JP2014134128A - 内燃機関の燃料噴射制御装置 - Google Patents

内燃機関の燃料噴射制御装置 Download PDF

Info

Publication number
JP2014134128A
JP2014134128A JP2013002119A JP2013002119A JP2014134128A JP 2014134128 A JP2014134128 A JP 2014134128A JP 2013002119 A JP2013002119 A JP 2013002119A JP 2013002119 A JP2013002119 A JP 2013002119A JP 2014134128 A JP2014134128 A JP 2014134128A
Authority
JP
Japan
Prior art keywords
fuel
injection
gas
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013002119A
Other languages
English (en)
Inventor
Yuichi Takemura
優一 竹村
Takashi Mizobuchi
剛史 溝渕
Minoru Wada
実 和田
Kazumasa Nonoyama
和賢 野々山
Keisuke Fukuda
圭佑 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013002119A priority Critical patent/JP2014134128A/ja
Priority to PCT/JP2013/007521 priority patent/WO2014108969A1/ja
Publication of JP2014134128A publication Critical patent/JP2014134128A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0642Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions
    • F02D19/0647Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels at least one fuel being gaseous, the other fuels being gaseous or liquid at standard conditions the gaseous fuel being liquefied petroleum gas [LPG], liquefied natural gas [LNG], compressed natural gas [CNG] or dimethyl ether [DME]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】ガス燃料を使用可能な内燃機関の燃料噴射システムにおいて、排気通路内の温度が高温となった時に適切に対応する。
【解決手段】エンジン10の燃料噴射システムは、ガス燃料を噴射する第1噴射弁21を備える。制御部80は、エンジン10の排気通路内の温度が所定の高温判定値以上になったことを判定する高温判定手段と、ガス燃料を用いてのエンジン運転中において上記高温判定手段により排気通路内の温度が高温判定値以上になったと判定された場合に、第1噴射弁21によるガス燃料の噴射量を減量側に補正する噴射量補正手段と、を備える。
【選択図】図1

