JP2011068587A - New aminoalcohol derivative salt, asymmetric organic molecule catalyst having aminoalcohol derivative salt structure and method for producing optically active compound with the asymmetric organic molecule catalyst - Google Patents

New aminoalcohol derivative salt, asymmetric organic molecule catalyst having aminoalcohol derivative salt structure and method for producing optically active compound with the asymmetric organic molecule catalyst Download PDF

Info

Publication number
JP2011068587A
JP2011068587A JP2009220395A JP2009220395A JP2011068587A JP 2011068587 A JP2011068587 A JP 2011068587A JP 2009220395 A JP2009220395 A JP 2009220395A JP 2009220395 A JP2009220395 A JP 2009220395A JP 2011068587 A JP2011068587 A JP 2011068587A
Authority
JP
Japan
Prior art keywords
group
asymmetric
formula
hydrogen atom
optically active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009220395A
Other languages
Japanese (ja)
Other versions
JP5622019B2 (en
Inventor
Eunsang Kwon
垠相 權
Hiroto Nakano
博人 中野
Mitsuhiro Takeshita
光弘 竹下
Haruo Matsuyama
春男 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Muroran Institute of Technology NUC
Original Assignee
Tohoku University NUC
Muroran Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Muroran Institute of Technology NUC filed Critical Tohoku University NUC
Priority to JP2009220395A priority Critical patent/JP5622019B2/en
Publication of JP2011068587A publication Critical patent/JP2011068587A/en
Application granted granted Critical
Publication of JP5622019B2 publication Critical patent/JP5622019B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new aminoalcohol derivative salt, to provide an asymmetric organic molecule catalyst having an aminoalcohol derivative salt structure, and to provide a method for producing an optically active compound with the asymmetric organic molecule catalyst. <P>SOLUTION: There is provided an asymmetric organic molecule catalyst represented by formula (1) [wherein, R<SP>1</SP>is an alkyl or aryl; R<SP>2</SP>, R<SP>3</SP>are each independently H or aryl; R<SP>4</SP>is H or a monovalent substituent; R<SP>5</SP>is H or alkyl; X is an organic acid which forms a salt with an aminoalcohol derivative skeleton in formula (1)]. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規アミノアルコール誘導体塩、アミノアルコール誘導体塩構造を有する不斉有機分子触媒及び該不斉有機分子触媒を用いた光学活性化合物の製造方法に関する。   The present invention relates to a novel amino alcohol derivative salt, an asymmetric organic molecular catalyst having an amino alcohol derivative salt structure, and a method for producing an optically active compound using the asymmetric organic molecular catalyst.

医薬品などの生体関連化合物は、不斉中心を含むものが少なくなく、可能な2つの鏡像異性体がそれぞれ生体に対して異なる作用を示すことが多い。従って、一方の鏡像異性体のみを選択的に得るための不斉合成反応の開発は重要である。   Many biologically relevant compounds such as pharmaceuticals contain asymmetric centers, and the two possible enantiomers often exhibit different actions on the living body. Therefore, it is important to develop an asymmetric synthesis reaction to selectively obtain only one enantiomer.

ごく少量の触媒により、原理的には無限の光学活性化合物を供給することが可能な高度プロセスである触媒的不斉合成反応は、その省エネルギー・環境調和の観点からも現代の有機合成化学の重要な研究課題の1つである。不斉触媒としては、従来より多くの有機金属触媒が開発されているものの、高価であったり、残存する金属の除去が困難であったりする課題もあった。このため、近年、安価・安全・環境負荷が少ないなどの理由で、金属を含有しない有機分子を触媒として用いる、有機分子触媒反応の研究が盛んに行われている。   Catalytic asymmetric synthesis, which is an advanced process capable of supplying infinite optically active compounds in principle with a very small amount of catalyst, is important for modern organic synthetic chemistry from the viewpoint of energy saving and environmental harmony. This is one of the major research topics. As an asymmetric catalyst, many organometallic catalysts have been developed, but there are also problems that it is expensive and it is difficult to remove the remaining metal. For this reason, in recent years, researches on organic molecular catalysis using an organic molecule containing no metal as a catalyst have been actively conducted for reasons such as low cost, safety, and low environmental burden.

例えば、特許文献1及び非特許文献1には、タミフルなどの様々な生理活性化合物群の鍵合成中間体であるイソキヌクリジン誘導体を、有機分子触媒であるマクミラン触媒を使用した不斉Diels−Alder反応によって合成することが開示されている。   For example, in Patent Document 1 and Non-Patent Document 1, isoquinuclidine derivatives, which are key synthesis intermediates of various physiologically active compounds such as Tamiflu, are synthesized by an asymmetric Diels-Alder reaction using a Macmillan catalyst, which is an organic molecular catalyst. It is disclosed to synthesize.

特開2008−50336号公報JP 2008-50336 A

Angew.Chem.Int.Ed.46巻、5734〜5736頁、2007年Angew. Chem. Int. Ed. 46, 5734-5736, 2007

しかしながら、特許文献1や非特許文献1で得られるイソキヌクリジン誘導体の化学収率は低く、後の工程で再結晶化することにより光学純度は向上するが、化学収率は更に低下する。また、ポリマーの生成も伴うことから、生成物の分離精製も容易ではない。そのため、高い化学収率及び高い光学収率で目的物を得ることのできる不斉有機分子触媒が求められている。   However, the chemical yield of the isoquinuclidine derivative obtained in Patent Document 1 or Non-Patent Document 1 is low, and optical purity is improved by recrystallization in a later step, but the chemical yield is further reduced. In addition, since the polymer is also produced, it is not easy to separate and purify the product. Therefore, an asymmetric organic molecular catalyst capable of obtaining a target product with high chemical yield and high optical yield is demanded.

そこで本発明は、低コストで製造可能であり、高い化学収率及び高い光学収率で目的物を得ることのできる新規不斉有機分子触媒、及び該不斉有機分子触媒を用いた光学活性化合物の製造方法を提供することを課題とする。   Therefore, the present invention provides a novel asymmetric organic molecular catalyst that can be produced at a low cost and can obtain a target product with a high chemical yield and a high optical yield, and an optically active compound using the asymmetric organic molecular catalyst It is an object to provide a manufacturing method.

