JP2014130789A - 酸化物超電導線材、酸化物超電導線材の接続構造体及びその製造方法並びに超電導機器 - Google Patents

酸化物超電導線材、酸化物超電導線材の接続構造体及びその製造方法並びに超電導機器 Download PDF

Info

Publication number
JP2014130789A
JP2014130789A JP2013002175A JP2013002175A JP2014130789A JP 2014130789 A JP2014130789 A JP 2014130789A JP 2013002175 A JP2013002175 A JP 2013002175A JP 2013002175 A JP2013002175 A JP 2013002175A JP 2014130789 A JP2014130789 A JP 2014130789A
Authority
JP
Japan
Prior art keywords
oxide superconducting
superconducting wire
layer
oxide
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013002175A
Other languages
English (en)
Other versions
JP6101491B2 (ja
Inventor
Teru Hidaka
輝 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2013002175A priority Critical patent/JP6101491B2/ja
Publication of JP2014130789A publication Critical patent/JP2014130789A/ja
Application granted granted Critical
Publication of JP6101491B2 publication Critical patent/JP6101491B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

【課題】端部からの水分浸入による超電導特性の劣化を抑制する酸化物超電導線材の提供を目的とする。
【解決手段】テープ状の基材に中間層と酸化物超電導層と安定化層が積層されてなる酸化物超電導線材1であって、前記酸化物超電導線材1の長手方向両端部1aに被覆部材21が被着していることを特徴とする酸化物超電導線材1。また、前記被覆部材21として、金属部材40と当該金属部材40の少なくとも前記酸化物超電導線材1と対向する面に形成された接続層42とを有することを特徴とする酸化物超電導線材1。
【選択図】図2

