JP2012092066A - Pyrrole and indole derivative and method for producing the same - Google Patents

Pyrrole and indole derivative and method for producing the same Download PDF

Info

Publication number
JP2012092066A
JP2012092066A JP2010241731A JP2010241731A JP2012092066A JP 2012092066 A JP2012092066 A JP 2012092066A JP 2010241731 A JP2010241731 A JP 2010241731A JP 2010241731 A JP2010241731 A JP 2010241731A JP 2012092066 A JP2012092066 A JP 2012092066A
Authority
JP
Japan
Prior art keywords
group
pyrrole
hydrogen
reaction
indole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010241731A
Other languages
Japanese (ja)
Other versions
JP5843186B2 (en
Inventor
Takayoshi Arai
孝義 荒井
Atsuko Awada
篤子 阿波田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2010241731A priority Critical patent/JP5843186B2/en
Publication of JP2012092066A publication Critical patent/JP2012092066A/en
Application granted granted Critical
Publication of JP5843186B2 publication Critical patent/JP5843186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a Friedel-Crafts/protonation reaction using a trisubstituted nitroalkene, and to provide pyrrole and indole derivatives obtained thereby.SOLUTION: Using a metal catalyst prepared by using a ligand represented by formula (1), pyrrole and indole derivatives are composed. In the formula: X is bromine, fluorine, a nitro group, or a sulphonyl group; Ph is a phenyl group; Ts is a tosyl group; and Ph and Ts may have substituents.

Description

本発明は、ピロール及びインドール誘導体及びその製造方法に関する。   The present invention relates to pyrrole and indole derivatives and a method for producing the same.

光学活性なアミノ酸や糖を基本構成単位とする生体高分子は、高度な不斉空間を構築しており、この生体高分子を受容体とする医薬品も光学活性を有している必要がある。このような光学活性な物質を合成する方法は不斉合成法と呼ばれており、不斉合成法の中でも少量の不斉源から理論上無限の光学活性体を合成することが可能な触媒的不斉合成法は極めて有用、重要なものとなっている。   A biopolymer having an optically active amino acid or sugar as a basic structural unit constructs a highly asymmetric space, and a drug using the biopolymer as a receptor needs to have optical activity. Such a method for synthesizing an optically active substance is called an asymmetric synthesis method. Among the asymmetric synthesis methods, a catalytically capable of synthesizing a theoretically infinite optically active substance from a small amount of an asymmetric source. Asymmetric synthesis methods are extremely useful and important.

現在、光学活性ピロール及びインドール誘導体は様々な金属触媒を用いることにより触媒的不斉合成が達成されており、例えば、従来の技術として、ピロールもしくはインドールとニトロアルケンの反応において、銅触媒を用いる例が下記文献1に、亜鉛触媒を用いる例が下記文献2及び3に記載されている。   Currently, optically active pyrrole and indole derivatives have achieved catalytic asymmetric synthesis by using various metal catalysts. For example, as a conventional technique, an example of using a copper catalyst in the reaction of pyrrole or indole with a nitroalkene. Are described in the following document 1, and examples using a zinc catalyst are described in the following documents 2 and 3.

Yokoyama N.;Arai T.,Chem. Commun,2009,3285.Yokoyama N. Arai T .; , Chem. Commun, 2009, 3285. Trost B. M.;Muller C.,J. Am. Chem. Soc.,2008,130,2438.Trost B.E. M.M. Muller C .; , J .; Am. Chem. Soc. , 2008, 130, 2438. Liu H.;Lu S.−F.;Xu J.;Du D.−M.,Chem. Asian. J.,2008,3,1111.Liu H. Lu S .; -F. Xu J .; Du D .; -M. , Chem. Asian. J. et al. 2008, 3, 1111.

しかしながら、上記文献に記載のいずれにおいても、下記式(4)で示される3置換ニトロアルケン(下記式(4)に示すようにRが水素ではない)を用いたピロールもしくはインドールのFriedel−Crafts反応を触媒的不斉合成法に応用した例は無く、反応基質の拡大のためには金属触媒を用いた反応系の開発が望まれる。
However, in any of the documents described above, pyrrole or indole Friedel-Crafts using a trisubstituted nitroalkene represented by the following formula (4) (R 4 is not hydrogen as shown in the following formula (4)): There is no example in which the reaction is applied to catalytic asymmetric synthesis, and development of a reaction system using a metal catalyst is desired in order to expand the reaction substrate.