Description

本発明は、内燃機関の燃料噴射制御装置に関し、詳しくはガス燃料を内燃機関の気筒内に供給可能な燃料供給系を備える車載内燃機関の燃料噴射制御装置に関する。
従来、内燃機関としては、ガソリンや軽油などの液体燃料を燃焼させて駆動するものが一般に知られている。こうした内燃機関を備えるシステムでは、例えば高回転・高負荷運転領域において排気が高温となった場合に、排気管に設けられた触媒等の排気系部品の過熱防止のために、燃料噴射量を増量補正する制御(OT増量補正)を実行することが提案されている(例えば、特許文献1参照)。この燃料増量により、液体燃料の気化潜熱による排気温度の抑制を図っている。
また従来、例えば圧縮天然ガス(CNG)等のガス燃料を燃焼させて駆動する内燃機関が実用化されている。こうした内燃機関において、ガス燃料を燃料噴射弁に供給する燃料供給系の構成として、ガス燃料を高圧状態で貯蔵するガスタンクと、ガスタンクと燃料噴射手段とを繋ぐ燃料配管の途中に設けられ、ガスタンクから供給されるガス燃料の圧力を減圧調整する圧力調整弁と、圧力調整弁よりも上流側に設けられ、圧力調整弁に対するガス燃料の流通を遮断する遮断弁と、を備える構成が知られている。
特開昭56−81235号公報
ところで、ガス燃料の場合、液体燃料のような気化潜熱による排気の冷却効果を得ることができないため、ガス燃料を燃焼させて駆動する内燃機関において、排気の高温時に燃料増量を実施しても排気温度を低下させる効果を十分に得ることができない。また、排気温度の抑制効果を十分に得られないばかりか、無駄な燃料消費を招くといったデメリットが生じる。
本発明は上記課題を解決するためになされたものであり、ガス燃料を使用可能な内燃機関の燃料噴射システムにおいて、排気通路内の温度が高温となった時に適切な対応が可能な内燃機関の燃料噴射制御装置を提供することを主たる目的とする。
本発明は、上記課題を解決するために、以下の手段を採用した。
本発明は、ガス燃料を噴射する第1噴射手段を備える内燃機関の燃料噴射システムに適用される内燃機関の燃料噴射制御装置に関する。請求項1に記載の発明は、前記内燃機関の排気通路内の温度が所定の高温判定値以上になったことを判定する高温判定手段と、前記ガス燃料を用いての前記内燃機関の運転中において、前記高温判定手段により前記排気通路内の温度が前記高温判定値以上になったと判定された場合に、前記第1噴射手段による前記ガス燃料の噴射量を減量側に補正する噴射量補正手段と、を備えることを特徴とする。
要するに、上記構成では、ガス燃料を用いての内燃機関の運転中に排気が高温となった場合に、ガス燃料の噴射量を減量側に補正することにより排気温度の抑制を図る。例えばガソリンなどの液体燃料の場合、燃料の気化潜熱による混合気の冷却効果を期待できることから、排気の過熱時には通常、燃料増量することにより排気温度の抑制を図る。これに対し、ガス燃料の場合、気化潜熱による冷却効果がないため、燃料増量しても排気温度の抑制効果が得られにくい。また、例えばCNG燃料のようにメタンを主成分とするガス燃料では、出力空燃比が理論空燃比付近にあり、空燃比のリッチ化によって失火を招くことも考えられる。これらの点を考慮し、上記構成のようにすることで、燃料消費を抑えつつ排気温度の抑制効果を好適に得ることができる。つまり、上記構成によれば、ガス燃料を使用可能な内燃機関の燃料噴射システムにおいて、排気通路内の温度が高温となった時に適切に対応することができる。
エンジンの燃料噴射システムの概略を示す構成図。 第1実施形態の排気温抑制処理の手順を示すフローチャート。 第1実施形態の排気温抑制処理の具体的態様を示すタイムチャート。 第2実施形態の排気温抑制処理の手順を示すフローチャート。 第2実施形態の排気温抑制処理の具体的態様を示すタイムチャート。 第3実施形態の排気温抑制処理の手順を示すフローチャート。 第3実施形態の排気温抑制処理の具体的態様を示すタイムチャート。
(第1実施形態)
以下、本発明を具体化した第1実施形態について図面を参照しつつ説明する。本実施形態は、ガス燃料である圧縮天然ガス(CNG)と液体燃料であるガソリンとを燃焼用の燃料として使用する、いわゆるバイフューエルタイプの車載多気筒エンジンに適用される燃料噴射システムとして具体化している。本システムの全体概略図を図1に示す。
図1に示すエンジン10は直列3気筒の火花点火式エンジンよりなり、その吸気ポート及び排気ポートには吸気系統11、排気系統12がそれぞれ接続されている。吸気系統11は、吸気マニホールド13と吸気管14とを有している。吸気マニホールド13は、エンジン10の吸気ポートに接続される複数(エンジン10の気筒数分)の分岐管部13aと、その上流側であって吸気管14に接続される集合部13bとを有している。吸気管14には、空気量調整手段としてのスロットル弁15が設けられている。このスロットル弁15は、DCモータ等のスロットルアクチュエータ15aにより開度調節される電子制御式のスロットル弁として構成されている。スロットル弁15の開度(スロットル開度)は、スロットルアクチュエータ15aに内蔵されたスロットル開度センサ15bにより検出されるようになっている。
また、排気系統12は、排気マニホールド16と排気管17とを有している。排気マニホールド16は、エンジン10の排気ポートに接続される複数(エンジン10の気筒数分)の分岐管部16aと、その下流側であって排気管17に接続される集合部16bとを有している。排気管17には、排気管17内を通過する排気の温度(排気温度)を検出する排気温センサ24と、排気の成分を検出する排気センサ18と、排気を浄化する触媒19とが設けられている。排気センサ18としては、排気中の酸素濃度から空燃比を検出する空燃比センサが設けられている。
エンジン10の各気筒には点火プラグ20が設けられている。点火プラグ20には、点火コイル等よりなる点火装置20aを通じて、所望とする点火時期に高電圧が印加される。この高電圧の印加により、各点火プラグ20の対向電極間に火花放電が発生し、気筒内(燃焼室内)に導入した燃料が着火され燃焼に供される。
また、本システムは、エンジン10に対して燃料を噴射供給する燃料噴射手段として、ガス燃料(CNG燃料)を噴射する第1噴射弁21と、液体燃料(ガソリン)を噴射する第2噴射弁22とを有している。これら噴射弁21,22のうち、第1噴射弁21は、吸気系統11において吸気マニホールド13の分岐管部13aに燃料を噴射し、第2噴射弁22は、エンジン10の気筒内に燃料を直接噴射する。
各噴射弁21,22は、電磁駆動部が電気的に駆動されることで弁体が閉位置から開位置にリフトされる開閉タイプの制御弁であり、制御部80から入力されるオン/オフ式の開弁駆動信号によりそれぞれ開弁駆動される。これら各噴射弁21,22は、通電により開弁し、通電遮断により閉弁するとともに、通電時間に応じた量の燃料(ガス燃料、液体燃料)を噴射する。なお、本実施形態では、第1噴射弁21の先端部に噴射管23が接続されており、第1噴射弁21から噴出されたガス燃料は噴射管23を介して吸気マニホールド13の分岐管部13aに噴射されるようになっている。
