JP2014135133A - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
JP2014135133A
JP2014135133A JP2013000942A JP2013000942A JP2014135133A JP 2014135133 A JP2014135133 A JP 2014135133A JP 2013000942 A JP2013000942 A JP 2013000942A JP 2013000942 A JP2013000942 A JP 2013000942A JP 2014135133 A JP2014135133 A JP 2014135133A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
reference electrode
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013000942A
Other languages
English (en)
Inventor
Tetsuya Takahashi
哲哉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2013000942A priority Critical patent/JP2014135133A/ja
Publication of JP2014135133A publication Critical patent/JP2014135133A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】参照極に対する負極の電位や、参照極に対する正極の電位を正しく測定し得る二次電池を提供する。
【解決手段】正極3a、負極3bおよび参照極4aが電解液8と共に電池容器2内に収容されて構成されたリチウムイオン二次電池1であって、電解液8を保液する保液部4cを備え、保液部4cは、参照極4aの表面における予め規定された領域(一例として、リード線の接続部を除く全域)を覆うようにして参照極4aの周囲に設けられている。
【選択図】図1

Description

本発明は、正極、負極および参照極が電解液と共に容器体内に収容されて構成された二次電池に関するものである。
今日では、継ぎ足し充電を行っても電池性能が低下せず、エネルギー密度が高いことから、各種の電子機器や電気機械の電源としてリチウムイオン二次電池が広く使用されている。しかしながら、リチウムイオン二次電池では、過充電したとき(充電完了後に正極および負極の間に電圧を印加し続けたり、充電に際して正極および負極の間に過剰に高い電圧を印加したりしたとき)に、電解液中の金属リチウムが負極の表面に析出することがある。この場合、負極の表面に金属リチウムが析出した状態では、充放電時に電極および電解液の間を移動可能なリチウムイオンの量が減少して電池容量が減少するだけでなく、針状に析出した金属リチウムによって電極間が短絡されて発火する危険性がある。したがって、リチウムイオン二次電池の充電に際しては、過充電を招くことのないように(負極の表面に金属リチウムを析出させることのないように)細心の注意を払う必要がある。
この場合、電池電圧(正極および負極の間の電位差)が過剰に高くなることのないようにモニタリングしながら充電を行うことにより、金属リチウムの析出をある程度は回避することができる。しかしながら、充電完了と判断する電池電圧を低い電圧に規定して充電を行ったとしても、充電時に印加する電圧値や、負極の構成材料によっては、リチウムイオンに対する負極の電位(以下、「対リチウム負極電位」ともいう)が過剰に低い電位となったときに、負極の表面に金属リチウムが析出することがある。したがって、このような析出が生じるのを回避するために、充電中に対リチウム負極電位を正しく測定する必要があるが、正極および負極の間の電位差をモニタリングしたとしても、この対リチウム負極電位を特定することができないため、対リチウム負極電位が過剰に低い電圧となることのないように充電時間や充電電圧を管理することができない。