そこで、本発明は、上記課題に鑑み、金属触媒による3置換ニトロアルケン(Rが水素ではない)を用いたFriedel−Crafts/プロトン化反応およびそれにより得られるピロールおよびインドール誘導体合成を提供することを目的とする。 In view of the above problems, the present invention provides a Friedel-Crafts / protonation reaction using a metal-catalyzed trisubstituted nitroalkene (R 4 is not hydrogen) and a pyrrole and indole derivative synthesis obtained thereby. With the goal.

本発明者らは、上記課題について鋭意検討を行なっていたところ、金属にイミダゾリン配位子を配位させた触媒の存在下で、ピロールもしくはインドールと3置換ニトロアルケン(Rが水素ではない)を反応させることで、Friedel−Crafts反応と不斉プロトン化反応とを同時に行わせ下記式(5)で示されるピロール誘導体および下記式(6)で示されるインドール誘導体を得ることができる点を発見し、本発明を完成させるに至った。
The inventors of the present invention have been diligently examining the above-mentioned problem. In the presence of a catalyst in which an imidazoline ligand is coordinated to a metal, pyrrole or indole and a 3-substituted nitroalkene (R 4 is not hydrogen). Discovered that the Friedel-Crafts reaction and the asymmetric protonation reaction can be carried out simultaneously to produce a pyrrole derivative represented by the following formula (5) and an indole derivative represented by the following formula (6). As a result, the present invention has been completed.

即ち、本発明の一手段に係るピロール誘導体およびインドール誘導体を製造する方法は、下記式(1)で示される配位子を用いて調製される触媒の存在下で、ピロールもしくはインドールと3置換ニトロアルケンを反応させる。
That is, the method for producing a pyrrole derivative and an indole derivative according to one means of the present invention comprises pyrrole or indole and a 3-substituted nitro in the presence of a catalyst prepared using a ligand represented by the following formula (1). React the alkene.

(ここで、Xは臭素、フッ素、ニトロ基、スルホニル基であり、Phはフェニル基、Tsは、トシル基である。また、PhとTsは置換基を有していてもよい。)   (Here, X is bromine, fluorine, nitro group, sulfonyl group, Ph is phenyl group, Ts is tosyl group. Ph and Ts may have a substituent.)

(ここでR、Rは、水素もしくはアルキル基であり、Rは、水素、アルキル基、アリ−ル基、カルボニル基、Rはアルキル基、アリール基である。但し、Rは水素ではない。)
(Wherein R 1 and R 2 are hydrogen or an alkyl group, R 3 is hydrogen, an alkyl group, an aryl group, a carbonyl group, R 4 is an alkyl group or an aryl group, provided that R 4 is Not hydrogen.)

(ここでRは、水素、アルキル基、アリ−ル基、カルボニル基、Rはアルキル基、アリール基である。但し、Rは水素ではない。また、Rは、水素、臭素、塩素、フッ素、アルキル基、アルコキシ基、カルボニル基、ニトロ基であり、複数有していてもよい。) (Wherein R 3 is hydrogen, an alkyl group, an aryl group, a carbonyl group, R 4 is an alkyl group or an aryl group, provided that R 4 is not hydrogen, and R 5 is hydrogen, bromine, Chlorine, fluorine, alkyl group, alkoxy group, carbonyl group, nitro group, which may have a plurality.)

以上、本発明により、金属触媒による、3置換ニトロアルケン(Rは水素ではない。)を用いたFriedel−Crafts/プロトン化反応およびそれにより得られるピロールおよびインドール誘導体を提供することが可能となり、反応基質の拡大を行うことができる。また、本発明によると非常に高い化学収率に目的化合物を高い光学純度で得ることができる。 As described above, according to the present invention, it is possible to provide a Friedel-Crafts / protonation reaction using a trisubstituted nitroalkene (R 4 is not hydrogen) and a pyrrole and indole derivative obtained by using a metal catalyst, The reaction substrate can be enlarged. In addition, according to the present invention, the target compound can be obtained with a high optical purity with a very high chemical yield.

以下、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は多くの異なる態様で実施することが可能であり、以下に示す実施形態に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention can be implemented in many different modes and is not limited to the embodiments shown below.

(実施形態1)
本実施形態に係るピロールおよびインドール誘導体の製造方法は、下記式(1)で示される配位子を用いて調製される触媒の存在下で、ピロールもしくはインドールと3置換ニトロアルケンを反応させる。
(Embodiment 1)
In the method for producing pyrrole and indole derivatives according to this embodiment, pyrrole or indole is reacted with a 3-substituted nitroalkene in the presence of a catalyst prepared using a ligand represented by the following formula (1).

