曲げモーメントをMmaxとすると、下記(7)式が成立するように鋼管のピッチを設定することを特徴とする組合せ鋼製壁の設計方法
Figure 0005825232
A plurality of steel sheet piles are connected by a joint to provide a wall body, and a plurality of steel pipes sandwich the wall body with respect to the wall body, and the longitudinal direction of the steel sheet pile is substantially the same as the longitudinal direction of the steel sheet pile. A combination in which the steel sheet pile and the head of the steel pipe are connected to each other so that a part of the steel pipe enters the concave portion of the steel sheet pile wall at a predetermined pitch in the width direction of the wall body. A method for designing a steel wall,
When the pitch of the steel pipe of the wall body is L and the steel pipe diameter is D, L ≦ 10D,
Σy the yield stress of the previous Symbol steel sheet pile, Zs the section modulus per wall width 1m of steel sheet pile wall,
Maximum bending when the moment and Mmax, the design method of a combination steel wall and sets the pitch of the steel pipe as the lower SL (7) is established to act on the wall.
Figure 0005825232
JP2012196900A 2012-09-07 2012-09-07 Combined steel walls and design methods for combined steel walls Active JP5825232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196900A JP5825232B2 (en) 2012-09-07 2012-09-07 Combined steel walls and design methods for combined steel walls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196900A JP5825232B2 (en) 2012-09-07 2012-09-07 Combined steel walls and design methods for combined steel walls

Publications (2)

Publication Number Publication Date
JP2014051821A JP2014051821A (en) 2014-03-20
JP5825232B2 true JP5825232B2 (en) 2015-12-02

Family

ID=50610529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196900A Active JP5825232B2 (en) 2012-09-07 2012-09-07 Combined steel walls and design methods for combined steel walls

Country Status (1)

Country Link
JP (1) JP5825232B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109024637B (en) * 2018-07-21 2020-07-14 四川启创建设工程有限公司 Combined cofferdam and construction method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498172B2 (en) * 2005-03-03 2010-07-07 住友金属工業株式会社 Underground continuous wall
WO2011142047A1 (en) * 2010-05-10 2011-11-17 住友金属工業株式会社 Steel wall and method for constructing steel wall
JP2012102497A (en) * 2010-11-09 2012-05-31 Sumitomo Metal Ind Ltd Steel wall and method for constructing the same

Also Published As

Publication number Publication date
JP2014051821A (en) 2014-03-20

Similar Documents

Publication Publication Date Title
JP4998646B2 (en) Connection structure of steel pipe sheet pile and steel sheet pile and its construction method
JP4903744B2 (en) Existing steel sheet pile reinforcement structure, existing steel sheet pile reinforcement member
JP2014051820A (en) Combined steel wall
JP5284249B2 (en) Steel pipe sheet pile joint structure and steel pipe sheet pile foundation
JP5935756B2 (en) Seismic reinforcement structure for joints of submerged tunnels.
JP5825644B2 (en) Pier construction method
JP5825232B2 (en) Combined steel walls and design methods for combined steel walls
JP6091440B2 (en) Steel sheet pile foundation structure
JP2014020129A (en) Steel sheet pile and steel sheet pile wall body
JP6477586B2 (en) Steel sheet pile wall
JP6070118B2 (en) Retaining wall structure, method for constructing retaining wall structure
EP2848739A1 (en) Steel wall
JP5939622B2 (en) Retaining wall
JP7156347B2 (en) Joint structure of steel wall and reinforced concrete floor slab
JP4253795B2 (en) Synthetic wall structure
JP2013177787A (en) Method for constructing steel pipe sheet pile foundation
JP5291390B2 (en) Earthquake-resistant structure, construction method of earthquake-resistant structure, and building
JP2013142275A (en) Steel sheet pile underground wall structure
JP6763221B2 (en) Reinforcement structure of embankment
JP2015151796A (en) Joining structure and erection method of earth retaining h-shaped steel pile
JP6133621B2 (en) Yamadome wall
JP6269184B2 (en) Combination steel sheet pile, steel sheet pile wall, and method of construction of combined steel sheet pile
CN218437097U (en) Assembled permanent underground supporting construction
JP2019056231A (en) Quay wall structure
JP2017082454A (en) Earthquake-proof quay wall structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150928

R151 Written notification of patent or utility model registration

Ref document number: 5825232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350