Description

本発明は、酸化物超電導線材、酸化物超電導線材の接続構造体及びその製造方法並びに超電導機器に関する。
近年Bi系超電導線材BiSrCaCu8+δ(Bi2212)、BiSrCaCu10+δ(Bi2223)やRE−123系超電導線材REBaCu7−x(RE123:REはYやGdなどを含む希土類元素)といった酸化物超電導線材の開発が進んでいる。これら酸化物超電導線材は、臨界温度が90〜100K程度であり、液体窒素温度以上で超電導性を示すため、実用上極めて有望な素材とされており、これを線材に加工して電力供給用の導体あるいは超電導コイル等として使用することが要望されている。
Bi系の超電導線材は、Bi系の超電導層をAgのシース材で被覆した状態となるようにPowder In Tube法(PIT法)などにより製造された構造となっている。一方、RE−123系超電導線材は、テープ状の金属基材上に中間層を介し成膜法により酸化物超電導層を積層し、さらに前記酸化物超電導層上に薄い銀の第1の安定化層を形成し、その上に銅などの良導電性金属材料からなる第2の安定化層を設けた構造が採用されている。
ところで、RE−123系酸化物超電導線材は水分と接触すると水分と反応し超電導特性が低下することが知られている。したがって、酸化物超電導線材に水分を付着させることが無いように保管及び使用することが求められる。しかしながら、長期間の使用において室温と低温のヒートサイクルに伴う結露などで水分が付着する虞があるため、酸化物超電導線材の長期的信頼性を確保するためには、酸化物超電導層の全周を何らかの層で保護する構造を採用する必要がある。例えば、金属基材上に中間層と酸化物超電導層を積層したテープ状の酸化物超電導積層体を備え、両縁部を折り曲げた横断面C型形状の補強テープ線で前記酸化物超電導積層体を覆い重なり部を半田付けすることで、前記酸化物超電導積層体を外部から遮断した構造が知られている。
また、RE−123系の酸化物超電導線材を実用機器に応用するために、酸化物超電導線材を接続する技術が要望されている。例えば、特許文献1には、図17に示すように一対の酸化物超電導線材202、203を、半田222により接合し、その周囲を、被覆材210によって被覆した接続構造体230が開示されている。被覆材210としては、半田もしくはエポキシ樹脂等が挙げられている。
特許第4696436号公報
しかしながら、特許文献1に記載の接続構造体230において、被覆材210は接続部分を外部から完全に遮断することを目的としておらず、酸化物超電導線材202、203の端部202a、203aに水分が浸入し、酸化物超電導線材202、203の酸化物超電導層が劣化する虞があった。
本発明は、以上のような実情に鑑みなされたものであり、端部からの水分浸入による超電導特性の低下を防ぐ酸化物超電導線材を提供することを目的とする。
上記課題を解決するため本発明の酸化物超電導線材は、テープ状の基材に中間層と酸化物超電導層と安定化層が積層されてなる酸化物超電導線材であって、酸化物超電導線材の長手方向両端部に被覆部材が被着していることを特徴とする。
本発明によれば、酸化物超電導線材の端部に被覆部材が被着していることにより端部からの水分浸入による酸化物超電導線材の劣化を抑制できる。
また、本発明の酸化物超電導線材は、被覆部材として、金属部材と当該金属部材の少なくとも酸化物超電導線材と対向する面に形成された接続層とを有することが好ましい。
本発明によれば、被覆部材として、金属部材と当該金属部材の少なくとも酸化物超電導線材と対向する面に形成された接続層とを有することによって、金属部材と酸化物超電導線材を密着させ、酸化物超電導線材の端部から水分が浸入することをよくせいできる。
また、接続層として半田からなる半田層を形成する場合においては、半田層の外周をさらに金属部材で覆う構成を有することによって、半田層と酸化物超電導線材の端部の密着性が低い場合であっても、金属部材によって外周を覆っているため確実に水分の浸入を防ぐことができる。また、半田層の外周を金属部材で覆うことにより半田層によって形成される層を薄くすることが可能となり、酸化物超電導線材の端部の厚み及び幅寸法が肥大化することを抑制することができる。
また、本発明の酸化物超電導線材の接続構造体は、前記酸化物超電導線材同士が接続された酸化物超電導線材の接続構造体であって、酸化物超電導線材のうち一方を第1の酸化物超電導線材とし、他方を第2の酸化物超電導線材とし、第1の酸化物超電導線材と第2の酸化物超電導線材における互いの端部近傍の安定化層同士が対向して重ね合わせ部を形成して配置され、重ね合わせ部の長手方向中央部が導電性接合材によって接合され、重ね合わせ部内の長手方向端部が導電性接合材によって接合されていないことが好ましい。
本発明によれば、接続部分において、酸化物超電導線材の端部が被覆部材により覆われて酸化物超電導線材を形成することによって、接続部での水分の浸入による酸化物超電導線材の劣化を抑制することができる。
ところで、図17に示す従来の接続構造体230において、半田222による接合は、一対の酸化物超電導線材202、203の重ね合わせ部全面を接合している。重ね合わせ部全面を接合する際に、一対の酸化物超電導線材202、203の重ね合わせ部を加圧する必要があり、加圧により余分な半田222が、酸化物超電導線材202、203の重ね合わせ部からはみ出し、それぞれの端面に付着する等して凝固する。これによって、重ね合わせ部の両外側において半田222の厚みが局所的に厚くなり、接続構造体230に曲げを加えると、重ね合わせ部の長手方向両側近傍において負荷が集中し酸化物超電導層の結晶構造が破壊される虞がある。即ち、曲げに対して弱い構造となる。
本発明の酸化物超電導線材の接続構造体は、接続部分において、重ね合わせ部の長手方向中央部が導電性接合材によって接合されており、重ね合わせ部内の長手方向の端部は、導電性接合材によって接合されていない。導電性接合材によって接合されていない領域が設けられていることで、重ね合わせ部から導電性接合材がはみ出し、重ね合わせ部の両外側で凝固することを抑制する。したがって、接続構造体において導電性接合材による接合部が局所的に厚く形成されることがなく、局所的に曲げに弱い部分が形成されることを抑制することができる。
また、本発明の酸化物超電導線材の接続構造体は、前記酸化物超電導線材の接続構造体であって、第1の酸化物超電導線材及び第2の酸化物超電導線材に加えて、第3の酸化物超電導線材を備え、第1の酸化物超電導線材及び第3の酸化物超電導線材が、接続しようとする端部同士を隣接させ、基材に対して酸化物超電導層を形成した側を揃えて配置され、隣接された端部を跨るように、第1の酸化物超電導線材及び第3の酸化物超電導線材の安定化層に第2の酸化物超電導線材の安定化層が橋渡しされ第1の重ね合わせ部及び第2の重ね合わせ部が形成され、第1の重ね合わせ部の長手方向中央部が導電性接合材によって接合され、第1の重ね合わせ部内の長手方向端部が導電性接合材によって接合されておらず、第2の重ね合わせ部の長手方向中央部が導電性接合材によって接合され、第2の重ね合わせ部内の長手方向端部が導電性接合材によって接合されていないことが好ましい。
本発明によれば、接続部での水分の浸入による酸化物超電導線材の劣化を抑制することができる上に、接続する一対の酸化物超電導線材が積層方向を揃えて配置されているため、接続部分で酸化物超電導線材の表裏の逆転がない。また、接続部において、局所的に曲げに弱い部分が形成されることを抑制することができる。
また、本発明の酸化物超電導線材の接続構造体は、重ね合わせ部内において、被覆部材が導電性接合材によって接合されていないことが好ましい。
被覆部材は、酸化物超電導線材の外周を含めて被覆する構造となっているため、被覆部材によって覆われた部分の酸化物超電導線材は、覆われていない部分と比較して剛性が高く屈曲性が低い。したがって、被覆部材を導電性接合部材によって接合しないことで、接続部分に曲げを印加した際に被覆部材近傍の酸化物超電導層に過大な負荷がかかることを抑制することができる。
また、本発明の酸化物超電導線材は、前記酸化物超電導線材であって、酸化物超電導線材の長手方向と同方向に、酸化物超電導線材の端部と対向して補強板が配置され、補強板が被覆部材によって、酸化物超電導線材の長手方向端部と共に被覆され、補強板の幅が酸化物超電導線材の幅と略同幅であることが好ましい。
本発明によれば、酸化物超電導線材の長手方向端部の先に補強板を配置し、当該補強板を酸化物超電導線材の長手方向端部と共に被覆することによって、酸化物超電導線材端部の先に構成される金属部材が補強され、当該金属部材に応力が加わった場合であっても、金属部材が変形し破損することを抑制できる。
また、補強板は酸化物超電導線材の先端の蓋をするように覆う役割を果たし、酸化物超電導線材の先端に水分が侵入することをより確実に防ぐことができる。
加えて、補強板が導電性を有する場合においては、補強板を電気的な接点として使用することができる。
また、本発明の酸化物超電導線材の接続構造体は、前記酸化物超電導線材の接続構造体であって、補強板を備えた前記酸化物超電導線材同士を接続することが好ましい。
このような構造とすることにより、接続部での水分の浸入による酸化物超電導線材の劣化を抑制することができるのみならず、強度に優れた酸化物超電導線材の接続構造体を提供することができる。
また、本発明の超電導機器は、前記酸化物超電導線材または前記酸化物超電導線材の接続構造体を有することが好ましい。
前記酸化物超電導線材または前記酸化物超電導線材の接続構造体を超電導機器に用いることで、水分や機械的負荷等の外的要因に対する超電導機器の保護性能を向上させることができ、従来よりも高い信頼性を有する超電導機器を実現することが可能となる。
また、本発明の酸化物超電導線材の接続方法は、テープ状の基材に中間層と酸化物超電導層と安定化層を積層してなる酸化物超電導線材の接続しようとする端部に被覆部材を形成し第1の酸化物超電導線材及び第2の酸化物超電導線材を形成する工程と、第1の酸化物超電導線材または第2の酸化物超電導線材の安定化層表面であって、第1の酸化物超電導線材及び第2の酸化物超電導線材の互いの端部近傍の安定化層同士を対向させる時に、線材同士が互いに覆っている部分において、第1の酸化物超電導線材端部及び第2の酸化物超電導線材端部に対応する位置に、所定の幅でマスキング材を配置する工程と、マスキング材間に形成される空間に導電性接合材を配置する工程と、第1の酸化物超電導線材及び第2の酸化物超電導線材を接合する工程と、マスキング材を除去する工程とを有することが好ましい。
本発明によれば、接続部分において、酸化物超電導線材の端部が被覆部材により覆われて酸化物超電導線材を形成することによって、接続部での水分の浸入による酸化物超電導線材の劣化を抑制する酸化物超電導線材の接続構造体を提供することができる。
また、接続部分において、重ね合わせ部の長手方向両側にマスキングを施し、導電性接合材によって接合されていない領域を形成することができる。これによって、第1の酸化物超電導線材及び第2の酸化物超電導線材の重ね合わせ部において、導電性接合材による接合部が均一に形成され、局所的に曲げに弱い部分が形成されることを抑制することができる。
本発明によれば、酸化物超電導線材の端部に被覆部材が被着していることにより端部からの水分浸入による酸化物超電導線材の劣化を抑制できる。
本発明に係る酸化物超電導積層体(酸化物超電導線材)の一例の端部を示す斜視図である。 本発明に係る酸化物超電導線材の第1実施形態の端部を示す斜視図である。 本発明に係る酸化物超電導線材の第2実施形態の端部を示す斜視図である。 本発明に係る酸化物超電導線材の第3実施形態の端部の被覆手順を示し、図4(a)は酸化物超電導線材の端部に金属部材を配置した状態を示す斜視図であり、図4(b)及び図4(c)は金属部材を折りたたむ手順を示す斜視図であり、図4(d)は、金属部材上の低融点金属を溶融させ、酸化物超電導線材の端部を気密に覆った状態であり、即ち第3実施形態の酸化物超電導線材の端部を示す斜視図である。 本発明に係る酸化物超電導線材の第4実施形態の端部の被覆手順を示し、図5(a)は酸化物超電導線材の端部に金属部材及び補強板を配置した状態を示す斜視図であり、図5(b)及び図5(c)は金属部材を折りたたむ手順を示す斜視図であり、図5(d)は、金属部材上の低融点金属を溶融させ、酸化物超電導線材の端部を気密に覆った状態であり、即ち第4実施形態の酸化物超電導線材の端部を示す斜視図である。 本発明に係る接続構造体の第1実施形態を示す模式図であり、図6(a)が正面模式図、図6(b)が断面模式図である。 本発明に係る接続構造体の第2実施形態を示す模式図であり、図7(a)が正面模式図、図7(b)が断面模式図である。 超電導ケーブルの一例を示す部分断面略図である。 超電導限流器の一例を示す断面図である。 超電導モータの一例を示し、図10(a)は、全体構成を示す部分断面図、図10(b)は、各構成部品の位置関係を示す模式図である。 超電導コイルの一例を示し、図11(a)は超電導コイルの積層体を示す斜視図、図11(b)は超電導コイル単体を示す斜視図である。 実施例及び比較例のプレッシャークッカー試験の結果を示すグラフである。 実施例及び比較例のプレッシャークッカー試験の結果を示すグラフである。 実施例及び比較例のプレッシャークッカー試験の結果を示すグラフである。 インジウム半田により接合した実施例及び比較例の曲げ試験の結果を示すグラフである。 スズ半田により接合した実施例及び比較例の曲げ試験の結果を示すグラフである。 従来例としての酸化物超電導線材の接続構造体を示す。
以下、本発明に係る酸化物超電導線材の一実施形態について図面に基づいて説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。
(酸化物超電導線材の第1実施形態)
以下、本発明に係る第1実施形態の酸化物超電導線材1について説明する。
図1は、本発明に係る酸化物超電導積層体(酸化物超電導線材)20の端部20aを示す模式図であり、図2は、本発明に係る酸化物超電導線材1の端部1aを示す模式図である。本実施形態の酸化物超電導線材1は、テープ状であり、酸化物超電導積層体20の長手方向端部20aを被覆部材21により被覆して形成されている。