一方、特開平11−67280号公報には、上記の対リチウム負極電位を特定可能とするために、正極および負極に加えて参照極を設けたリチウム二次電池が開示されている。このリチウム二次電池では、電池缶、封止板およびガスケット等で構成された電池容器内に、正極、負極および電解液と共に参照極が収容されて構成されている。このリチウム二次電池の製造に際しては、一例として、まず、正極シート(正極)、セパレータシート、負極シート(負極)、およびセパレータシートをこの順に積層した積層体を捲回して円筒状の発電要素体を形成する。次いで、電池缶の内底面に負極リードによって負極シートを接続した後に、電池缶内に発電要素体を収容する。続いて、封止板に配設された参照極端子に参照極リードによって参照極を接続すると共に、発電要素体の中央部に挿入するようにして電池缶内に参照極を収容する。次いで、封止板に配設されている正極端子に正極リードによって正極シートを接続した後に、電池缶内に電解液を注入する。この後に、ガスケットによって密閉するようにして電池缶に封止板を取り付けることにより、リチウム二次電池が完成する。
この場合、このリチウム二次電池では、リチウム、またはリチウム合金で参照極が形成されている。したがって、このリチウム二次電池では、参照極の標準電極電位が、金属イオンが析出した状態の負極の電位とほぼ等しくなる。このため、充電に際して参照極と負極との間の電位差をモニタリングして、十分な電位差が生じるように(参照極と負極との間の電位差が規定値を下回ることのないように)充電時間や充電電圧を管理することで、負極の表面に金属リチウムが析出するのを回避することが可能となっている。
特許第4695316号公報(第2−9頁、第3図)
ところが、従来のリチウム二次電池には、以下の問題点が存在する。すなわち、従来のリチウム二次電池では、正極および負極に加えて参照極を設けることにより、参照極および負極の間の電位差、すなわち、リチウムイオン電位に対する負極の電位(対リチウム負極電位)を測定可能とする構成が採用されている。
この場合、上記の先行技術文献には、「電池缶内の空間は電解液に満たされている」と記載されている。しかしながら、実際には、電池缶に対する封止板などの取付けに際して電解液がこぼれることに起因しての、正極端子、参照極端子、電池缶および封止板の外表面への電解液の付着を回避するために、正極シート(正極)および負極シート(負極)を浸漬できる程度の限られた量の電解液しか電池缶内に注入することができない。また、仮に、電解液が付着しないように組み立てることができたとしても、電池容器内に注入する電解液の量が多量のとき(電池容器内の空気の量が少ないとき)には、電池容器に対して外圧が加わったり、発熱や加熱に伴って電解液等が膨張したりしたときに電池容器内の電解液が漏出し易く(液漏れが生じ易く)なる。このため、この種のリチウムイオン二次電池では、一般的に、完成状態において電池容器内に空気(電解液が存在しない空間)が存在した状態となっている。
したがって、従来のリチウム二次電池では、横倒し状態で充電を行うときや、移動中(振動が加わったり、水平方向の加速度が変化したりする状態)に充電を行うときに、電池容器内において電解液が移動して参照極の一部が電解液から露呈する(参照極の一部に空気が接した状態となる)ことがある。この場合、正極および負極に関しては、前述したように、シート体の積層物を捲回することで発電要素体が形成されているため、横倒し状態や移動中においても、正極(正極シート)、負極(負極シート)およびセパレータの間に電解液が含浸した状態、すなわち、正極および負極の全域に電解液が接した状態を維持することができる。しかしながら、横倒し状態や移動中に参照極の一部が電解液から露呈した状態となる従来のリチウム二次電池では、充電環境によって参照極の有効電極面積が変化するため、参照極および負極の間の電位差を正しく測定するのが困難となっている。
また、過充電に起因して許容量を超えるイオンが正極から放出されたとき、すなわち、リチウムイオンに対する正極の電位(以下、「対リチウム正極電位」ともいう)が過剰に高い電位となったときには、電池の電気化学特性が不安定となり、本来的な性能を発揮するのが困難となる。したがって、充電に際しては、参照極に対する正極の電位(対リチウム正極電位)をモニタリングして過充電を回避するのが好ましい。しかしながら、充電環境によって参照極の有効電極面積が変化する従来のリチウム二次電池では、この対リチウム正極電位についても正しく測定することが困難となっている。このように、従来のリチウム二次電池では、正極および負極に加えて参照極を設けているにも拘わらず、過充電を好適に回避するのが困難になっているという問題点が存在する。