次に、第1噴射弁21に対してガス燃料を供給するガス燃料供給部40の構成と、第2噴射弁22に対して液体燃料を供給する液体燃料供給部70の構成とを説明する。
ガス燃料供給部40において、第1噴射弁21にはガス配管41を介してガスタンク42が接続されており、そのガス配管41の途中には、第1噴射弁21に供給されるガス燃料の圧力を減圧調整する圧力調整機能を有するレギュレータ43が設けられている。レギュレータ43は、ガスタンク42内に貯蔵された高圧状態(例えば最大20MPa)のガス燃料が、第1噴射弁21の噴射圧である所定の設定圧Preg(例えば0.2〜1.0MPaの範囲内の一定圧、本実施形態では0.3±α[MPa])になるように減圧調整するものである。また、減圧調整後のガス燃料は、ガス配管41を通って第1噴射弁21に供給されるようになっている。なお、ガス配管41において、レギュレータ43よりも上流側が高圧側通路を形成する高圧配管部41a、下流側が低圧側通路を形成する低圧配管部41bとなっている。
ガス配管41等により形成されるガス燃料通路には更に、ガスタンク42の燃料出口の付近に配置されたタンク主止弁44(タンク出口弁)と、そのタンク主止弁44よりも下流側であってレギュレータ43の燃料入口の付近に配置された遮断弁45と、が設けられている。これら各弁44,45によって、ガス配管41におけるガス燃料の流通が許容及び遮断される。タンク主止弁44及び遮断弁45はいずれも電磁式の開閉弁であり、非通電時においてガス燃料の流通が遮断され、通電時においてガス燃料の流通が許容される常閉式である。
ガス配管41において、高圧配管部41aには燃料圧力を検出する圧力センサ46と、燃料温度を検出する温度センサ47とが設けられ、低圧配管部41bには燃料圧力を検出する圧力センサ48と、燃料温度を検出する温度センサ49とが設けられている。なお、遮断弁45と圧力センサ46とはレギュレータ43に一体に設けることが可能であり、本実施形態では、レギュレータ43に一体に遮断弁45と圧力センサ46とを設ける構成を採用することとしている。
液体燃料供給部70において、第2噴射弁22には、燃料配管71を介して燃料タンク72が接続されている。また、燃料配管71には、燃料タンク72内の液体燃料を第2噴射弁22に給送する燃料ポンプ73が設けられている。
本システムには、排気を利用して空気の圧縮を行う過給機50が設けられている。過給機50は、吸気管14においてスロットル弁15の上流側に配置された吸気コンプレッサ51と、排気管17においてエンジン10の燃焼室の出口近傍であって触媒19の上流側に配置された排気タービン52と、吸気コンプレッサ51及び排気タービン52を連結する回転軸53と、により構成されている。排気管17内を流れる排気によって排気タービン52が回転されると、その回転に伴い吸気コンプレッサ51が回転され、吸気コンプレッサ51の回転により生じる遠心力によって吸気が圧縮される(過給される)。また、吸気管14には、吸気コンプレッサ51の下流側に、過給された吸気を冷却する熱交換器としての図示しないインタクーラが設けられており、これにより圧縮効率の低下が抑制されるようになっている。なお、本実施形態において過給機50は、図示しない可変ベーンの開度を調節することにより吸気の過給圧を調節可能になっている。
制御部80は、CPU81と、ROM82と、RAM83と、バックアップRAM84と、インターフェース85と、双方向バス86とを備えている。CPU81、ROM82、RAM83、バックアップRAM84及びインターフェース85は、双方向バス86によって互いに接続されている。
CPU81は、本システムにおける各部の動作を制御するためのルーチン(プログラム)を実行する。ROM82には、CPU81が実行するルーチン、及びこのルーチン実行の際に参照されるマップ類(マップの他、テーブルや関係式等を含む)、パラメータ等の各種データが予め格納されている。RAM83は、CPU81がルーチンを実行する際に、必要に応じてデータを一時的に格納する。バックアップRAM84は、電源が投入された状態でCPU81の制御下でデータを適宜格納するとともに、この格納されたデータを電源遮断後も保持する。
インターフェース85は、上述したスロットル開度センサ15b、排気センサ18、排気温センサ24、圧力センサ46,48、温度センサ47,49や、本システムに設けられたその他のセンサ類(クランク角センサ、エアフロメータ、冷却水温センサ、車速センサ、アクセルセンサ等)と電気的に接続されており、これらのセンサからの出力(検出信号)をCPU81に伝達する。また、インターフェース85は、スロットルアクチュエータ15a、点火装置20a、各噴射弁21,22、タンク主止弁44、遮断弁45等の駆動部と電気的に接続されており、これらの駆動部を駆動させるためにCPU81から送出された駆動信号を当該駆動部に向けて出力する。すなわち、制御部80は、上述のセンサ類の出力信号等に基づいてエンジン10の運転状態を取得し、この運転状態に基づいて上述の駆動部の制御を実施する。
具体的には、例えばアクセルセンサにより検出されるアクセル操作量及びクランク角センサにより検出されるエンジン回転速度等に基づいてエンジン10の吸入空気量を算出し、その算出値に基づいてスロットルアクチュエータ15aの駆動を制御する。また、上記エンジン回転速度及びエアフロメータにより検出される吸入空気量等に基づいて燃料噴射量(燃料噴射時間)を算出し、その算出値に基づいて各噴射弁21,22の駆動を制御する。また、エンジン回転速度及び吸入空気量などに基づいて最適点火時期を算出し、その最適点火時期で点火が行われるように点火装置20aの駆動を制御する。
点火装置20aやタンク主止弁44、遮断弁45には、制御部80から制御信号が入力されるようになっている。具体的には、点火装置20aは、制御部80からの制御信号に応じて高電圧を出力し点火プラグに点火火花を生じさせる。タンク主止弁44及び遮断弁45は、それぞれ独立に、制御部80からの制御信号に応じて閉弁状態から開弁状態に切り替えられる。
制御部80は、タンク内の燃料残量や、図示しない燃料選択スイッチからの入力信号等に応じて燃焼用の燃料を選択的に切り替えて使用している。具体的には、ガスタンク42内のガス燃料の残存量が所定値を下回った場合又は燃料選択スイッチにより液体燃料の使用が選択されている場合には液体燃料を優先的に使用し、燃料タンク72内の液体燃料の残存量が所定値を下回った場合又は燃料選択スイッチによりガス燃料の使用が選択されている場合にはガス燃料を優先的に使用する。また制御部80は、エンジン運転状態に応じて使用燃料を切り替えている。具体的には、エンジン10の始動時には、基本的には液体燃料を使用し、エンジン10の始動完了後、液体燃料からガス燃料に切り替えて使用するようにしている。