図1、図2を基に、酸化物超電導線材1の各構成要素に関して詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
図2に示す酸化物超電導線材1は、図1に示す酸化物超電導積層体20の端部20aを所定幅に渡り被覆部材21により取り囲むことにより形成されている。酸化物超電導積層体20は、テープ状の基材10に中間層11、酸化物超電導層12、第1の安定化層13、第2の安定化層14が積層された構造を有する。なお、本実施形態において、第2の安定化層14を構成する金属は、前記酸化物超電導積層体20の外周を覆う金属層としての役割も果たす。
基材10は、通常の酸化物超電導線材の基材として使用し得るものであれば良く、可撓性を有する長尺のテープ状であることが好ましい。また、基材10に用いられる材料は、機械的強度が高く、耐熱性があり、線材に加工することが容易な金属を有しているものが好ましく、例えば、ステンレス鋼、ハステロイ等のニッケル合金等の各種耐熱性金属材料、もしくはこれら各種金属材料上にセラミックスを配した材料などが挙げられる。中でも、市販品であれば、ハステロイ(商品名、米国ヘインズ社製)が好適である。このハステロイの種類には、モリブデン、クロム、鉄、コバルト等の成分量が異なる、ハステロイB、C、G、N、W等が挙げられ、ここではいずれの種類も使用できる。また、基材10の厚さは、目的に応じて適宜調整すれば良く、通常は10〜500μm、好ましくは20〜200μmである。
中間層11は、拡散防止層、ベッド層、配向層、及びキャップ層がこの順に積層された構造を適用することができる。
拡散防止層は、この層よりも上面に他の層を形成する際に加熱処理した結果、基材10や他の層が熱履歴を受ける場合に、基材10の構成元素の一部が拡散し、不純物として酸化物超電導層12側に混入することを抑制する機能を有する。拡散防止層の具体的な構造としては、上記機能を発現し得るものであれば特に限定されないが、不純物の混入を防止する効果が比較的高いAl、Si、又はGZO(GdZr)等から構成される単層構造あるいは複層構造が望ましい。
ベッド層は、基材10と酸化物超電導層12との界面における構成元素の反応を抑え、この層よりも上面に設ける層の配向性を向上させるために用いられる。ベッド層の具体的な構造としては、上記機能を発現し得るものであれば特に限定されないが、耐熱性が高いY、CeO、La、Dy、Er、Eu、Ho、などの希土類酸化物から構成される単層構造あるいは複層構造が望ましい。
配向層は、その上に形成されるキャップ層や酸化物超電導層12の結晶配向性を制御したり、基材10の構成元素が酸化物超電導層12へ拡散することを抑制したり、基材10と酸化物超電導層12との熱膨張率や格子定数といった物理的特性の差を緩和したりする機能等を有するものである。配向層の材料には、上記機能を発現し得るものであれば特に限定されないが、GdZr、MgO、ZrO−Y(YSZ)等の金属酸化物を用いると、後述するイオンビームアシスト蒸着法(以下、IBAD法と呼ぶことがある。)において、結晶配向性の高い層が得られ、キャップ層や酸化物超電導層12の結晶配向性をより良好なものとすることができるため、特に好適である。
キャップ層は、酸化物超電導層12の結晶配向性を配向層よりも強く制御したり、酸化物超電導層12を構成する元素の中間層11への拡散や、酸化物超電導層12の積層時に使用するガスと中間層11との反応を抑制したりする機能等を有するものである。キャップ層の材料には、上記機能を発現し得るものであれば特に限定されないが、CeO、LaMnO、Y、Al、Gd、Zr、Ho、Nd、Zr等の金属酸化物が酸化物超電導層12との格子整合性の観点から好適である。そのなかでも、中間層11の配向度よりもさらに配向度の優れた層を得られることから、CeO、LaMnOが特に好適である。
ここで、キャップ層にCeOを用いる場合、キャップ層は、Ceの一部が他の金属原子又は金属イオンで置換されたCe−M−O系酸化物を含んでいても良い。
酸化物超電導層12は、超電導状態の時に電流を流す機能を有するものである。酸化物超電導層12に用いられる材料には、通常知られている組成の酸化物超電導体からなるものを広く適用することができ、例えば、RE−123系超電導体、Bi系超電導体などの銅酸化物超電導体などが挙げられる。RE−123系超電導体の組成は、例えば、REBaCu(7−x)(REはY、La、Nd、Sm、Er、Gd等の希土類元素、xは酸素欠損を表す。)が挙げられ、具体的には、Y123(YBaCu(7−x))、Gd123(GdBaCu(7−x))が挙げられる。Bi系超電導体の組成は、例えば、BiSrCan−1Cu4+2n+δ(nはCuOの層数、δは過剰酸素を表す。)が挙げられる。この銅酸化物超電導体は、母物質が絶縁体であるが、酸素を取り込むことで超電導体となり、超電導特性を示す性質を持っている。ここで、本発明に用いられる酸化物超電導層12の材料は、銅酸化物超電導体であり、以下、特に指定がなければ、酸化物超電導層12に用いる材料を銅酸化物超電導体とする。
第1の安定化層13は、事故時に発生する過電流をバイパスしたり、酸化物超電導層12とこの層よりも上面に設ける層との間で起こる化学反応を抑制し、一方の層の元素の一部が他方の層側に侵入して組成がくずれることにより起こる超電導特性が低下するのを防いだりするなどの機能を有するものである。また、酸化物超電導層12に酸素を取り込ませやすくするために、加熱時には酸素を透過しやすくさせる機能も有する。このため、第1の安定化層13には、少なくともAgを含む材料が用いられる。なお、本発明に用いられる第1の安定化層13の材料はAgであり、以下、特に指定がなければ、第1の安定化層13に用いる材料をAgとする。
第1の安定化層13上に積層された第2の安定化層14は、良導電性の金属材料からなり、酸化物超電導層12が何らかの原因で超電導状態から常電導状態に遷移しようとした時に、第1の安定化層13とともに、酸化物超電導層12の電流が転流するバイパスとして機能する。第1の安定化層13はその機能により第2の安定化層14の一部とみなすことができる。
第2の安定化層14を構成する金属材料としては、良導電性を有するものであればよく、特に限定されないが銅、黄銅(Cu−Zn合金)、Cu−Ni合金等の銅合金、ステンレス等の比較的安価な材質からなるものを用いることが好ましく、中でも高い導電性を有し、安価であることから銅製が好ましい。また、酸化物超電導線材1を超電導限流器に使用する場合、第2の安定化層14は、クエンチが起こり常電導状態に転移した時に発生する過電流を瞬時に抑制するために用いられる。この用途の場合、第2の安定化層14に用いられる材料は、例えば、Ni−Cr等のNi系合金等の高抵抗金属が挙げられる。
第2の安定化層14の厚さは特に限定されず、適宜調整可能であるが、10〜300μmとすることができる。
第2の安定化層14の形成方法は特に限定されないが、本実施形態においては、銅などの良導電性材料よりなる金属テープを半田などの導電性接合材(図示略)を介し第1の安定化層13上に貼り付けることで積層して形成される。また、第2の安定化層14は、基材10、中間層11、酸化物超電導層12、第1の安定化層13を積層した積層物15の全周を被覆する。
第1の安定化層13上に金属テープを貼り付ける際に用いる導電性接合材(図示略)として半田を使用する場合、半田は特に限定されるものではなく従来公知の半田を使用可能である。例えば、Sn、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などのSnを主成分とする合金よりなる鉛フリー半田、Pb−Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を一種又は二種以上組み合わせて使用することができる。これらの中でも、融点が300℃以下の半田を用いることが好ましい。これにより、300℃以下の温度で金属テープと第1の安定化層13を半田付けすることが可能となるので、半田付けの熱によって酸化物超電導層12の特性が劣化することを抑止できる。
第2の安定化層14は、第1の安定化層13上に半田を介して貼り付けられるとともに、基材10、中間層11、酸化物超電導層12、第1の安定化層13を積層した積層物15の全周を覆い形成される。即ち、第2の安定化層14は、基材10において中間層11を形成していない側の裏面中央部を除いた積層物15の周面を横断面C字型をなすように覆っている。第2の安定化層14は、金属テープをロール等でフォーミングし積層物15の周囲に被着して金属層として構成することができる。第2の安定化層14により覆われていない基材10の裏面側の中央部は接続層16により覆われ、接続層16は第2の安定化層14の端縁同士が形成する凹部を埋めるように形成されている。
酸化物超電導積層体20の外周が金属テープ等からなる金属層(第2の安定化層14)及び接続層16で覆われていることで、酸化物超電導積層体20の側面からの水分の浸入を防ぎ、酸化物超電導層12の劣化を防ぐことができる。
また、上述したように金属テープをフォーミングし積層物15の周面を覆うように金属層を形成する他に、積層物15の外周全体にめっきを施すことにより被覆し、積層部15外周の金属層及び第2の安定化層14とを一体的に形成しても良い。この場合、めっき層の厚さは、10μm以上とすることで、ピンホールのないめっき層を形成することが可能となり、水分の浸入を確実に防ぐことができる。
ここでは上述したように、第2の安定化層14として金属テープ又はめっき層を形成する酸化物超電導積層体20を例示した。しかしながら本発明の酸化物超電導積層体はこれに限定されるものではなく、例えば第2の安定化層14を有さない、即ち第1の安定化層13のみによって、安定化層としての役割を果たす構成であっても良い。
図1に示す酸化物超電導積層体20の端部20aは、被覆部材21による被覆が無ければ露出することとなり、空気中等に含まれる水分と反応し超電導特性が低下する虞がある。そこで、図2に第1実施形態の酸化物超電導線材1として示すように、酸化物超電導積層体20の端部20aと当該端部20a近傍の第2の安定化層14を端部20aからの長さLに渡り被覆部材21により取り囲むように被覆することによって、水分の浸入を防ぐことができる。
第1実施形態の酸化物超電導線材1の端部1aに構成される被覆部材21は、1対の金属部材40、40と接続層42からなる。
本実施形態における金属部材40は、例えばCu等の金属箔を用いる事ができる。また、接続層42は、例えば半田からなる半田層として構成することができる。
酸化物超電導線材1の端部1aに構成される被覆部材21は、銅、銅合金等からなる1対の金属部材40、40の一面に接続層42を形成し、当該接続層42を形成した面同士を向い合せて酸化物超電導積層体20の端部20aを、厚み方向上下から挟み込み、前記接続層42を溶融、凝固させ酸化物超電導積層体20の端部20aを包み込むように覆うことで形成されている。
なお、金属部材40に形成される接続層42は、金属部材40の片面に形成されていても、両面に形成されていても良い。また、金属部材40に接続層42を形成する以外に、半田からなる箔を挟み込み、当該箔を加熱により溶融させても良い。
被覆部材21の側面部21aが酸化物超電導積層体20の側面を覆い、先端面部21bが酸化物超電導積層体20の長手方向端部20aを覆い、各部において被覆部材21は、接続層42により酸化物超電導積層体20と接合されている。また、金属部材40、40同士は、縁部40c、40cで酸化物超電導積層体20の端部20a近傍を上下方向から閉じ、それぞれの金属部材40同士は縁部40cにおいて接続層42により接合されている。
酸化物超電導積層体20と金属部材40との境界面及び、金属部材40、40同士の接触部は、接続層42により接合され完全に封止されているため、当該境界面及び接触部からの水分の浸入を抑制することができる。
酸化物超電導積層体20と被覆部材21との境界面及び、金属部材40、40同士の接触部を縁部40cにおいて接合する接続層42として使用する半田は、特に限定されるものではなく従来公知の半田を使用可能であり、上述した第1の安定化層13上に金属テープを貼り付ける際に用いる半田と同様の物を用いる事ができる。
被覆部材21で覆われる酸化物超電導積層体20の長手方向の長さLに関しては、酸化物超電導積層体20の端部20aが完全に覆われていれば、どのような長さでも構わない。図2に示すように、被覆部材21を1対の金属部材40、40によって形成する場合においては、被覆部材21で覆われる酸化物超電導積層体20の長手方向の長さLを1mm以上とすることで、導電性接合体により、金属部材40、40を確実に固定することが可能となるため水分の浸入を確実に防ぐことが可能となるため好ましい。また、30mmを超えると、金属部材40のコストが増加するばかりか、他の酸化物超電導線材1と接続し接続構造体を形成する場合において、接続部分における厚みが増加する領域が長くなるため、接続部の取り回しが悪くなり好ましくない。
したがって、被覆部材21で覆われる酸化物超電導積層体20の長手方向の長さLは1〜30mmであることが好ましい。
酸化物超電導線材1を構成する基材10及び酸化物超電導層12は、半田との密着性が悪いため、半田のみで酸化物超電導積層体20の端部20aを気密に覆うことは困難を伴う。そこで酸化物超電導積層体20の端部20aを金属部材40で覆い、当該金属部材40と酸化物超電導積層体20との間に、半田を満たし接続層42を形成することで、端部20aを気密に被覆することができる。また、半田の周囲を金属部材40で覆うことにより、半田のみで酸化物超電導積層体20の端部20aを覆う場合と比較して、半田によって形成される層(接続層42)を薄くすることが可能となり、酸化物超電導線材1の端部1aの厚み寸法が肥大化することを抑制できる。
(酸化物超電導線材の第2実施形態)
以下、本発明に係る第2実施形態の酸化物超電導線材7について図3に基づいて説明する。なお、上述の第1実施形態と同一の構成要素については、同一符号を付し、その説明を省略する。