本発明は、かかる問題点に鑑みてなされたものであり、参照極に対する負極の電位や、参照極に対する正極の電位を正しく測定し得る二次電池を提供することを主目的とする。
上記目的を達成すべく、請求項1記載の二次電池は、正極、負極および参照極が電解液と共に容器体内に収容されて構成された二次電池であって、前記電解液を保液する保液部を備え、当該保液部は、前記参照極の表面における予め規定された領域を覆うようにして当該参照極の周囲に設けられている。
また、請求項2記載の二次電池は、請求項1記載の二次電池において、前記保液部は、前記参照極におけるリード線の接続部を除く全域を覆うようにして設けられている。
さらに、請求項3記載の二次電池は、請求項1または2記載の二次電池において、前記保液部は、前記電解液と相まってゲル状電解液を形成する高分子体を備えて構成されている。
また、請求項4記載の二次電池は、請求項1から3のいずれかに記載の二次電池において、前記参照極および前記保液部の間と、前記保液部の周囲とのいずれか少なくとも一方に絶縁性材料で形成された多孔質シートが配設されている。
請求項1記載の二次電池によれば、参照極の表面における予め規定された領域を覆うようにして保液部を設けたことにより、容器体の内部において電解液が移動したとしても、参照極が電解液から露呈した状態となるのを回避することができる結果、参照極の有効電極面積を一定の面積に維持することができ、これにより、参照極および負極の間の電位差や、参照極および正極の間の電位差を安定して正確に測定することができる。したがって、この二次電池によれば、測定した電位差に基づき、正極および負極間に対する充電電圧の印加(充電処理)を的確に調整して過充電が生じるのを回避することができる結果、負極の表面に金属リチウムが析出したり、正極から過剰に多くのイオンが放出されて二次電池の特性が悪化したりする事態を好適に回避することができる。
また、請求項2記載の二次電池によれば、参照極におけるリード線の接続部を除く全域を覆うようにして保液部を設けたことにより、参照極の一部に保液部を設けない構成とは異なり、参照極において電極として寄与する領域の全域に電解液が接している状態を維持することができるため、参照極の有効電極面積が変化する事態を確実に回避して、参照極および負極の間の電位差や、参照極および正極の間の電位差を一層正確に測定することができる。
さらに、請求項3記載の二次電池によれば、電解液と相まってゲル状電解液を形成する高分子体を備えて保液部を構成したことにより、参照極の周囲に多孔質体によって保液部を設けて電解液を保液させる構成と比較して、比較的容易に形成することができ、しかも、十分な量の電解液を保液して参照極に電解液が接した状態を維持することができる。これにより、この二次電池によれば、参照極および負極の間の電位差や、参照極および正極の間の電位差を一層正確に測定することができる。
また、請求項4記載の二次電池によれば、参照極および保液部の間と、保液部の周囲とのいずれか少なくとも一方に絶縁性材料で形成された多孔質シートを配設したことにより、参照極が正極や負極に接する事態を回避できるだけでなく、多孔質シートの各小孔内に電解液を保液することができるため、参照極および負極の間の電位差や、参照極および正極の間の電位差を一層正確に測定することができる。
リチウムイオン二次電池1の構成を示す断面図である。 リチウムイオン二次電池1の使用状態の一例を示す断面図である。
以下、二次電池の実施の形態について、添付図面を参照して説明する。
図1に示すリチウムイオン二次電池1は、「二次電池」の一例であって、電池容器2、電極部3,4、正極端子5、参照極端子6、リード線7a〜7cおよび電解液8を備えて構成されている。
電池容器2は、「容器体」の一例であって、容器本体2a、蓋体2bおよびガスケット2c,2dを備え、電極部3,4、リード線7a〜7cおよび電解液8を収容可能に構成されている。容器本体2aは、一例として、アルミニウム、アルミニウム合金およびステンレス鋼等によって上面開口の有底円筒状に形成されている。蓋体2bは、一例として、ポリオレフィン樹脂やフッ素樹脂等の絶縁性を有する材料で円板状に形成されて、ガスケット2c,2dと相まって容器本体2aの上面開口部を閉塞する閉塞部材として機能するように構成されている。この蓋体2bには、正極端子5および参照極端子6が取り付けられている。また、参照極端子6は、ガスケット2dを介して蓋体2bに取り付けられて、蓋体2bや正極端子5に対して絶縁されている。
