JP2014108942A - Bisoxazolidine ligand and catalyst using the same - Google Patents

Bisoxazolidine ligand and catalyst using the same Download PDF

Info

Publication number
JP2014108942A
JP2014108942A JP2012263878A JP2012263878A JP2014108942A JP 2014108942 A JP2014108942 A JP 2014108942A JP 2012263878 A JP2012263878 A JP 2012263878A JP 2012263878 A JP2012263878 A JP 2012263878A JP 2014108942 A JP2014108942 A JP 2014108942A
Authority
JP
Japan
Prior art keywords
ligand
catalyst
bisoxazolidine
asymmetric
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012263878A
Other languages
Japanese (ja)
Other versions
JP5971804B2 (en
Inventor
Takayoshi Arai
孝義 荒井
Toru Sumitomo
透 住友
Yudai Ogino
雄大 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2012263878A priority Critical patent/JP5971804B2/en
Publication of JP2014108942A publication Critical patent/JP2014108942A/en
Application granted granted Critical
Publication of JP5971804B2 publication Critical patent/JP5971804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a manufacturing method of a bisoxazolidine ligand and a catalytic reaction using the same.SOLUTION: There is provided a bisoxazolidine ligand represented by the formula (1) or (2). (1) (2), where Ris any of CH3, CH(CH3)2, CH2CH(CH3)2, CH(CH3)C2H5, C(CH3)3, Ph or CH2 Ph, Ris any of CH3, C2H5 or Ph, Ris any of H, CH3, Br or NO2 and Ph represents an aromatic ring.

Description

本発明は、ビスオキサゾリジン配位子およびそれを用いた触媒に関する。   The present invention relates to a bisoxazolidine ligand and a catalyst using the same.

光学活性なアミノ酸や糖を基本構成単位とする生体高分子は、高度な不斉空間を構築しており、この生体高分子を受容体とする医薬品も光学活性を有している必要がある。このような光学活性な物質を合成する方法は不斉合成法と呼ばれており、不斉合成法の中でも少量の不斉源から理論上無限の光学活性体を合成することが可能な触媒的不斉合成法は極めて有用、重要なものとなっている。   A biopolymer having an optically active amino acid or sugar as a basic structural unit constructs a highly asymmetric space, and a drug using the biopolymer as a receptor needs to have optical activity. Such a method for synthesizing an optically active substance is called an asymmetric synthesis method. Among the asymmetric synthesis methods, a catalytically capable of synthesizing a theoretically infinite optically active substance from a small amount of an asymmetric source. Asymmetric synthesis methods are extremely useful and important.

現在、触媒的不斉合成法は様々な金属触媒を用いることにより達成されている。有用な触媒的不斉反応を実現する不斉配位子として、C2対称な光学活性ビスオキサゾリンは、広く研究されている。中でも、下記非特許文献1に記載されている光学活性ビスオキサゾリン配位子、非特許文献2に記載されている光学活性ビスイミダゾリン配位子、さらには、特許文献1に記載されている光学活性ビスイミダゾリジン配位子は、ピリジン環に連結することで三座の配位子として開発が報告されている。   At present, catalytic asymmetric synthesis is achieved by using various metal catalysts. As an asymmetric ligand that realizes a useful catalytic asymmetric reaction, a C2 symmetric optically active bisoxazoline has been widely studied. Among them, the optically active bisoxazoline ligand described in Non-Patent Document 1 below, the optically active bisimidazoline ligand described in Non-Patent Document 2, and the optical activity described in Patent Document 1 Development of a bisimidazolidine ligand has been reported as a tridentate ligand by linking to a pyridine ring.

特開2011―111426号公報JP 2011-111426 A

Nishiyama,H.;Sakaguchi,H;Nalamura,T.;Horihata,M.;Kondo,M.;Itoh,K.Organometallics1989,8,846.Nishiyama, H .; Sakaguchi, H; Nalamura, T .; Horihata, M .; Kondo, M .; Itoh, K .; Organometallics 1989, 8, 846.

Bhor,S.;Anilkumar,G.;Tse,M.K.;Klawonn,M.;Dobler,C.;Bitterlich,B.;Grotevendt,A.;Beller,M.Org.Lett.2005,7,3393.Bhor, S.M. Anilkumar, G .; Tse, M .; K. Klawonn, M .; Dobler, C .; Bitterlich, B .; Grotevendt, A .; Beller, M .; Org. Lett. 2005, 7, 3393.

上記の非特許文献1記載のビスオキサゾリンや非特許文献2記載のビスイミダゾリンは、様々な反応に有用ではあるものの、その平面性の高い構造故に、配位場が平面四配位という、単純な配位場になっている。これらの配位子は合成に三段階以上を必要としている。また、非特許文献2や特許文献1記載の配位子では、市販の光学活性ジアミンは種類が少なく、高価であるため、実用性に欠ける。
The bisoxazoline described in Non-Patent Document 1 and the bisimidazoline described in Non-Patent Document 2 are useful for various reactions, but because of their highly planar structure, the coordination field is a simple four-coordinate configuration. It is a coordination hall. These ligands require more than three steps for synthesis. Further, in the ligands described in Non-Patent Document 2 and Patent Document 1, commercially available optically active diamines are few and expensive, and thus lack practicality.

そこで、本発明は、上記課題を鑑み、オキサゾリンをオキサゾリジンと変化させることで、より複雑な配位場(ゆがんだ平面四配位場)の構築を目指し、また、多彩な反応に対応できる安価で実用的な触媒的不斉合成を実現する配位子の開発を目的とする。   Therefore, in view of the above problems, the present invention aims to construct a more complex coordination field (a distorted planar four-coordination field) by changing oxazoline to oxazolidine, and is inexpensive and capable of dealing with various reactions. The purpose is to develop a ligand that realizes practical catalytic asymmetric synthesis.

本発明者らは、上記課題について鋭意検討を行なっていたところ、容易に入手可能なアミノ酸エステルから、光学活性アミノアルコールに誘導し、その後アルデヒドと反応させることで二段階での合成に成功し、本発明を完成させるに至った。   The inventors of the present invention have been diligently studying the above-mentioned problems, and from a readily available amino acid ester, succeeded in two-step synthesis by deriving from an optically active amino alcohol and then reacting with an aldehyde. The present invention has been completed.

即ち、本発明の一観点に係る配位子は、下記化学式(1)又は(2)にて示されるものである。
That is, the ligand according to one aspect of the present invention is represented by the following chemical formula (1) or (2).

上記式において、RはCH、CH(CH、CHCH(CH、CH(CH)C、C(CH、Ph、CHPh、のいずれかであり、RはCH、C、Ph、のいずれかであり、RはH、CH、Br、NOのいずれかである。ここで、Phは芳香環を示す。 In the above formula, R 1 is CH 3 , CH (CH 3 ) 2 , CH 2 CH (CH 3 ) 2 , CH (CH 3 ) C 2 H 5 , C (CH 3 ) 3 , Ph, CH 2 Ph, R 2 is any one of CH 3 , C 2 H 5 , and Ph, and R 3 is any one of H, CH 3 , Br, and NO 2 . Here, Ph represents an aromatic ring.

また、本発明の他の一観点に係る触媒は、下記化学式(3)又は(4)にて示されるものである。
A catalyst according to another aspect of the present invention is represented by the following chemical formula (3) or (4).

上記式において、RはCH、CH(CH、CHCH(CH、CH(CH)C、C(CH)、Ph、CHPh、のいずれかであり、RはCH、C、Ph、のいずれかであり、RはH、CH、Br、NOのいずれかである。ここで、Phは芳香環を示す。 In the above formula, R 1 is any of CH 3 , CH (CH 3 ) 2 , CH 2 CH (CH 3 ) 2 , CH (CH 3 ) C 2 H 5 , C (CH 3 ), Ph, CH 2 Ph. R 2 is any one of CH 3 , C 2 H 5 , and Ph, and R 3 is any one of H, CH 3 , Br, and NO 2 . Here, Ph represents an aromatic ring.

また、本発明に係る触媒は、限定されるわけではないがニトロアルケンとインドールのFriedel−Crafts型反応に好適に用いることができる。   Further, the catalyst according to the present invention is not limited, but can be suitably used for Friedel-Crafts type reaction of nitroalkene and indole.

以上、本発明により、二段階で効率的な配位子を合成することができる。不斉源とする種々のアミノ酸から誘導されるアミノアルコールの構造を変化させることで、電子的効果、立体的効果により種々の触媒反応や基質に応じて最適な不斉配位場を提供することができる。また、平面配位子の問題点を克服し、より複雑な配位場を構築することができる。   As described above, according to the present invention, an efficient ligand can be synthesized in two steps. To provide an optimal asymmetric coordination field according to various catalytic reactions and substrates by electronic and steric effects by changing the structure of aminoalcohol derived from various amino acids as an asymmetric source Can do. Moreover, the problem of a planar ligand can be overcome and a more complex coordination field can be constructed.

以下、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は多くの異なる態様で実施することが可能であり、以下に示す実施形態に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention can be implemented in many different modes and is not limited to the embodiments shown below.

本実施形態に関わる配位子は、上記化学式(1)又は(2)で示されることを特徴とする。アミノ酸を構築単位としてもつ2分子のオキサゾリジン骨格は、アミノ酸から誘導されるアミノアルコールと、2位と6位にアルデヒド基を有するピリジンとを反応させることで構築することができる。また、不斉源とするアミノ酸を変化させることでオキサゾリジン環4位の側鎖をCH、CH(CH、CHCH(CH、CH(CH)C、C(CH、Ph、CHPh等で置換することができる。プロリンを用いる場合は、上記化学式(2)で示される配位子となる。その結果、電子的、立体的効果により、配位能力、配位場の複雑さを変化させることができる。(ここでPhは芳香環を示す。) The ligand according to this embodiment is represented by the chemical formula (1) or (2). A bimolecular oxazolidine skeleton having an amino acid as a building unit can be constructed by reacting an amino alcohol derived from an amino acid with pyridine having an aldehyde group at the 2nd and 6th positions. Further, the side chain at the 4-position of the oxazolidine ring is changed to CH 3 , CH (CH 3 ) 2 , CH 2 CH (CH 3 ) 2 , CH (CH 3 ) C 2 H 5 , by changing the amino acid as an asymmetric source. Substitution can be made with C (CH 3 ) 3 , Ph, CH 2 Ph and the like. When proline is used, the ligand is represented by the chemical formula (2). As a result, coordination ability and coordination field complexity can be changed by electronic and steric effects. (Here, Ph represents an aromatic ring.)

配位子は、空気中室温でアモルファス状であり、冷暗所にて1ヶ月以上保存することができる。また、多くの有機溶媒(アセトン、テトラヒドロフラン、塩化メチレン、クロロホルム、トルエン、ジメチルホルムアミド、ジメチルスルフォキシド、アセトニトリル、ジオキサン等)に可溶であり、これらを溶媒として用いる錯体形成ならび触媒的不斉反応に用いることができる。   The ligand is amorphous at room temperature in air, and can be stored for 1 month or longer in a cool and dark place. It is soluble in many organic solvents (acetone, tetrahydrofuran, methylene chloride, chloroform, toluene, dimethylformamide, dimethyl sulfoxide, acetonitrile, dioxane, etc.), and complex formation and catalytic asymmetric reaction using these as solvents Can be used.

また、本実施形態に係る配位子は、以下の方法により合成できる。
Moreover, the ligand which concerns on this embodiment is compoundable with the following method.

また、本実施形態に係る配位子は、金属に配位することで触媒として用いることができ、特に、Friedel−Crafts型反応に好適に用いることができる。   In addition, the ligand according to this embodiment can be used as a catalyst by coordinating to a metal, and can be particularly preferably used in a Friedel-Crafts type reaction.

また、本実施形態に係る配位子を金属に配位させる方法としては、目的の金属塩に対し、等量の配位子を用いて有機溶媒中で反応させる方法が考えられる。また、配位子を配位させる金属としては、配位させることができる限りにおいてこれに限定されるわけではないが、例えば銅、ニッケル、コバルト、ルテニウム、ロジウム又は鉄を例示することができる。また配位子を金属に配位させる方法としては、周知の方法を採用することができ、限定されるわけではないが、金属塩と配位子を混合することで配位させることができる。金属塩としては、限定されるわけではないが、金属が銅である場合、CuOTf、CuCl、CuOAc、CuCl、Cu(OAc)、Cu(OTf)等を用いることができる。 Moreover, as a method of coordinating the ligand according to the present embodiment to a metal, a method of reacting the target metal salt in an organic solvent using an equivalent amount of the ligand can be considered. Moreover, as long as it can coordinate, the metal which coordinates a ligand is not necessarily limited to this, For example, copper, nickel, cobalt, ruthenium, rhodium, or iron can be illustrated. Moreover, as a method of coordinating a ligand to a metal, a well-known method can be adopted, and although not limited, it can be coordinated by mixing a metal salt and a ligand. The metal salts include, but are not limited to, when the metal is copper, it is possible to use CuOTf, CuCl, CuOAc, the CuCl 2, Cu (OAc) 2 , Cu (OTf) 2 and the like.

以上、本発明によると、多様性と汎用性のあるビスオキサゾリジン配位子の合成を達成でき、自由度の高い配位子及びこれを用いた触媒を提供することができる。   As described above, according to the present invention, it is possible to achieve synthesis of bisoxazolidine ligands that are versatile and versatile, and to provide a ligand with a high degree of freedom and a catalyst using the same.

ここで、上記実施形態に係る配位子及び触媒を作製し、その効果を確認した。以下具体的に示す。   Here, the ligand and catalyst which concern on the said embodiment were produced, and the effect was confirmed. This is specifically shown below.

(実施例1)
上記実施形態に係る一例として、下記式に示すようにビスオキサゾリジン(6)を合成した。以下説明する。
Example 1
As an example according to the above embodiment, bisoxazolidine (6) was synthesized as shown in the following formula. This will be described below.

(実験項1)
[(S)−2−amino−3−methyl−1,1−diphenylbutan−1−ol](5)の合成:
上記(5)は、J.Org.Chem.2009,74,2541−2546.記載の手法により合成した。
(Experiment 1)
Synthesis of [(S) -2-amino-3-methyl-1,1-diphenylbutan-1-ol] (5):
The above (5) Org. Chem. 2009, 74, 2541-2546. Synthesized by the method described.

(実験項2)
[2,6−bis((4S)−4−isopropyl−5,5−diphenyloxazolidin−2−yl)pyridine](6)の合成:
(Experiment 2)
Synthesis of [2,6-bis ((4S) -4-isopropyl-5,5-diphenyloxazolidin-2-yl) pyridine] (6):

アルゴン雰囲気下、2,6−ピリジルアルデヒド(67mg,0.5mmol)を無水塩化メチレン(2ml)に溶解し、上記(5)(255mg,1mmol)を加え、室温で6時間攪拌し、反応の進行を薄層クロマトグラフィーで確認した(展開溶媒3:1 n−ヘキサン/酢酸エチル)。その後減圧濃縮し、白色アモルファス状の(6)を94%収率で得た。   Under an argon atmosphere, 2,6-pyridylaldehyde (67 mg, 0.5 mmol) was dissolved in anhydrous methylene chloride (2 ml), the above (5) (255 mg, 1 mmol) was added, and the mixture was stirred at room temperature for 6 hours. Was confirmed by thin layer chromatography (developing solvent 3: 1 n-hexane / ethyl acetate). Thereafter, the mixture was concentrated under reduced pressure to obtain 94% yield of white amorphous (6).

(6)の機器データ:
HNMR(400MHz,CDCl)δ 7.89(t,J=7.6Hz,1H)7.59(d,J=7.6Hz,2H), 7.53(d,J=7.2Hz,4H), 7.39(d,J=7.8Hz,4H), 7.34−7.28(m,6H), 7.21−7.11(m,6H), 5.64(s,2H), 4.05(d,J=3.7Hz,2H), 1.99−1.93(m,2H), 1.19(d,J=6.9Hz,6H), 0.34(d,J=6.9Hz,6H);
13CNMR(500MHz,CDCl) 155.04, 146.38, 143.76, 138.10, 128.14, 127.77, 127.56, 127.47, 127.23, 126.71, 124.56, 90.22, 87.99, 73.01, 28.60, 23.26, 16.82;
FT/IR 2956.34, 2924.52, 2854.13, 1456.96, 1377.89, 1003.77, 938.20, 813.81, 755.96, 728.96, 700.03cm−1
[α] 26=−42.9(c=1.05,CHCl);
FTMS(ESI)calcd for C4945Na(M+Na) 726.3567;found726.3567.
Device data of (6):
1 HNMR (400 MHz, CDCl 3 ) δ 7.89 (t, J = 7.6 Hz, 1H) 7.59 (d, J = 7.6 Hz, 2H), 7.53 (d, J = 7.2 Hz, 4H), 7.39 (d, J = 7.8 Hz, 4H), 7.34-7.28 (m, 6H), 7.21-7.11 (m, 6H), 5.64 (s, 2H), 4.05 (d, J = 3.7 Hz, 2H), 1.99-1.93 (m, 2H), 1.19 (d, J = 6.9 Hz, 6H), 0.34 ( d, J = 6.9 Hz, 6H);
13 C NMR (500 MHz, CDCl 3 ) 155.04, 146.38, 143.76, 138.10, 128.14, 127.77, 127.56, 127.47, 127.23, 126.71, 124. 56, 90.22, 87.99, 73.01, 28.60, 23.26, 16.82;
FT / IR 2956.34, 2924.52, 2854.13, 1456.96, 1377.89, 1003.77, 938.20, 813.81, 755.96, 728.96, 700.03 cm -1 ;
[Α] D 26 = −42.9 (c = 1.05, CHCl 3 );
FTMS (ESI + ) calcd for C 49 H 45 N 5 Na (M + + Na) 726.3567;

以上により、下記構造式(6)で示される配位子を得ることができた。
As described above, a ligand represented by the following structural formula (6) was obtained.

(実施例2)
をメチル基とした以外は上記実施例1と同様にして下記構造式(7)を二段階で合成した。
(Example 2)
The following structural formula (7) was synthesized in two steps in the same manner as in Example 1 except that R 2 was a methyl group.

(7)の機器データ:
HNMR(400MHz,CDCl3) 7.90(t,J=7.6Hz,1H), 7.61(d,J=7.6Hz,2H), 7.55−7.53(m,4H), 7.43−7.39(m,4H), 7.35−7.31(m,6H), 7.21−7.09(m,6H), 5.70(s,2H), 4.29(q,J=6.6Hz,2H), 1.14(d,J= 6.6Hz,6H);
13CNMR(500MHz,CDCl)δ 155.33, 145.70, 143.57, 138.22, 128.19, 127.50, 127.33, 127.09, 126.68, 124.46, 90.64, 88.23, 63.73, 53.40, 18.07;
FT/IR 2952.48, 2922.59, 2853.17, 1458.89, 939.16, 700.03cm―1
[α] 26=−82.1(c= 1.01,CHCl);
FTMS (ESI+)calcd for C4945Na(M+Na) 726.3567;found 726.3567.
Device data of (7):
1 HNMR (400 MHz, CDCl 3) 7.90 (t, J = 7.6 Hz, 1H), 7.61 (d, J = 7.6 Hz, 2H), 7.55-7.53 (m, 4H), 7.43-7.39 (m, 4H), 7.35-7.31 (m, 6H), 7.21-7.09 (m, 6H), 5.70 (s, 2H), 4. 29 (q, J = 6.6 Hz, 2H), 1.14 (d, J = 6.6 Hz, 6H);
13 C NMR (500 MHz, CDCl 3 ) δ 155.33, 145.70, 143.57, 138.22, 128.19, 127.50, 127.33, 127.09, 126.68, 124.46, 90 64, 88.23, 63.73, 53.40, 18.07;
FT / IR 2952.48, 2922.59, 2853.17, 1458.89, 939.16, 700.03 cm -1 ;
[Α] D 26 = −82.1 (c = 1.01, CHCl 3 );
FTMS (ESI +) calcd for C 49 H 45 N 5 Na (M + + Na) 726.3567; found 726.3567.

(実施例3)
をイソブチル基とした以外は上記実施例1と同様にして下記構造式(8)を二段階で合成した。
(Example 3)
The following structural formula (8) was synthesized in two steps in the same manner as in Example 1 except that R 2 was an isobutyl group.

(8)の機器データ:
HNMR(400MHz,CDCl)δ 7.88(t,J=7.6Hz,1H),7.59(d,J=7.6H,2H), 7.52−7.55(m,4H), 7.41(t,J=7.8 Hz,4H), 7.35−7.10(m,12H), 5.67(s,2), 4.20(d,J=9.5Hz,2H), 2.06−2.00(m,2H), 1.43−1.36(m,2H), 1.12(d,6H), 0.91(d,6H), 0.83−0.75(m,2H);
13CNMR(500MHz,CDCl)δ 155.40, 146.02, 143.95, 138.04, 128.19, 127.44, 127.37, 127.10, 126.65, 124.60, 91.03, 87.64, 66.70, 42.46, 26.69, 24.09, 21.69;
FT/IR2922.59, 2853.17, 1451.17, 1377.89, 992.20, 700.03cm―1
[α] 26=−99.3(c=1.17,CHCl);
FTMS(ESI)calcd for C4945Na(M+Na) 726.3567;found 726.3567.
Device data of (8):
1 HNMR (400 MHz, CDCl 3 ) δ 7.88 (t, J = 7.6 Hz, 1H), 7.59 (d, J = 7.6H, 2H), 7.52-7.55 (m, 4H) ), 7.41 (t, J = 7.8 Hz, 4H), 7.35-7.10 (m, 12H), 5.67 (s, 2), 4.20 (d, J = 9. 5Hz, 2H), 2.06-2.00 (m, 2H), 1.43-1.36 (m, 2H), 1.12 (d, 6H), 0.91 (d, 6H), 0 .83-0.75 (m, 2H);
13 C NMR (500 MHz, CDCl 3 ) δ 155.40, 146.02, 143.95, 138.04, 128.19, 127.44, 127.37, 127.10, 126.65, 124.60, 91 .03, 87.64, 66.70, 42.46, 26.69, 24.09, 21.69;
FT / IR2922.59, 2853.17, 1451.17, 1377.89, 1992.20, 700.03 cm −1 ;
[Α] D 26 = −99.3 (c = 1.17, CHCl 3 );
FTMS (ESI + ) calcd for C 49 H 45 N 5 Na (M + + Na) 726.3567; found 726.3567.

(実施例4)
をsec−ブチル基とした以外は上記実施例1と同様にして下記構造式(9)を二段階で合成した。
Example 4
The following structural formula (9) was synthesized in two steps in the same manner as in Example 1 except that R 2 was a sec-butyl group.

(9)の機器データ:
HNMR(400MHz,CDCl)δ 7.89(t,J=7.4Hz,1H), 7.57(d,J=7.4Hz,2H), 7.52(d,J=7.2Hz,4H), 7.39(t,J=7.2Hz,4H), 7.34−7.29(m,6H), 7.19−7.10(m,6H), 5.61(s,2H), 4.08(s,2H), 3.77(brs,2H), 1.71−1.68(m,2H), 1.19(d,J=6.8Hz,3H), 0.81−0.77(m,2H), 0.69−0.64(m,2H), 0.47(t,J=7.2Hz,3H):
13CNMR(500MHz,CDCl)δ 154.96, 146.56, 143.77, 138.08, 128.14, 127.65, 127.49, 127.45, 127.21, 126.59, 124.64, 90.27, 87.89, 73.20, 35.02, 23.63, 19.18, 11.61;
FT/IR 2923.56 2854.13, 1459.85, 1376.93, 992.20, 700.03cm―1
[α] 26=−37.7(c=1.16,CHCl);
FTMS(ESI)calcd for C4945Na(M+Na)726.3567;found726.3567
Device data of (9):
1 HNMR (400 MHz, CDCl 3 ) δ 7.89 (t, J = 7.4 Hz, 1H), 7.57 (d, J = 7.4 Hz, 2H), 7.52 (d, J = 7.2 Hz) , 4H), 7.39 (t, J = 7.2 Hz, 4H), 7.34-7.29 (m, 6H), 7.19-7.10 (m, 6H), 5.61 (s) , 2H), 4.08 (s, 2H), 3.77 (brs, 2H), 1.71-1.68 (m, 2H), 1.19 (d, J = 6.8 Hz, 3H), 0.81-0.77 (m, 2H), 0.69-0.64 (m, 2H), 0.47 (t, J = 7.2 Hz, 3H):
13 C NMR (500 MHz, CDCl 3 ) δ 154.96, 146.56, 143.77, 138.08, 128.14, 127.65, 127.49, 127.45, 127.21, 126.59, 124 64, 90.27, 87.89, 73.20, 35.02, 23.63, 19.18, 11.61;
FT / IR 292.356 2854.13, 1459.85, 1376.93, 992.20, 700.03 cm -1 ;
[Α] D 26 = −37.7 (c = 1.16, CHCl 3 );
FTMS (ESI + ) calcd for C 49 H 45 N 5 Na (M + + Na) 726.3567; found 726.3567

(実施例5)
下記構造式(2)を、上記記載の手法に基づき合成した。
(Example 5)
The following structural formula (2) was synthesized based on the method described above.

(2)の機器データ:
HNMR(400MHz,CDCl)δ 7.94−7.88(m,3H), 7.59(d,J=7.2Hz,4H), 7.49(d,J=7.2Hz,4H), 7.35−7.17(m,12H), 5.59(s,2H), 4.59(brs,2H), 2.58−2.47(m,4H), 1.87−1.80(m,2H), 1.64−1.48(m,4H), 1.34−1.26(m,2H);
13CNMR(400MHz,CDCl)δ 156.44, 145.50, 144.01, 136.68, 128.19, 127.97, 127.23, 126.45, 126.17, 121.07, 91.75, 88.11, 72.48, 48.84, 29.92, 25.99;
FT/IR 2925.48, 2854.13, 1462.74, 1446.35, 1377.89, 1006.66, 701.00cm―1
[α] 26=−177.6(c=1.14,CHCl);
FTMS(ESI)calcd for C4945Na(M+Na) 726.3567;found 726.3567.
Device data of (2):
1 HNMR (400 MHz, CDCl 3 ) δ 7.94-7.88 (m, 3H), 7.59 (d, J = 7.2 Hz, 4H), 7.49 (d, J = 7.2 Hz, 4H) ), 7.35-7.17 (m, 12H), 5.59 (s, 2H), 4.59 (brs, 2H), 2.58-2.47 (m, 4H), 1.87- 1.80 (m, 2H), 1.64-1.48 (m, 4H), 1.34-1.26 (m, 2H);
13 C NMR (400 MHz, CDCl 3 ) δ 156.44, 145.50, 144.01, 136.68, 128.19, 127.97, 127.23, 126.45, 126.17, 121.07, 91 .75, 88.11, 72.48, 48.84, 29.92, 25.99;
FT / IR 2925.48, 2854.13, 1462.74, 14446.35, 1377.89, 1006.66, 701.00 cm -1 ;
[Α] D 26 = −177.6 (c = 1.14, CHCl 3 );
FTMS (ESI + ) calcd for C 49 H 45 N 5 Na (M + + Na) 726.3567; found 726.3567.

(実施例6)
次に、本実施例において得られた配位子を2価の銅塩に配位させ、触媒とした。そして、この触媒としての効果を確認した。具体的には、実施例1にて得た上記(6)を用いる銅錯体の調整を行い、触媒的不斉Friedel−Crafts型反応に応用した。
(Example 6)
Next, the ligand obtained in this example was coordinated to a divalent copper salt to prepare a catalyst. And the effect as this catalyst was confirmed. Specifically, the copper complex using the above (6) obtained in Example 1 was adjusted and applied to catalytic asymmetric Friedel-Crafts type reaction.

(ビスオキサゾリジン(6)を用いる銅錯体の調整)
アルゴン雰囲気下、Cu(OTf)(3.6mg,0.01mmol)とビスオキサゾリジン(6)(0.011mmol)を無水塩化メチレン1mlに溶解し、室温にて1時間以上攪拌し、溶液中で銅錯体を調製した。
(Preparation of copper complex using bisoxazolidine (6))
Under an argon atmosphere, Cu (OTf) 2 (3.6 mg, 0.01 mmol) and bisoxazolidine (6) (0.011 mmol) were dissolved in 1 ml of anhydrous methylene chloride and stirred at room temperature for 1 hour or more. A copper complex was prepared.

((6)−Cu(OTf)錯体を用いる触媒的不斉Friedel−Crafts型反応の確認)
(Confirmation of catalytic asymmetric Friedel-Crafts type reaction using (6) -Cu (OTf) 2 complex)

銅錯体を無水塩化メチレン1mlに溶解し、trans−β−ニトロスチレン(60mg,0.4mmol)、インドール(23mg,0.2mmol)を加え、室温で撹拌した。22時間後、シリカゲルクロマトグラフィー(展開溶媒9:1 n−ヘキサン/酢酸エチルから 2:1)により、91%収率、得られた生成物の光学純度は、75%eeであった。(分析条件:DAICEL CHIRALCEL OD−H,flow rate=0.7 ml/min,hexane:2−propanol=70:30)   The copper complex was dissolved in 1 ml of anhydrous methylene chloride, trans-β-nitrostyrene (60 mg, 0.4 mmol) and indole (23 mg, 0.2 mmol) were added, and the mixture was stirred at room temperature. After 22 hours, 91% yield was obtained by silica gel chromatography (developing solvent 9: 1 n-hexane / ethyl acetate to 2: 1), and the optical purity of the obtained product was 75% ee. (Analysis conditions: DAICEL CHIRALCEL OD-H, flow rate = 0.7 ml / min, hexane: 2-propanol = 70: 30)

以上により、本実施例により本触媒の効果を確認することができ、汎用性が高い新規なピリジン環と連結したビスオキサゾリジン配位子及びそれを用いる触媒が得られることを確認できた。   From the above, the effect of this catalyst can be confirmed by this example, and it has been confirmed that a bisoxazolidine ligand linked to a novel pyridine ring having high versatility and a catalyst using the same can be obtained.

本発明で提供する触媒は、不斉反応を行うことができ、工業化に耐えうるほどの安定性を有していることから産業上の利用可能性がある。   The catalyst provided by the present invention can perform asymmetric reaction and has industrial applicability because it has sufficient stability to withstand industrialization.

Claims (3)

下記式(1)又は(2)のいずれかにて示される配位子。
(ただし、RはCH、CH(CH、CHCH(CH、CH(CH)C、C(CH、Ph、CHPh、のいずれかであり、RはCH、C、Ph、のいずれかであり、RはH、CH、Br、NOのいずれかである。ここで、Phは芳香環を示す。)
The ligand shown by either following formula (1) or (2).
(Wherein, R 1 is CH 3, CH (CH 3) 2, CH 2 CH (CH 3) 2, CH (CH 3) C 2 H 5, C (CH 3) 3, Ph, CH 2 Ph, either R 2 is any one of CH 3 , C 2 H 5 , and Ph, and R 3 is any one of H, CH 3 , Br, and NO 2 , where Ph represents an aromatic ring .)
下記式(3)又は(4)のいずれかにて示される触媒。
(ただし、RはCH、CH(CH、CHCH(CH、CH(CH)C、C(CH、Ph、CHPh、のいずれかであり、RはCH、C、Ph、のいずれかであり、RはH、CH、Br、NOのいずれかである。ここで、Phは芳香環を示す。)
The catalyst shown by either following formula (3) or (4).
(Wherein, R 1 is CH 3, CH (CH 3) 2, CH 2 CH (CH 3) 2, CH (CH 3) C 2 H 5, C (CH 3) 3, Ph, CH 2 Ph, either R 2 is any one of CH 3 , C 2 H 5 , and Ph, and R 3 is any one of H, CH 3 , Br, and NO 2 , where Ph represents an aromatic ring .)
ニトロアルケンとインドールのFriedel−Crafts型反応に用いられることを特徴とする請求項2記載の触媒。   The catalyst according to claim 2, which is used in a Friedel-Crafts type reaction of nitroalkene and indole.
JP2012263878A 2012-11-30 2012-11-30 Bisoxazolidine ligand and catalyst using the same Active JP5971804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012263878A JP5971804B2 (en) 2012-11-30 2012-11-30 Bisoxazolidine ligand and catalyst using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012263878A JP5971804B2 (en) 2012-11-30 2012-11-30 Bisoxazolidine ligand and catalyst using the same

Publications (2)

Publication Number Publication Date
JP2014108942A true JP2014108942A (en) 2014-06-12
JP5971804B2 JP5971804B2 (en) 2016-08-17

Family

ID=51029778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012263878A Active JP5971804B2 (en) 2012-11-30 2012-11-30 Bisoxazolidine ligand and catalyst using the same

Country Status (1)

Country Link
JP (1) JP5971804B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111426A (en) * 2009-11-29 2011-06-09 Chiba Univ Method for producing bisimidazolidine ligand and catalyst using the same
JP2012092066A (en) * 2010-10-28 2012-05-17 Chiba Univ Pyrrole and indole derivative and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011111426A (en) * 2009-11-29 2011-06-09 Chiba Univ Method for producing bisimidazolidine ligand and catalyst using the same
JP2012092066A (en) * 2010-10-28 2012-05-17 Chiba Univ Pyrrole and indole derivative and method for producing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6016013148; Organic Letters 10(18), 2008, 4121-4124 *
JPN6016013149; Organic Letters 12(1), 2010, 80-83 *
JPN6016013150; Journal of the American Chemical Society 132(15), 2010, 5338-5339 *
JPN6016013151; Inorganic Chemistry 47(22), 2008, 10575-10586 *

Also Published As

Publication number Publication date
JP5971804B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5923105B2 (en) Chiral spiro-pyridylamidophosphine ligand compound, synthesis method thereof and use thereof
JP2008239495A (en) Method for producing optically active epoxy compound, complex to be used in the method and method for producing the same
Ghosh et al. Copper–bipyridine-catalyzed enantioselective α-amination of β-keto esters
JP6048762B2 (en) Process for producing optically active β-hydroxy-α-aminocarboxylic acid ester
JP6548214B2 (en) Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same
Imada et al. Sequential asymmetric homoallenylation of primary amines with a palladium catalyst
JP5971804B2 (en) Bisoxazolidine ligand and catalyst using the same
CN104447440A (en) Method for catalyzing asymmetric oxidation of thioether
JP5574320B2 (en) Process for producing bisimidazolidine ligand and catalyst using the same.
CN113511986B (en) Preparation method of aryl acetonitrile derivative
JP2012092066A (en) Pyrrole and indole derivative and method for producing the same
JP5471069B2 (en) Tetrahydropyridine derivative and method for producing the same
CN112574041A (en) Synthesis method of chiral beta-hydroxy 1, 3-dicarbonyl compound
CN102627571B (en) Preparation and synthesis method for chiral ammonium salt
JP2013142071A (en) Pyrrolidinyl-spirooxindole derivative and method for producing the same
CN107849003A (en) Prepare the new method of chromanol derivative
JP5943319B2 (en) Heteroarenesulfonylated quinaalkaloid amine compounds
JP2011068587A (en) New aminoalcohol derivative salt, asymmetric organic molecule catalyst having aminoalcohol derivative salt structure and method for producing optically active compound with the asymmetric organic molecule catalyst
Ananthi et al. Chiral amide from (1S, 2R)-(+)-norephedrine alkaloid in the enantioselective addition of diethylzinc to aryl and heteroaryl aldehydes
JP4701196B2 (en) Silicon Lewis acid catalyst and reaction method using silicon Lewis acid catalyst
JP2013142080A (en) Indole derivative and method for producing the same
JP4654444B2 (en) Diamine ligand and catalyst using the same
JPWO2019208023A1 (en) An optically active rare earth complex, an asymmetric catalyst composed of this complex, and a method for producing an optically active organic compound using this asymmetric catalyst.
CN111410656B (en) Preparation method of isoquinolone derivative
CN113754604B (en) Nitrogen-containing chiral ligand and application thereof in asymmetric oxidation reaction of thioether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160708

R150 Certificate of patent or registration of utility model

Ref document number: 5971804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250