第2実施形態の酸化物超電導線材7は、第1実施形態の酸化物超電導線材1と比較して、被覆部材の構成に違いを有する。即ち、第2実施形態の酸化物超電導線材7は、図3に示すように、被覆部材21に代えて樹脂材料からなる樹脂被覆部材41によって端部7aが被覆されている。第1実施形態の酸化物超電導線材1の被覆部材21は、接続層42とその外周を覆う金属部材40から構成されているのに対して、第2実施形態の酸化物超電導線材7の被覆部材は、樹脂被覆部材41のみで構成される。樹脂被覆部材41を構成する樹脂材料としては、例えばエポキシ樹脂、アクリル樹脂、ワックス等の化学反応や相転移等により液体から固体に変わる材料を用いる事ができる。樹脂被覆部材41は、ディッピングや、型にはめて成型することにより形成することが可能で、この場合、均一な層を容易に形成することができる。
樹脂被覆部材41で覆われる酸化物超電導積層体20の長手方向の長さLは、第1実施形態の酸化物超電導線材1と同様に1〜30mmであることが好ましい。
係る構成を有することにより、酸化物超電導積層体20の端部20aから水分が浸入し、超電導線材が劣化することを抑制できる。
また、第1実施形態の酸化物超電導線材1の端部1aにおいて、金属部材40の縁部40cが幅方向及び、端部1aの幅寸法を肥大化させる。しかしながら、第2実施形態の酸化物超電導線材7においては、幅寸法が肥大化することがなく、当該酸化物超電導線材7を接続する場合において、接続部をコンパクトに形成することが可能となる。即ち、螺旋巻きして超電導ケーブルに加工する場合や、巻回して超電導コイルに加工する場合に、接続部の肥大化による巻き線が不均一となる事を抑制できる。
(酸化物超電導線材の第3実施形態)
以下、本発明に係る第3実施形態の酸化物超電導線材8について図4に基づいて説明する。なお、上述の第1実施形態と同一の構成要素については、同一符号を付し、その説明を省略する。
図4(d)に示すように、第3実施形態の酸化物超電導線材8の被覆部材24は、第1実施形態の酸化物超電導線材1の被覆部材24と同様に半田などからなる接続層43とその外周を覆う箔状の金属部材44から構成されているが、金属部材44による被覆方法が異なる。
酸化物超電導線材8の端部8aに構成される被覆部材24は、1枚の金属部材44の一面に接続層43を形成し、当該接続層43からなる層を形成した面上に、酸化物超電導積層体20の端部20aを配置し、前記端部20aを含む酸化物超電導積層体20の外周を包囲し前記接続層43を溶融、凝固させることによって形成されている。
以下、図4(a)〜図4(d)を基に酸化物超電導線材8の形成手順を説明する。
まず、図4(a)に示すように、酸化物超電導積層体20の端部20aを、矩形状を有し、少なくとも上面に接続層43からなる層を備えた金属部材44の中央付近に配置する。この時、酸化物超電導積層体20の端部20aの先には、長さJの金属部材44の余剰を確保する。長さJは0.5mm以上とすることで、後の接続層42を溶融する工程において、端部20aを確実に被覆することが可能となり好ましい。
次いで、図4(b)、(c)に示すように、酸化物超電導積層体20の側面に沿って金属部材44を折りたたむことにより酸化物超電導積層体20の端部20aの外周を包囲する。両側から折られて酸化物超電導積層体20を包む金属部材44同士は、幅Kの重なりを形成する。重なり部である幅Kは、0.8mm以上であることで、後の接続層42を溶融する工程において、端部20aを確実に被覆することが可能となり好ましい。
次いで図4(d)に示すように、金属部材44の酸化物超電導積層体20の端部20aの先に構成される部分を閉じるように加圧し、更に加熱することで金属部材44上の接続層43を溶融させ接合する。
被覆部材24の包囲部24aによって酸化物超電導積層体20の外周面を覆い、先端部24bが酸化物超電導積層体20の長手方向端部20aを覆い、各部において被覆部材21は、接続層43を介して酸化物超電導積層体20と接合されている。また、先端部24bにおいて金属部材44は、酸化物超電導積層体20の端部20a近傍を上下方向から閉じ、それぞれの上下の金属部材44同士は先端部24bにおいて接続層43により接合されている。
酸化物超電導積層体20と金属部材44との境界面及び、金属部材44同士の接触部は、接続層43により接合され完全に封止されているため、当該境界面及び接触部からの水分の浸入を抑制することができる。
また、図4(d)を基に説明したように、被覆部材24の先端部24bを厚み方向上下に閉じたのちに、更に酸化物超電導積層体20の長手方向に、先端部24bを折り返すことによって、水分が浸入し得る経路を複雑に構成し、水分浸入をより効果的に抑制する構造としても良い。
他にも、図4(b)に示す被覆部材24の先端部24bを厚み方向上下に閉じた状態から、更に別途用意した少なくとも1面に接続層43からなる層を備える金属部材を、先端部24bの先端縁24cを被せるように被覆し、幅方向にはみ出した金属部材を切断工具によって切断して構成しても良い。
被覆部材24で覆われる酸化物超電導積層体20の長手方向の長さLは、第1実施形態の酸化物超電導線材1と同様に1〜30mmであることが好ましい。
ところで、図2に示す第1実施形態の酸化物超電導線材1の端部1aにおいて、金属部材40の縁部40cが幅方向及び、端部1aの幅寸法を肥大化させる。係る肥大化を避けるために、被覆部材21の金属部材40における幅方向の縁部40cを切断工具等により切断し除去することが考えられるが、所定の幅の縁部40cを残さければ、切断部分から水分が浸入する虞がある。残さなければならない所定の幅としては1mm以上であり、即ち、第1実施啓太の酸化物超電導線材1は、幅方向両側を合わせて少なくとも2mmの幅寸法の肥大化が発生することとなる。
第3実施形態の酸化物超電導線材8においては、端部8aにおいて、金属部材44の厚みと接続層43の厚さにより幅寸法がわずかに増加するが、幅寸法が大幅に肥大化することがない。したがって、酸化物超電導線材8を接続する場合において、接続部をコンパクトに形成することが可能となる。即ち、螺旋巻きして超電導ケーブルに加工する場合や、巻回して超電導コイルに加工する場合に、接続部の肥大化による巻き線が不均一となる事を抑制できる。
(酸化物超電導線材の第4実施形態)
以下、本発明に係る第4実施形態の酸化物超電導線材9について図5に基づいて説明する。なお、本実施形態は、上述の第3実施形態と類似した構成を有し、同一の構成要素については、同一符号を付し、その説明を省略する。
図5(d)に示すように第4実施形態の酸化物超電導線材9は、第3実施形態の酸化物超電導線材8と比較して、被覆部材23が、酸化物超電導積層体20と共に補強板45を被覆している点が異なる。
酸化物超電導積層体20の長手方向端部20aの先に補強板45を配置し、当該補強板45を酸化物超電導積層体20の長手方向端部20aと共に被覆することによって、酸化物超電導積層体20の端部20aの先に構成される金属部材44が補強され、当該金属部材44に応力が加わった場合であっても、金属部材44の破れを抑制できる。
また、補強板45は酸化物超電導積層体20の端部20aの蓋をするように覆う役割を果たし、酸化物超電導積層体20の端部20aが水分に触れることを抑制する。
補強板45の材料は、特に限定されるものではないが、半田との密着性に優れる材料であることが好ましく、銅、銅合金等を用いる事ができる。また、SUS304等に代表されるステンレスであっても良く、その場合においては表面にNiめっきを施したものを用いる事で半田との密着性を良好とし使用することができる。
補強板45が銅等の導電性を有する材料からなる場合においては、前記補強板45を電気的な接点として使用することができる。
補強板45として、ステンレスからなるものを用いる場合においては、ステンレスは剛性が高いため、酸化物超電導線材9の端部9aの補強効果を高めることができる。
補強板45の幅寸法は、酸化物超電導積層体20の幅と略同幅であることが望ましい。これによって、酸化物超電導積層体20の端部20aを確実に被覆することが可能となる。また、被覆部材23で覆われた酸化物超電導線材9の端部9aの幅方向に段差が生じることがなく、被覆部材23を構成する金属部材44に破れが生じることを防ぐことができる。
補強板45の厚さは、酸化物超電導積層体20の厚さ寸法に対して、3.0倍以下であることが好ましく、1.5倍以下であることがより好ましいいが、酸化物超電導積層体20の端部20aをより確実に被覆できるという観点から、酸化物超電導積層体20の厚さ以下であることがさらに好ましく、0.7倍以下であることがより一層好ましい。
酸化物超電導線材9の形成手順は、上述した第3実施形態の酸化物超電導線材8の形成手順と比較して補強板45を配置する点に違いを有する。以下、図5(a)〜図5(d)を基に酸化物超電導線材8の形成手順を説明する。
まず、図5(a)に示すように、酸化物超電導積層体20の端部20aを、矩形状を有し、少なくとも上面に接続層43を形成した金属部材44の中央付近に配置する。さらに、酸化物超電導積層体20の長手方向端部20aの先に補強板45を配置する。補強板45は、酸化物超電導積層体20の端部20aと隙間なく配置することが望ましい。補強板45は、金属部材44の縁部からはみ出していても、完全に内側に配置されていても良い。また、図5(a)に示すように、補強板45の縁部と金属部材44の縁部が一致するように配置しても良い。
次いで、図5(b)、(c)に示すように、金属部材44を折りたたむことにより酸化物超電導積層体20及び補強板45の外周を包囲する。
更に図5(d)に示すように、金属部材44の酸化物超電導積層体20の端部20aの先に構成される部分を閉じるように加圧し、更に加熱することで金属部材44上の接続層43を溶融させ接合する。
係る手順により酸化物超電導線材9を構成することにより、上述の第3実施形態の酸化物超電導線材8と同様の効果を得ることができるのみならず、補強板の効果により、より確実に水分浸入を防ぐことができ、加えて、金属部材44の破損を抑制できる。
以上、本発明の酸化物超電導線材の実施形態として、第1から第4の実施形態を示した。しかしながら本発明の酸化物超電導線材はこれに限定されるものではない。例えば、図1に示す酸化物超電導積層体20の端部20aにめっき被覆層を施し、当該めっき被覆層を被覆部材として端部20aを封止する構造としても良い。
この場合、めっき被覆層は、電解めっき、無電解めっき、溶融めっき、真空蒸着の何れか1つ又は2つ以上の組合せによって形成することができる。
(接続構造体の第1実施形態)
次に、本発明に係る接続構造体の一実施形態について図面に基づいて説明する。
図6に本発明に係る接続構造体の第1実施形態である第1の酸化物超電導線材2及び第2の酸化物超電導線材3を接続した接続構造体30について説明する。
なお、本実施形態の接続構造体30において接続される、第1の酸化物超電導線材2及び第2の酸化物超電導線材3は、図2を基に説明した第1実施形態の酸化物超電導線材1と同形態である。
即ち、第1の酸化物超電導線材2及び第2の酸化物超電導線材3は、図6(b)に示すように、テープ状の基材10に中間層11、酸化物超電導層12、第1の安定化層13と第2の安定化層14が積層された構造を有しており、特に第2の安定化層14は基材10において中間層11を形成していない側の裏面中央部を除いて積層物15の周面を横断面C字型をなすように覆っている。第2の安定化層14により覆われていない基材10の裏面側の中央部は半田層16(図1参照)により覆われ、半田層16は第2の安定化層14の端縁どうしが形成する凹部を埋めるように形成され、酸化物超電導積層体20の外周から水分が浸入しない酸化物超電導積層体20を形成している。また、酸化物超電導積層体20の接続しようとする端部20aは、被覆部材21により所定の長さL(図2参照)被覆されており、第1の酸化物超電導線材2及び第2の酸化物超電導線材3を形成している。なお、被覆部材21によって覆われる第1の酸化物超電導線材2及び第2の酸化物超電導線材3の長手方向の長さLは、1〜30mmとされる。
図6(a)、(b)に示すように、接続構造体30は、第1の酸化物超電導線材2及び第2の酸化物超電導線材3を接続する構造体であって、第1の酸化物超電導線材2の端部2a近傍と第2の酸化物超電導線材3の端部3a近傍の第2の安定化層14同士が対向して、長さH50の重ね合わせ部50を形成して配置され、前記重ね合わせ部50の長手方向中央部51が導電性接合材22によって接合されている。また、前記重ね合わせ部50の内部であって、前記導電性接合材22によって接合される長手方向中央部51の端部を含む両側には、接合されていない非接合領域52、52が形成されている。なお、図6(a)、(b)において、前記長手方向中央部51は、長手方向長さH51として表される領域であり、前記非接合領域52の長手方向長さH52として表される領域である。
第1の酸化物超電導線材2の端部2aと第2の酸化物超電導線材3の端部3aに形成される被覆部材21、21は、前記重ね合わせ部50の長手方向中央部51の導電性接合材22によって接合されていないことが望ましい。被覆部材21は、第1及び酸化物超電導線材2、3の外周を含めて被覆する構造となっているため、被覆部材21によって覆われた部分の第1の酸化物超電導線材2及び第2の酸化物超電導線材3は、覆われていない部分と比較して剛性が高くなっている。即ち、被覆部材21によって覆われた部分の第1の酸化物超電導線材2及び第2の酸化物超電導線材3は、屈曲性が悪い。したがって、被覆部材21が接合された場合は、接続部分に曲げを印加することで、被覆部材21近傍の酸化物超電導層12に過大な負荷がかかる虞がある。したがって、被覆部材21は、導電性接合材22によって接合しないことが望ましい。
また、被覆部材21が、図3を基に説明したように、樹脂材料からなる樹脂被覆部材41であり、導電性接合材22が半田である場合においては、樹脂と半田は接合されないため、必然的に樹脂被覆部材41と導電性接合材(半田)22は、接合されない。
第1の酸化物超電導線材2及び第2の酸化物超電導線材3を接続し、接続構造体30を構成するための接続方法を以下に説明する。