また、制御部80は、触媒19や排気タービン52等の排気系部品の過熱防止のため、排気通路内の温度が所定温度以上に過熱した場合に、排気温抑制処理として、各噴射弁21、22から噴射する燃料の噴射量補正を実施することとしている。また特に本実施形態では、排気通路内の温度が所定温度以上になった時の使用燃料に応じて、噴射量補正の実施態様を変更している。
以下、本実施形態の排気温抑制処理について詳述する。まず、使用燃料がガソリン燃料の場合について説明する。ガソリン燃料を用いてのエンジン運転中に排気の過熱が生じた場合、ガソリン燃料の噴射量を増量側に補正する制御(以下、OT増量制御ともいう。)を実施する。このOT増量制御により、ガソリン燃料の気化潜熱による排気の冷却を図るようにしている。
より具体的には、排気通路内の温度が所定の高温判定値以上となった場合に、エンジン10の気筒内から排出される排気の空燃比が、理論空燃比(ストイキ)よりもリッチ側の空燃比になるように燃料増量を実施する。ここで、所定の高温判定値は、触媒19を含む排気系部品の耐熱温度を基に定めた閾値であり、例えば850〜900℃に設定されている。また、燃料増量の開始後、排気通路内の温度が所定温度を下回った場合にOT増量制御による燃料増量を終了する。
これに対し、ガス燃料の使用時において排気の過熱が生じた場合に、ガソリン燃料の使用時と同じく燃料増量を実施すると、ガス燃料とガソリン燃料との燃料性状の相違に起因して次のような不都合が生じるおそれがある。すなわち、ガス燃料は気体であり、気化潜熱による排気の冷却効果を得ることができない。そのため、燃料の増量補正を実施しても、液体燃料のような燃料増量による排気温の抑制効果を得ることができず、逆に無駄な燃料消費や排気エミッションの悪化を招くおそれがある。また、CNG燃料は出力空燃比がストイキ付近であり、ストイキよりもリッチ側の可燃範囲がガソリン燃料に比べて狭いため、燃料増量することによって失火を招くおそれがある。このように、ガス燃料の使用時ではガソリン燃料のような燃料増量を実施しても、その燃料増量によるメリットが乏しい。かといって、使用燃料をガス燃料から液体燃料に切り替えると、ガス燃料の使用時よりもノッキングが生じやすくなる。
そこで本実施形態では、ガス燃料を用いてのエンジン運転中において、排気通路内の温度が所定の高温判定値以上になった場合に、第1噴射弁21によるガス燃料の噴射量を減量側に補正することとしている。これにより、燃料消費を抑えつつ排気温の抑制を図るようにしている。
次に、本実施形態の排気温抑制処理について図2のフローチャートを用いて説明する。この処理は、制御部80のCPU81により所定周期で繰り返し実行される。
図2において、ステップS101では、排気通路内の温度を算出する。ここでは、排気通路内の温度として、排気温センサ24により検出される排気温度に基づいて排気タービン52の温度(タービン温度)を算出する。続くステップS102では、算出したタービン温度が所定の高温判定値(例えば850〜900℃)以上であるか否かを判定する(高温判定手段)。
なお、所定の高温判定値と比較する排気通路内の温度としては、タービン温度に限定せず、排気温センサ24により検出される排気温度をそのまま用いてもよい。また、排気タービン52以外の排気系部品(例えば触媒19など)の温度を算出して、この算出値と高温判定値とを比較してもよい。あるいは、現在のエンジン運転状態に基づいて排気温度の推定値を算出し、その算出した推定温度と高温判定値とを比較してもよい。
タービン温度<高温判定値であれば、ステップS103へ進み、目標空燃比を前回値とする燃料噴射制御を実施する。例えば、理論空燃比(ストイキ)でのエンジン運転中であれば目標空燃比をストイキのままとする。
一方、タービン温度≧高温判定値であれば、ステップS104へ進み、燃焼用の燃料としてガス燃料を使用しているか否かを判定する。ガソリン燃料を用いてのエンジン運転中の場合には、ステップS105へ進み、目標空燃比を前回値よりもリッチ側の空燃比に設定する。また、目標空燃比のリッチ化に伴い、第2噴射弁22によるガソリン燃料の噴射量を増量側に補正する(OT増量補正)。これに対し、ガス燃料を用いてのエンジン運転中の場合には、ステップS106へ進み、目標空燃比を前回値よりもリーン側の空燃比に設定する。また、目標空燃比のリーン化に伴い、第1噴射弁21によるガス燃料の噴射量を減量側に補正する(噴射量補正手段)。この減量補正に際しては、排気通路内の温度に関わらず補正係数を一定にしてもよいし、排気通路内の温度に応じて補正係数を可変設定してもよい。後者の場合、排気通路内の温度が高いほどガス燃料の減量分が多くなるように補正係数を設定することが望ましい。なお、補正後の噴射量に基づく燃料噴射制御は、図示しない噴射制御ルーチンを用いて制御部80のCPU81により実行される。
次に、本実施形態の排気温抑制処理の具体的態様を、図3のタイムチャートを用いて説明する。図3において、ガス燃料を用いてのエンジン運転中にアクセル踏み込み操作が行われ(t11)、これに伴いエンジン出力を増大させるべく、エンジン10の吸気量を増大させるとともに、第1噴射弁21から噴射するガス燃料を増量させる場合を考える。このエンジン出力増大に伴い排気通路内の温度が上昇し、排気通路内の温度(ここではタービン温度)が高温判定値Thi以上になると(t12)、目標空燃比をストイキから、ストイキよりもリーン側の空燃比に変更する。また、この目標空燃比のリーン化に伴い、第1噴射弁21から噴射するガス燃料の噴射量を減量補正する。なお、本実施形態では、ガス燃料の減量補正に際し、液体燃料の噴射量及び吸気量については変更しない(液体燃料の噴射量はゼロのままにする。)。そして、排気通路内の温度が所定値(図3では高温判定値Thi)よりも低くなった時点(t13)で、ガス燃料の噴射量の減量補正を終了する。このような燃料噴射量の減量補正により排気温度が徐々に低下し、排気の過熱が解消される。
以上詳述した本実施形態によれば、次の優れた効果が得られる。
ガス燃料を用いてのエンジン運転中に排気通路内の温度が所定の高温判定値Thi以上となった場合には、第1噴射弁21によるガス燃料の噴射量を減量側に補正する構成とした。具体的には、液体燃料を用いてのエンジン運転中において、排気通路内の温度が所定の高温判定値Thi以上になったと判定された場合には、第2噴射弁22からの液体燃料の噴射量を増量側に補正するのに対し、ガス燃料を用いてのエンジン運転中において、排気通路内の温度が所定の高温判定値Thi以上になったと判定された場合には、第1噴射弁21からのガス燃料の噴射量を減量側に補正する構成とした。ガソリンなどの液体燃料の場合には、燃料の気化潜熱による排気の冷却効果を期待できるのに対し、ガス燃料の場合には、燃料の気化潜熱による冷却効果を得ることができない。この点を考慮し、上記構成とすることにより、燃料消費を抑えつつ排気温度を効果的に抑制することができる。
また、CNG燃料は出力空燃比がストイキ付近であり、ストイキよりもリッチ側の可燃範囲がガソリン燃料に比べて狭いため、燃料増量することによって失火を招くおそれがある。この点、上記構成によれば、ガス燃料を用いてのエンジン運転中において排気の過熱が生じた時には、燃料増量をするのではなく、逆に燃料減量することにより、排気温度の抑制を好適に実施することができる。
排気温抑制処理として具体的には、排気通路内における排気の空燃比が理論空燃比(ストイキ)よりもリーン側の空燃比になるように第1噴射弁21からのガス燃料の噴射量を減量側に補正する構成とした。本構成によれば、無駄な燃料消費を抑えつつ排気温度を抑制するといった効果を比較的簡単な制御で実現することができる。
過給機付きのエンジン10では、自然吸気エンジンよりも排気温度が上昇しやすく、排気温抑制処理を実施する運転領域が広範囲になる。また、排気系部品の一つである排気タービン52は、一般にエンジン10の燃焼室の出口近傍に設けられるため、より高温の排気に曝されやすい。この点、上記実施形態によれば、ガス燃料を用いてのエンジン運転中において排気の過熱が生じた場合に上記排気温抑制処理を実施することにより、ガス燃料を用いてのエンジン運転を継続したまま排気温度の低下を図ることができる。
(第2実施形態)
次に、本発明の第2実施形態について上記第1実施形態との相違点を中心に説明する。上記第1実施形態では、ガス燃料を用いてのエンジン運転中に排気通路内の温度が所定の高温判定値以上になった場合、液体燃料の噴射量については変更せず(液体燃料を噴射しないままとし)、ガス燃料の噴射量を減量側に補正することによって排気温抑制を図る構成とした。これに対し、本実施形態では、ガス燃料を用いてのエンジン運転中に排気通路内の温度が所定の高温判定値以上になった場合、ガス燃料の噴射量を減量側に補正するとともに、第2噴射弁22による液体燃料の噴射を実施することによって、エンジン出力を維持したまま排気温抑制を図る構成とする。
ここで、CNG燃料の主成分であるメタンは、ガソリンなどの液体燃料に比べてノッキングが起こりにくいといったメリットがある一方、混合気中に占める燃料比率が大きく、同一排気量当たりの出力が低いといった特性がある。これに対し、液体燃料は、ガス燃料よりも高出力であり、また、エンジン筒内に噴射することによって気化潜熱による混合気の冷却効果を期待できる。そこで本実施形態では、各燃料のそれぞれの特徴を加味し、ガス燃料を用いてのエンジン運転中に排気通路内の温度が所定の高温判定値以上となった場合には、ガス燃料の噴射量を減量側に補正するとともに、その減量補正分に相当する燃料量よりも多い量の液体燃料を、第2噴射弁22から噴射するよう液体燃料の噴射量を増量側に補正することとしている。つまり、本システムの排気温抑制処理では、ガス燃料を減量補正した上で液体燃料を併用し、更に全体的に空燃比リッチなるようにする。これにより、ガス燃料(特にCNG燃料)の特徴であるノッキング抑制効果と、液体燃料の特徴である気化潜熱による冷却効果及び出力向上効果を効果的に引き出すようにしている。
本実施形態の排気温抑制処理について図4のフローチャートを用いて説明する。この処理は、制御部80のCPU81により所定周期で繰り返し実行される。なお、図4の説明では、上記図2と同じ処理については図2のステップ番号を付してその説明を省略する。
図4において、ステップS201〜S205では上記図2のステップS101〜S105と同じ処理を実行する。ガス燃料を用いてのエンジン運転中の場合にはステップS204で肯定判定され、ステップS206へ進む。ステップS206では、排気の目標空燃比を前回値よりもリッチ側に設定する(空燃比設定手段)。例えばストイキでのエンジン運転中に排気通路内の温度が高温判定値以上になった場合であれば、ストイキよりもリッチ側の空燃比が目標空燃比に設定される。
目標空燃比の設定後、ステップS207では、第1噴射弁21から噴射するガス燃料の噴射量を減量側に補正する。この減量補正に際しては、排気通路内の温度に関わらず補正係数を一定にしてもよいし、排気通路内の温度に応じて補正係数を可変設定してもよい。続くステップS208では、第2噴射弁22から噴射する液体燃料の噴射量を算出する(噴射制御手段)。具体的には、ガス燃料の減量分に相当する燃料量Q1と、気化潜熱による排気の冷却用の燃料量Q2とを足し合わせた量(Q1+Q2)を増量分の燃料量とし、その増量分の燃料量を前回値に上乗せすることにより、第2噴射弁22から噴射する液体燃料の噴射量を算出する。なお、算出した噴射量に基づく燃料噴射制御は、図示しない噴射制御ルーチンを用いて制御部80のCPU81により実行される(噴射制御手段)。
つまり、本実施形態では、使用燃料としてガス燃料を選択している場合において、排気通路内の温度が所定の高温判定値よりも低ければ、燃焼用の燃料としてガス燃料を単独で使用する。これに対し、排気通路内の温度が所定の高温判定値以上であれば、燃焼用の燃料として主にガス燃料を使用しつつ、排気温抑制を図るべく、ガス燃料の噴射量を減量補正するとともに、エンジン出力の補償分及び気化潜熱による排気の冷却分の液体燃料を併せて噴射する。
次に、本実施形態の排気温抑制処理の具体的態様を、図5のタイムチャートを用いて説明する。図5において、ガス燃料を用いてのエンジン運転中にアクセル踏み込み操作があり、これに伴いエンジン10の吸気量が増大されるとともに、第1噴射弁21から噴射するガス燃料が増量されたとする。この操作により排気通路内の温度が上昇し、タービン温度が高温判定値Thi以上になると(t22)、目標空燃比が、ストイキから、ストイキよりもリッチ側の空燃比に変更される。また、第1噴射弁21から噴射するガス燃料の噴射量が減量補正されるとともに、実空燃比が目標空燃比に一致するよう、第2噴射弁22から噴射する液体燃料の噴射量が設定される。このとき、液体燃料の増量補正分の燃料量Qlが、ガス燃料の減量補正分の燃料量Qgよりも多くなるように液体燃料の噴射量が設定される。そして、排気通路内の温度が所定値(図5では高温判定値Thi)よりも低くなった時点(t23)で、ガス燃料の噴射量の減量補正及び液体燃料の噴射量の増量補正が終了される。なお、ガス燃料と液体燃料との併用は、例えばタイミングt23から所定時間が経過するまで実施し、所定時間が経過した後に、液体燃料の噴射を停止するとともにガス燃料の噴射量を増量させる構成としてもよい。
以上詳述した第2実施形態によれば、ガス燃料を用いてのエンジン運転中に排気通路内の温度が所定の高温判定値以上になった場合に、ガス燃料の噴射量を減量側に補正するとともに、その減量側への補正と同時に第2噴射弁22による液体燃料の噴射を実施する構成とした。この構成によれば、ガス燃料の減量補正によるエンジン10の出力低下を液体燃料の燃焼によって賄うことができる。したがって、本構成によれば、排気温度を低下させつつ、ガス燃料の減量補正に起因する出力低下等のエンジン性能の低下を抑制することができる。
また特に、ガス燃料を用いてのエンジン運転中における排気温抑制処理として、第1噴射弁21からのガス燃料の噴射量を減量側に補正するとともに、その減量補正分に相当する燃料量よりも多い量の液体燃料を第2噴射弁22から噴射させる構成とした。この構成によれば、ガス燃料を減量補正した上で液体燃料を併用し、全体的に空燃比リッチなるようにすることから、CNG燃料の特徴であるノッキング抑制効果と、液体燃料の特徴である気化潜熱による排気の冷却効果及び出力向上効果を効果的に引き出すことができる。
(第3実施形態)
次に、本発明の第3実施形態について上記第1実施形態との相違点を中心に説明する。上記第1実施形態では、ガス燃料を用いてのエンジン運転中に排気通路内の温度が所定の高温判定値以上になった場合、エンジン10の気筒内に導入される空気量(吸気量)については変更せず、ガス燃料の噴射量を減量側に補正することによって排気温抑制を図る構成とした。これに対し、本実施形態では、ガス燃料を用いてのエンジン運転中に排気通路内の温度が所定の高温判定値以上になった場合、エンジン10の吸気量を減量側に補正するとともに、ガス燃料の噴射量を減量側に補正することによって排気温抑制を図る構成とする。
本実施形態の排気温抑制処理について図6のフローチャートを用いて説明する。この処理は、制御部80のCPU81により所定周期で繰り返し実行される。なお、図6の説明では、上記図2と同じ処理については図2のステップ番号を付してその説明を省略する。
図6において、ステップS301〜S305では、上記図2のステップS101〜S105と同じ処理を実行する。ガス燃料を用いてのエンジン運転中の場合にはステップS304で肯定判定され、ステップS306へ進む。ステップS306では、スロットル開度を閉弁側にすることによりエンジン10の吸気量を減量側に補正する。本実施形態では、現在のスロットル開度(実スロットル開度)が、予め定めた上限ガード値になるようにスロットル弁15を閉じ側に駆動させる。続くステップS307では、吸気量の減少に合わせて、第1噴射弁21からのガス燃料の噴射量を減量側に補正する。このとき、目標空燃比については理論空燃比(ストイキ)のままとし、実空燃比が目標空燃比になるようにガス燃料の噴射量を減量補正する。そして本処理を終了する。
次に、本実施形態の排気温抑制処理の具体的態様を、図7のタイムチャートを用いて説明する。図7において、ガス燃料を用いてのエンジン運転中にアクセル踏み込み操作があり、このアクセル踏み込み操作に伴うエンジン10の出力増大により排気通路内の温度が上昇し、高温判定値Thi以上になると(t32)、スロットル開度が上限ガード値TH1になる位置までスロットル弁15が閉じ側に変更される。また、目標空燃比がストイキで保持されるよう、このスロットル開度の閉じ側への変更に合わせて、第1噴射弁21から噴射するガス燃料の噴射量が減量補正される。そして、排気通路内の温度(タービン温度)が所定値(図7では高温判定値Thi)よりも低くなった時点(t33)で、ガス燃料の噴射量の減量補正が終了される。
以上詳述した第3実施形態によれば、排気温抑制処理として、ガス燃料を用いてのエンジン運転中に排気通路内の温度が所定の高温判定値以上になったと判定された場合に、空気量調整手段としてのスロットル弁15を閉じる側に駆動させてエンジン10の吸気量を減量側に補正するとともに、第1噴射弁21からのガス燃料の噴射量を減量側に補正する構成とした。本構成によれば、空燃比を所望値(例えば理論空燃比)で制御しつつ、排気温抑制を図ることができる点で有意である。
(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、例えば次のように実施されてもよい。
・上記第2実施形態では、排気温抑制処理として、ガス燃料の噴射量の減量補正分に相当する燃料量よりも多い量の液体燃料を第2噴射弁22から噴射させる構成としたが、これを変更し、ガス燃料の減量補正分に相当する燃料量を第2噴射弁22から噴射させる構成としてもよい。
・上記実施形態では、高温判定手段を、センサ検出値又はエンジン運転状態に基づいて算出した排気通路内の温度(排気温度又は排気系部品の温度)と所定の高温判定値とを比較し、その比較結果に基づいて、排気通路内の温度が所定の高温判定値以上になったことを判定する構成とした。これを変更し、排気通路内の温度を算出せず、エンジン運転状態に基づいて、排気通路内の温度が所定の高温判定値以上になったことを判定する構成としてもよい。具体的には、エンジン運転状態が所定の高回転高負荷状態であるか否かを判定し、肯定判定された場合に、排気通路内の温度が所定の高温判定値以上になったとして排気温抑制処理を実施する構成とする。
・上記実施形態では、過給機を備えるシステムに本発明を適用したが、過給機を備えないシステムに本発明を適用してもよい。この場合にも同様に、本発明の排気温抑制処理を実施することにより、排気の過熱時において無駄な燃料消費を抑えつつ排気温度の抑制を効果的に図ることができる。
・上記実施形態では、第2噴射弁22をエンジン10の気筒内に燃料を直接噴射する直噴式としたが、吸気系統11において吸気マニホールド13の分岐管部13aに燃料を噴射するポート噴射式としてもよい。
・上記実施形態では、多気筒エンジンの気筒ごとに第1噴射弁21及び第2噴射弁22をそれぞれ複数ずつ設ける構成としたが、複数の気筒の共通部分に第1噴射弁21及び第2噴射弁22のうちの少なくともいずれかを設ける構成としてもよい。例えば、吸気系統11の集合部分に対してガス燃料や液体燃料を噴射する構成としてもよい。
・上記実施形態では、ガス燃料(CNG)と液体燃料(ガソリン)とを燃焼用の燃料として使用するバイフューエルエンジンに本発明を具体化したが、ガス燃料のみを用いるガスエンジンに本発明を具体化することも可能である。
・上記実施形態ではガス燃料をCNG燃料としたが、標準状態で気体のその他のガス燃料を用いることもでき、例えばメタン、エタン、プロパン、ブタン、水素、ジメチルエーテルなどを主成分とする燃料を用いる構成としてもよい。また、液体燃料についてもガソリン燃料に限らず、例えば軽油などを用いる構成としてもよい。
10…エンジン(内燃機関)、15…スロットル弁(空気量調整手段)、21…第1噴射弁(第1噴射手段)、22…第2噴射弁(第2噴射手段)、42…ガスタンク、80…制御部(高温判定手段、噴射量補正手段、噴射制御手段)。

Claims (6)

  1. ガス燃料を噴射する第1噴射手段(21)を備える内燃機関(10)の燃料噴射システムに適用され、
    前記内燃機関の排気通路内の温度が所定の高温判定値以上になったことを判定する高温判定手段と、
    前記ガス燃料を用いての前記内燃機関の運転中において、前記高温判定手段により前記排気通路内の温度が前記高温判定値以上になったと判定された場合に、前記第1噴射手段による前記ガス燃料の噴射量を減量側に補正する噴射量補正手段と、
    を備えることを特徴とする内燃機関の燃料噴射制御装置。
  2. 液体燃料を噴射する第2噴射手段(22)を更に備える前記内燃機関の燃料噴射システムに適用され、
    前記噴射量補正手段は、前記液体燃料を用いての前記内燃機関の運転中において、前記高温判定手段により前記排気通路内の温度が前記高温判定値以上になったと判定された場合に、前記第2噴射手段による前記液体燃料の噴射量を増量側に補正し、一方、前記ガス燃料を用いての前記内燃機関の運転中において、前記高温判定手段により前記排気通路内の温度が前記高温判定値以上になったと判定された場合に、前記第1噴射手段による前記ガス燃料の噴射量を減量側に補正する請求項1に記載の内燃機関の燃料噴射制御装置。
  3. 前記噴射量補正手段により前記ガス燃料の噴射量の減量側への補正を実施する場合に、その減量側への補正とともに前記第2噴射手段による前記液体燃料の噴射を実施する噴射制御手段を備える請求項2に記載の内燃機関の燃料噴射制御装置。
  4. 前記噴射制御手段は、前記第1噴射手段による前記ガス燃料の噴射量の減量補正分に相当する燃料量よりも多い量の前記液体燃料を前記第2噴射手段から噴射させる請求項3に記載の内燃機関の燃料噴射制御装置。
  5. 前記噴射量補正手段は、前記排気通路内の排気の空燃比が理論空燃比よりもリーン側の空燃比になるように前記第1噴射手段による前記ガス燃料の噴射量を減量側に補正する請求項1又は2に記載の内燃機関の燃料噴射制御装置。
  6. 前記内燃機関の気筒内に導入される空気量を調整する空気量調整手段(15)を備え、
    前記ガス燃料を用いての前記内燃機関の運転中において、前記高温判定手段により前記排気通路内の温度が前記高温判定値以上になったと判定された場合に、前記空気量調整手段により前記空気量を減量側に補正するとともに、前記噴射量補正手段により前記ガス燃料の噴射量を減量側に補正する請求項1又は2に記載の内燃機関の燃料噴射制御装置。
JP2013002119A 2013-01-09 2013-01-09 内燃機関の燃料噴射制御装置 Pending JP2014134128A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013002119A JP2014134128A (ja) 2013-01-09 2013-01-09 内燃機関の燃料噴射制御装置
PCT/JP2013/007521 WO2014108969A1 (ja) 2013-01-09 2013-12-23 内燃機関の燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013002119A JP2014134128A (ja) 2013-01-09 2013-01-09 内燃機関の燃料噴射制御装置

Publications (1)

Publication Number Publication Date
JP2014134128A true JP2014134128A (ja) 2014-07-24

Family

ID=51166647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002119A Pending JP2014134128A (ja) 2013-01-09 2013-01-09 内燃機関の燃料噴射制御装置

Country Status (2)

Country Link
JP (1) JP2014134128A (ja)
WO (1) WO2014108969A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164399A (ja) * 2015-03-06 2016-09-08 大阪瓦斯株式会社 過給機付きガスエンジン、及びその制御方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3140048A1 (en) 2019-05-15 2020-11-19 Clearflame Engines, Inc. Cold-start for high-octane fuels in a diesel engine architecture
BR112022016440A2 (pt) 2020-02-26 2022-10-04 Clearflame Engines Inc Motor de ignição por compressão agnóstico de combustível
EP4179191A1 (en) 2020-07-09 2023-05-17 Clearflame Engines, Inc. Systems and metods of cylinder deactivation in high-temperature mixing-controlled engines
DK181193B1 (en) * 2021-09-28 2023-04-24 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland A large two-stroke uniflow scavenged engine and method for operating cylinders selectively according to the pre-mix process or the compression-ignition process

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2535946B2 (ja) * 1987-09-02 1996-09-18 トヨタ自動車株式会社 Lpgエンジンの燃料供給制御装置
JPH09324656A (ja) * 1996-06-04 1997-12-16 Mitsubishi Heavy Ind Ltd 運転制御装置
JP2008133726A (ja) * 2006-11-27 2008-06-12 Toyota Motor Corp アルコール燃料内燃機関
JP2011163178A (ja) * 2010-02-08 2011-08-25 Toyota Motor Corp 内燃機関の制御装置
WO2011111224A1 (ja) * 2010-03-12 2011-09-15 トヨタ自動車株式会社 内燃機関の制御装置
JP5731136B2 (ja) * 2010-06-07 2015-06-10 ヤンマー株式会社 ガスエンジンシステム
JP5659380B2 (ja) * 2010-07-01 2015-01-28 新潟原動機株式会社 予混合式ガスエンジンの空燃比補正制御方法および装置
BRPI1006136B1 (pt) * 2010-10-25 2020-12-29 Toyota Jidosha Kabushiki Kaisha sistema de injeção de combustível de um motor de combustão interna
JP5726539B2 (ja) * 2011-01-11 2015-06-03 株式会社デンソー 排気浄化装置の劣化抑制制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016164399A (ja) * 2015-03-06 2016-09-08 大阪瓦斯株式会社 過給機付きガスエンジン、及びその制御方法

Also Published As

Publication number Publication date
WO2014108969A1 (ja) 2014-07-17

Similar Documents

Publication Publication Date Title
US9228536B2 (en) Load shedding techniques for dual fuel engines
US9410490B2 (en) Fuel selection system and method for dual fuel engines
JP5338997B2 (ja) 多種燃料内燃機関及びその制御方法
WO2014108969A1 (ja) 内燃機関の燃料噴射制御装置
RU2641194C2 (ru) Способ эксплуатации двигателя с охлаждаемой системой рециркуляции выхлопных газов
JP2004218432A (ja) 圧縮比と空燃比と過給状態とを切り換えながら運転される内燃機関
JP2014234791A (ja) 内燃機関の始動制御装置
WO2014167832A1 (ja) 内燃機関の始動制御装置
WO2013099094A1 (ja) 内燃機関の制御装置
US20160252030A1 (en) Auxiliary-chamber-type gas engine
JP5862552B2 (ja) 内燃機関の燃料噴射制御装置
WO2014115503A1 (ja) 内燃機関の制御装置
JP2015137579A (ja) 内燃機関の制御装置
JP5557094B2 (ja) 内燃機関の燃料供給装置
JP2012102682A (ja) 多気筒内燃機関の制御装置
JP2006220062A (ja) 水素添加内燃機関の制御装置
JP2015129491A (ja) 内燃機関の燃料供給制御装置
WO2015104772A1 (ja) 内燃機関の制御装置
WO2015029314A1 (ja) エンジン制御装置
JP2015224583A (ja) 内燃機関の制御装置
JP2015151879A (ja) 内燃機関の制御装置
EP4328441A1 (en) Gaseous fuel engine operating strategy for improved derating performance using varied ratio fuel blend
JP2018168802A (ja) 内燃機関の制御装置
JP2016217331A (ja) 内燃機関の燃料噴射制御装置
JP5310413B2 (ja) 内燃機関の燃料噴射制御装置