(ここで、Xは臭素、フッ素、ニトロ基、スルホニル基であり、Phはフェニル基、Tsは、トシル基である。また、PhとTsは置換基を有していてもよい。) (Here, X is bromine, fluorine, nitro group, sulfonyl group, Ph is phenyl group, Ts is tosyl group. Ph and Ts may have a substituent.)

本実施形態において用いられる触媒における配位子は、その構成中に窒素で架橋されたイミダゾリン骨格とフェニル骨格とを有しているため、反応場が広い。またフェノール環にニトロ基を有するため活性が高い。   Since the ligand in the catalyst used in the present embodiment has an imidazoline skeleton and a phenyl skeleton bridged with nitrogen in its structure, the reaction field is wide. Moreover, since it has a nitro group in the phenol ring, its activity is high.

また、配位子を配位させる金属としては、配位させることができる限りにおいてこれに限定されるわけではないが、例えば銅、ニッケル、コバルト、ルテニウム、ロジウム又は鉄を例示することができる。また配位子を金属に配位させる方法としては、周知の方法を採用することができ、限定されるわけではないが、金属塩と配位子を混合することで配位させることができる。金属塩としては、限定されるわけではないが、金属が銅である場合、CuOTf、CuCl、CuOAc、CuCl、Cu(OAc)、Cu(OTf)等を用いることができる。 Moreover, as long as it can coordinate, the metal which coordinates a ligand is not necessarily limited to this, For example, copper, nickel, cobalt, ruthenium, rhodium, or iron can be illustrated. Moreover, as a method of coordinating a ligand to a metal, a well-known method can be adopted, and although not limited, it can be coordinated by mixing a metal salt and a ligand. The metal salts include, but are not limited to, when the metal is copper, it is possible to use CuOTf, CuCl, CuOAc, the CuCl 2, Cu (OAc) 2 , Cu (OTf) 2 and the like.

本実施形態に係る触媒は、3置換ニトロアルケンを用いたFriedel−Crafts/プロトン化反応を行なうために用いることができる。具体的には、本実施形態に係る触媒の存在下で、下記式で示される反応のように、ピロールもしくはインドールと3置換ニトロアルケンを反応させて多置換のピロール誘導体ならびにインドール誘導体を光学活性体として合成することができる。
The catalyst according to the present embodiment can be used for performing Friedel-Crafts / protonation reaction using a tri-substituted nitroalkene. Specifically, in the presence of the catalyst according to the present embodiment, a pyrrole or indole is reacted with a 3-substituted nitroalkene as in the reaction represented by the following formula to convert a polysubstituted pyrrole derivative and an indole derivative into an optically active substance. Can be synthesized as

上記反応は、トルエン中において行なうことが好ましいが、ベンゼン、ジクロロメタン、テトラヒドロフラン、ジメチルスルホキシドを用いることができる。   The reaction is preferably carried out in toluene, but benzene, dichloromethane, tetrahydrofuran, dimethyl sulfoxide can be used.

上記反応において、反応基質として用いられるニトロアルケンは下記式(4)で示される。ここにおいてRおよびRは限定されるわけではないが、Rは例えばアリール基、カルボニル基、Rは例えばアルキル基、アリール基を用いることができる。なお、上記反応において、用いるニトロアルケンの量は、ピロールの場合、ピロールを1モルとした場合、0.5モル以上1モル以下の範囲にあることが好ましく、より好ましくは0.5モル以上0.6モル以下の範囲内である。インドールの場合、インドールを1モルとした場合、1.5モル以上2.5モル以下の範囲にあることがこのましく、より好ましくは1.9モル以上2.1モル以下の範囲である。
In the above reaction, a nitroalkene used as a reaction substrate is represented by the following formula (4). Here, R 4 and R 5 are not limited, but R 3 can be, for example, an aryl group or a carbonyl group, and R 4 can be, for example, an alkyl group or an aryl group. In the above reaction, in the case of pyrrole, the amount of nitroalkene used is preferably in the range of 0.5 mol to 1 mol, more preferably 0.5 mol to 0 mol, with 1 mol of pyrrole. Within 6 mol or less. In the case of indole, when the indole is 1 mol, it is preferably in the range of 1.5 mol or more and 2.5 mol or less, more preferably in the range of 1.9 mol or more and 2.1 mol or less.