最初に、第1の酸化物超電導線材2の端部2a近傍と第2の酸化物超電導線材3の端部3a近傍の第2の安定化層14、14同士を対向して重ね合わせ、重ね合わせ部50を形成する。このとき、当該重ね合わせ部50において、長手方向の両側の、非接合領域52、52を所定の長さH52だけマスキング材によってマスキングする。次に、前記重ね合わせ部50の非接合領域(マスキング部)52、52を除いた部分を導電性接合材22によって接合することによって接続する。導電性接合材22として半田を用いる場合においては、重ね合わせ部50を形成する際にマスキングを行うと共に、重ね合わせ部50の長手方向中央部51に半田用の箔を挟み、重ね合わせ部50を加圧しながら加熱することで、半田を溶融させて接合する。この場合半田固着後にマスキング材を除去し、非接合領域52、52を形成する。
マスキング材としては、半田が固着しなければ特に限定されるものではなく、例えばカプトン(登録商標)、テフロン(登録商標)等からなるテープや、シートを使用することができる。
図6(b)に示すように、接続構造体30において、第1の酸化物超電導線材2と第2の酸化物超電導線材3は、基材10に対して酸化物超電導層12が積層される側を対向させて重ね合わせることが望ましい。このように重ね合わせることで、接続部での電気抵抗が低い接続構造体30を構成することができる。
上述したように、第1の酸化物超電導線材2及び第2の酸化物超電導線材3を接合する導電性接合材22として半田を使用することができる。導電性接合材22としての半田は、従来公知の半田を使用可能であり、例えば、Sn、Sn−Ag系合金、Sn−Bi系合金、Sn−Cu系合金、Sn−Zn系合金などのSnを主成分とする合金よりなる鉛フリー半田、Pb−Sn系合金半田、共晶半田、低温半田などが挙げられ、これらの半田を一種又は二種以上組み合わせて使用することができる。これらの中でも、融点が300℃以下の半田を用いることが好ましい。これにより、300℃以下の温度で金属テープと第1の安定化層13を半田付けすることが可能となるので、半田付けの熱によって酸化物超電導層12の特性が劣化することを抑止できる。
接続される第1の酸化物超電導線材2の端部2a近傍と第2の酸化物超電導線材3の端部3a近傍の重ね合わせ部50は、導電性接合材22によって接合される中央部51の長手方向長さH51と、非接合領域52、52の長手方向の長さH52、H52の和となる。
導電性接合材22によって接合される中央部51の長手方向の長さH51を大きくすることで、第1の酸化物超電導線材2から第2の酸化物超電導線材3、あるいは第2の酸化物超電導線材3から第1の酸化物超電導線材2への電流経路において、電流方向に対する導電性接合材22の断面積を大きくすることができ、全体として接続構造体30の接続部分における抵抗値を抑制することができる。したがって、導電性接合材22によって接合される中央部51の長手方向の長さH51は、長いほうが接続部分の電気抵抗の観点において好ましく、具体的には、10mm以上であることが望ましい。しかしながら、導電性接合材22によって接合される中央部51の長手方向の長さH51が120mmを超える場合は、接続部分が長くなりすぎて、接続構造体30の屈曲性が悪くなる。したがって導電性接合材22によって接合される中央部51の長手方向の長さH51は、120mm以下が望ましい。
非接合領域52、52の長手方向の長さH52は、1mm以上100mm以下であることが好ましい。非接合領域52の長さH52が1mm未満であると、マスキング材の挿入が困難となり、非接合領域52が確実に確保されない虞がある。非接合領域52が確実に確保されていないと、重ね合わせ部50の端部に余分な半田が溜り凝固し、導電性接合材22の厚みが重ね合わせ部50の端部で局所的に厚くなるため、接続構造体30に曲げを加えると、重ね合わせ部50の端部において応力が集中し酸化物超電導層12の結晶構造が破壊される虞がある。即ち、曲げに対して弱い構造となる。
また、非接合領域52の長手方向の長さH52が100mmを超えると、接続部分が長くなり、接続構造体30の取り回しが悪くなり好ましくない。
以上説明したように、接続構造体30は、その接続部分において酸化物超電導積層体20の接続しようとする端部20aが被覆部材21により被覆されてなる第1の酸化物超電導線材2及び第2の酸化物超電導線材3を用いて構成されることによって、接続部分において酸化物超電導積層体20への水分の浸入が防がれ、水分による超電導特性の低下を抑制することができる。
また、接続部分において、重ね合わせ部50の長手方向中央部51が導電性接合材22によって接合されており、重ね合わせ部50内の長手方向の端部を含む両側には、導電性接合材22によって接合されていない非接合領域52、52が形成されている。重ね合わせ部50内の非接合領域52は、重ね合わせ部50から導電性接合材22がはみ出し、重ね合わせ部50の両外側で凝固することを抑制する。したがって、接続構造体30において導電性接合材22による接合部が局所的に厚く形成されることがなく、局所的に曲げに弱い部分が形成されることを抑制することができる。
更に、本実施形態の接続構造体30は、重ね合わせ部50内において、被覆部材21が非接合領域52に設置されており、導電性接合材22によって接合されていない。剛性が高く屈曲性が低い被覆部材21を導電性接合材22によって接合しないことで、接続部分に曲げを印加した際に被覆部材21近傍の酸化物超電導層12に過大な負荷がかかることを抑制することができる。
(接続構造体の第2実施形態)
以下、本発明に係る接続構造体の一実施形態について図面に基づいて説明する。
図7に本発明の第2実施形態である第1の酸化物超電導線材4及び第3の酸化物超電導線材5を接続した接続構造体31について説明する。上述の第1実施形態と同一の構成要素については、同一符号を付し、その説明を省略する。
なお、本実施形態の接続構造体31において接続される、第1の酸化物超電導線材4及び第3の酸化物超電導線材5は、図2を基に説明した第1実施形態の酸化物超電導線材1と同構造である。また、第2の酸化物超電導線材6は、酸化物超電導線材1と同等構造であり、しかもその両端部である第1端部6a及び第2端部6bは被覆部材21によって覆われている。
図7(a)、(b)に示すように、接続構造体31は、第1の酸化物超電導線材4及び第3の酸化物超電導線材5を第2の酸化物超電導線材6を介して接続する構成を有する。
第2実施形態の接続構造体31は、上述した第1実施形態の接続構造体30を第1の酸化物超電導線材4の一端(端部4a近傍)と第2の酸化物超電導線材6の一端(第1端部6a近傍)とに適用して接続し、さらに第2の酸化物超電導線材6の他端(第2端部6b近傍)と第3の酸化物超電導線材5の一端(端部5a近傍)とに適用して接続したものであると説明できる。
第2実施形態の接続構造体31を形成する方法について図7(a)、(b)を基に説明する。
まず、第1の酸化物超電導線材4の端部4aと第3の酸化物超電導線材5の端部5aを距離eだけ離間して隣接させる。このとき、第1の酸化物超電導線材4及び第3の酸化物超電導線材5は、基材10、10に対して酸化物超電導層12、12を形成した側を揃えて配置する。
次に、隣接された第1の酸化物超電導線材4の端部4aと第3の酸化物超電導線材5の端部5aに跨るように、第2の酸化物超電導線材6を橋渡しする。これによって、第1の酸化物超電導線材4と、第2の酸化物超電導線材6が重なり合う第1の重ね合わせ部60と、第3の酸化物超電導線材5と、第2の酸化物超電導線材6が重なり合う第2の重ね合わせ部70とが形成される。第1の酸化物超電導線材4及び第3の酸化物超電導線材5に対して第2の酸化物超電導線材6は、基材10に対して酸化物超電導層12が積層される側を対向させて重ね合わせる。なお、図7(a)、(b)において、第1の重ね合わせ部60は、長手方向長さH60として表される領域であり、第2の重ね合わせ部70は、長手方向長さH70として表される領域である。
第1の重ね合わせ部60を形成する際に、当該重ね合わせ部60において、長手方向の両側の、非接合領域62、62を所定の長さH62、H62だけマスキング材によってマスキングする。同様に第2の重ね合わせ部70を形成する際に、当該重ね合わせ部70において、長手方向の両側の、非接合領域72、72を所定の長さH72、H72だけマスキング材によってマスキングする。
次に、第1の重ね合わせ部60及び第2の重ね合わせ部70の非接合領域(マスキング部)62、72を除いた長さH61の長手方向中央部61及び長さH71の長手方向中央部71を導電性接合材22によって接合することで、接続構造体31を形成する。第1の重ね合わせ部60及び第2の重ね合わせ部70の非接合領域62、72にマスキングを施すことによって、前記第1の重ね合わせ部60であって、前記導電性接合材22によって接合される長手方向中央部61の端部を含む両側には、接合されていない長さH62の非接合領域62、62が形成され、前記第2の重ね合わせ部70であって、前記導電性接合材22によって接合される長手方向中央部71の端部を含む両側には、接合されていない長さH72の非接合領域72、72が形成される。
導電性接合材22として半田を用いる場合においては、第1の重ね合わせ部60及び第2の重ね合わせ部70を形成する際にマスキングを行うと共に、第1の重ね合わせ部60及び第2の重ね合わせ部70の長手方向中央部61、71に半田用の箔を挟み、第1の重ね合わせ部60及び第2の重ね合わせ部70を加圧しながら加熱することで、半田を溶融させて接合する。この場合半田固着後にマスキング材を除去し、非接合領域62、72を形成する。
被覆部材21によって覆われる第1の酸化物超電導線材4、第3の酸化物超電導線材5並びに第2の酸化物超電導線材6の長手方向の長さLは、1〜30mmとされる。
また導電性接合材22によって接合される中央部61、71の長手方向の長さH61、H71は、第1実施形態の接続構造体30と同様に、接続構造体31の電気抵抗及び屈曲性の観点から10〜120mmが望ましい。
加えて、非接合領域62、72の長手方向の長さH62、H72は、マスキングの作業性及び接続構造体31の取り回しの観点から、1mm以上100mm以下であることが好ましい。
第1の酸化物超電導線材4の端部4aと第3の酸化物超電導線材5の端部5aの距離eは、特に限定されるものではなく、第2の酸化物超電導線材6の長さ並びに第1の重ね合わせ部60及び第2の重ね合わせ部70の長さH60、H70等に応じて適宜決定すればよい。
加えて、図7(b)に示すように、接続構造体31において、第1の酸化物超電導線材4と第2の酸化物超電導線材6は、基材10、10に対して酸化物超電導層12、12が積層される側同士を対向させて重ね合わせることが望ましい。また、第2の酸化物超電導線材6と第3の酸化物超電導線材5は、基材10、10に対して酸化物超電導層12、12が積層される側同士を対向させて重ね合わせることが望ましい。このように重ね合わせることで、接続部での電気抵抗が低い接続構造体31を構成することができる。加えて接続する第1の酸化物超電導線材4と第3の酸化物超電導線材5とが同方向に積層されて配置されているため、接続部分で第1の酸化物超電導線材4及び第3の酸化物超電導線材5の表裏の逆転がなく、取扱いが容易となる。
以上説明したように、接続構造体31は、その接続部分において酸化物超電導積層体20の接続しようとする端部20aが被覆部材21により被覆されてなる第1の酸化物超電導線材4、第3の酸化物超電導線材5並びに第2の酸化物超電導線材6を用いて構成されることによって、接続部分において酸化物超電導積層体20への水分の浸入が防がれ、水分による超電導特性の低下を抑制することができる。
また、接続部分において、重ね合わせ部60、70の長手方向中央部61、71が導電性接合材22によって接合されており、重ね合わせ部60、70内の長手方向の端部を含む両側には、導電性接合材22によって接合されていない非接合領域62、72が形成されている。重ね合わせ部60、70内の非接合領域62、72は、重ね合わせ部60、70から導電性接合材22がはみ出し、重ね合わせ部60、70の両外側で凝固することを抑制する。したがって、接続構造体31において、導電性接合材22による接合部が局所的に厚く形成されることがなく、局所的に曲げに弱い部分が形成されることを抑制することができる。
更に、本実施形態の接続構造体31は、重ね合わせ部60、70内において、被覆部材21が非接合領域62、72に設置されており、導電性接合材22によって接合されていない。剛性が高く屈曲性が低い被覆部材21を導電性接合材22によって接合しないことで、接続部分に曲げを印加した際に被覆部材21近傍の酸化物超電導層12に過大な負荷がかかることを抑制することができる。
加えて、接続する第1の酸化物超電導線材4と第3の酸化物超電導線材5とが同方向に積層されて配置されているため、接続部分で第1の酸化物超電導線材4及び第3の酸化物超電導線材5の表裏の逆転がなく、取扱いが容易となる。
(超電導ケーブル)
上述したように作製された第1又は第2実施形態の接続構造体30、31によって接続された酸化物超電導線材1(即ち、酸化物超電導線材2、3、4、5)は、図8に部分断面略図の一例を示す超電導ケーブル80として使用することができる。超電導ケーブル80の中心にあるケーブルコア85は、金属製(例えば銅製)フォーマ81の周りに、複数列のテープ状の酸化物超電導線材1を、絶縁層82を挟んで2層にわたって螺旋状に巻きつけ、更に導電性のケーブル用安定化層83によって覆われて形成されている。このケーブルコア85は可撓性を有する金属製の二重断熱管84の中に収納されている。二重断熱管84は、内管84aと外管84cを有し、内管84aと外管84cの間には、真空断熱層84bが形成されており、外部からの熱の影響を排除する構造となっている。
このような超電導ケーブル80に、第1又は第2実施形態の接続構造体30、31によって接続された酸化物超電導線材1を用いる事によって、製造ラインの大きさに係らず、様々な長さの超電導ケーブル80を作製することができる。
また、複数本の超電導ケーブル80を接続する際に、その接続部において第1又は第2実施形態の接続構造体30、31を採用し、酸化物超電導線材1を接続することができる。