本発明者らは鋭意検討した結果、特定の構造を有するアミノアルコール誘導体の塩が不斉有機分子触媒として有用であることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that a salt of an amino alcohol derivative having a specific structure is useful as an asymmetric organic molecular catalyst, and has completed the present invention.

かくして本発明の第一の態様は、下記式(1)で表わされるアミノアルコール誘導体塩を提供して前記課題を解決するものである。   Thus, the first aspect of the present invention provides an amino alcohol derivative salt represented by the following formula (1) to solve the above problems.

Figure 2011068587
(式(1)中、Rはアルキル基、又は、置換又は無置換のフェニル基であり、R及びRは互いに同じ置換基である置換又は無置換のフェニル基であり、Rは水素原子又は一価の置換基であり、Rは水素原子又はアルキル基であり、Xは式(1)中のアミノアルコール誘導体骨格と塩を形成する有機酸を表わす。)
Figure 2011068587
(In Formula (1), R 1 is an alkyl group or a substituted or unsubstituted phenyl group, R 2 and R 3 are substituted or unsubstituted phenyl groups which are the same substituents, and R 4 is A hydrogen atom or a monovalent substituent, R 5 is a hydrogen atom or an alkyl group, and X represents an organic acid that forms a salt with the amino alcohol derivative skeleton in formula (1).

また、本発明の第二の態様は、下記式(1)で表わされる不斉有機分子触媒を提供して前記課題を解決するものである。   The second aspect of the present invention provides an asymmetric organic molecular catalyst represented by the following formula (1) to solve the above problems.

Figure 2011068587
(式(1)中、Rはアルキル基又はアリール基であり、R、Rはそれぞれ独立に水素原子又はアリール基であり、Rは水素原子又は一価の置換基であり、Rは水素原子又はアルキル基であり、Xは式(1)中のアミノアルコール誘導体骨格と塩を形成する有機酸を表わす。)
Figure 2011068587
(In Formula (1), R 1 is an alkyl group or an aryl group, R 2 and R 3 are each independently a hydrogen atom or an aryl group, R 4 is a hydrogen atom or a monovalent substituent, 5 is a hydrogen atom or an alkyl group, and X represents an organic acid that forms a salt with the amino alcohol derivative skeleton in formula (1).

本発明の第三の態様は、前記第二の態様の不斉有機分子触媒を用いて不斉反応を行うことを特徴とする、光学活性化合物の製造方法を提供して前記課題を解決するものである。   According to a third aspect of the present invention, there is provided an optically active compound production method characterized in that an asymmetric reaction is carried out using the asymmetric organic molecular catalyst of the second aspect to solve the above problems. It is.

この態様において、不斉反応は不斉Diels−Alder反応であることが好ましく、また、該不斉Diels−Alder反応において、製造される光学活性化合物がイソキヌクリジン誘導体であり、下記式(2)で表わされる1,2−ジヒドロピリジン誘導体を共役ジエンとし、下記式(3)で表わされるアクロレイン誘導体をジエノフィルとするものであることが好ましい。   In this embodiment, the asymmetric reaction is preferably an asymmetric Diels-Alder reaction, and the optically active compound produced in the asymmetric Diels-Alder reaction is an isoquinuclidine derivative, which is represented by the following formula (2). The 1,2-dihydropyridine derivative is preferably a conjugated diene and the acrolein derivative represented by the following formula (3) is a dienophile.

Figure 2011068587
(式(2)及び式(3)において、R〜R10、R12〜R14は水素原子又は一価の置換基を表わし、R11はアルキル基又はアリール基を表わす。)
Figure 2011068587
(In Formula (2) and Formula (3), R 6 to R 10 , R 12 to R 14 represent a hydrogen atom or a monovalent substituent, and R 11 represents an alkyl group or an aryl group.)

本発明のアミノアルコール誘導体塩は、不斉反応の触媒として優れており、これを用いることで、高い化学収率及び高い光学収率で目的の光学活性化合物を得ることができる。また、本発明の不斉有機分子触媒はこれまでに見出された不斉有機分子触媒と比べて比較的単純な構造を有しており、製造が容易であるため、高価な金属を使用する従来の有機金属触媒に対してのみならず、従来の不斉有機分子触媒に対しても、製造効率、コストの点で非常に有利である。   The amino alcohol derivative salt of the present invention is excellent as a catalyst for an asymmetric reaction. By using this, the target optically active compound can be obtained with high chemical yield and high optical yield. In addition, the asymmetric organic molecular catalyst of the present invention has a relatively simple structure as compared with the asymmetric organic molecular catalysts found so far, and is easy to produce, and therefore uses an expensive metal. This is very advantageous not only for conventional organometallic catalysts but also for conventional asymmetric organic molecular catalysts in terms of production efficiency and cost.

また、本発明の不斉有機分子触媒は、特に、不斉Diels−Alder反応による光学活性イソキヌクリジン誘導体合成のための不斉有機分子触媒として好適であり、高い化学収率及び高い光学収率で選択的に目的物を得ることができる。光学活性イソキヌクリジン誘導体や、その開環生成物である光学活性多置換ピペリジン誘導体は、オセルタミビル、ビンブラスチン、レセルピン、アルカルイド類などの医薬品や生理活性物質の重要な合成中間体であることから、本発明は、ひいては低コストかつ高効率に、様々な医薬品や生理活性物質を得るために非常に有用である。   The asymmetric organic molecular catalyst of the present invention is particularly suitable as an asymmetric organic molecular catalyst for synthesizing optically active isoquinuclidine derivatives by asymmetric Diels-Alder reaction, and is selected with high chemical yield and high optical yield. The target product can be obtained. Optically active isoquinuclidine derivatives and optically active polysubstituted piperidine derivatives that are ring-opening products thereof are important synthetic intermediates for pharmaceuticals and physiologically active substances such as oseltamivir, vinblastine, reserpine, alcarides, Therefore, it is very useful for obtaining various pharmaceuticals and physiologically active substances at low cost and high efficiency.

本発明の不斉有機分子触媒は、下記式(1)で表わされるアミノアルコール誘導体塩である。   The asymmetric organic molecular catalyst of the present invention is an amino alcohol derivative salt represented by the following formula (1).

Figure 2011068587
Figure 2011068587

式(1)中、Rはアルキル基又はアリール基であり、アルキル基としては、炭素数1〜13のものが好ましく、直鎖でも分岐でもよく、また環状のものでもよい。また、アルキル基上の炭素原子が、更にアリール基などの他の置換基によって置換されていてもよい。直鎖アルキル基としては、例えば、メチル基、エチル基、プロピル基を挙げることができる。分岐アルキル基としては、例えば、イソプロピル基、tert−ブチル基、sec−ブチル基を挙げることができる。シクロアルキル基としては、分岐構造を有していてもよい炭素数3〜8のものが好ましく、例えば、シクロプロピル基、シクロペンチル基、シクロヘキシル基、2−メチルシクロプロピル基、アダマンチル基を挙げることができる。また、アリール基によって置換されているアルキル基としては、ベンジル基等が挙げられる。アリール基としては、フェニル基、ナフチル基、トリル基、キシリル基、エチルフェニル基等が挙げられる。アリール基上の炭素原子は更に任意の置換基を有していてもよい。式(1)において、Rとしては、アルキル基、又は、置換又は無置換のフェニル基であることが好ましく、炭素数1〜7の直鎖又は分岐アルキル基、アルキル基で置換されていてもよいベンジル基、アルキル基で置換されていてもよいフェニル基であることがより好ましく、ベンジル基、炭素数1〜5の分岐アルキル基であることが更に好ましく、イソプロピル基、tert−ブチル基であることが特に好ましい。 In Formula (1), R 1 is an alkyl group or an aryl group, and the alkyl group is preferably one having 1 to 13 carbon atoms, and may be linear or branched, or may be cyclic. Moreover, the carbon atom on the alkyl group may be further substituted with another substituent such as an aryl group. Examples of the linear alkyl group include a methyl group, an ethyl group, and a propyl group. Examples of the branched alkyl group include isopropyl group, tert-butyl group, and sec-butyl group. As the cycloalkyl group, those having 3 to 8 carbon atoms which may have a branched structure are preferable, and examples thereof include a cyclopropyl group, a cyclopentyl group, a cyclohexyl group, a 2-methylcyclopropyl group, and an adamantyl group. it can. Examples of the alkyl group substituted with an aryl group include a benzyl group. Examples of the aryl group include a phenyl group, a naphthyl group, a tolyl group, a xylyl group, and an ethylphenyl group. The carbon atom on the aryl group may further have an arbitrary substituent. In Formula (1), R 1 is preferably an alkyl group or a substituted or unsubstituted phenyl group, and may be substituted with a linear or branched alkyl group having 1 to 7 carbon atoms or an alkyl group. It is more preferably a benzyl group or a phenyl group which may be substituted with an alkyl group, more preferably a benzyl group or a branched alkyl group having 1 to 5 carbon atoms, and an isopropyl group or a tert-butyl group. It is particularly preferred.

式(1)中、R及びRは、それぞれ独立に水素原子又はアリール基である。アリール基としては、Rと同じものを例示できる。式(1)において、R及びRとしては、RとRが互いに同じ置換基であることが好ましく、具体的な置換基としては、これらは置換又は無置換のフェニル基であることが好ましく、炭素数5以下の置換基で置換されたフェニル基又は無置換のフェニル基であることが好ましく、特にはフェニル基であることが好ましい。 In Formula (1), R 2 and R 3 are each independently a hydrogen atom or an aryl group. Examples of the aryl group are the same as those for R 1 . In the formula (1), as R 2 and R 3, preferably R 2 and R 3 are the same substituents together Exemplary substituents, which are substituted or unsubstituted phenyl group Are preferably a phenyl group substituted with a substituent having 5 or less carbon atoms or an unsubstituted phenyl group, and particularly preferably a phenyl group.

式(1)中、Rは水素原子又は一価の置換基であり、一価の置換基としては、アルキル基、アリール基、アシル基、シリル基、スルホニル基、アルコキシカルボニル基等が挙げられ、アルキル基及びアリール基としてはRと同じものを例示できる。アシル基としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基等が挙げられる。シリル基としては、例えばトリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルヘキシルシリル基、tert−ブチルジメチルシリル基、メチルジイソプロピルシリル基、イソプロピルジメチルシリル基、tert−ブチルメトキシフェニルシリル基、tert−ブトキシジフェニルシリル基、トリフェニルシリル基、tert−ブチルジフェニルシリル基、ジメチルクメニルシリル基、トリベンジルシリル基が挙げられる。スルホニル基としては、メタンスルホニル基、トリフルオロメタンスルホニル基、ベンゼンスルホニル基、p−トルエンスルホニル基等が挙げられる。アルコキシカルボニル基としては、メトキシカルボニル基、エトキシカルボニル基、tert−ブトキシカルボニル基等が挙げられる。式(1)において、Rとしては、水素原子や、有機合成の分野で水酸基の保護基として慣用されている置換基であることが好ましく、水素原子が特に好ましい。 In Formula (1), R 4 is a hydrogen atom or a monovalent substituent, and examples of the monovalent substituent include an alkyl group, an aryl group, an acyl group, a silyl group, a sulfonyl group, and an alkoxycarbonyl group. Examples of the alkyl group and aryl group are the same as those for R 1 . Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a pivaloyl group, and a benzoyl group. Examples of the silyl group include trimethylsilyl group, triethylsilyl group, triisopropylsilyl group, dimethylhexylsilyl group, tert-butyldimethylsilyl group, methyldiisopropylsilyl group, isopropyldimethylsilyl group, tert-butylmethoxyphenylsilyl group, tert- Examples include butoxydiphenylsilyl group, triphenylsilyl group, tert-butyldiphenylsilyl group, dimethylcumenylsilyl group, and tribenzylsilyl group. Examples of the sulfonyl group include a methanesulfonyl group, a trifluoromethanesulfonyl group, a benzenesulfonyl group, and a p-toluenesulfonyl group. Examples of the alkoxycarbonyl group include a methoxycarbonyl group, an ethoxycarbonyl group, and a tert-butoxycarbonyl group. In the formula (1), R 4 is preferably a hydrogen atom or a substituent commonly used as a hydroxyl-protecting group in the field of organic synthesis, and particularly preferably a hydrogen atom.

式(1)中、Rは水素原子又はアルキル基であり、アルキル基としてはRと同じものを例示できる。また、式(1)において、Rとしては炭素数5以下のアルキル基又は水素原子であることが好ましく、特には水素原子が好ましい。 In Formula (1), R 5 is a hydrogen atom or an alkyl group, and the same alkyl group as R 1 can be exemplified. In formula (1), R 5 is preferably an alkyl group having 5 or less carbon atoms or a hydrogen atom, and particularly preferably a hydrogen atom.

式(1)中、Xは、アミノアルコール誘導体骨格と塩を形成する有機酸であり、有機酸としては、ピクリン酸、脂肪族及び芳香族スルホン酸、脂肪族及び芳香族カルボン酸等が挙げられる。中でも脂肪族モノカルボン酸及びそのハロゲン置換体が好ましく、具体的には、酢酸、酪酸、モノフルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸等が挙げられる。中でも脂肪族モノカルボン酸のハロゲン置換体が好ましく、トリフルオロ酢酸が特に好ましい。   In the formula (1), X is an organic acid that forms a salt with the amino alcohol derivative skeleton, and examples of the organic acid include picric acid, aliphatic and aromatic sulfonic acid, aliphatic and aromatic carboxylic acid, and the like. . Of these, aliphatic monocarboxylic acids and halogen-substituted products thereof are preferable, and specific examples include acetic acid, butyric acid, monofluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid. Of these, a halogen-substituted product of an aliphatic monocarboxylic acid is preferable, and trifluoroacetic acid is particularly preferable.

以下に、式(1)で表わされる本発明のアミノアルコール誘導体塩及び不斉有機分子触媒の化合物例を示すが、本発明はこれらに限定されない。   Although the compound example of the amino alcohol derivative salt and asymmetric organic molecular catalyst of this invention represented by Formula (1) below is shown, this invention is not limited to these.

Figure 2011068587
Figure 2011068587

Figure 2011068587
Figure 2011068587

式(1)で表わされるアミノアルコール誘導体塩は、公知の方法で合成することができる。例えばRとRがアリール基で互いに同じ置換基の場合、下記スキームのように、下記式(Y)で表わされるアミノ酸エステル塩を出発物質として、これとグリニャール試薬とをエーテルなどの溶媒中で反応させた後、必要に応じて水酸基やアミノ基を公知の方法で修飾し、更にこれを有機酸と反応させることによって得ることができる。 The amino alcohol derivative salt represented by the formula (1) can be synthesized by a known method. For example, when R 2 and R 3 are aryl groups and the same substituents, as shown in the following scheme, an amino acid ester salt represented by the following formula (Y) is used as a starting material, and this and a Grignard reagent are mixed in a solvent such as ether. Then, if necessary, the hydroxyl group or amino group can be modified by a known method and further reacted with an organic acid.

Figure 2011068587
Figure 2011068587

グリニャール試薬の使用量は、原料のアミノ酸エステル塩1モルに対し通常3モル〜4モル程度であり、有機酸によって塩を形成する際の有機酸の使用量は、アミノアルコール誘導体1モルに対し通常等モル程度である。式(1)で表わされるアミノアルコール誘導体塩は、クロマトグラフィー、再結晶などにより単離、精製することができる。   The amount of Grignard reagent used is usually about 3 to 4 mol per 1 mol of the amino acid ester salt of the raw material, and the amount of organic acid used when forming a salt with an organic acid is usually 1 mol of the amino alcohol derivative. About equimolar. The amino alcohol derivative salt represented by the formula (1) can be isolated and purified by chromatography, recrystallization and the like.

本発明の不斉有機分子触媒が用いられる不斉合成反応としては、例えば、Diels−Alder反応、アルドール反応、マイケル付加反応等が挙げられる。本発明の触媒は、中でも、光学収率の観点から、不斉Diels−Alder反応における不斉有機分子触媒として有用である。   Examples of the asymmetric synthesis reaction in which the asymmetric organic molecular catalyst of the present invention is used include Diels-Alder reaction, aldol reaction, Michael addition reaction and the like. The catalyst of the present invention is particularly useful as an asymmetric organic molecular catalyst in an asymmetric Diels-Alder reaction from the viewpoint of optical yield.

不斉Diels−Alder反応の原料となるジエンとしては、特に限定するものではないが、本発明の不斉有機分子触媒による効果、すなわち高いエンド/エキソ選択性やエナンチオ選択性を最大限に生かすことができるため、シクロペンタジエン、シクロヘキサジエン、ジヒドロピリジンなどの環状ジエンを原料とすることが好ましい。また、ジエノフィルも特に限定するものではなく、アクロレイン、メタクロレイン、桂皮アルデヒドなど通常のDiels−Alder反応に用いることのできるジエノフィルを用いることができる。   The diene used as a raw material for the asymmetric Diels-Alder reaction is not particularly limited, but maximizes the effects of the asymmetric organic molecular catalyst of the present invention, that is, high endo / exo selectivity and enantioselectivity. Therefore, it is preferable to use a cyclic diene such as cyclopentadiene, cyclohexadiene or dihydropyridine as a raw material. Also, the dienophile is not particularly limited, and dienophiles that can be used for ordinary Diels-Alder reactions such as acrolein, methacrolein, and cinnamic aldehyde can be used.

不斉Diels−Alder反応における本発明の不斉有機分子触媒の使用量は特に限定されるものではないが、通常原料のジエノフィルに対して5〜20mol%が好ましく、5〜10mol%がより好ましい。ジエノフィルに対して5mol%未満ではDiels−Alder反応の化学収率やエナンチオ選択性が低下するおそれがあるため好ましくなく、一方、20mol%を超えても効果に差が生じず、経済的な観点から好ましくない。   Although the usage-amount of the asymmetric organic molecular catalyst of this invention in an asymmetric Diels-Alder reaction is not specifically limited, 5-20 mol% is preferable with respect to the dienophile of a raw material normally, and 5-10 mol% is more preferable. If it is less than 5 mol% with respect to dienophile, the chemical yield and enantioselectivity of the Diels-Alder reaction may be lowered, which is not preferable. On the other hand, if it exceeds 20 mol%, there is no difference in effect, and from an economical viewpoint. It is not preferable.

不斉Diels−Alder反応における反応溶媒としては、ニトリル系溶媒を使用することが好ましい。ニトリル系溶媒としては、アセトニトリル、プロピオニトリルなどが挙げられる。また、溶媒には、上記溶媒に対して5体積%程度の水を存在させることも好ましい。また、反応温度は特に限定されるものではなく、通常、0〜25℃程度の範囲で行われる。エナンチオ選択性の観点からは、0〜10℃が好ましい。   As a reaction solvent in the asymmetric Diels-Alder reaction, a nitrile solvent is preferably used. Examples of the nitrile solvent include acetonitrile and propionitrile. Moreover, it is also preferable that about 5% by volume of water is present in the solvent with respect to the solvent. Moreover, reaction temperature is not specifically limited, Usually, it is performed in the range of about 0-25 degreeC. From the viewpoint of enantioselectivity, 0 to 10 ° C is preferable.

本発明の不斉有機分子触媒を用いる不斉Diels−Alder反応は、特に下記式(2)で表わされる1,2−ジヒドロピリジン誘導体(ジエン)と下記式(3)で表わされるアクロレイン誘導体(ジエノフィル)とを原料とする、下記式(4)で表わされるイソキヌクリジン誘導体の合成に有用であり、目的とする光学異性体を非常に高い化学収率かつ光学収率で目的物を合成することができる。また、式(4)で表わされるイソキヌクリジン誘導体は、開環することで下記式(5)で表わされる多置換ピペリジン誘導体に容易に変換することができる。   The asymmetric Diels-Alder reaction using the asymmetric organic molecular catalyst of the present invention is particularly a 1,2-dihydropyridine derivative (diene) represented by the following formula (2) and an acrolein derivative (dienophile) represented by the following formula (3). Is used for the synthesis of an isoquinuclidine derivative represented by the following formula (4), and the target optical isomer can be synthesized with a very high chemical yield and optical yield. Moreover, the isoquinuclidine derivative represented by the formula (4) can be easily converted into a polysubstituted piperidine derivative represented by the following formula (5) by ring opening.

Figure 2011068587
Figure 2011068587

式(2)、式(3)、式(4)、式(5)において、R〜R10、R12〜R14はそれぞれ水素原子又は一価の置換基であり、R11はアルキル基又はアリール基ある。R〜R10、R12〜R14で表わされる一価の置換基としては、直鎖又は分岐のアルキル基、アリール基、ハロゲン原子、ヒドロキシル基、カルボキシル基、アルコキシカルボニル基、アシル基、アシロキシ基、アルコキシ基、アリールオキシ基などが挙げられ、それぞれの置換基は更に他の置換基で置換されていてもよい。R11のアルキル基又はアリール基としては、上述の式(1)におけるRと同様の置換基を例示できる。 In Formula (2), Formula (3), Formula (4), and Formula (5), R 6 to R 10 and R 12 to R 14 are each a hydrogen atom or a monovalent substituent, and R 11 is an alkyl group. Or there is an aryl group. Examples of monovalent substituents represented by R 6 to R 10 and R 12 to R 14 include linear or branched alkyl groups, aryl groups, halogen atoms, hydroxyl groups, carboxyl groups, alkoxycarbonyl groups, acyl groups, and acyloxy groups. Group, an alkoxy group, an aryloxy group, and the like, and each substituent may be further substituted with another substituent. Examples of the alkyl group or aryl group of R 11 include the same substituents as R 1 in the above formula (1).

式(2)、式(3)、式(4)、式(5)において、R〜R10としては水素原子が好ましく、R11としてはベンジル基、フェニル基が好ましい。また、R12〜R14としてはアルキル基、アリール基、ハロゲン原子、アシル基、アシロキシ基、アルコキシ基、アリールオキシ基などが好ましい。 In Formula (2), Formula (3), Formula (4), and Formula (5), R 6 to R 10 are preferably a hydrogen atom, and R 11 is preferably a benzyl group or a phenyl group. Moreover, as R < 12 > -R < 14 >, an alkyl group, an aryl group, a halogen atom, an acyl group, an acyloxy group, an alkoxy group, an aryloxy group etc. are preferable.

上記不斉Diels−Alder反応によって合成される光学活性イソキヌクリジン誘導体(4)は、オセルタミビル、カサランチン、レセルビン、ビンブラスチンなどの前駆体となる物質である。また、光学活性イソキヌクリジン誘導体を開環して得られる、上記式(5)で表わされる多置換ピペリジン誘導体は、アザ糖、ピペリジンアルカロイド、キノリジンアルカロイド糖の前駆体となる。これらの化合物を高い化学収率かつ高い光学収率で合成することのできる本発明は、ひいては低コストかつ高効率に、様々な医薬品や生理活性物質を得るために非常に有用である。   The optically active isoquinuclidine derivative (4) synthesized by the asymmetric Diels-Alder reaction is a substance that becomes a precursor of oseltamivir, casarantine, reservin, vinblastine and the like. Moreover, the polysubstituted piperidine derivative represented by the above formula (5) obtained by ring-opening an optically active isoquinuclidine derivative is a precursor of aza sugar, piperidine alkaloid, and quinolidine alkaloid sugar. The present invention capable of synthesizing these compounds with a high chemical yield and a high optical yield is very useful for obtaining various pharmaceuticals and physiologically active substances at low cost and high efficiency.

(アミノアルコール塩(1−A)〜(1−F)の合成)
以下に示すスキームで、アミノアルコール塩(1−A)〜(1−F)を合成した。
(Synthesis of amino alcohol salts (1-A) to (1-F))
Amino alcohol salts (1-A) to (1-F) were synthesized by the scheme shown below.

Figure 2011068587
Figure 2011068587

200mLのナス型フラスコにアミノ酸メチルエステル(a)〜(d)2.1mmolをとり、ジエチルエーテル13mLに溶解させ、−25℃で氷冷下、それぞれ対応するアリールマグネシウム−ブロマイドエーテル溶液(1〜3M,10mmol)をゆっくりと滴下した。滴下終了後、徐々に室温に戻しながら12時間撹拌し、氷冷下、飽和NHClを滴下して反応を停止させた。反応溶液をエーテルで3回抽出し、有機層を飽和NaCl水溶液で洗い、硫酸ナトリウムで乾燥後、溶媒を減圧留去した。得られた粗生成物を再結晶(EtO)することによって、白色結晶のジフェニルアミノアルコール(i−A)〜(i−F)を70〜80%の収率で得た。[(i−A):72%、(i−B):75%、(i−C):73%、(i−D):79%、(i−E):71%、(i−F):78%]
10mLのナス型フラスコに(i−A)〜(i−F)12mmolをとり、ジクロロメタン2mLに溶解させ、氷冷下、トリフルオロ酢酸0.12mmolを加えた。10分間撹拌した後、反応溶液を減圧留去することによって、アミノアルコール・トリフルオロ酢酸塩(1−A)〜(1−F)を定量的に得た。
In a 200 mL eggplant-shaped flask, 2.1 mmol of amino acid methyl esters (a) to (d) are taken and dissolved in 13 mL of diethyl ether. , 10 mmol) was slowly added dropwise. After completion of the dropwise addition, the mixture was stirred for 12 hours while gradually returning to room temperature, and saturated NH 4 Cl was added dropwise under ice cooling to stop the reaction. The reaction solution was extracted three times with ether, the organic layer was washed with a saturated aqueous NaCl solution and dried over sodium sulfate, and then the solvent was distilled off under reduced pressure. The obtained crude product was recrystallized (Et 2 O) to obtain white crystalline diphenylamino alcohols (iA) to (iF) in a yield of 70 to 80%. [(I-A): 72%, (i-B): 75%, (i-C): 73%, (i-D): 79%, (i-E): 71%, (i-F ): 78%]
12 mmol of (i-A) to (i-F) was taken in a 10 mL eggplant-shaped flask, dissolved in 2 mL of dichloromethane, and 0.12 mmol of trifluoroacetic acid was added under ice cooling. After stirring for 10 minutes, the reaction solution was distilled off under reduced pressure to quantitatively obtain amino alcohol trifluoroacetate salts (1-A) to (1-F).

得られたアミノアルコール塩(1−A)〜(1−F)のH−NMRデータを以下に示す。
(1−A);H−NMR(400MHz,CDCl,δ(ppm)):0.95(s,9H),4.25(s,1H)7.12−7.17(m,2H),7.23−7.31(m,4H),7.59−7.61(m,4H)
(1−B);H−NMR(400MHz,CDCl+CFCOD,δ(ppm)):0.97(d,3H),1.07(d,3H),2.17−2.22(m,1H),4.27(s,1H),7.32−7.45(m,10H)
(1−C);H−NMR(400MHz,CDCl+CFCOD,δ(ppm)):1.40(d,3H),4.57−4.59(m,1H),7.32−7.47(m,10H)
(1−D);H−NMR(400MHz,CDCl,δ(ppm)):2.82−2.93(m,2H),4.48−4.51(m,1H),7.08−7.36(m,11H),7.53−7.57(m,4H)
(1−E);H−NMR(400MHz,CDCl,δ(ppm)):0.86(s,9H),2.25(brs,6H),4.16(s,1H),6.99(d,2H),7.04(d,2H),7.40−7.44(m,4H)
(1−F);H−NMR(400MHz,CDCl,δ(ppm)):0.94(s,9H),4.14(s,1H),6.94−7.03(m,4H),7.49−7.52(m,4H)
1 H-NMR data of the obtained amino alcohol salts (1-A) to (1-F) are shown below.
(1-A); 1 H-NMR (400 MHz, CDCl 3 , δ (ppm)): 0.95 (s, 9H), 4.25 (s, 1H) 7.12-7.17 (m, 2H) ), 7.23-7.31 (m, 4H), 7.59-7.61 (m, 4H)
(1-B); 1 H-NMR (400 MHz, CDCl 3 + CF 3 CO 2 D, δ (ppm)): 0.97 (d, 3H), 1.07 (d, 3H), 2.17-2 .22 (m, 1H), 4.27 (s, 1H), 7.32-7.45 (m, 10H)
(1-C); 1 H-NMR (400 MHz, CDCl 3 + CF 3 CO 2 D, δ (ppm)): 1.40 (d, 3H), 4.57-4.59 (m, 1H), 7 .32-7.47 (m, 10H)
(1-D); 1 H-NMR (400 MHz, CDCl 3 , δ (ppm)): 2.82-2.93 (m, 2H), 4.48-4.51 (m, 1H), 7. 08-7.36 (m, 11H), 7.53-7.57 (m, 4H)
(1-E); 1 H-NMR (400 MHz, CDCl 3 , δ (ppm)): 0.86 (s, 9H), 2.25 (brs, 6H), 4.16 (s, 1H), 6 .99 (d, 2H), 7.04 (d, 2H), 7.40-7.44 (m, 4H)
(1-F); 1 H-NMR (400 MHz, CDCl 3 , δ (ppm)): 0.94 (s, 9H), 4.14 (s, 1H), 6.94-7.03 (m, 4H), 7.49-7.52 (m, 4H)

(アミノアルコール塩(1−A)〜(1−F)を触媒としたイソキヌクリジン誘導体の合成)
以下に示すスキームで、それぞれの触媒を用いてイソキヌクリジン誘導体を合成した。
(Synthesis of isoquinuclidine derivatives using amino alcohol salts (1-A) to (1-F) as catalysts)
In the scheme shown below, isoquinuclidine derivatives were synthesized using respective catalysts.

Figure 2011068587
Figure 2011068587

10mLのナス型フラスコに触媒(1−A)〜(1−F)0.01mmolをとり、アセトニトリル/水混合溶媒(アセトニトリル:水=19:1)0.5mLに溶解させた。−25℃氷冷下、蒸留したアクロレイン(3)0.01mmol及び1,2−ジヒドロピリジン(2a)又は(2b)0.2mmolを加え、0℃で24時間撹拌した。反応終了後、反応溶液に水を加えてエーテルで抽出した。有機層を飽和NaCl水溶液と水で洗い、硫酸ナトリウムで乾燥した後、溶媒を減圧留去することによって、イソキヌクリジン誘導体(4a)又は(4b)が得られた。得られた粗生成物は精製することなく次の反応に用いた。   0.01 mmol of catalysts (1-A) to (1-F) were taken in a 10 mL eggplant-shaped flask and dissolved in 0.5 mL of an acetonitrile / water mixed solvent (acetonitrile: water = 19: 1). Under ice-cooling at −25 ° C., 0.01 mmol of distilled acrolein (3) and 0.2 mmol of 1,2-dihydropyridine (2a) or (2b) were added and stirred at 0 ° C. for 24 hours. After completion of the reaction, water was added to the reaction solution and extracted with ether. The organic layer was washed with saturated NaCl aqueous solution and water, dried over sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain isoquinuclidine derivative (4a) or (4b). The obtained crude product was used for the next reaction without purification.

10mLナス型フラスコに前の反応で得られたイソキヌクリジン誘導体(4a)又は(4b)をとり、エタノール2mLに溶解させ、水素化ホウ素ナトリウム0.05mmolを加え、室温で1時間撹拌した。反応終了後、反応溶液を減圧留去し、水を加えて酢酸エチルで抽出した。有機層を減圧蒸留し、得られた粗生成物をカラムクロマトグラフィー(SiO,n−ヘキサン:酢酸エチル=1:1)で分離精製することによって、イソキヌクリジン誘導体(5a)又は(5b)を定量的に得た。 The isoquinuclidine derivative (4a) or (4b) obtained in the previous reaction was taken in a 10 mL eggplant-shaped flask, dissolved in 2 mL of ethanol, 0.05 mmol of sodium borohydride was added, and the mixture was stirred at room temperature for 1 hour. After completion of the reaction, the reaction solution was evaporated under reduced pressure, water was added and the mixture was extracted with ethyl acetate. The organic layer was distilled under reduced pressure, the resulting crude product was purified by column chromatography (SiO 2, n-hexane: ethyl acetate = 1: 1) by separation and purification, quantify isoquinuclidine derivatives (5a) or (5b) Obtained.

それぞれの触媒を用いて上記合成した際のイソキヌクリジン誘導体の光学収率は、アルコール体(5a)又は(5b)のHPLCデータ(ダイセル化学社製キラルパックAS−H,n−ヘキサン:2−プロパノール=93:7)により決定した。化学収率、光学収率等について表1に示す。   The optical yield of the isoquinuclidine derivative at the time of the above synthesis using each catalyst is HPLC data of the alcohol form (5a) or (5b) (Chiral Pack AS-H, n-hexane: 2-propanol manufactured by Daicel Chemical Industries, Ltd.) 93: 7). It shows in Table 1 about a chemical yield, an optical yield, etc.

Figure 2011068587
Figure 2011068587

いずれの触媒を用いた場合も高いエンド/エキソ選択性を示し、特に触媒(1−A)、(1−B)において、エンド体のみを選択的に得ることができた。更に、エナンチオ選択性も良好であり、触媒(1−A)、(1−B)においては、非常に優れた、高い光学収率で(7S)−endo体を得ることができた。また、化学収率は(1−E)では若干低いものの、他では良好な結果が得られた。   When any of the catalysts was used, high endo / exo selectivity was exhibited. In particular, in the catalysts (1-A) and (1-B), only the endo form could be selectively obtained. Furthermore, the enantioselectivity was also good, and in the catalysts (1-A) and (1-B), (7S) -endo bodies could be obtained with very excellent and high optical yield. The chemical yield was slightly lower for (1-E), but good results were obtained for the others.

以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴うアミノアルコール誘導体塩、不斉有機分子触媒、及び該不斉有機分子触媒を用いた光学活性化合物の製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   While the present invention has been described in connection with embodiments that are presently the most practical and preferred, the present invention is not limited to the embodiments disclosed herein. The amino alcohol derivative salt, the asymmetric organic molecular catalyst, and the asymmetric organic compound can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification. A method for producing an optically active compound using a molecular catalyst should also be understood as being included in the technical scope of the present invention.

アミノアルコール誘導体塩である本発明の不斉有機分子触媒は、性能面、コスト面で非常に優れた触媒である。特に不斉Diels−Alder反応の触媒として用いることで、医薬品や生理活性物質の中間体となるイソキヌクリジン誘導体をはじめとした光学活性物質を高い化学収率と高い光学収率で得ることができる。そのため、本発明の不斉有機分子触媒は、医薬品や生理活性物質の効率的な合成に有用である。   The asymmetric organic molecular catalyst of the present invention which is an amino alcohol derivative salt is a very excellent catalyst in terms of performance and cost. In particular, by using it as a catalyst for the asymmetric Diels-Alder reaction, optically active substances such as isoquinuclidine derivatives that are intermediates for pharmaceuticals and physiologically active substances can be obtained with high chemical yield and high optical yield. Therefore, the asymmetric organic molecular catalyst of the present invention is useful for efficient synthesis of pharmaceuticals and physiologically active substances.

Claims (5)

下記式(1)で表わされるアミノアルコール誘導体塩。
Figure 2011068587
(式(1)中、Rはアルキル基、又は、置換又は無置換のフェニル基であり、R及びRは互いに同じ置換基である置換又は無置換のフェニル基であり、Rは水素原子又は一価の置換基であり、Rは水素原子又はアルキル基であり、Xは式(1)中のアミノアルコール誘導体骨格と塩を形成する有機酸を表わす。)
An amino alcohol derivative salt represented by the following formula (1).
Figure 2011068587
(In Formula (1), R 1 is an alkyl group or a substituted or unsubstituted phenyl group, R 2 and R 3 are substituted or unsubstituted phenyl groups which are the same substituents, and R 4 is A hydrogen atom or a monovalent substituent, R 5 is a hydrogen atom or an alkyl group, and X represents an organic acid that forms a salt with the amino alcohol derivative skeleton in formula (1).
下記式(1)で表わされる不斉有機分子触媒。
Figure 2011068587
(式(1)中、Rはアルキル基又はアリール基であり、R、Rはそれぞれ独立に水素原子又はアリール基であり、Rは水素原子又は一価の置換基であり、Rは水素原子又はアルキル基であり、Xは式(1)中のアミノアルコール誘導体骨格と塩を形成する有機酸を表わす。)
An asymmetric organic molecular catalyst represented by the following formula (1).
Figure 2011068587
(In Formula (1), R 1 is an alkyl group or an aryl group, R 2 and R 3 are each independently a hydrogen atom or an aryl group, R 4 is a hydrogen atom or a monovalent substituent, 5 is a hydrogen atom or an alkyl group, and X represents an organic acid that forms a salt with the amino alcohol derivative skeleton in formula (1).
請求項2に記載の不斉有機分子触媒を用いて不斉反応を行うことを特徴とする、光学活性化合物の製造方法。 A method for producing an optically active compound, comprising performing an asymmetric reaction using the asymmetric organic molecular catalyst according to claim 2. 前記不斉反応が不斉Diels−Alder反応であることを特徴とする、請求項3に記載の光学活性化合物の製造方法。 The method for producing an optically active compound according to claim 3, wherein the asymmetric reaction is an asymmetric Diels-Alder reaction. 前記光学活性化合物がイソキヌクリジン誘導体であり、前記不斉Diels−Alder反応が下記式(2)で表わされる1,2−ジヒドロピリジン誘導体を共役ジエンとし、下記式(3)で表わされるアクロレイン誘導体をジエノフィルとするものであることを特徴とする、請求項4に記載の製造方法。
Figure 2011068587
(式(2)及び式(3)において、R〜R、R11〜R13は水素原子又は一価の置換基を表わし、R10はアルキル基又はアリール基を表わす。)
The optically active compound is an isoquinuclidine derivative, the asymmetric Diels-Alder reaction is a 1,2-dihydropyridine derivative represented by the following formula (2) as a conjugated diene, and an acrolein derivative represented by the following formula (3) is a dienophile. The manufacturing method according to claim 4, wherein:
Figure 2011068587
(In Formula (2) and Formula (3), R 5 to R 9 and R 11 to R 13 represent a hydrogen atom or a monovalent substituent, and R 10 represents an alkyl group or an aryl group.)
JP2009220395A 2009-09-25 2009-09-25 Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst Expired - Fee Related JP5622019B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220395A JP5622019B2 (en) 2009-09-25 2009-09-25 Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220395A JP5622019B2 (en) 2009-09-25 2009-09-25 Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst

Publications (2)

Publication Number Publication Date
JP2011068587A true JP2011068587A (en) 2011-04-07
JP5622019B2 JP5622019B2 (en) 2014-11-12

Family

ID=44014236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220395A Expired - Fee Related JP5622019B2 (en) 2009-09-25 2009-09-25 Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst

Country Status (1)

Country Link
JP (1) JP5622019B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112622A1 (en) * 2012-01-25 2013-08-01 Demerx, Inc. (1r,4r) 7-oxo-2-azabicyclo[2.2.2]oct-5-ene and derivatives thereof
US9150584B2 (en) 2012-01-25 2015-10-06 Demerx, Inc. Indole and benzofuran fused isoquinuclidene derivatives and processes for preparing them
US9550789B2 (en) 2014-06-18 2017-01-24 Demerx, Inc. Halogenated indole and benzofuran derivatives of isoquinuclidene and processes for preparing them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014012573; WEBER,E.,ET AL.: '"Supramolecular Inclusion Hosts Based on Amino Acid Compound Sources: Design, Synthesis and Crystall' JOURNAL OF INCLUSION PHENOMENA AND MACROCYCLIC CHEMISTRY VOL.33,NO.1, 1999, PP.47-68 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112622A1 (en) * 2012-01-25 2013-08-01 Demerx, Inc. (1r,4r) 7-oxo-2-azabicyclo[2.2.2]oct-5-ene and derivatives thereof
JP2015506371A (en) * 2012-01-25 2015-03-02 デメルクス,インコーポレイテッド (1R, 4R) 7-oxo-2-azabicyclo [2.2.2] oct-5-ene and derivatives thereof
US9150584B2 (en) 2012-01-25 2015-10-06 Demerx, Inc. Indole and benzofuran fused isoquinuclidene derivatives and processes for preparing them
CN108912117A (en) * 2012-01-25 2018-11-30 德莫科斯公司 (1R, 4R) 7- oxo -2- azabicyclo [2.2.2] octyl- 5- alkene and its derivative
US9550789B2 (en) 2014-06-18 2017-01-24 Demerx, Inc. Halogenated indole and benzofuran derivatives of isoquinuclidene and processes for preparing them

Also Published As

Publication number Publication date
JP5622019B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JPH05331128A (en) @(3754/24)r)-@(3754/24)-)-4-cyano-3-hydroxylactic acid t-butyl ester and its production
JP5417560B2 (en) Method for producing optically active carboxylic acid ester
CN113549062B (en) Chiral quaternary ammonium salt phase transfer catalyst with high steric hindrance derived from cinchona alkaloid and synthesis method thereof
JP5622019B2 (en) Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst
JP5108383B2 (en) Process for producing optically active monosulfonate compound
KR101130818B1 (en) Method for preparing chiral amino acid from azlactones using bifunctional bis-cinchona alkaloid thiourea organo catalysts
JP2010229097A (en) New oxazolidine derivative, new oxazolidine derivative salt and method for producing optically active compound using the oxazolidine derivative salt as asymmetric organic molecular catalyst
JP5665041B2 (en) Iodonium compound, production method thereof, functionalized spirocyclic compound and production method thereof
JP2006519786A (en) Chemical methods for making intermediates to obtain N-formylhydroxylamine compounds
JP5192856B2 (en) Process for producing oseltamivir and its related compounds
WO2008135386A1 (en) Chiral ligands of the n-heterocyclic carbene type for asymmetrical catalysis
TW201425323A (en) Intermediates for synthesizing treprostinil and preparation method thereof as well as the preparation method of treprostinil thereby
JPH0428268B2 (en)
CN113754604B (en) Nitrogen-containing chiral ligand and application thereof in asymmetric oxidation reaction of thioether
JP3817478B2 (en) Method for enantioselective production of 3,3-diphenyl-2,3-epoxypropionic acid ester
JP4661272B2 (en) Process for producing chiral 4-methyl-4-[(arylcarbooxy) ethyl] -oxetan-2-one and chiral mevalonolactone
JP4910150B2 (en) A method for producing a β-fluoro (phenylsulfonyl) methyl adduct and a method for producing an optically active β-fluoromethylcarbonyl derivative.
JP4860510B2 (en) Production of carboxylic acid having asymmetric point at β-position and nucleophile
JP5787980B2 (en) Method for preparing isoserine derivatives
JP2004526741A (en) Method for producing cyclopropane with enhanced chirality
JP2000103788A (en) Production of optically active epihalohydrin
JPH0791223B2 (en) Process for producing optically active 6-t-butoxy-3,5-dihydroxyhexanoic acid ester
US7173141B2 (en) Chiral lactones
JP4064645B2 (en) New production method of polysubstituted cycloalkenes
JP4560309B2 (en) Method for producing optically active amino acid derivative

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5622019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees