JPWO2019208023A1 - An optically active rare earth complex, an asymmetric catalyst composed of this complex, and a method for producing an optically active organic compound using this asymmetric catalyst. - Google Patents

An optically active rare earth complex, an asymmetric catalyst composed of this complex, and a method for producing an optically active organic compound using this asymmetric catalyst. Download PDF

Info

Publication number
JPWO2019208023A1
JPWO2019208023A1 JP2020516104A JP2020516104A JPWO2019208023A1 JP WO2019208023 A1 JPWO2019208023 A1 JP WO2019208023A1 JP 2020516104 A JP2020516104 A JP 2020516104A JP 2020516104 A JP2020516104 A JP 2020516104A JP WO2019208023 A1 JPWO2019208023 A1 JP WO2019208023A1
Authority
JP
Japan
Prior art keywords
optically active
group
rare earth
halogen atom
earth complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020516104A
Other languages
Japanese (ja)
Inventor
西田 篤司
篤司 西田
真至 原田
真至 原田
早紀 中嶋
早紀 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Publication of JPWO2019208023A1 publication Critical patent/JPWO2019208023A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/44Radicals substituted by doubly-bound oxygen, sulfur, or nitrogen atoms, or by two such atoms singly-bound to the same carbon atom
    • C07D213/53Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

少量の水分では失活せず、保管ができ、使用前に加熱乾燥が不要な不斉触媒として使用可能な光学活性希土類錯体を提供することを課題とする。解決手段として、下記一般式(1)で表される光学活性希土類錯体を提供する。【化1】An object of the present invention is to provide an optically active rare earth complex that is not inactivated by a small amount of water, can be stored, and can be used as an asymmetric catalyst that does not require heat drying before use. As a solution, an optically active rare earth complex represented by the following general formula (1) is provided. [Chemical 1]

Description

本発明は、新規な光学活性希土類錯体と、この光学活性希土類錯体からなる不斉触媒、及び、この不斉触媒を用いた光学活性有機化合物の製造方法に関する。 The present invention relates to a novel optically active rare earth complex, an asymmetric catalyst composed of the optically active rare earth complex, and a method for producing an optically active organic compound using the asymmetric catalyst.

近年、工業的な化学合成は、環境に配慮した方法で行うことが重要視されており、通常では困難な化学反応を温和な条件下かつ高効率で進行させることのできる「触媒」を用いた合成手法が注目されている。中でも金属と光学活性配位子から構成される「光学活性有機金属触媒」は、少量の触媒から大量の有用な光学活性化合物を合成する能力を持つため特に重要である。 In recent years, it has been emphasized that industrial chemical synthesis is carried out in an environmentally friendly manner, and a "catalyst" that can carry out normally difficult chemical reactions under mild conditions and with high efficiency is used. The synthesis method is attracting attention. Among them, the "optically active organometallic catalyst" composed of a metal and an optically active ligand is particularly important because it has the ability to synthesize a large amount of useful optically active compounds from a small amount of catalyst.

光学活性有機金属触媒の一種として、希土類元素を中心金属として用いる光学活性触媒がある。希土類元素とは、スカンジウム、イットリウムと、原子番号57(ランタン:La)から71(ルテチウム:Lu)の15元素(ランタノイド)の総称である。希土類元素は、以下に示した特徴を有するため、希土類元素以外を中心金属とする光学活性有機金属触媒では代替できない特殊な触媒として機能する。
(1)いずれも高い配位許容性を有するため、自由な触媒設計が可能。
(2)いずれも高い配位許容性を有するため、高配位性・多官能基性基質を用いた反応にも適用可能。
(3)化学的性質が互いに似ているものの、ルイス酸性及びイオン半径がそれぞれ少しずつ異なるため、配位子や基質、反応種別によって用いるランタノイドを変えることで触媒を最適化することが可能。
As a kind of optically active organometallic catalyst, there is an optically active catalyst that uses a rare earth element as a central metal. Rare earth elements are a general term for scandium, yttrium, and 15 elements (lanthanoids) having atomic numbers 57 (lantern: La) to 71 (lutetium: Lu). Since the rare earth element has the following characteristics, it functions as a special catalyst that cannot be replaced by an optically active organometallic catalyst having a central metal other than the rare earth element.
(1) Since both have high coordination tolerance, free catalyst design is possible.
(2) Since both have high coordination tolerance, they can be applied to reactions using highly coordinated and polyfunctional substrates.
(3) Although the chemical properties are similar to each other, the Lewis acidity and the ionic radius are slightly different, so it is possible to optimize the catalyst by changing the ligand, substrate, and lanthanoid used depending on the reaction type.

本発明者らは、光学活性ランタノイド触媒を用いた、シロキシジエンの触媒的不斉ディールス−アルダー反応を報告している(非特許文献1〜4)。シロキシジエンはディールス−アルダー反応において高い反応性を示し、反応生成物から有用化合物へ変換できることも報告されているが、分解しやすいため触媒的不斉反応の報告例は少ない。しかし、光学活性ランタノイド触媒はシロキシジエンのディールス−アルダー反応を促進し、高い光学純度の生成物を高収率で与えた。 The present inventors have reported a catalytic asymmetric Diels-Alder reaction of siloxydiene using an optically active lanthanide catalyst (Non-Patent Documents 1 to 4). It has been reported that siloxydiene shows high reactivity in the Diels-Alder reaction and can convert the reaction product into a useful compound, but there are few reports of catalytic asymmetric reaction because it is easily decomposed. However, optically active lanthanide catalysts promoted the Diels-Alder reaction of siloxydiene, resulting in high optical purity products in high yields.

しかし、光学活性ランタノイド触媒は、調製時に水分が存在すると活性な錯体形成を阻害する。また、光学活性ランタノイド触媒は、活性な錯体であっても水分により失活するため、下記に示す問題点があった(非特許文献4)。
(1)触媒を保管することができず、用事調製する必要がある。
(2)触媒の乾燥を行わないと収率及びエナンチオ選択性が劇的に低下するため、触媒調製の際に触媒を高度減圧下で加熱乾燥する必要がある。
(3)触媒の加熱乾燥時に高度真空装置、高純度不活性ガス、加熱浴を必要とする。
(4)触媒調製およびそれを用いた反応は、厳密な無水条件下で行う必要がある。
However, optically active lanthanide catalysts inhibit the formation of active complexes in the presence of water during preparation. Further, since the optically active lanthanide catalyst is inactivated by water even if it is an active complex, it has the following problems (Non-Patent Document 4).
(1) The catalyst cannot be stored and needs to be prepared for errands.
(2) If the catalyst is not dried, the yield and enantioselectivity are dramatically reduced. Therefore, it is necessary to heat-dry the catalyst under a high vacuum pressure when preparing the catalyst.
(3) A high-level vacuum device, a high-purity inert gas, and a heating bath are required for heating and drying the catalyst.
(4) The catalyst preparation and the reaction using the catalyst need to be carried out under strict anhydrous conditions.

Y Sudo, D Shirasaki, S Harada, A Nishida; Highly Enantioselective Diels-Alder Reactions of Danishefsky Type Dienes with Electron-Deficient Alkenes Catalyzed by Yb(III)-BINAMIDE Complexes; Journal of the American Chemical Society; 2008, 130, 12588-12589.Y Sudo, D Shirasaki, S Harada, A Nishida; Highly Enantioselective Diels-Alder Reactions of Danishefsky Type Dienes with Electron-Deficient Alkenes Catalyzed by Yb (III)-BINAMIDE Complexes; Journal of the American Chemical Society; 2008, 130, 12588- 12589. S Harada, T Morikawa, A Nishida; Chiral Holmium Complex-Catalyzed Diels-Alder Reaction of Silyloxyvinylindoles: Stereoselective Synthesis of Hydrocarbazoles; Organic Letters;2013,15,5314-5317.S Harada, T Morikawa, A Nishida; Chiral Holmium Complex-Catalyzed Diels-Alder Reaction of Silyloxyvinylindoles: Stereoselective Synthesis of Hydrocarbazoles; Organic Letters; 2013,15,5314-5317. S Harada, S Nakashima, W Yamada, T Morikawa, A Nishida; CATALYTIC AND ENANTIOSELECTIVE DIELS-ALDER REACTION OF SILYLOXYDIENE THAT INCORPORATES A PYRROLIDINE RING, AND ITS APPLICATION TO THE CONSTRUCTION OF CHIRAL TRI-AND TETRACYCLIC SKELETONS; Heterocycles, 2017, 95, 872-893.S Harada, S Nakashima, W Yamada, T Morikawa, A Nishida; CATALYTIC AND ENANTIOSELECTIVE DIELS-ALDER REACTION OF SILYLOXYDIENE THAT INCORPORATES A PYRROLIDINE RING, AND ITS APPLICATION TO THE CONSTRUCTION OF CHIRAL TRI-AND TETRACYCLIC SKELETONS; 872-893. 原田真至、森川貴裕、平岡紫陽、西田篤司;光学活性希土類錯体を用いる電子豊富ジエンの触媒的不斉Diels−Alder反応の開発;有機合成化学協会誌;2013,71,818-829.Shinji Harada, Takahiro Morikawa, Shiyo Hiraoka, Atsushi Nishida; Development of catalytic asymmetric Diels-Alder reaction of electron-rich diene using optically active rare earth complex; Journal of Synthetic Organic Chemistry; 2013,71,818-829.

本発明は、少量の水分では失活せず、保管ができ、使用前に加熱乾燥が不要な不斉触媒として使用可能な光学活性希土類錯体を提供することを課題とする。 An object of the present invention is to provide an optically active rare earth complex that is not inactivated by a small amount of water, can be stored, and can be used as an asymmetric catalyst that does not require heat drying before use.

本発明の課題を解決するための手段は以下のとおりである。
1.下記一般式(1)で表される光学活性希土類錯体。

Figure 2019208023
(式中、
Rは、それぞれ独立して水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい炭素数1〜6のアルキル基、炭素数1〜10のアルキル基またはハロゲン原子で置換されてもよいフェニル基、ハロゲン原子で置換されてもよい炭素数3〜8のシクロアルキル基、炭素数1〜6のアルキル基またはハロゲン原子またはフェニル基で置換されてもよいアルケニル基、炭素数1〜6のアルキル基またはハロゲン原子またはフェニル基で置換されてもよいアルキニル基、ニトロ基、ハロゲン原子で置換されてもよい炭素数1〜6のアルキルオキシ基、シアノ基を示し、
nは1〜6の整数であり、この環はメチレン基が、−C=C−、−C≡C−、−CO−、−CO−O−、−O−、−S−、−NH−で置き換えられていてもよく、
Zは、N、O、Sのいずれかを示し、
Lnは、希土類元素を示し、
Xは、ハロゲン原子、トリフルオロメタンスルホニルオキシ基、ビス(トリフルオロメタンスルホニル)アミノ基、ニトレート基、アセテート基を示し、同一または相違してもよい。)
2.ZがNである、1.に記載の光学活性希土類錯体。
3.nが3または4である、1.または2.に記載の光学活性希土類錯体。
4.Xがハロゲン原子、トリフルオロメタンスルホニルオキシ基、ビス(トリフルオロメタンスルホニル)アミノ基である、1.〜3.のいずれかに記載の光学活性希土類錯体。
5.1.〜4.のいずれかに記載の光学活性希土類錯体からなる不斉触媒。
6.5.に記載の不斉触媒を用いることを特徴とする光学活性有機化合物の製造方法。
7.ジエン化合物にジエノフィルが付加することにより6員環化合物を製造することを特徴とする6.に記載の光学活性有機化合物の製造方法。The means for solving the problem of the present invention is as follows.
1. 1. An optically active rare earth complex represented by the following general formula (1).
Figure 2019208023
(During the ceremony,
R is an alkyl group having 1 to 6 carbon atoms which may be independently substituted with a hydrogen atom, a halogen atom or a halogen atom, a phenyl group which may be substituted with an alkyl group having 1 to 10 carbon atoms or a halogen atom, respectively. A cycloalkyl group having 3 to 8 carbon atoms which may be substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms or an alkenyl group which may be substituted with a halogen atom or a phenyl group, an alkyl group having 1 to 6 carbon atoms or Indicates an alkynyl group, a nitro group, which may be substituted with a halogen atom or a phenyl group, an alkyloxy group having 1 to 6 carbon atoms, which may be substituted with a halogen atom, and a cyano group.
n is an integer of 1 to 6, and the methylene group of this ring is -C = C-, -C≡C-, -CO-, -CO-O-, -O-, -S-, -NH-. May be replaced with
Z indicates any of N, O, and S.
Ln indicates a rare earth element,
X represents a halogen atom, a trifluoromethanesulfonyloxy group, a bis (trifluoromethanesulfonyl) amino group, a nitrate group, an acetate group, and may be the same or different. )
2. Z is N, 1. The optically active rare earth complex according to.
3. 3. 1. n is 3 or 4. Or 2. The optically active rare earth complex according to.
4. 1. X is a halogen atom, a trifluoromethanesulfonyloxy group, and a bis (trifluoromethanesulfonyl) amino group. ~ 3. The optically active rare earth complex according to any one of.
5.1. ~ 4. An asymmetric catalyst composed of the optically active rare earth complex according to any one of.
6.5. A method for producing an optically active organic compound, which comprises using the asymmetric catalyst described in 1.
7. 6. A 6-membered ring compound is produced by adding dienophil to the diene compound. The method for producing an optically active organic compound according to.

本発明の光学活性希土類錯体は、高度真空装置、高純度不活性ガス、加熱浴といった特殊な実験装置を必要とせず、通常の実験操作で製造することができる。この光学活性希土類錯体は、光学活性有機化合物を製造する際の不斉触媒として利用できる。
この光学活性希土類錯体からなる本発明の不斉触媒は、少量の水分では失活しないため、保管が可能であり固体試薬として用いることができる。本発明の不斉触媒は、使用前に加熱乾燥する必要がないため、光学活性有機化合物製造における作業の効率化、低コスト化が達成できる。本発明の不斉触媒により、高収率、高選択性で、光学活性有機化合物を製造することができる。特に、本発明の不斉触媒は、ディールス−アルダー反応の触媒として、光学活性な6員環化合物の製造に好適に用いることができる。
The optically active rare earth complex of the present invention does not require a special experimental device such as an advanced vacuum device, a high-purity inert gas, or a heating bath, and can be produced by a normal experimental operation. This optically active rare earth complex can be used as an asymmetric catalyst in producing an optically active organic compound.
Since the asymmetric catalyst of the present invention composed of this optically active rare earth complex is not inactivated by a small amount of water, it can be stored and can be used as a solid reagent. Since the asymmetric catalyst of the present invention does not need to be heat-dried before use, efficiency and cost reduction of work in the production of optically active organic compounds can be achieved. The asymmetric catalyst of the present invention can produce an optically active organic compound with high yield and high selectivity. In particular, the asymmetric catalyst of the present invention can be suitably used for producing an optically active 6-membered ring compound as a catalyst for the Diels-Alder reaction.

本発明のZがNである光学活性希土類錯体(ImBpy−1とガドリニウムトリフラートとの錯体)の構造を示す図。The figure which shows the structure of the optically active rare earth complex (complex of ImBpy-1 and gadolinium triflate) in which Z of this invention is N. 本発明のZがOである光学活性希土類錯体(ImBpy−4とガドリニウムトリフラートとの錯体)の構造を示す図。The figure which shows the structure of the optically active rare earth complex (complex of ImBpy-4 and gadolinium triflate) in which Z of this invention is O.

本発明は、下記一般式(1)で表される光学活性希土類錯体に関する。 The present invention relates to an optically active rare earth complex represented by the following general formula (1).

Figure 2019208023
Figure 2019208023

上記一般式(1)中、
Rは、それぞれ独立して水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい炭素数1〜6のアルキル基、炭素数1〜10のアルキル基またはハロゲン原子で置換されてもよいフェニル基、ハロゲン原子で置換されてもよい炭素数3〜8のシクロアルキル基、炭素数1〜6のアルキル基またはハロゲン原子またはフェニル基で置換されてもよいアルケニル基、炭素数1〜6のアルキル基またはハロゲン原子またはフェニル基で置換されてもよいアルキニル基、ニトロ基、ハロゲン原子で置換されてもよい炭素数1〜6のアルキルオキシ基、シアノ基を示す。
nは1〜6の整数であり、この環はメチレン基が、−C=C−、−C≡C−、−CO−、−CO−O−、−O−、−S−、−NH−で置き換えられていてもよい。
Zは、N、O、Sのいずれかを示し、
Lnは、希土類元素を示す。
Xは、ハロゲン原子、トリフルオロメタンスルホニルオキシ基、ビス(トリフルオロメタンスルホニル)アミノ基、ニトレート基、アセテート基を示し、同一または相違してもよい。
In the above general formula (1),
R is an alkyl group having 1 to 6 carbon atoms which may be independently substituted with a hydrogen atom, a halogen atom or a halogen atom, a phenyl group which may be substituted with an alkyl group having 1 to 10 carbon atoms or a halogen atom, respectively. A cycloalkyl group having 3 to 8 carbon atoms which may be substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms or an alkenyl group which may be substituted with a halogen atom or a phenyl group, an alkyl group having 1 to 6 carbon atoms or It represents an alkynyl group which may be substituted with a halogen atom or a phenyl group, a nitro group, an alkyloxy group having 1 to 6 carbon atoms which may be substituted with a halogen atom, and a cyano group.
n is an integer of 1 to 6, and the methylene group of this ring is -C = C-, -C≡C-, -CO-, -CO-O-, -O-, -S-, -NH-. May be replaced with.
Z indicates any of N, O, and S.
Ln represents a rare earth element.
X represents a halogen atom, a trifluoromethanesulfonyloxy group, a bis (trifluoromethanesulfonyl) amino group, a nitrate group, an acetate group, and may be the same or different.

本発明の一般式(1)で表される光学活性希土類錯体において、
Rは、水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい炭素数1〜4のアルキル基、炭素数1〜4のアルキル基またはハロゲン原子で置換されてもよいフェニル基、炭素数1〜4のアルキル基またはフェニル基で置換されてもよいアルケニル基、炭素数1〜4のアルキル基またはフェニル基で置換されてもよいアルキニル基、ニトロ基、炭素数1〜4のアルキルオキシ基、シアノ基が好ましく、水素原子、ハロゲン原子、フェニル基、炭素数1〜4のアルキル基またはフェニル基で置換されてもよいアルキニル基、ニトロ基、炭素数1〜4のアルキルオキシ基がより好ましく、水素原子がさらに好ましい。
In the optically active rare earth complex represented by the general formula (1) of the present invention,
R is an alkyl group having 1 to 4 carbon atoms which may be substituted with a hydrogen atom, a halogen atom or a halogen atom, a phenyl group which may be substituted with an alkyl group having 1 to 4 carbon atoms or a halogen atom, and 1 to 1 carbon atoms. An alkenyl group optionally substituted with an alkyl group or a phenyl group of 4, an alkynyl group optionally substituted with an alkyl group or a phenyl group having 1 to 4 carbon atoms, a nitro group, an alkyloxy group having 1 to 4 carbon atoms, a cyano Groups are preferred, hydrogen atoms, halogen atoms, phenyl groups, alkyl groups having 1 to 4 carbon atoms or phenyl groups which may be substituted with alkynyl groups, nitro groups, and alkyloxy groups having 1 to 4 carbon atoms are more preferable. Atomics are even more preferred.

nは、2〜6の整数であることが好ましく、3〜5の整数であることがより好ましく、3または4であることがさらに好ましい。具体的には、シクロペンタン、シクロヘキサン、4−シクロヘキセンであることが最も好ましい。 n is preferably an integer of 2 to 6, more preferably an integer of 3 to 5, and even more preferably 3 or 4. Specifically, cyclopentane, cyclohexane, and 4-cyclohexene are most preferable.

Zは、N、O、Sのいずれかを示し、ZがNの場合、ビピリジル構造側へ繋がる結合は二重結合であり、ZがOまたはSの場合、ビピリジル構造側へ繋がる結合は単結合である。Zは、錯体に使用する希土類元素との相性に応じて選択することができるが、より高い立体選択性を示す傾向があるため、ZはNであることが好ましい。 Z indicates any of N, O, and S. When Z is N, the bond connected to the bipyridyl structure side is a double bond, and when Z is O or S, the bond connected to the bipyridyl structure side is a single bond. Is. Z can be selected according to the compatibility with the rare earth element used in the complex, but Z is preferably N because it tends to show higher stereoselectivity.

希土類元素は、イットリウムと、原子番号57(ランタン:La)から71(ルテチウム:Lu)の15元素(ランタノイド)であることが好ましく、原子番号62(サマリウム:Sm)から71(ルテチウム:Lu)の10元素であることがより好ましく、サマリウム、ガドリニウム、ホルミウム、イッテルビウム、ルテチウムであることがさらに好ましい。 The rare earth elements are preferably yttrium and 15 elements (lantanoids) having atomic numbers 57 (lantern: La) to 71 (lutetium: Lu), and atomic numbers 62 (samarium: Sm) to 71 (lutetium: Lu). It is more preferably 10 elements, and even more preferably samarium, gadrinium, formium, itterbium, and lutetium.

Xは、ハロゲン原子、トリフルオロメタンスルホニルオキシ基、ビス(トリフルオロメタンスルホニル)アミノ基であることが好ましく、トリフルオロメタンスルホニルオキシ基、ビス(トリフルオロメタンスルホニル)アミノ基であることがより好ましく、トリフルオロメタンスルホニルオキシ基であることがさらに好ましい。 X is preferably a halogen atom, a trifluoromethanesulfonyloxy group or a bis (trifluoromethanesulfonyl) amino group, more preferably a trifluoromethanesulfonyloxy group or a bis (trifluoromethanesulfonyl) amino group, and more preferably a trifluoromethanesulfonyl group. It is more preferably an oxy group.

本発明の光学活性希土類錯体は、キラルジアミンから合成されるビス−イミノ−ビス−ビピリジル型不斉配位子(以下、ImBpyという)と希土類金属塩とを有機溶媒中で混合することで調製される。錯体調製は、無水操作を必要とせず、大気存在下で行うことができる。なお、本発明の光学活性希土類錯体の調製方法は、この方法に限定されるものではない。 The optically active rare earth complex of the present invention is prepared by mixing a bis-imino-bis-bipyridyl type asymmetric ligand (hereinafter referred to as ImBpy) synthesized from chiral diamine and a rare earth metal salt in an organic solvent. NS. The complex preparation does not require an anhydrous operation and can be carried out in the presence of air. The method for preparing the optically active rare earth complex of the present invention is not limited to this method.

本発明で使用するImBpyは、例えば、以下に示す製造方法に従って製造することができるが、この方法に限定されるものではない。 ImBpy used in the present invention can be produced, for example, according to the production method shown below, but is not limited to this method.

「ZがNであるImBpyの製造方法」

Figure 2019208023
"Manufacturing method of ImBpy in which Z is N"
Figure 2019208023

「ZがOであるImBpyの製造方法」

Figure 2019208023
"Manufacturing method of ImBpy in which Z is O"
Figure 2019208023

「ZがSであるImBpyの製造方法」

Figure 2019208023
"Manufacturing method of ImBpy in which Z is S"
Figure 2019208023

本発明で使用するImBpyは、上記一般式(1)に示す光学活性希土類錯体における配位子構造を満足するものであれば特に制限されないが、例えば、ZがNの場合、下記一般式(2)〜(4)に示すImBpy1〜3が挙げられる。また、Zが、OまたはSの場合は、ImBpy1〜3のそれぞれに対応する構造が挙げられ、一例として下記一般式(5)にImBpy4を示す。一般式(2)〜(5)に示す化合物は、いずれも安価に購入可能な原料から合成することができる。 The ImBpy used in the present invention is not particularly limited as long as it satisfies the ligand structure in the optically active rare earth complex represented by the above general formula (1). For example, when Z is N, the following general formula (2) ) To (4), and ImBpy1 to 3 shown in (4). When Z is O or S, a structure corresponding to each of ImBpy1 to 3 can be mentioned, and ImBpy4 is shown in the following general formula (5) as an example. All of the compounds represented by the general formulas (2) to (5) can be synthesized from raw materials that can be purchased at low cost.

Figure 2019208023
Figure 2019208023

Figure 2019208023
Figure 2019208023

Figure 2019208023
Figure 2019208023

Figure 2019208023
Figure 2019208023

本発明の光学活性希土類錯体は、光学活性有機化合物の製造における不斉触媒として利用することができる。本発明の光学活性希土類錯体は、固体のまま大気中で保管することができ、微量の水分で失活することなく、不斉触媒として利用することができる。
本発明の不斉触媒は、光学活性有機化合物の製造に使用することができ、例えば、ジエン化合物(diene)にジエノフィル(dienophile)が付加することにより6員環化合物を製造するディールス−アルダー反応、1,3−双極子の付加環化反応、ニトロ−アルドール反応、カルボニル−エン反応、1,4−付加反応、ストレッカー反応、共役エノンのエポキシ化反応等の不斉触媒として利用することができる。
The optically active rare earth complex of the present invention can be used as an asymmetric catalyst in the production of optically active organic compounds. The optically active rare earth complex of the present invention can be stored in the atmosphere as a solid, and can be used as an asymmetric catalyst without being deactivated by a trace amount of water.
The asymmetric catalyst of the present invention can be used for the production of optically active organic compounds, for example, the Diels-Alder reaction for producing a 6-membered ring compound by adding dienophile to a diene compound. It can be used as an asymmetric catalyst for addition cyclization of 1,3-dipoles, nitro-Alder reaction, carbonyl-ene reaction, 1,4-addition reaction, strecker reaction, epoxidation reaction of conjugated enone, etc. ..

「合成例1」
市販の環状キラルジアミンから、上記方法により、ImBpy1〜4を合成した。収率は、それぞれ86%、52%、42%、54%であった。
"Synthesis Example 1"
ImBpy1-4 were synthesized from commercially available cyclic chiral diamines by the above method. The yields were 86%, 52%, 42% and 54%, respectively.

「合成例2」
ImBpy1〜4と、希土類金属塩をアセトニトリル中で混合し、溶媒を留去することで光学活性希土類錯体を得た。
得られた光学活性希土類錯体と、測定した物性を表1に示す。なお、No.1〜4、15〜18、20、21についても、物性は測定していないが、下記表2に示す通り触媒として使用可能であることは確認している。
"Synthesis Example 2"
ImBpy1-4 and a rare earth metal salt were mixed in acetonitrile and the solvent was distilled off to obtain an optically active rare earth complex.
Table 1 shows the obtained optically active rare earth complex and the measured physical properties. In addition, No. The physical characteristics of 1-4, 15-18, 20 and 21 have not been measured, but it has been confirmed that they can be used as catalysts as shown in Table 2 below.

Figure 2019208023
Figure 2019208023

上記で合成した光学活性希土類錯体No.7について、アセトニトリルとジエチルエーテルの混合溶媒から単結晶を作成し、X線構造解析を行った。この錯体構造を図1に示す。また、錯体No.19について、同様にアセトニトリルとジエチルエーテルの混合溶媒から単結晶を作成し、X線結晶構造解析を行った。この錯体構造を図2に示す。
本発明の光学活性希土類錯体はいずれも、中心の希土類金属に対して、配位子がらせん状に巻き付いた構造を有することが確認できた。このらせん状の構造により、プロキラル化合物の活性点への接近のしやすさが異なるため、本発明の光学活性希土類錯体は、不斉触媒として機能する。
For the optically active rare earth complex No. 7 synthesized above, a single crystal was prepared from a mixed solvent of acetonitrile and diethyl ether, and an X-ray structural analysis was performed. This complex structure is shown in FIG. In addition, complex No. Similarly, for No. 19, a single crystal was prepared from a mixed solvent of acetonitrile and diethyl ether, and an X-ray crystal structure analysis was performed. This complex structure is shown in FIG.
It was confirmed that all of the optically active rare earth complexes of the present invention have a structure in which the ligand is spirally wound around the central rare earth metal. The optically active rare earth complex of the present invention functions as an asymmetric catalyst because the accessibility of the prochiral compound to the active site differs depending on the spiral structure.

「使用例1」
上記で合成した光学活性希土類錯体No.1〜5、7、10〜21を不斉触媒として、下記反応を行った。また、比較例として、非特許文献3に記載の光学活性ランタノイド触媒(ホルミウムトリフリックイミド塩と下記(R)−bisthioureaとDBUの三成分キラルHo触媒)を用いて同様の反応を行った。さらに、光学活性希土類錯体No.7と非特許文献3に記載の光学活性ランタノイド触媒については、合成から24時間大気中で保管したものを使用して、同様に反応を行った。反応条件は、以下の通りである。
触媒量:10mol%
反応温度:No.1〜5,7,10〜21は0℃、比較例は−20℃
反応時間:No.1〜5,7,10〜18は4時間、No.19〜21は
5時間、比較例は30分
結果を表2に示す。
"Usage example 1"
The optically active rare earth complex No. synthesized above. The following reaction was carried out using 1 to 5, 7 and 10 to 21 as asymmetric catalysts. Further, as a comparative example, the same reaction was carried out using the optically active lanthanoid catalyst described in Non-Patent Document 3 (holmium triflickimide salt and the following (R) -biziourea and DBU three-component chiral Ho catalyst). Furthermore, the optically active rare earth complex No. As for the optically active lanthanide catalyst described in No. 7 and Non-Patent Document 3, the one stored in the air for 24 hours after the synthesis was used and the reaction was carried out in the same manner. The reaction conditions are as follows.
Catalyst amount: 10 mol%
Reaction temperature: No. 1 to 5, 7, 10 to 21 is 0 ° C, a comparative example is -20 ° C.
Reaction time: No. 1 to 5, 7, 10 to 18 are 4 hours, No. 19-21
Table 2 shows the results for 5 hours and 30 minutes for the comparative example.

Figure 2019208023
Figure 2019208023

Figure 2019208023
Figure 2019208023

Figure 2019208023
Figure 2019208023

「結果」
比較例である従来の光学活性ランタノイド触媒は、調製直後の触媒だと高い光学選択性で反応が進行したが、保管後の触媒は反応は進行するものの収率は大きく低下し(96% −> 45%)、しかも立体選択性がほとんど発現しなかった(4%)。
本発明の光学活性希土類錯体は、高い光学選択性を有していることが確認できた。また、本発明の光学活性希土類錯体は、大気中で保管後も、収率、光学選択性にほとんど変化がなかった。
"result"
In the conventional optically active lanthanide catalyst, which is a comparative example, the reaction proceeded with high optical selectivity when it was a catalyst immediately after preparation, but the reaction proceeded in the catalyst after storage, but the yield was greatly reduced (96%->. 45%), and almost no stereoselectivity was expressed (4%).
It was confirmed that the optically active rare earth complex of the present invention has high optical selectivity. Further, the optically active rare earth complex of the present invention had almost no change in yield and optical selectivity even after being stored in the atmosphere.

本発明の光学活性希土類錯体は、従来の光学活性ランタノイド触媒と同等の活性を備え、水分で失活することなく大気中で保管でき、使用前に加熱乾燥する必要がない。そのため、本発明の光学活性希土類錯体は、使用したい時にそのまま固体試薬として取り扱うことができ、作業の効率化、低コスト化が達成できる。 The optically active rare earth complex of the present invention has the same activity as a conventional optically active lanthanide catalyst, can be stored in the air without being deactivated by moisture, and does not need to be heat-dried before use. Therefore, the optically active rare earth complex of the present invention can be treated as a solid reagent as it is when it is desired to be used, and work efficiency and cost reduction can be achieved.

「使用例2」
上記で合成した光学活性希土類錯体No13を、合成から12時間、2日、7日、21日、30日、それぞれ大気中室温で保管したものを使用して、下記ディールス−アルダー反応を行った。また、比較例として、No.13の不斉触媒の合成時における溶媒留去を行う前の溶液をそのまま反応液に加えて同様の反応を行った。反応条件とその結果を表3に示す。
"Usage example 2"
The following Diels-Alder reaction was carried out using the optically active rare earth complex No. 13 synthesized above stored at room temperature in the air for 12 hours, 2 days, 7 days, 21 days and 30 days, respectively. In addition, as a comparative example, No. The same reaction was carried out by adding the solution before distilling off the solvent at the time of synthesizing the asymmetric catalyst of No. 13 to the reaction solution as it was. The reaction conditions and their results are shown in Table 3.

Figure 2019208023
Figure 2019208023

Figure 2019208023
Figure 2019208023

「結果」
本発明の光学活性希土類錯体は、高い光学選択性を有していることが確認できた。また、本発明の光学活性希土類錯体は、大気中で30日保管後も、収率、光学選択性にほとんど変化がなく、調製直後の溶媒留去を行わなかった比較例と同等の触媒活性を維持していた。
"result"
It was confirmed that the optically active rare earth complex of the present invention has high optical selectivity. Further, the optically active rare earth complex of the present invention had almost no change in yield and optical selectivity even after being stored in the air for 30 days, and had the same catalytic activity as the comparative example in which the solvent was not distilled off immediately after preparation. It was maintained.

Claims (7)

下記一般式(1)で表される光学活性希土類錯体。
Figure 2019208023
(式中、
Rは、それぞれ独立して水素原子、ハロゲン原子、ハロゲン原子で置換されてもよい炭素数1〜6のアルキル基、炭素数1〜10のアルキル基またはハロゲン原子で置換されてもよいフェニル基、ハロゲン原子で置換されてもよい炭素数3〜8のシクロアルキル基、炭素数1〜6のアルキル基またはハロゲン原子またはフェニル基で置換されてもよいアルケニル基、炭素数1〜6のアルキル基またはハロゲン原子またはフェニル基で置換されてもよいアルキニル基、ニトロ基、ハロゲン原子で置換されてもよい炭素数1〜6のアルキルオキシ基、シアノ基を示し、
nは1〜6の整数であり、この環はメチレン基が、−C=C−、−C≡C−、−CO−、−CO−O−、−O−、−S−、−NH−で置き換えられていてもよく、
Zは、N、O、Sのいずれかを示し、
Lnは、希土類元素を示し、
Xは、ハロゲン原子、トリフルオロメタンスルホニルオキシ基、ビス(トリフルオロメタンスルホニル)アミノ基、ニトレート基、アセテート基を示し、同一または相違してもよい。)
An optically active rare earth complex represented by the following general formula (1).
Figure 2019208023
(During the ceremony,
R is an alkyl group having 1 to 6 carbon atoms which may be independently substituted with a hydrogen atom, a halogen atom or a halogen atom, a phenyl group which may be substituted with an alkyl group having 1 to 10 carbon atoms or a halogen atom, respectively. A cycloalkyl group having 3 to 8 carbon atoms which may be substituted with a halogen atom, an alkyl group having 1 to 6 carbon atoms or an alkenyl group which may be substituted with a halogen atom or a phenyl group, an alkyl group having 1 to 6 carbon atoms or Indicates an alkynyl group, a nitro group, which may be substituted with a halogen atom or a phenyl group, an alkyloxy group having 1 to 6 carbon atoms, which may be substituted with a halogen atom, and a cyano group.
n is an integer of 1 to 6, and the methylene group of this ring is -C = C-, -C≡C-, -CO-, -CO-O-, -O-, -S-, -NH-. May be replaced with
Z indicates any of N, O, and S.
Ln indicates a rare earth element,
X represents a halogen atom, a trifluoromethanesulfonyloxy group, a bis (trifluoromethanesulfonyl) amino group, a nitrate group, an acetate group, and may be the same or different. )
ZがNである、請求項1に記載の光学活性希土類錯体。 The optically active rare earth complex according to claim 1, wherein Z is N. nが3または4である、請求項1または2に記載の光学活性希土類錯体。 The optically active rare earth complex according to claim 1 or 2, wherein n is 3 or 4. Xがハロゲン原子、トリフルオロメタンスルホニルオキシ基、ビス(トリフルオロメタンスルホニル)アミノ基である、請求項1〜3のいずれかに記載の光学活性希土類錯体。 The optically active rare earth complex according to any one of claims 1 to 3, wherein X is a halogen atom, a trifluoromethanesulfonyloxy group, or a bis (trifluoromethanesulfonyl) amino group. 請求項1〜4のいずれかに記載の光学活性希土類錯体からなる不斉触媒。 An asymmetric catalyst comprising the optically active rare earth complex according to any one of claims 1 to 4. 請求項5に記載の不斉触媒を用いることを特徴とする光学活性有機化合物の製造方法。 A method for producing an optically active organic compound, which comprises using the asymmetric catalyst according to claim 5. ジエン化合物にジエノフィルが付加することにより6員環化合物を製造することを特徴とする請求項6に記載の光学活性有機化合物の製造方法。
The method for producing an optically active organic compound according to claim 6, wherein a 6-membered ring compound is produced by adding dienophil to the diene compound.
JP2020516104A 2018-04-27 2019-03-18 An optically active rare earth complex, an asymmetric catalyst composed of this complex, and a method for producing an optically active organic compound using this asymmetric catalyst. Pending JPWO2019208023A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018086909 2018-04-27
JP2018086909 2018-04-27
PCT/JP2019/011105 WO2019208023A1 (en) 2018-04-27 2019-03-18 Optically active rare earth complex, asymmetric catalyst formed from said complex, and method for producing optically active organic compound using said asymmetric catalyst

Publications (1)

Publication Number Publication Date
JPWO2019208023A1 true JPWO2019208023A1 (en) 2021-09-09

Family

ID=68294506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020516104A Pending JPWO2019208023A1 (en) 2018-04-27 2019-03-18 An optically active rare earth complex, an asymmetric catalyst composed of this complex, and a method for producing an optically active organic compound using this asymmetric catalyst.

Country Status (3)

Country Link
JP (1) JPWO2019208023A1 (en)
TW (1) TW201945373A (en)
WO (1) WO2019208023A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957148A (en) * 2022-02-23 2022-08-30 中国药科大学 Fumaric acid derivative and preparation method and medical application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114957148A (en) * 2022-02-23 2022-08-30 中国药科大学 Fumaric acid derivative and preparation method and medical application thereof

Also Published As

Publication number Publication date
WO2019208023A1 (en) 2019-10-31
TW201945373A (en) 2019-12-01

Similar Documents

Publication Publication Date Title
Li et al. Gold catalyzed enantioselective intermolecular [3+ 2] dipolar cycloaddition of N-allenyl amides with nitrones
CN108164555B (en) Synthesis method of boric acid ester
JP5648240B2 (en) Organoaluminum compound
CN108083981B (en) Application of rare earth metal complexes of metallocene in catalyzing reaction of aldehyde and allyl boric acid
Liu et al. Highly regio-, diastereo-and enantioselective one-pot gold/chiral Brønsted acid-catalysed cascade synthesis of bioactive diversely substituted tetrahydroquinolines
Donslund et al. Enantioselective formation of cyclopropane spiroindenes from benzofulvenes by phase transfer catalysis
TR201816541T4 (en) Process for the stereoselective preparation of a pyrazole-carboxamide.
CN107955183B (en) Coordination polymer with photoreaction activity and preparation method thereof
CN114262295A (en) Chiral quaternary ammonium salt with spiro indane skeleton and its prepn and application
Chen et al. Synthesis of Enantioenriched 1, 2‐cis Disubstituted Cycloalkanes by Convergent NiH Catalysis
Zhang A trinuclear Cu2Eu complex catalyzed asymmetric Friedel–Crafts alkylations of indoles with nitroalkenes
JPWO2019208023A1 (en) An optically active rare earth complex, an asymmetric catalyst composed of this complex, and a method for producing an optically active organic compound using this asymmetric catalyst.
JP2009227673A (en) Method for producing chiral dihydrobenzofuranes compound and catalyst for use in the same
You et al. Novel bis-N-[2-(diphenylphosphino) ferrocenylcarbonyl] diaminocyclohexane ligands: application in asymmetric allylic alkylation of imino esters with simple allyl carbonate
JP2008514554A (en) Hydrogenation of α, β-unsaturated carbonyl compounds.
JP6289310B2 (en) Catalyst or precursor thereof, method for hydrogenating carbon dioxide using these, and method for producing formate
JP4918257B2 (en) Asymmetric reduction method
JP2008201760A (en) Optically active spiro compound and its production method
JP2021504098A (en) Catalytic compositions for the process of producing unsaturated carboxylic acid salts and their derivatives from carbon dioxide and olefins
JP3691235B2 (en) Process for producing optically active piperidines
JP2013142071A (en) Pyrrolidinyl-spirooxindole derivative and method for producing the same
JP2021502885A (en) Phosphine-free cobalt-based catalysts and methods and uses for their preparation
JP5334252B2 (en) Optically active phenylbisimidazoline-transition metal complex catalyst and method for obtaining a product with high enantioselectivity using the same
JP5263732B2 (en) Process for producing optically active 1,2-diamine compound and optically active catalyst
CN114426564B (en) Chiral ferrocene phosphine-1, 2-diphenyl ethylenediamine ligand and preparation method and application thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201126

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20210216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322