(超電導限流器)
また、上述した第1又は第2実施形態の接続構造体30、31によって接続された酸化物超電導線材1を用いて図9に一例を示す超電導限流器99を作製することができる。
超電導限流器99において、接続構造体30、31によって接続された酸化物超電導線材1は、巻胴に複数層に渡って巻回され超電導限流器用モジュール90を構成し、当該超電導限流器用モジュール90として液体窒素98が充填された液体窒素容器95に格納されている。さらに液体窒素容器95は、外部との熱を遮断する真空容器96の内部に格納されている。
液体窒素容器95は、上部に、液体窒素充填部91と冷凍機93を有し、冷凍機93の下方には、熱アンカー92と熱板97が設けられている。
また、超電導限流器99は、超電導限流器用モジュール90に外部電源(図示略)を接続するための電流リード部94を有する。
以上のような、超電導限流器99の超電導限流器用モジュール90として使用する場合において、酸化物超電導線材1は、図1を基に説明したように第2の安定化層14にNi−Cr等の高抵抗金属を用いたものを使用する。
(超電導モータ)
図10(a)、(b)に、第1又は第2実施形態の接続構造体30、31によって接続された酸化物超電導線材1を用いて構成された超電導モータ130の一例を示す。超電導モータ130は、円筒状の密閉型の容器131の内部に、回転自在に軸支された軸型の回転子132を備え構成されている。
回転軸133の中央部周囲側に、軸周りに複数の超電導モータ用コイル135が取り付けられ、これら複数の超電導モータ用コイル135の周囲側に容器131の内壁側に支持された銅コイルからなる複数の常電導コイル136が配置されている。
超電導モータ用コイル135は、第1又は第2実施形態の接続構造体30、31によって接続された酸化物超電導線材1を適当なスミRを有する矩形状のボビンに巻回して形成されている。
回転軸133の内部には冷却ガスを流入させるか流出させるための複数の配管が設けられ、外部に別途設けられている図示略の冷媒供給装置から容器131の内部に冷却ガスを導入し、冷却ガスにより超電導モータ用コイル135を臨界温度以下に冷却できるように構成されている。なお、超電導モータ用コイル135は臨界温度以下に冷却されるが、常電導コイル136は常温部として構成される。
図10(a)、(b)に示す超電導モータ130は、容器131の内部に冷却ガスを導入し、この冷却ガスにより超電導モータ用コイル135を臨界温度以下に冷却して使用する。常電導コイル136には別途図示略の電源から必要な電流を供給し、超電導モータ用コイル135にも別途図示略の電源から必要な電流を供給することで、両者のコイルが生成する磁場に起因した回転力により回転軸133を回転させて超電導モータ130として使用することができる。
(超電導コイル)
上述したように作製された第1又は第2実施形態の接続構造体30、31によって接続された酸化物超電導線材1を巻回して、図11(b)に示す超電導コイル101を構成することができる。また超電導コイル101を複数個積層し、それぞれの超電導コイル101同士を第1又は第2実施形態の接続構造体30、31によって接続することにより、図11(a)に示す強力な磁力を発する超電導コイル積層体100を形成することができる。
以上に説明したように、第1又は第2実施形態の接続構造体30、31によって接続された酸化物超電導線材1は、様々な超電導機器に使用可能である。
ここで、超電導機器は、前記酸化物超電導線材1を有するものであれば特に限定されず、例えば、超電導ケーブル、超電導モータ、超電導変圧器、超電導限流器、超電導電力貯蔵装置などを例示できる。
以下、実施例を示して本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
幅5mm、厚さ0.1mmのテープ状のハステロイ(米国ヘインズ社製商品名)製の基材上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜し、その上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシスト蒸着法(IBAD法)によりMgO(金属酸化物層;膜厚10nm)を形成し、その上にパルスレーザー蒸着法(PLD法)により0.5μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により2.0μm厚のGdBaCu7−δ(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により2μm厚のAg層(第1の安定化層)を形成し、さらに0.2mm厚のCuテープを横断面C字型をなすようにフォーミングし、積層物(基材と中間層と酸化物超電導層と第1の安定化層の積層物)の周面を覆い、半田によって被着した。これによって、図1に示す酸化物超電導積層体20を複数作製した。この酸化物超電導積層体20を以下の実施例A、B、C及び比較例A、Bで共通して使用する。
<酸化物超電導線材の実施例>
上述した酸化物超電導積層体20を用いて、第1実施形態の酸化物超電導線材1(図2参照)と同様の構成を有する実施例A、並びに第2実施形態の酸化物超電導線材2(図3参照)と同様の構成を有する実施例Bを作製した。
実施例Aにおいて、金属部材40として、両面に接続層42としてのSnが2μmめっきされた、厚さ20μmの銅箔を使用した。また、図2に示す酸化物超電導積層体20の端部20aから被覆部材21で覆う長さLを5mmとした。
実施例Bにおいて、図3に示す酸化物超電導積層体20の端部20aから樹脂被覆部材41で覆う長さLを5mmとした。
また、上述した酸化物超電導積層体20を酸化物超電導線材の比較例Aとした。
実施例A、B及び比較例Aの接続構造体について、24時間のプレッシャークッカー試験を行った。プレッシャークッカー試験は、高温(120℃)・高湿(100%)・高圧下(2気圧)に試料を放置する耐久試験である。プレッシャークッカー試験前後での臨界電流値の比(劣化率)を測定した結果を図12に示す。
図12を参照すると、実施例A、Bは、接続する端部に被覆部材を形成しているため、プレッシャークッカー試験において、大きな劣化は見られなかった。
これに対して、比較例Aは、プレッシャークッカー試験によって大きな劣化が見られた。これは、端部からプレッシャークッカー試験によって水分が浸入し、酸化物超電導層が劣化したためであると考えられる。
次いで、上述した酸化物超電導積層体20を用いて、第3実施形態の酸化物超電導線材8(図4(d)参照)と同様の構成を有する実施例Cを作製した。
実施例Cにおいて、金属部材40として、両面に接続層42としてのSnが2μmめっきされた、厚さ20μmの銅箔を使用した。また、図4(d)に示す酸化物超電導積層体20の端部20aから被覆部材21で覆う長さLを5mmとした。加えて、図4(a)、(c)にそれぞれ示す長さJ及び幅Kは、0.8mmとした。
また、上述した酸化物超電導線材の実施例Aの図2に示す酸化物超電導線材1の幅方向両側に形成された縁部40cを切断工具によって切断し、幅方向両側の縁部40cの幅を0.2mmとした比較例Bを作製した。
実施例C及び比較例A、Bの接続構造体について100時間のプレッシャークッカー試験を行った。プレッシャークッカー試験前後での臨界電流値の比(劣化率)を測定した結果を図13に示す。
図13を参照すると、実施例Cは、接続する端部に被覆部材を形成しているため、プレッシャークッカー試験において、大きな劣化は見られなかった。
これに対して、比較例A、Bは、プレッシャークッカー試験によって大きな劣化が見られた。これは、端部からプレッシャークッカー試験によって水分が浸入し、酸化物超電導層が劣化したためであると考えられる。
<接続構造体の実施例>
幅5mm、厚さ0.1mmのテープ状のハステロイ(米国ヘインズ社製商品名)製の基材上に、スパッタ法によりAl(拡散防止層;膜厚150nm)を成膜し、その上に、イオンビームスパッタ法によりY(ベッド層;膜厚20nm)を成膜した。次いで、このベッド層上に、イオンビームアシスト蒸着法(IBAD法)によりMgO(金属酸化物層;膜厚10nm)を形成し、その上にパルスレーザー蒸着法(PLD法)により0.5μm厚のCeO(キャップ層)を成膜した。次いでCeO層上にPLD法により2.0μm厚のGdBaCu7−δ(酸化物超電導層)を形成し、さらに酸化物超電導層上にスパッタ法により10μm厚のAg層(第1の安定化層)を形成し、さらに0.1mm厚のCuテープを横断面C字型をなすようにフォーミングし、積層物(基材と中間層と酸化物超電導層と第1の安定化層の積層物)の周面を覆い、半田によって被着した。これによって、図1に示す酸化物超電導積層体20を複数作製した。この酸化物超電導積層体20を以下の実施例1、2及び比較例1、2で共通して使用する。
上述した酸化物超電導積層体20を用いて、第2実施形態の接続構造体31(図7(a)参照)を有する実施例1、2を作製した。以下に図1、図2並びに図7(a)、(b)を基に実施例1、2の作製方法を具体的に説明する。
まず、長さ500mを有する第1の酸化物超電導線材4の端部4a及び第3の酸化物超電導線材5の端部5a並びに、長さ65mmを有する第2の酸化物超電導線材6の両端(第1端部6a及び第2端部6b)を、各端部4a、5a、6a、6bから5mmの長さに渡り(即ち、図2に示すL=5として)、厚さ0.02mmの銅製の一対の箔状の金属部材40、40と半田によって被覆部材21を形成した。
次に、被覆部材21を形成した第1、第2、第3の酸化物超電導線材4、6、5を図7(a)、(b)に示すように、第1及び第2の重ね合わせ部60、70を形成して配置した。このとき、第1の酸化物超電導線材4の端部4aと第3の酸化物超電導線材5の端部5aを5mm(図7(a)、(b)における距離e)だけ離間し、第1及び第2の重ね合わせ部60、70の長さH60、H70を30mmとして配置した。また、各端部4a、5a、6a、6bから5mm(図7(a)、(b)における長さH62、H72)に渡りカプトン(登録商標)からなるテープ状のマスキング材によってマスキングを行い非接合領域62、72を確保した。次いで、当該マスキングを行った部分を除く第1及び第2の重ね合わせ部60、70の中央部61、71を長さH61、H71=20mmとして半田により接合し、実施例1、2を作製した。なお、実施例1では、半田としてインジウム半田を用い、実施例2では、スズ半田を用いた。
また、上述した実施例の作製手順において、端部の被覆を行わない接続構造体を有する比較例1、2を作製した。加えて、比較例1、2は、第2の酸化物超電導線材として45mmのものを用意し、マスキングを行わず、片側20mmの重ね合わせ部を形成し、重ね合わせ部全体を半田付けした。なお、比較例1では、半田としてインジウム半田を用い、比較例2では、スズ半田を用いた。
実施例1、2及び比較例1、2の接続構造体について100時間のプレッシャークッカー試験を行った。プレッシャークッカー試験前後での臨界電流値の比(劣化率)を測定した結果を図14に示す。
また、実施例1、2及び比較例1、2の接続構造体について曲げ試験を行った。曲げ試験は、各試料の接続構造体を、積層方向に沿って様々な曲げ半径で曲げ、その前後での臨界電流の比(劣化率)を測定した。インジウム半田で接合された実施例1と比較例2の試料の曲げ半径と劣化率のグラフを図15にまとめ、スズ半田で接合された実施例2と比較例3の資料の曲げ半径と劣化率のグラフを図16にまとめて示す。
図14を参照すると、実施例1、2は、接続する端部に被覆部材を形成しているため、プレッシャークッカー試験において、大きな劣化は見られなかった。
これに対して、比較例1、2は、プレッシャークッカー試験によって大きな劣化が見られた。これは、端部からプレッシャークッカー試験によって水分が浸入し、酸化物超電導層が劣化したためであると考えられる。
また、接続する半田としてインジウム半田を用いた実施例1と比較例1の曲げ試験の結果を比較すると(図15参照)、実施例1は、曲げ半径20〜30mmにおいて、臨界電流の劣化が顕著にみられるのに対して、比較例1では、曲げ半径50mmで既に劣化が顕著にみられる。
更に、接続する半田としてスズ半田を用いた実施例2と比較例2の曲げ試験の結果を比較すると(図16参照)、実施例1は、曲げ半径40mmにおいて、臨界電流の劣化が顕著にみられるのに対して、比較例1では、曲げ半径70mmで、劣化が顕著にみられる。
図15、図16にまとめた試験結果から、実施例1、2の試料は、比較例1、2の資料に対して、急角度の曲げに対して強い構造であることがわかる。
比較例1、2では、接続部において重ね合わせ部全面が接合されているため、半田が重ね合わせ部の両側に溜り凝固し、当該両側において接続構造体が局所的に厚くなる。これらの接続構造体に曲げを加えると接続部分に過大な応力が発生し、酸化物超電導層の結晶構造が破壊されたため、臨界電流値が劣化すると考えられる。またこの現象は、接続する際に用いる導電性接合材が、インジウム半田であってもスズ半田であっても起こることが確認された。
これらより、本発明に係る本接続構造体及び接続方法の優位性が確認された。
1、7、8、9、202…酸化物超電導線材、1a、2a、3a、4a、5a、7a、8a、9a、20a、202a…端部、2、4…第1の酸化物超電導線材、3、6…第2の酸化物超電導線材、5…第3の酸化物超電導線材、6a…第1端部、6b…第2端部、10…基材、11…中間層、12…酸化物超電導層、13…第1の安定化層、14…第2の安定化層(金属層)、15…積層物、16…半田層、20…酸化物超電導積層体(酸化物超電導線材)、21、23、24…被覆部材、22…導電性接合材、30、31、230…接続構造体、40、44…金属部材、41…樹脂被覆部材、42、43…接続層、45…補強板、50…重ね合わせ部、51、61、71…中央部、52、62、72…非接合領域、60…第1の重ね合わせ部、70…第2の重ね合わせ部、80…超電導ケーブル、99…超電導限流器、100…超電導コイル積層体、101…超電導コイル、130…超電導モータ、210…被覆材、222…半田、L、H50、H51、H52、H60、H61、H62、H70、H71、H72…長さ、e…距離

Claims (9)

  1. テープ状の基材に中間層と酸化物超電導層と安定化層が積層されてなる酸化物超電導線材であって、
    前記酸化物超電導線材の長手方向両端部に被覆部材が被着していることを特徴とする酸化物超電導線材。
  2. 前記被覆部材として、金属部材と当該金属部材の少なくとも前記酸化物超電導線材と対向する面に形成された接続層とを有することを特徴とする請求項1に記載の酸化物超電導線材。
  3. 請求項1又は2に記載の酸化物超電導線材同士が接続された酸化物超電導線材の接続構造体であって、
    前記酸化物超電導線材のうち一方を第1の酸化物超電導線材とし、他方を第2の酸化物超電導線材とし、
    前記第1の酸化物超電導線材と第2の酸化物超電導線材における互いの端部近傍の前記安定化層同士が対向して重ね合わせ部を形成して配置され、
    前記重ね合わせ部の長手方向中央部が導電性接合材によって接合され、前記重ね合わせ部内の長手方向端部が前記導電性接合材によって接合されていないことを特徴とする酸化物超電導線材の接続構造体。
  4. 請求項3に記載の酸化物超電導線材の接続構造体であって、
    前記第1の酸化物超電導線材及び第2の酸化物超電導線材に加えて、第3の酸化物超電導線材を備え、
    前記第1の酸化物超電導線材及び第3の酸化物超電導線材が、前記接続しようとする端部同士を隣接させ、基材に対して酸化物超電導層を形成した側を揃えて配置され、
    前記隣接された端部を跨るように、前記第1の酸化物超電導線材及び第3の酸化物超電導線材の安定化層に前記第2の酸化物超電導線材の安定化層が橋渡しされ第1の重ね合わせ部及び第2の重ね合わせ部が形成され、
    前記第1の重ね合わせ部の長手方向中央部が導電性接合材によって接合され、前記第1の重ね合わせ部内の長手方向端部が導電性接合材によって接合されておらず、
    前記第2の重ね合わせ部の長手方向中央部が導電性接合材によって接合され、前記第2の重ね合わせ部内の長手方向端部が導電性接合材によって接合されていないことを特徴とする酸化物超電導線材の接続構造体。
  5. 前記重ね合わせ部内において、前記被覆部材が前記導電性接合材によって接合されていないことを特徴とする請求項3又は4に記載の酸化物超電導線材の接続構造体。
  6. 請求項2に記載の酸化物超電導線材であって、
    前記酸化物超電導線材の長手方向と同方向に、前記酸化物超電導線材の端部と対向して補強板が配置され、
    前記補強板が前記被覆部材によって、前記酸化物超電導線材の長手方向端部と共に被覆され、
    前記補強板の幅が前記酸化物超電導線材の幅と略同幅であることを特徴とする酸化物超電導線材。
  7. 請求項3から5の何れか一項に記載の酸化物超電導線材の接続構造体であって、
    請求項6に記載の酸化物超電導線材同士を接続することを特徴とする酸化物超電導線材の接続構造体。
  8. 請求項1、2もしくは6の何れか一項に記載の酸化物超電導線材または請求項3〜5もしくは7の何れか一項に記載の酸化物超電導線材の接続構造体を有することを特徴とする超電導機器。
  9. テープ状の基材に中間層と酸化物超電導層と安定化層を積層してなる酸化物超電導線材の接続しようとする端部に被覆部材を形成し第1の酸化物超電導線材及び第2の酸化物超電導線材を形成する工程と、
    前記第1の酸化物超電導線材または前記第2の酸化物超電導線材の安定化層表面であって、前記第1の酸化物超電導線材及び前記第2の酸化物超電導線材の互いの端部近傍の前記安定化層同士を対向させる時に、線材同士が互いに覆っている部分において、前記第1の酸化物超電導線材端部及び前記第2の酸化物超電導線材端部に対応する位置に、所定の幅でマスキング材を配置する工程と、
    前記マスキング材間に形成される空間に導電性接合材を配置する工程と、
    前記第1の酸化物超電導線材及び前記第2の酸化物超電導線材を接合する工程と、
    前記マスキング材を除去する工程と、を有することを特徴とする酸化物超電導線材の接続構造体の製造方法。
JP2013002175A 2012-11-30 2013-01-09 酸化物超電導線材及びその製造方法 Expired - Fee Related JP6101491B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013002175A JP6101491B2 (ja) 2012-11-30 2013-01-09 酸化物超電導線材及びその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012263568 2012-11-30
JP2012263568 2012-11-30
JP2013002175A JP6101491B2 (ja) 2012-11-30 2013-01-09 酸化物超電導線材及びその製造方法

Publications (2)

Publication Number Publication Date
JP2014130789A true JP2014130789A (ja) 2014-07-10
JP6101491B2 JP6101491B2 (ja) 2017-03-22

Family

ID=51408998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013002175A Expired - Fee Related JP6101491B2 (ja) 2012-11-30 2013-01-09 酸化物超電導線材及びその製造方法

Country Status (1)

Country Link
JP (1) JP6101491B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3243917A4 (en) * 2015-01-07 2018-05-23 Mitsubishi Materials Corporation Superconduction stabilizer material, superconducting wire, and superconducting coil
EP3243916A4 (en) * 2015-01-07 2018-05-30 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
CN110546720A (zh) * 2017-05-19 2019-12-06 住友电气工业株式会社 超导线、用于制造超导线的方法、超导线圈、超导磁体和超导装置
US10971278B2 (en) 2016-04-06 2021-04-06 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
US11149329B2 (en) 2016-04-06 2021-10-19 Mitsubishi Materials Corporation Stabilizer material for superconductor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033580A1 (fr) * 1999-11-04 2001-05-10 Sumitomo Electric Industries, Ltd. Procede de fabrication d'un fil en oxyde supraconducteur, fil en oxyde supraconducteur, bobine supraconductrice et dispositif supraconducteur
JP2005071777A (ja) * 2003-08-25 2005-03-17 Hitachi Cable Ltd 酸化物超電導線材の封止構造及び封止方法
JP2006228665A (ja) * 2005-02-21 2006-08-31 Sumitomo Electric Ind Ltd 酸化物超電導線材およびその製造方法ならびに超電導機器
JP2012195469A (ja) * 2011-03-17 2012-10-11 Fuji Electric Co Ltd 超電導コイルおよびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001033580A1 (fr) * 1999-11-04 2001-05-10 Sumitomo Electric Industries, Ltd. Procede de fabrication d'un fil en oxyde supraconducteur, fil en oxyde supraconducteur, bobine supraconductrice et dispositif supraconducteur
JP2005071777A (ja) * 2003-08-25 2005-03-17 Hitachi Cable Ltd 酸化物超電導線材の封止構造及び封止方法
JP2006228665A (ja) * 2005-02-21 2006-08-31 Sumitomo Electric Ind Ltd 酸化物超電導線材およびその製造方法ならびに超電導機器
JP2012195469A (ja) * 2011-03-17 2012-10-11 Fuji Electric Co Ltd 超電導コイルおよびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3243917A4 (en) * 2015-01-07 2018-05-23 Mitsubishi Materials Corporation Superconduction stabilizer material, superconducting wire, and superconducting coil
EP3243916A4 (en) * 2015-01-07 2018-05-30 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
US10964453B2 (en) 2015-01-07 2021-03-30 Mitsubishi Materials Corporation Superconducting stabilization material, superconducting wire, and superconducting coil
US10964454B2 (en) 2015-01-07 2021-03-30 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
US10971278B2 (en) 2016-04-06 2021-04-06 Mitsubishi Materials Corporation Superconducting wire and superconducting coil
US11149329B2 (en) 2016-04-06 2021-10-19 Mitsubishi Materials Corporation Stabilizer material for superconductor
CN110546720A (zh) * 2017-05-19 2019-12-06 住友电气工业株式会社 超导线、用于制造超导线的方法、超导线圈、超导磁体和超导装置

Also Published As

Publication number Publication date
JP6101491B2 (ja) 2017-03-22

Similar Documents

Publication Publication Date Title
JP5841862B2 (ja) 高温超電導線材および高温超電導コイル
JP5568361B2 (ja) 超電導線材の電極部接合構造、超電導線材、及び超電導コイル
JP6101491B2 (ja) 酸化物超電導線材及びその製造方法
WO2014109326A1 (ja) 酸化物超電導線材、その接続構造、および超電導機器
WO2013165001A1 (ja) 超電導線材、超電導線材の接続構造、超電導線材の接続方法及び超電導線材の端末処理方法
CN109564801A (zh) 氧化物超导线材
WO2016080524A1 (ja) 超電導コイル
JP6101490B2 (ja) 酸化物超電導線材の接続構造体及び超電導機器
JP6329736B2 (ja) 積層パンケーキ型超電導コイル及びそれを備えた超電導機器
JP6086852B2 (ja) 酸化物超電導線材、酸化物超電導線材の接続構造体、酸化物超電導線材と電極端子の接続構造体、及びこれを備えた超電導機器、並びにこれらの製造方法
JP5693798B2 (ja) 酸化物超電導線材
JP2013247011A (ja) 酸化物超電導線材及びその製造方法
JP6069269B2 (ja) 酸化物超電導線材、超電導機器及び酸化物超電導線材の製造方法
JP5701247B2 (ja) 酸化物超電導線材の接続構造体及び接続方法
JP2014130730A (ja) 酸化物超電導線材の接続構造体及び接続方法並びに接続構造体を用いた酸化物超電導線材
JP5732345B2 (ja) 酸化物超電導線材の接続構造体及び酸化物超電導線材の接続方法
WO2017104297A1 (ja) 酸化物超電導線材の製造方法及び超電導コイルの製造方法
JP6002602B2 (ja) 酸化物超電導線材の接続構造体及びその製造方法
WO2012039444A1 (ja) 酸化物超電導線材およびその製造方法
JP2014130793A (ja) 酸化物超電導線材の接続構造体とその製造方法
JP2014107149A (ja) 酸化物超電導線材並びに当該酸化物超電導線材の接続構造体
JP5640022B2 (ja) 超電導線材と外部端子の接合方法、および超電導線材の外部端子接合構造体
WO2014104333A1 (ja) 酸化物超電導線材の接続構造体およびその製造方法と超電導機器
JP5775808B2 (ja) 酸化物超電導線材とその製造方法
JP5775810B2 (ja) 酸化物超電導線材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170227

R151 Written notification of patent or utility model registration

Ref document number: 6101491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees