JP2014130115A - ガス化ガス中の硫化水素計測装置及びそれを備えたガス化燃料電池複合発電システム - Google Patents
ガス化ガス中の硫化水素計測装置及びそれを備えたガス化燃料電池複合発電システム Download PDFInfo
- Publication number
- JP2014130115A JP2014130115A JP2012289104A JP2012289104A JP2014130115A JP 2014130115 A JP2014130115 A JP 2014130115A JP 2012289104 A JP2012289104 A JP 2012289104A JP 2012289104 A JP2012289104 A JP 2012289104A JP 2014130115 A JP2014130115 A JP 2014130115A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- gasification
- hydrogen sulfide
- laser
- measuring device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
【課題】ガス化ガス中の硫化水素計測装置及びそれを備えたガス化燃料電池複合発電システムを提供する。
【解決手段】硫化水素(H2S)を含む高圧ガス化ガス11の一部を分岐した分岐ガス11aのガス圧力を低下させる調圧弁53と、レーザ送光部13からのレーザ光14をレーザ計測装置本体12の長手方向に沿って導入し、内部に導入された分岐ガス11aのガス組成の吸収度合いを受光部15で計測すると共に、レーザ光が透過する透過窓16A、16Bを装置本体の両端部に有するレーザ計測装置17Aとを具備し、レーザ計測装置17Aは、その装置本体の長手方向中央の側壁面に設けられ、そのレーザ計測装置本体の内部に分岐ガスを導入するガス導入口12aと、ガス導入口12aと180度対向する側壁面であって、レーザ光導入端部12bとレーザ光送出端部12cとの近傍に各々設けられ、分岐ガスを排出するガス排出口12d、12eとを有する。
【選択図】図1
【解決手段】硫化水素(H2S)を含む高圧ガス化ガス11の一部を分岐した分岐ガス11aのガス圧力を低下させる調圧弁53と、レーザ送光部13からのレーザ光14をレーザ計測装置本体12の長手方向に沿って導入し、内部に導入された分岐ガス11aのガス組成の吸収度合いを受光部15で計測すると共に、レーザ光が透過する透過窓16A、16Bを装置本体の両端部に有するレーザ計測装置17Aとを具備し、レーザ計測装置17Aは、その装置本体の長手方向中央の側壁面に設けられ、そのレーザ計測装置本体の内部に分岐ガスを導入するガス導入口12aと、ガス導入口12aと180度対向する側壁面であって、レーザ光導入端部12bとレーザ光送出端部12cとの近傍に各々設けられ、分岐ガスを排出するガス排出口12d、12eとを有する。
【選択図】図1
Description
本発明は、ガス化ガス中の硫化水素計測装置及びそれを備えたガス化燃料電池複合発電システムに関する。
石炭の有効利用が着目されており、今後、石炭のクリーンな利用プロセスの需要が増加することが予測される。石炭を付加価値の高いエネルギー媒体に変換するためには、石炭をガス化する技術やガス化したものを精製する技術など、高度な技術が用いられる。
このようなシステムにおいて対応技術の一つと注目される石炭をガス化した石炭ガス化ガス(ガス化ガス)を精製して得られた精製ガスを、タービン用のガスとして適用する発電プラントや、メタノール、アンモニア等の化成品を合成するための原料として用いる化成品合成プラントが提案されている。ガス化ガスを用いて発電に適用する発電プラント設備として、例えば、石炭ガス化複合発電(Integrated Cal Gasification Combined Cycle:IGCC)システムが提案されている(例えば、特許文献1、2参照)。IGCCシステムとは、石炭を高温高圧のガス化炉で可燃性ガスに転換してガス化ガスを生成し、そのガス化ガスを燃料としてガスタービンと蒸気タービンとにより複合発電を行うシステムをいう。
ところで、近年石炭ガス化ガスをタービン以外にさらに燃料電池を組み合わせて、ガスタービン、蒸気タービン、燃料電池の3種の発電形態を組み合わせて、トリプル複合発電を行い、送電端効率の向上をはかる石炭ガス化燃料電池複合発電(IGFC)システムの提案がある(特許文献3参照)。
しかしながら、石炭ガス化ガス中には、硫化水素が含まれているので、IGCC設備に設置されている公知の脱硫手段で脱硫した後のガス化ガス中の硫化水素の濃度を確認し、燃料電池に用いる触媒の触媒被毒発生の防止を図るために、ガス化ガス中の微量の硫化水素濃度を効率よく、しかもオンラインで計測することができる計測装置の出現が切望されている。
そこで、ガス化ガス中の硫化水素濃度をオンラインで計測できるガス化ガス中の硫化水素計測装置及びそれを備えたガス化燃料電池複合発電システムを提供することを課題とする。
上述した課題を解決するための本発明の第1の発明は、硫化水素(H2S)を含む高圧ガス化ガスの一部の分岐ガスを分岐する分岐管と、前記分岐管に介装され、分岐ガスのガス圧力を低下させる調圧弁と、レーザ送光部からのレーザ光をレーザ計測装置本体の長手方向に沿って導入し、内部に導入された分岐ガスのガス組成の吸収度合いを受光部で計測すると共に、レーザ光が透過する透過窓を装置本体の両端部に有するレーザ計測装置と、を具備し、前記レーザ計測装置は、そのレーザ計測装置本体の長手方向中央の側壁面に設けられ、前記分岐管の一端が接続され、そのレーザ計測装置本体の内部に分岐ガスを導入するガス導入口と、前記ガス導入口と、対向する側壁面であって、レーザ光導入端部とレーザ光送出端部との近傍に各々設けられ、内部に導入された分岐ガスを排出するガス排出口とを有することを特徴とするガス化ガス中の硫化水素計測装置にある。
第2の発明は、第1の発明において、前記ガス導入口から導入された分岐ガスは、装置本体の両端部近傍に設けたガス排出口間の距離分広がると共に、前記レーザ光の光路長がガス排出口間の距離であることを特徴とするガス化ガス中の硫化水素計測装置にある。
第3の発明は、第1又は2の発明において、前記装置本体の両端部に設けた透過窓の内面を清浄化するパージガスを導入するパージガス導入部を有することを特徴とするガス化ガス中の硫化水素計測装置にある。
第4の発明は、第3の発明において、前記装置本体の内部のパージガス導入部近傍に設けられ、パージガスと分岐ガスとを分離しつつ、レーザ光を通過する通過孔を有する隔壁を有することを特徴とするガス化ガス中の硫化水素計測装置にある。
第5の発明は、燃料をガス化させるガス化炉と、ガス化した高圧のガス化ガス中の硫黄分を除去する脱硫手段と、前記脱硫後のガス化ガス中に残存する硫化水素を計測する請求項1乃至4のいずれか一つのガス化ガス中の硫化水素計測装置と、脱硫後のガス化ガスを燃料として用いて発電する燃料電池と、脱硫後のガス化ガスは燃料電池からの排燃料ガスのいずれか一方又は両方を用いて発電するタービン設備とを具備するガス化燃料電池複合発電システムにある。
本発明によれば、ガス化ガス中の微量の硫化水素濃度をオンラインで計測できることにより、燃料電池の触媒被毒を事前に防止することが可能となる。
以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
図1は、実施例1に係るレーザ計測装置を有するガス化ガス中の硫化水素計測装置の概略図である。図2及び3は、実施例1に係る他のレーザ計測装置の概略図である。
図1に示すように、本実施例に係るガス化ガス中の硫化水素計測装置10は、硫化水素(H2S)を含む高圧ガス化ガス11の一部の分岐ガス11aを母管54より分岐する分岐管52と、前記分岐管52に介装され、分岐ガス11aのガス圧力を低下させる調圧弁53と、レーザ送光部13からのレーザ光14をレーザ計測装置本体(以下、「装置本体」という)12の長手方向に沿って導入し、内部に導入された分岐ガス11aのガス組成の吸収度合いを受光部15で計測すると共に、レーザ光14が透過する透過窓16A、16Bを装置本体の両端部に有するレーザ計測装置17Aと、を具備し、前記レーザ計測装置17Aは、その装置本体12の長手方向中央の側壁面に設けられ、前記分岐管52の一端52aが接続され、その装置本体12の内部に分岐ガス11aを導入するガス導入口12aと、前記ガス導入口12aと、180度対向する側壁面であって、レーザ光導入端部12bとレーザ光送出端部12cとの近傍に各々設けられ、内部に導入された分岐ガス11aを排出するガス排出口12d、12eとを有するものである。
本実施例では、装置本体12の長手方向中央の側壁面に設けられたガス導入口12aから導入される分岐ガス11aは、分岐管52中に介装された調圧弁53によりその圧力を低下させ、一定にさせている。
ここで、圧力の変動が発生する場合、特に高圧側に変動がおこると、吸収スペクトルのブロードニング(広がり)という現象が発生し、レーザ光の吸収スペクトル形状が変化がおこり、測定精度が悪化するので、一定とするようにしている。
分岐ガス11aは、装置本体12の側壁面から導入され、レーザ光14と直交し、180度対向する位置に設けたガス排出部12d、12eに向かって、層流状態で流れる。この層流状態の分岐ガス11aを、送光部13からのレーザ光14が装置本体12の長手方向に沿って送光する際、分岐ガス11a中の硫化水素(H2S)を吸収し、この吸収したレーザ光を、半導体レーザ吸収分光法によりガス中のH2S濃度を受光部15で計測するようにしている。
本実施例では、レーザ光14の送光方向と直交する方向の層流とする際、分岐ガス11aは、装置本体12の両端部近傍に設けたガス排出口12d、12eに向かって排出するので、ガス排出口12d、12e間の距離だけガス流れ広がることとなる。この結果、この分岐ガス11a中を通過する前記レーザ光14の光路長Lがガス排出口12d、12e間の距離と略同一となる。
これは、硫化水素の検出感度は低い(例えば3ppm/m)ので、0.5ppmを検出する場合に、少なくとも装置本体のレーザ光14の光路長Lを6m程度とする必要があることによる。
ここで、半導体レーザとしては、レーザ光14の波長が1μm〜9μmの範囲とすればよく、好適には1.2μm〜2.0μmの範囲とするとよい。
硫化水素を計測するレーザ装置としては、半導体(InGaAs)レーザ等を例示することができる。
なお、半導体レーザ装置に限定されず、赤外域(2〜9μm)に発振領域をもつ例えば量子カスケードレーザ等を適用することもできる。この量子カスケードレーザを用いる場合には、その出力はおよそ1mW程度とすればよい。
なお、半導体レーザ装置に限定されず、赤外域(2〜9μm)に発振領域をもつ例えば量子カスケードレーザ等を適用することもできる。この量子カスケードレーザを用いる場合には、その出力はおよそ1mW程度とすればよい。
ここで、レーザ光14が入射及び出射する際に透過する透過窓16A、16Bは、例えば石英窓を用いることができる。
この透過窓16A、16Bは、装置本体12内の導入するガスが石炭ガス化ガスであり、煤塵が多く浮遊しているので、透過窓16A、16Bの内面を清浄化するために、パージガス(N2)を導入するようにしている。
このパージガスとしては、窒素(N2)ガスを用いており、装置本体12の内部のレーザ光導入端部12bとレーザ光送出端部12c近傍に、各々設けたパージガス導入部18a、18bから内部に導入している。なお、パージガスとしては窒素(N2)ガス以外に不活性ガスであればよく、希ガス類などを例示できる。
この透過窓16A、16Bは、装置本体12内の導入するガスが石炭ガス化ガスであり、煤塵が多く浮遊しているので、透過窓16A、16Bの内面を清浄化するために、パージガス(N2)を導入するようにしている。
このパージガスとしては、窒素(N2)ガスを用いており、装置本体12の内部のレーザ光導入端部12bとレーザ光送出端部12c近傍に、各々設けたパージガス導入部18a、18bから内部に導入している。なお、パージガスとしては窒素(N2)ガス以外に不活性ガスであればよく、希ガス類などを例示できる。
ここで、図2に示すように、パージガス導入部18a、18bは、ガス排出口12d、12eよりもレーザ光導入端部12bとレーザ光送出端部12c側に設けることで、パージガスと混合することによる分岐ガス11aの希釈を防止している。
また、パージガス導入部18a、18bの先端部は、透過窓16A、16Bに向かって斜めに設置され、パージガスが直接透過窓16A、16Bの内面に当たるようにしている。窓のシール性が確保されるのであれば、ガス導入部18a、18bの先端部を、透過窓16A、16Bと平行に設置してもよい。
また、パージガス導入部18a、18bの先端部は、透過窓16A、16Bに向かって斜めに設置され、パージガスが直接透過窓16A、16Bの内面に当たるようにしている。窓のシール性が確保されるのであれば、ガス導入部18a、18bの先端部を、透過窓16A、16Bと平行に設置してもよい。
また、図3に示すように、装置本体12の内部のパージガス導入部18a、18b近傍に設けられ、パージガス(N2)と分岐ガス11aとを分離しつつ、レーザ光14を通過する通過孔19a、19bを有する隔壁19、19を設けるようにしてもよい。
ここで、隔壁19、19は、ガス排出口12d、12eよりもレーザ光導入端部12bとレーザ光送出端部12c側に設けることで、パージガスは光路長領域内に流入することなく、パージガスと混合することによる分岐ガス11aの希釈を防止している。
次に、実施例2に係るガス化燃料電池複合発電システムについて説明する。
図4は、本実施例に係るガス化燃料電池複合発電システムの概略図である。
本実施例では、実施例1のガス化ガス中の硫化水素計測装置10を、ガス化燃料電池複合発電システムに組み入れたものである。なお、実施例1に示すガス化ガス中の硫化水素計測装置と同一の構成部材については、同一の符号を付して重複した説明は省略する。
図4は、本実施例に係るガス化燃料電池複合発電システムの概略図である。
本実施例では、実施例1のガス化ガス中の硫化水素計測装置10を、ガス化燃料電池複合発電システムに組み入れたものである。なお、実施例1に示すガス化ガス中の硫化水素計測装置と同一の構成部材については、同一の符号を付して重複した説明は省略する。
図4に示すように、本実施例に係るガス化燃料電池複合発電システム50Aは、燃料である石炭をガス化させるガス化炉51と、ガス化した高圧のガス化ガス11中の硫黄分を除去する脱硫手段55と、脱硫手段55での脱硫後のガス化ガス11中に残存する硫化水素を、燃料電池の入口側で計測する第1のガス化ガス中の硫化水素計測装置(以下「入口側H2S計」という)10−1と、脱硫後のガス化ガス11を燃料ガスとして用いて発電する2系統の燃料電池60A、60Bと、燃料電池からの排燃料ガス11Aを用いて発電するタービン設備(ガスタービン、排熱回収ボイラ(HRSG)、蒸気タービンからなる)70とを具備する。
図4中、符号L3、L4及びL5は燃料電池からの排燃料ガスをタービン設備70側へ排出する排燃料ガスラインを図示する。
図4中、符号L3、L4及びL5は燃料電池からの排燃料ガスをタービン設備70側へ排出する排燃料ガスラインを図示する。
図5−1乃至図5−2は、本実施例のガス化燃料電池複合発電システムの運転状況を示す概略図である。
先ず、図5−1に示すように、2系統ある燃料電池(SOFC)60A、60Bの内、第1のSOFC60Aを用いて発電を行っている場合について説明する。
脱硫手段55で脱硫後のガス化ガス11は、燃料ガスとして、第1のSOFC60Aに第1の燃料供給ラインL1を介して、供給される。
この際、第1の燃料ラインL1に介装された開閉弁V1は開いており、ガス化ガス11を第1のSOFC60Aに導入していると共に、第2の燃料ラインL2に介装された開閉弁V3は閉じており、ガス化ガス11の第2のSOFC60Bへの導入を停止している。
先ず、図5−1に示すように、2系統ある燃料電池(SOFC)60A、60Bの内、第1のSOFC60Aを用いて発電を行っている場合について説明する。
脱硫手段55で脱硫後のガス化ガス11は、燃料ガスとして、第1のSOFC60Aに第1の燃料供給ラインL1を介して、供給される。
この際、第1の燃料ラインL1に介装された開閉弁V1は開いており、ガス化ガス11を第1のSOFC60Aに導入していると共に、第2の燃料ラインL2に介装された開閉弁V3は閉じており、ガス化ガス11の第2のSOFC60Bへの導入を停止している。
このような状態で、第1のSOFC60Aに燃料ガスとして、ガス化ガス11を供給する際、入口側に設けた入口側H2S計10−1で計測することで、第1のSOFC60Aへ導入するガス化ガス11中のH2Sの総量をオンラインで計測することができる。
図6は、ガス化ガスの供給時間とH2S量との関係図であり、閾値が破線で示されている。
図6に示すような時間と共に、H2Sの総量が増加し、所定の閾値となった場合に、第1のSOFC60Aの触媒が被毒されていると判断する。
ここで、H2Sの総量の導出は、単位時間あたりの「H2S量=H2S濃度×計測時間」にてあらわされ、その計測総時間にて積分したものをH2S総量としている。
図6に示すような時間と共に、H2Sの総量が増加し、所定の閾値となった場合に、第1のSOFC60Aの触媒が被毒されていると判断する。
ここで、H2Sの総量の導出は、単位時間あたりの「H2S量=H2S濃度×計測時間」にてあらわされ、その計測総時間にて積分したものをH2S総量としている。
この第1のSOFC60Aの触媒被毒と判断すると、図5−2に示すように、第2のラインL2に介装された開閉弁V3を開いてガス化ガス11を、第2のSOFC60Bに導入する。これと共に、第1の燃料供給ラインL1に介装された開閉弁V1を閉じ、ガス化ガス11の第1のSOFC60Aへの導入を停止する。
次いで、図5−2に示すように、パージガスとして窒素(N2)ガスを第1のSOFC60Aへ供給するために、パージガス供給ラインL11に介装された開閉弁V11を開き、窒素ガスを第1のSOFC60A内に導入する。なお、パージガスは、パージガス排出ラインL12に介装された開閉弁V12を開放することで、排気ガスとして排出される。
この窒素ガスのパージにより、被毒された触媒に付着している硫化水素が脱離され、触媒再生がなされる。
この結果、第1のSOFC60Aでの触媒被毒された触媒が再生され、復活することとなるので、再度燃料電池として使用することができることとなる。
これは、パージガスとして供給される窒素ガスのガス分圧の関係から、吸着していた硫化水素が脱離することにより、触媒再生がなされることとなるからである。
この結果、第1のSOFC60Aでの触媒被毒された触媒が再生され、復活することとなるので、再度燃料電池として使用することができることとなる。
これは、パージガスとして供給される窒素ガスのガス分圧の関係から、吸着していた硫化水素が脱離することにより、触媒再生がなされることとなるからである。
なお、窒素ガス以外に、還元ガスとして例えば水素ガスを用いることで、触媒金属の還元が進行し、触媒再生を施すようにしてもよい。
また、窒素ガスと還元ガスとを併用し、脱離と触媒還元作用とを同時に行うようにしてもよい。
第1のSOFC60Aを再生する間は、図5−2に示すように、第2のSOFC60Bを用いて燃料電池発電を行うと共に、引き続き入口側H2S計10−1で計測することで、第2のSOFC60Bへ導入するガス化ガス11中のH2Sの総量をオンラインで計測する。
そして、第1のSOFC60Aと同様に、図6に示すような時間と共に、H2Sの総量が増加し、所定の閾値となった場合に、第2のSOFC60Bの触媒が被毒されていると判断する。
そして、先ほどの第1のSOFC60Aの再生手順と同様に操作して、第2のSOFC60Bの触媒再生を実施する。
そして、第1のSOFC60Aと同様に、図6に示すような時間と共に、H2Sの総量が増加し、所定の閾値となった場合に、第2のSOFC60Bの触媒が被毒されていると判断する。
そして、先ほどの第1のSOFC60Aの再生手順と同様に操作して、第2のSOFC60Bの触媒再生を実施する。
次に、実施例3に係るガス化燃料電池複合発電システムについて説明する。
図7は、本実施例に係るガス化燃料電池複合発電システムの概略図である。なお、実施例2に示すガス化燃料電池複合発電システムと同一の構成部材については、同一の符号を付して重複した説明は省略する。
図7は、本実施例に係るガス化燃料電池複合発電システムの概略図である。なお、実施例2に示すガス化燃料電池複合発電システムと同一の構成部材については、同一の符号を付して重複した説明は省略する。
図7に示すように、本実施例に係るガス化燃料電池複合発電システム50Bは、燃料電池の出口側でも硫化水素の濃度を計測する第2のガス化ガス中の硫化水素計測装置(以下「出口側H2S計」という)10−2A、10−2Bを設けている。
図10−1乃至図10−2は、本実施例のガス化燃料電池複合発電システムの運転状況を示す概略図である。
図10−1乃至図10−2は、本実施例のガス化燃料電池複合発電システムの運転状況を示す概略図である。
先ず、図10−1に示すように、2系統ある燃料電池(SOFC)60A、60Bの内、第1のSOFC60Aを用いて発電を行っている場合について説明する。
脱硫手段55で脱硫後のガス化ガス11は、燃料ガスとして第1のSOFC60Aに第1の燃料供給ラインL1を介して、供給される。
この際、第1の燃料供給ラインL1に介装された開閉弁V1は開いており、ガス化ガス11を第1のSOFC60Aに導入していると共に、第2の燃料供給ラインL2に介装された開閉弁V3は閉じており、ガス化ガス11の第2のSOFC60Bへの導入を停止している。
脱硫手段55で脱硫後のガス化ガス11は、燃料ガスとして第1のSOFC60Aに第1の燃料供給ラインL1を介して、供給される。
この際、第1の燃料供給ラインL1に介装された開閉弁V1は開いており、ガス化ガス11を第1のSOFC60Aに導入していると共に、第2の燃料供給ラインL2に介装された開閉弁V3は閉じており、ガス化ガス11の第2のSOFC60Bへの導入を停止している。
このような状態で、第1のSOFC60Aに燃料ガスとして、ガス化ガス11を供給する際、入口側に設けた入口側H2S計10−1で計測することで、第1のSOFC60Aへ導入するガス化ガス11中のH2Sの総量をオンラインで計測することができる。
実施例2では、図6に示すように、時間と共に、H2Sの総量が増加し、所定の閾値となった場合に、第1のSOFC60Aの触媒が被毒されていると判断していた。
ところで、硫化水素の総和で触媒被毒を判断する場合、実際に被毒しているか否かは、被毒量を判断するほうが望ましい。
ところで、硫化水素の総和で触媒被毒を判断する場合、実際に被毒しているか否かは、被毒量を判断するほうが望ましい。
そこで、本実施例では、第1のSOFC60Aの出口側の排燃料ラインL3においても、第1の出口側H2S計10−2Aを設け、第1のSOFC60Aの触媒を通過した硫化水素の通過量を計測する。
図8は、ガス化ガスの供給時間と、触媒通過H2S量との関係図である。
この図8の触媒通過したH2S量を、図6に示すH2S総和量から引くことで、実際に触媒に付着したH2S被毒量が推定される。
この図8の触媒通過したH2S量を、図6に示すH2S総和量から引くことで、実際に触媒に付着したH2S被毒量が推定される。
図9は、ガス化ガスの供給時間と、H2S触媒被毒量との関係図である。
そして、H2S触媒被毒量の閾値を予め決定しておき、この閾値に達したと判断した際に、第1のSOFC60Aの触媒が被毒されていると判断する。
これにより実施例2よりも触媒被毒の判定が確実となる。
すなわち、実施例2では、H2Sの総量のみで判断していたので、実際に被毒していない場合にも、触媒再生を実施することとなる。
これに対し、本実施例では、触媒被毒量の閾値に達した場合に、触媒再生を実施するので、触媒被毒の判断が確実となり、適切な触媒再生を実施することができる。
そして、H2S触媒被毒量の閾値を予め決定しておき、この閾値に達したと判断した際に、第1のSOFC60Aの触媒が被毒されていると判断する。
これにより実施例2よりも触媒被毒の判定が確実となる。
すなわち、実施例2では、H2Sの総量のみで判断していたので、実際に被毒していない場合にも、触媒再生を実施することとなる。
これに対し、本実施例では、触媒被毒量の閾値に達した場合に、触媒再生を実施するので、触媒被毒の判断が確実となり、適切な触媒再生を実施することができる。
この第1のSOFC60Aの触媒被毒と判断すると、図10−2に示すように、第2の燃料供給ラインL2に介装された開閉弁V3を開いてガス化ガス11を、第2のSOFC60Bに導入する。これと共に、第1の燃料供給ラインL1に介装された開閉弁V1を閉じ、ガス化ガス11の第1のSOFC60Aへの導入を停止する。
次いで、パージガスとして窒素(N2)ガスを第1のSOFC60Aへ供給するために、パージガス供給ラインL11に介装された開閉弁V11を開き、窒素ガスを第1のSOFC60A内に導入する。なお、パージガスは、パージガス排出ラインL12に介装された開閉弁V12を開放することで、排気ガスとして排出される。
この窒素ガスのパージにより、被毒された触媒に付着している硫化水素が脱離され、触媒再生がなされる。
この結果、第1のSOFC60Aでの触媒被毒された触媒が再生され、復活することとなるので、再度燃料電池として使用することができることとなる。
これは、パージガスとして供給される窒素ガスのガス分圧の関係から、吸着していた硫化水素が脱離することにより、触媒再生がなされることとなるからである。
この結果、第1のSOFC60Aでの触媒被毒された触媒が再生され、復活することとなるので、再度燃料電池として使用することができることとなる。
これは、パージガスとして供給される窒素ガスのガス分圧の関係から、吸着していた硫化水素が脱離することにより、触媒再生がなされることとなるからである。
本実施例では、この窒素パージが確実になされているかを判断するために、第1のSOFC60Aの出口側の排燃料ガスラインL3に設置された出口側H2S計10−2Aを用いて、パージにより脱離された硫化水素の総量を計測している。
図11は、ガス化ガスの供給時間と、触媒の吸着されるH2S量と、脱離されるH2S量との関係図である。
この図11により、実際に脱離されたH2S量を把握することができ、パージの終了を確認することができる。
図11は、ガス化ガスの供給時間と、触媒の吸着されるH2S量と、脱離されるH2S量との関係図である。
この図11により、実際に脱離されたH2S量を把握することができ、パージの終了を確認することができる。
すなわち、パージ終了以降、窒素パージをしても、脱離する硫化水素がないので、無駄なパージとなり、燃料電池の稼働時間も減少するからである。
この結果、パージの終了が確認でき、適正なパージ時間を図ることができる。
この結果、パージの終了が確認でき、適正なパージ時間を図ることができる。
なお、第1のSOFC60Aを再生する間は、実施例2と同様にして、第2のSOFC60Bを用いて燃料電池発電を行うと共に、引き続き入口側H2S計10−1で計測することで、第2のSOFC60Bへ導入するガス化ガス11中のH2Sの総量をオンラインで計測する。その際、第2のSOFC60Bの出口側においても、排燃料ガスラインL4に第2の出口側H2S計10−2Bを設置することで、触媒パージのタイミングを把握することができる。
そして、第2のSOFC60Bの触媒が被毒されていると判断した場合には、第1のSOFC60Aの再生手順と同様に操作して、第2のSOFC60Bの触媒再生を実施する。
そして、第2のSOFC60Bの触媒が被毒されていると判断した場合には、第1のSOFC60Aの再生手順と同様に操作して、第2のSOFC60Bの触媒再生を実施する。
10 ガス化ガス中の硫化水素計測装置
10−1 入口側H2S計
10−2A 第1の出口側H2S計
10−2B 第2の出口側H2S計
11 硫化水素(H2S)を含む高圧ガス化ガス
11a 分岐ガス
12 レーザ計測装置本体(装置本体)
13 レーザ送光部
14 レーザ光
15 受光部
16A、16B 透過窓
17A〜17C レーザ計測装置
50A、50B ガス化燃料電池複合発電システム
51 ガス化炉
55 脱硫手段
60 燃料電池(SOFC)
60A 第1のSOFC
60B 第2のSOFC
10−1 入口側H2S計
10−2A 第1の出口側H2S計
10−2B 第2の出口側H2S計
11 硫化水素(H2S)を含む高圧ガス化ガス
11a 分岐ガス
12 レーザ計測装置本体(装置本体)
13 レーザ送光部
14 レーザ光
15 受光部
16A、16B 透過窓
17A〜17C レーザ計測装置
50A、50B ガス化燃料電池複合発電システム
51 ガス化炉
55 脱硫手段
60 燃料電池(SOFC)
60A 第1のSOFC
60B 第2のSOFC
Claims (5)
- 硫化水素(H2S)を含む高圧ガス化ガスの一部の分岐ガスを分岐する分岐管と、
前記分岐管に介装され、分岐ガスのガス圧力を低下させる調圧弁と、
レーザ送光部からのレーザ光をレーザ計測装置本体の長手方向に沿って導入し、内部に導入された分岐ガスのガス組成の吸収度合いを受光部で計測すると共に、レーザ光が透過する透過窓を装置本体の両端部に有するレーザ計測装置と、を具備し、
前記レーザ計測装置は、
そのレーザ計測装置本体の長手方向中央の側壁面に設けられ、前記分岐管の一端が接続され、そのレーザ計測装置本体の内部に分岐ガスを導入するガス導入口と、
前記ガス導入口と、対向する側壁面であって、レーザ光導入端部とレーザ光送出端部との近傍に各々設けられ、内部に導入された分岐ガスを排出するガス排出口とを有することを特徴とするガス化ガス中の硫化水素計測装置。 - 請求項1において、
前記ガス導入口から導入された分岐ガスは、装置本体の両端部近傍に設けたガス排出口間の距離分広がると共に、
前記レーザ光の光路長がガス排出口間の距離であることを特徴とするガス化ガス中の硫化水素計測装置。 - 請求項1又は2において、
前記装置本体の両端部に設けた透過窓の内面を清浄化するパージガスを導入するパージガス導入部を有することを特徴とするガス化ガス中の硫化水素計測装置。 - 請求項3において、
前記装置本体の内部のパージガス導入部近傍に設けられ、パージガスと分岐ガスとを分離しつつ、レーザ光を通過する通過孔を有する隔壁を有することを特徴とするガス化ガス中の硫化水素計測装置。 - 燃料をガス化させるガス化炉と、
ガス化した高圧のガス化ガス中の硫黄分を除去する脱硫手段と、
前記脱硫後のガス化ガス中に残存する硫化水素を計測する請求項1乃至4のいずれか一つのガス化ガス中の硫化水素計測装置と、
脱硫後のガス化ガスを燃料として用いて発電する燃料電池と、
脱硫後のガス化ガスは燃料電池からの排燃料ガスのいずれか一方又は両方を用いて発電するタービン設備とを具備するガス化燃料電池複合発電システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012289104A JP2014130115A (ja) | 2012-12-28 | 2012-12-28 | ガス化ガス中の硫化水素計測装置及びそれを備えたガス化燃料電池複合発電システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012289104A JP2014130115A (ja) | 2012-12-28 | 2012-12-28 | ガス化ガス中の硫化水素計測装置及びそれを備えたガス化燃料電池複合発電システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014130115A true JP2014130115A (ja) | 2014-07-10 |
Family
ID=51408605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012289104A Pending JP2014130115A (ja) | 2012-12-28 | 2012-12-28 | ガス化ガス中の硫化水素計測装置及びそれを備えたガス化燃料電池複合発電システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014130115A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014240806A (ja) * | 2013-06-12 | 2014-12-25 | 新日鉄住金エンジニアリング株式会社 | ガス分析装置及びガス分析方法 |
CN104977265A (zh) * | 2015-07-15 | 2015-10-14 | 厦门市吉龙德环境工程有限公司 | 一种水样中可溶性硫化物分析仪及分析方法 |
CN107727585A (zh) * | 2017-09-25 | 2018-02-23 | 国网重庆市电力公司电力科学研究院 | 一种应用于高压开关的气体监测装置 |
CN107860768A (zh) * | 2017-11-08 | 2018-03-30 | 浙江省海洋水产研究所 | 一种具有高效吸收功能的泥样中硫化物检测装置 |
-
2012
- 2012-12-28 JP JP2012289104A patent/JP2014130115A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014240806A (ja) * | 2013-06-12 | 2014-12-25 | 新日鉄住金エンジニアリング株式会社 | ガス分析装置及びガス分析方法 |
CN104977265A (zh) * | 2015-07-15 | 2015-10-14 | 厦门市吉龙德环境工程有限公司 | 一种水样中可溶性硫化物分析仪及分析方法 |
CN107290553A (zh) * | 2015-07-15 | 2017-10-24 | 厦门市吉龙德环境工程有限公司 | 一种水样中可溶性硫化物分析方法 |
CN107727585A (zh) * | 2017-09-25 | 2018-02-23 | 国网重庆市电力公司电力科学研究院 | 一种应用于高压开关的气体监测装置 |
CN107860768A (zh) * | 2017-11-08 | 2018-03-30 | 浙江省海洋水产研究所 | 一种具有高效吸收功能的泥样中硫化物检测装置 |
CN107860768B (zh) * | 2017-11-08 | 2020-09-18 | 浙江省海洋水产研究所 | 一种具有高效吸收功能的泥样中硫化物检测装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5248567A (en) | Power generation plant including fuel cell | |
JP2014130115A (ja) | ガス化ガス中の硫化水素計測装置及びそれを備えたガス化燃料電池複合発電システム | |
JP2019015179A (ja) | 燃焼装置およびガスタービン | |
US20050074644A1 (en) | Fuel cell system | |
KR100597961B1 (ko) | 고정원에서 발생되는 이산화질소 가시매연 저감방법 | |
KR20180050212A (ko) | 불순물 제거 장치 및 그 불순물 제거 장치를 구비하는 리사이클 가스 회수 정제 시스템 | |
JP2005024251A (ja) | ガス化装置の監視システム | |
CN105074334A (zh) | 船用锅炉及船用锅炉的运行方法 | |
JP5979672B2 (ja) | 火力発電プラントの運転方法 | |
CN103657370A (zh) | 利用微波等离子体的硫化氢及硫化羰去除装置及方法 | |
AU2014218404B2 (en) | Control method for gasification power generation system | |
CN105089745B (zh) | 减少废排气中的氮氧化物的系统和方法 | |
WO2019069519A1 (ja) | ガス燃焼処理装置及び燃焼処理方法、ガス燃焼処理装置を備えたガス精製システム | |
JP2014130784A (ja) | ガス化燃料電池複合発電システムの運転方法 | |
JP2003207448A (ja) | ガス分析装置 | |
JP2005206414A (ja) | 水素生成装置 | |
JP5248342B2 (ja) | 発電システムとその運転方法 | |
JP5591158B2 (ja) | 生成ガス中のcos処理装置及びcos処理方法 | |
CA3021696C (en) | In-situ monitoring of flue gas contaminants for fuel cell systems | |
JP5807855B2 (ja) | 排気ガスの処理方法、処理装置およびそれを備えたボイラシステム | |
JP2013022520A (ja) | 排気ガス循環型火力発電プラントの運転方法 | |
JP4459003B2 (ja) | 廃棄物処理システム | |
CN203990299U (zh) | 气体保障性脱硫装置 | |
JP5517460B2 (ja) | 脱硝装置 | |
KR102254409B1 (ko) | 플레어 가스를 이용한 수소 생산장치 및 이 장치에 의한 수소 생산방법 |