電極部3は、正極3a、負極3b、および図示しないセパレータシートを備えて構成されている。具体的には、本例のリチウムイオン二次電池1では、一例として、従来のリチウム二次電池における発電要素体と同様にして、正極3aを構成する正極シートと、正極3aおよび負極3bを相互に絶縁するセパレータシートと、負極3bを構成する負極シートと、負極3bおよび正極3aを相互に絶縁するセパレータシートとの4枚のシートの積層体を捲回することで円筒状に形成されている。なお、図1および後に参照する図2においては、リチウムイオン二次電池1の内部構造に関する理解を容易とするために、正極3a(正極シート)を一点鎖線で示すと共に負極3b(負極シート)を二点鎖線で示し、かつ、セパレータシートの図示を省略している。また、正極3aとセパレータシートとの間、および負極3bとセパレータシートとの間に電解液8が含浸可能な隙間が設けられているが、両図では、この隙間を誇張して大きく図示している。
この場合、正極3a(正極シート)は、一例として、コバルト、ニッケルおよびマンガンなどの遷移金属のリチウム含有酸化物やカーボンなどの導電助材と結着剤とを混合した塗液を、アルミニウムやアルミニウム合金等の金属(導体)で構成された支持体の表面に塗布して硬化させることで層状の電極本体が形成されている。また、負極3b(負極シート)は、粒状(鱗片状、繊維状、球状、疑似球状、塊状および粉状)のグラファイト(黒鉛)や非晶質炭素などと結着剤とを混合した塗液を、銅やニッケル等の金属(導体)で構成された支持体の表面に塗布して硬化させることで層状の電極本体が形成されている。さらに、セパレータシートは、ポリオレフィン樹脂等の絶縁性材料で形成された多孔性シートで構成されている。
電極部4は、参照極4a、絶縁シート4bおよび保液部4cを備えて構成されて、電極部3の中央部に挿入されるようにして電極部3や電解液8と共に電池容器2内に収容されている。参照極4aは、一例として、リチウム、またはリチウム合金によって円柱状に形成されている。絶縁シート4bは、「絶縁性材料で形成された多孔質シート」に相当し、一例として、電極部3のセパレータシートと同様にしてポリオレフィン樹脂等の絶縁性材料でシート状に形成されると共に、電解液8の通過が可能な無数の小孔が形成されている。
保液部4cは、「保液部」に相当し、本例のリチウムイオン二次電池1では、一例として、PVdF(ポリフッ化ビニリデン)やPMMA(ポリメチルメタクリレート)等の高分子体(コポリマー)によって構成されている。具体的には、本例のリチウムイオン二次電池1では、後述するようにして参照極4aの周囲に絶縁シート4bを配設した円柱状体(図示せず)の周囲にPVdFやPMMA等の高分子体を塗布した状態において、この高分子体に電解液8が接することでゲル状電解液10となり、これにより、参照極4aの周囲に電解液8を保液する構成が採用されている。
また、本例のリチウムイオン二次電池1では、電池容器2内において、リード線7aによって正極3aが正極端子5に接続され、リード線7bによって負極3bが容器本体2aに接続され、かつ、リード線7cによって参照極4aが参照極端子6に接続されている。したがって、本例のリチウムイオン二次電池1では、正極端子5および容器本体2aを電力供給対象にそれぞれ接続することで正極3aおよび負極3bの間の電位差に応じた電力を電力供給対象に供給することが可能となっている。
このリチウムイオン二次電池1の製造に際しては、まず、正極シート(正極3a)、セパレータシート、負極シート(負極3b)、およびセパレータシートをこの順に積層した積層体を捲回して電極部3を製作する。また、参照極4aの上端部にリード線7cを接続すると共に、参照極4aの周囲に絶縁シート4bを捲回して上記の円柱状体(図示せず)を製作する。次いで、製作した円柱状体の周囲に例えばPVdFコポリマーを塗布して保液部4cを形成する。続いて、電極部3の負極3bと容器本体2aの内底面とをリード線7bによって接続した後に、容器本体2a内に電極部3を収容する。次いで、参照極4aに接続されているリード線7cを参照極端子6に接続すると共に、正極3aと正極端子5とをリード線7aによって相互に接続する。続いて、電極部3の中央部に電極部4を挿入するようにして容器本体2a内に電極部4を収容する。
次いで、完成状態において電池容器2内に規定容積の空間(適量の空気)が存在する状態となるように、規定された量の電解液8を容器本体2a内に注入する。この際には、電極部3の各シート間に電解液8が含浸して正極3aおよび負極3bの双方に電解液8が接した状態になると共に、絶縁シート4bの周囲に塗布したPVdFコポリマー(保液部4c:高分子体)に電解液8が接することで、絶縁シート4bの周囲(参照極4aの周囲)にゲル状電解液10が形成されて、参照極4aの周囲に電解液8が保液される。なお、上記の製造方法に代えて、絶縁シート4bの周囲にゲル状電解液10を塗布した状態の電極部4を容器本体2a内(電極部3の中央部)に収容し、その後に電解液8を注入する製造方法を採用することもできる。
続いて、容器本体2aの上端部にガスケット2cを嵌め込む。この際には、容器本体2aと蓋体2bとの間の隙間がガスケット2cによって閉塞されると共に、このガスケット2cによって、容器本体2aと、蓋体2bに取り付けられている正極端子5とが相互に絶縁された状態となる。この場合、このリチウムイオン二次電池1では、容器本体2a内に過剰に多くの電解液8を注入しないため、容器本体2aに蓋体2bを取り付ける際に、容器本体2a内の電解液8がこぼれて容器本体2a、蓋体2b、正極端子5および参照極端子6等の外表面に付着する事態が回避されている。これにより、リチウムイオン二次電池1が完成する。
このリチウムイオン二次電池1を対象とする充電に際しては、容器本体2a、正極端子5および参照極端子6を図示しない充電回路に接続する。次いで、各電極3a,3b,4の電位差をモニタリングしつつ、正極端子5および容器本体2aの間に充電電圧を印加する。具体的には、正極端子5および容器本体2aの間の電位差(すなわち、リード線7aを介して正極端子5に接続されている正極3aと、リード線7bを介して容器本体2aに接続されている負極3bとの間の電位差)、参照極端子6および正極端子5の間の電位差(すなわち、リード線7cを介して参照極端子6に接続されている参照極4aと正極3aとの間の電位差)、並びに参照極端子6および容器本体2aの間の電位差(すなわち、参照極4aと負極3bとの間の電位差)をそれぞれモニタリングしつつ、正極端子5(正極3a)および容器本体2a(負極3b)の間に充電電圧を印加する。
この際に、充電電圧の印加によってリチウムイオン二次電池1が満充電状態に近付くにつれ、正極3aおよび負極3bの間の電位差が徐々に大きくなる。したがって、正極3aおよび負極3bの間の電位差をモニタリングすることにより、リチウムイオン二次電池1が満充電状態となったか否かを特定することができる。
また、過充電に起因して負極3bの表面に金属リチウムが析出したときには、リチウム、またはリチウム合金で形成された参照極4aと、金属リチウムが析出した負極3bとの間の電位差が小さくなる。したがって、参照極4aおよび負極3bの間の電位差(対リチウム負極電位)をモニタリングして、測定された電位差が、予め規定された電位差まで低下した時点において、正極3aおよび負極3bの間への充電電圧の印加を停止させたり、正極3aおよび負極3bの間へ印加する充電電圧の電圧値を低下させたりすることにより、負極3bの表面への金属リチウムの析出量を最小限に止めることができる。
さらに、過充電に起因して許容量を超えるイオンが正極3aから放出されたときには、リチウムまたはリチウム合金で形成された参照極4aと、リチウムイオンが放出された正極3aとの間の電位差が大きくなる。したがって、参照極4aおよび正極3aの間の電位差(対リチウム正極電位)をモニタリングして、測定された電位差が、予め規定された電位差まで上昇した時点において、正極3aおよび負極3bの間への充電電圧の印加を停止させたり、正極3aおよび負極3bの間へ印加する充電電圧の電圧値を低下させたりすることにより、許容量を超えるイオンが正極3aから放出される事態を回避することができる。
この場合、本例のリチウムイオン二次電池1では、製造に際して電池容器2等の外表面に電解液8が付着したり、電池容器2の変形に起因する電解液8の漏出(液漏れ)が生じたりするのを回避するために、電池容器2内に必要十分な量(電極部3の各シート間に十分な量の電解液8が含浸して正極3aおよび負極3bが電解液8介して接した状態となる量)の電解液8だけが注入されている。これにより、本例のリチウムイオン二次電池1では、図1に示すように、電池容器2内に電解液8が存在しない空間が生じている。なお、同図および後に参照する図2では、電解液8が存在しない空間を誇張して広く図示している。
このため、本例のリチウムイオン二次電池1では、図2に示すように傾斜させられたり、振動が加わったり、水平方向の加速度が変化したりするときに、電池容器2内において電解液8が移動する。この場合、正極3aおよび負極3bに関しては、前述したように各シートの積層物を捲回することで電極部3が形成されているため、横倒し状態や移動中においても、正極3a(正極シート)、負極3b(負極シート)およびセパレータの間に電解液が含浸した状態、すなわち、正極および負極の全域に電解液が接した状態が維持される。したがって、電池容器2内で電解液8がどのように移動したとしても、正極3aおよび負極3bの有効電極面積が一定の面積に維持される結果、充放電効率を一定に保つことが可能となっている。
また、本例のリチウムイオン二次電池1では、参照極4a(絶縁シート4b)の周囲に保液部4cが設けられて参照極4a(絶縁シート4b)がゲル状電解液10によって覆われた状態となっている。これにより、本例のリチウムイオン二次電池1では、電池容器2内で電解液8がどのように移動したとしても、参照極4a(絶縁シート4b)の周囲にゲル状電解液10(すなわち、電解液8)に接した状態となっている。したがって、本例のリチウムイオン二次電池1では、電池容器2内で電解液8がどのように移動したとしても、参照極4aの有効電極面積が一定の面積に維持される結果、参照極4aおよび正極3aの間の電位差や、参照極4aおよび負極3bの間の電位差を常に正確に測定することが可能となっている。
さらに、本例のリチウムイオン二次電池1では、参照極4aと保液部4c(ゲル状電解液10)との間に絶縁シート4bが配設されている。したがって、このリチウムイオン二次電池1では、傾斜させられたり、振動が加わったり、水平方向の加速度が変化したりして、図2に示すように電極部3内で電極部4が移動したとしても、参照極4aが正極3a(または、負極3b)に直接接した状態となるのが回避される。これにより、本例のリチウムイオン二次電池1では、電極部4および正極3a(または、電極部4および負極3b)が接して同電位となる事態が回避され、これにより、参照極4aおよび正極3aの間の電位差や、参照極4aおよび負極3bの間の電位差を常に正確に測定することが可能となっている。
この場合、電極部3の内側部位に絶縁シート4bと同様の絶縁シートを配設することで参照極4aが正極3a(または、負極3b)に直接接する事態を回避することができる。しかしながら、本例のリチウムイオン二次電池1のように、無数の小孔が形成された絶縁シート4bを参照極4aの周囲に配設することで、この絶縁シート4bも「保液部」の一部として機能して電解液8を参照極4aの周囲に保液するため、参照極4aの周囲、または、保液部4c(ゲル状電解液10)の周囲に絶縁シート4bを配設することで、参照極4aが電解液8から露呈した状態となるのを一層好適に回避することが可能となる。
このように、このリチウムイオン二次電池1によれば、参照極4aの表面における予め規定された領域(本例では、リード線7cの接続部を除く全域)を覆うようにして保液部4cを設けたことにより、電池容器2の内部において電解液8が移動したとしても、参照極4aが電解液8から露呈した状態となるのを回避することができる結果、参照極4aの有効電極面積を一定の面積に維持することができ、これにより、参照極4aおよび負極3bの間の電位差や、参照極4aおよび正極3aの間の電位差を安定して正確に測定することができる。したがって、このリチウムイオン二次電池1によれば、測定した電位差に基づき、正極3aおよび負極3b間に対する充電電圧の印加(充電処理)を的確に調整して過充電が生じるのを回避することができる結果、負極3bの表面に金属リチウムが析出したり、正極3aから過剰に多くのイオンが放出されてリチウムイオン二次電池1の特性が悪化したりする事態を好適に回避することができる。
また、このリチウムイオン二次電池1によれば、参照極4aにおけるリード線7cの接続部を除く全域を覆うようにして保液部4cを設けたことにより、「参照極」の一部に「保液部」を設けない構成とは異なり、参照極4aにおいて電極として寄与する領域の全域に電解液8(ゲル状電解液10)が接している状態を維持することができるため、参照極4aの有効電極面積が変化する事態を確実に回避して、参照極4aおよび負極3bの間の電位差や、参照極4aおよび正極3aの間の電位差を一層正確に測定することができる。
さらに、このリチウムイオン二次電池1によれば、電解液8と相まってゲル状電解液10を形成する高分子体(コポリマー)を備えて構成したことにより、「参照極」の周囲に多孔質体によって「保液部」を設けて電解液8を保液させる構成と比較して、比較的容易に形成することができ、しかも、十分な量の電解液8を保液して参照極4aに電解液8が接した状態を維持することができる。これにより、このリチウムイオン二次電池1によれば、参照極4aおよび負極3bの間の電位差や、参照極4aおよび正極3aの間の電位差を一層正確に測定することができる。
また、このリチウムイオン二次電池1によれば、参照極4aおよび保液部4cの間に絶縁シート4bを配設したことにより、参照極4aが正極3aや負極3bに接する事態を回避できるだけでなく、絶縁シート4bの各小孔内に電解液8を保液することができるため、参照極4aおよび負極3bの間の電位差や、参照極4aおよび正極3aの間の電位差を一層正確に測定することができる。
なお、「二次電池」の構成は、上記のリチウムイオン二次電池1の構成に限定されない。例えば、「リチウムイオン二次電池」において「参照極」の周囲に「保液部」を設けた構成を例に挙げて説明したが、例えば、「ニッケル水素二次電池」等の各種の「二次電池」において「参照極」の周囲に「保液部」を設けた構成においても、上記のリチウムイオン二次電池1と同様の効果を奏することができる。また、高分子体で構成した保液部4cを有するリチウムイオン二次電池1を例に挙げて説明したが、「保液部」の構成はこれに限定されず、例えば、連続気泡性の発泡体を参照極4aの周囲に「保液部」として配設する構成(図示せず)や、セラミック等の無機多孔質体を参照極4aの周囲に「保液部」として配設する構成(図示せず)を採用することもできる。このような構成においても、参照極4aの有効電極面積が変化する事態を好適に回避することができる。
さらに、参照極4aおよび保液部4cの間に絶縁シート4bを配設した構成のリチウムイオン二次電池1を例に挙げて説明したが、このような構成に代えて、またはこのような構成と共に、保液部4c(ゲル状電解液10)の周囲に絶縁シート4bを設けることもできる。このような構成においても、上記のリチウムイオン二次電池1と同様の効果を奏することができる。
1 リチウムイオン二次電池
2 電池容器
2a 容器本体
2b 蓋体
2c,2d ガスケット
3 電極部
3a 正極
3b 負極
4 電極部
4a 参照極
4b 絶縁シート
4c 保液部
8 電解液
10 ゲル状電解液

Claims (4)

  1. 正極、負極および参照極が電解液と共に容器体内に収容されて構成された二次電池であって、
    前記電解液を保液する保液部を備え、当該保液部は、前記参照極の表面における予め規定された領域を覆うようにして当該参照極の周囲に設けられている二次電池。
  2. 前記保液部は、前記参照極におけるリード線の接続部を除く全域を覆うようにして設けられている請求項1記載の二次電池。
  3. 前記保液部は、前記電解液と相まってゲル状電解液を形成する高分子体を備えて構成されている請求項1または2記載の二次電池。
  4. 前記参照極および前記保液部の間と、前記保液部の周囲とのいずれか少なくとも一方に絶縁性材料で形成された多孔質シートが配設されている請求項1から3のいずれかに記載の二次電池。
JP2013000942A 2013-01-08 2013-01-08 二次電池 Pending JP2014135133A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013000942A JP2014135133A (ja) 2013-01-08 2013-01-08 二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013000942A JP2014135133A (ja) 2013-01-08 2013-01-08 二次電池

Publications (1)

Publication Number Publication Date
JP2014135133A true JP2014135133A (ja) 2014-07-24

Family

ID=51413278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013000942A Pending JP2014135133A (ja) 2013-01-08 2013-01-08 二次電池

Country Status (1)

Country Link
JP (1) JP2014135133A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050168A (ja) * 2017-09-12 2019-03-28 日立化成株式会社 二次電池および電源システム
CN112786833A (zh) * 2021-01-28 2021-05-11 湖南立方新能源科技有限责任公司 一种参比电极、三电极电池及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050168A (ja) * 2017-09-12 2019-03-28 日立化成株式会社 二次電池および電源システム
JP7017349B2 (ja) 2017-09-12 2022-02-08 昭和電工マテリアルズ株式会社 二次電池および電源システム
CN112786833A (zh) * 2021-01-28 2021-05-11 湖南立方新能源科技有限责任公司 一种参比电极、三电极电池及其制备方法

Similar Documents

Publication Publication Date Title
KR20150126820A (ko) 리튬이온 이차전지
JP2009087612A (ja) 積層式電池
WO2022056787A1 (zh) 一种三电极电池及储能系统
KR100824851B1 (ko) 전극 조립체 및 이를 구비하는 이차 전지
KR20130083837A (ko) 용융염 전지
JP2013045659A (ja) 非水電解質二次電池
US20230253651A1 (en) Secondary battery
JP2016533617A (ja) リチウムイオン蓄電池用のリチウム電極及びその製造方法
EP4164023A1 (en) Lithium-ion battery pre-lithiation method and lithium-ion battery
US9954230B2 (en) Current collector for lithium ion secondary batteries and positive electrode for lithium ion secondary batteries
JP2014032923A (ja) 非水電解質二次電池の負極および非水電解質二次電池、ならびにこれらの製造方法
JP2014135133A (ja) 二次電池
JP2008103109A (ja) 非水電解液電池
US20140242451A1 (en) Nonaqueous electrolytic secondary battery
KR20150089311A (ko) 이차 전지
US20140212767A1 (en) Solid battery and method for manufacturing the same
JP2014137883A (ja) 二次電池および二次電池製造方法
JP2020167068A (ja) 全固体リチウムイオン二次電池およびその製造方法、並びにこれを用いた全固体リチウムイオン二次電池システムおよび全固体リチウムイオン二次電池の充電方法
US10141609B2 (en) Electrode coil for a galvanic element, and method for producing same
KR20190099688A (ko) 파우치형 이차 전지
JP2015103420A (ja) 角形二次電池
US11387483B2 (en) Nonaqueous electrolyte energy storage device and method for producing same
CN116210109A (zh) 二次电池
KR20070097148A (ko) 젤리롤형 전극조립체를 가지는 이차 전지
JP2014135134A (ja) 二次電池