この結果、本実施形態に係る方法によると、下記式(2)で示すピロール誘導体および下記式(3)で示すインドール誘導体を得ることができる。これらは合成できる限りにおいて限定されるわけではないが、合成方法については、例えば“Ballini R.;Gabrielli S.;Palmieri A.;Petrini Marino.,Tetrahedron,2008,64,5435.“、“Bartoli G.;Bosco M;Giuli S.;Giuliami A.;Lucarelli L.;Mercantoni E.;Sambri L.;Torregiani E.,J. Org. Chem.,2005,70,1941.”、及び、“Kusurkar S. R.;Alkobati A. H. N.,Synthetic Communications.,2010,40,320.”に記載がある。
As a result, according to the method according to the present embodiment, a pyrrole derivative represented by the following formula (2) and an indole derivative represented by the following formula (3) can be obtained. These are not limited as long as they can be synthesized, but for the synthesis method, for example, “Ballini R .; Gabrielli S .; Palmieri A .; Petrini Marino., Tetrahedron, 2008, 64, 5435.”, “Bartoli G Bosco M; Giuli S .; Giuliami A .; Lucarelli L .; Mercantoni E .; Sambri L .; Torregiani E., J. Org. Chem., 2005, 70, 1941. "and" Sur. R .; Alkovati A. H. N., Synthetic Communications., 2010, 40, 320. ".

(ここでR、Rは、水素もしくはアルキル基であり、Rは、水素、アルキル基、アリ−ル基、カルボニル基、Rはアルキル基、アリール基である。但し、Rは水素ではない。)
(Wherein R 1 and R 2 are hydrogen or an alkyl group, R 3 is hydrogen, an alkyl group, an aryl group, a carbonyl group, R 4 is an alkyl group or an aryl group, provided that R 4 is Not hydrogen.)

(ここでRは、水素、アルキル基、アリ−ル基、カルボニル基、Rはアルキル基、アリール基である。但し、Rは水素ではない。また、Rは、水素、臭素、塩素、フッ素、アルキル基、アルコキシ基、カルボニル基、ニトロ基であり、複数有していてもよい。) (Wherein R 3 is hydrogen, an alkyl group, an aryl group, a carbonyl group, R 4 is an alkyl group or an aryl group, provided that R 4 is not hydrogen, and R 5 is hydrogen, bromine, Chlorine, fluorine, alkyl group, alkoxy group, carbonyl group, nitro group, which may have a plurality.)

なおここで本実施形態に関わるピロールを出発原料に用いた際の反応の機構について説明しておく。   Here, the reaction mechanism when pyrrole according to this embodiment is used as a starting material will be described.

イミダゾリン−アミノフェノール−銅触媒の作用により、ニトロアルケンが活性化され、ピロールもしくはインドールがフリーデルクラフツ反応を起こす。この反応により生成した銅ニトロナートがプロトンによって補足され、触媒が再生し、反応が進行する。ピロールの場合は、ピロール環窒素原子の隣の2位において、一方、インドールの場合は、3位において反応して、目的化合物を与える。
Nitroalkene is activated by the action of imidazoline-aminophenol-copper catalyst, and pyrrole or indole causes Friedel-Crafts reaction. The copper nitronate produced by this reaction is captured by protons, the catalyst is regenerated, and the reaction proceeds. In the case of pyrrole, it reacts at the 2-position next to the nitrogen atom of the pyrrole ring, while in the case of indole, it reacts at the 3-position to give the target compound.

(配位子の合成)
また、本実施形態に係る配位子及び触媒は、合成することができる限りにおいて限定されるわけではないが、例えば“Yokoyama N.;Arai T.;Yanagisawa A.,Chem. Eur. J.,2008,2052.”、及び、“Yokoyama N.;Arai T.,Chem. Commun,2009,3285.”を参照して合成することができる。
(Synthesis of ligand)
In addition, the ligand and the catalyst according to this embodiment are not limited as long as they can be synthesized, but for example, “Yokoyama N .; Arai T .; Yanagisawa A., Chem. Eur. J., 2008, 2052. "and" Yokoyama N .; Arai T., Chem. Commun, 2009, 3285. "

以上、本実施形態により、金属触媒による、3置換ニトロアルケン(Rは水素ではない。)を用いたFriedel−Crafts/プロトン化反応およびそれにより得られるピロールおよびインドール誘導体を提供することが可能となり、反応基質の拡大を行うことができる。また、本発明によると非常に高い化学収率に目的化合物を高い光学純度で得ることができる。 As described above, according to the present embodiment, it is possible to provide a Friedel-Crafts / protonation reaction using a trisubstituted nitroalkene (R 4 is not hydrogen) and a pyrrole and indole derivative obtained thereby by a metal catalyst. The reaction substrate can be enlarged. In addition, according to the present invention, the target compound can be obtained with a high optical purity with a very high chemical yield.

以下、上記実施形態に係る発明の効果を確認すべく、実際に触媒を作成し、その効果を確認した。以下具体的に示す。
まず、“Yokoyama N.;Arai T.;Yanagisawa A.,Chem. Eur. J.,2008,2052.”、及び、“Yokoyama N.;Arai T.,Chem. Commun,2009,3285.”を参照して配位子を合成し、この配位子を0.0120g用い、これにトリフロオメタンスルホン酸銅(I)を配位させることで触媒として不斉Friedel−Crafts/プロトン化反応を行なった。
Hereinafter, in order to confirm the effect of the invention according to the above embodiment, a catalyst was actually created and the effect was confirmed. This is specifically shown below.
First, see "Yokoyama N .; Arai T .; Yanagisawa A., Chem. Eur. J., 2008, 2052." and "Yokoyama N .; Arai T., Chem. Commun, 2009, 3285." Then, a ligand was synthesized, 0.0120 g of this ligand was used, and an asymmetric Friedel-Crafts / protonation reaction was performed as a catalyst by coordinating copper (I) trifluoromethanesulfonate. .

(実施例1)
本実施例は、無水トルエン0.375mlに溶解した(E)−tert−ブチルエチル 3−ニトロブト−2−エノエート28mg、ピロール0.020mlを上記触媒の存在下、0℃、98時間反応させることで行なった。なお触媒は炭酸カリウム0.003gによって、配位子−銅錯体からトリフルオロメタンスルホン酸を除いた触媒を用いる。なお、酸の除去に用いた炭酸カリウムは、ろ過を行い、反応系から除いている。この結果、下記に示す化合物(2−1)を0.035g得ることができた。また(2−1)の収率は93%(メジャー体:マイナー体=87/13)、エナンチオ過剰率はともに84%eeであった。なおの化合物の主生成物の相対配置は、単結晶X線結晶構造解析によって、t−ブトキシカルボニル基とニトロ基がantiの立体を有していることが確認された。下記に、下記化合物(2−1)の各種データ及び単結晶X線結晶構造解析のORTEP図を示しておく。
Example 1
In this example, 28 mg of (E) -tert-butylethyl 3-nitrobut-2-enoate dissolved in 0.375 ml of anhydrous toluene and 0.020 ml of pyrrole were reacted in the presence of the above catalyst at 0 ° C. for 98 hours. It was. The catalyst is a catalyst obtained by removing trifluoromethanesulfonic acid from a ligand-copper complex with 0.003 g of potassium carbonate. In addition, the potassium carbonate used for acid removal is filtered and removed from the reaction system. As a result, 0.035 g of the compound (2-1) shown below could be obtained. The yield of (2-1) was 93% (major: minor = 87/13), and the enantiomeric excess was 84% ee. As for the relative arrangement of the main product of the compound, it was confirmed by single crystal X-ray crystal structure analysis that the t-butoxycarbonyl group and the nitro group had an anti-steric structure. The various data of the following compound (2-1) and the ORTEP diagram of single crystal X-ray crystal structure analysis are shown below.

H NMR (500MHz, CDCl) δ8.65(br,1H),6.74(m, 1H),6.12(m,1H),6.07(m,1H),4.99−4.96(m,1H)4.15(d,1H),1.60(d,3H),1.46(s,9H); 13C NMR(125MHz,CDCl) δ 168.9,122.8,118.9,108.9,108.7,85.4,83.3,49.9,27.9,17.5;Enantiomeric excess was determined by HPLC with a Chiralcel AD−H+OD−H column (95:5 hexane: 2−propanol, 0.8 mL/min, 254 nm); minor enantiomer t = 21.3 min, major enantiomer t =22.6 min, 84% ee);IR (neat) 3411, 2981, 1722,1553, 1369,1152 cm−1
(syn adduct:H NMR (500MHz, CDCl) δ8.68(br,1H),6.77(m, 1H),6.15(m,1H),6.10(m,1H),4.99−4.96(m,1H),4.12(d,1H),1.41(d,3H),1.41(s,9H); 13C NMR(125MHz,CDCl) δ 169.8,122.5,118.9,109.1,109.9,85.4,83.1,49.9,27.8,17.8;Enantiomeric excess was determined by HPLC with a Chiralcel AD−H+OD−H column (95:5 hexane: 2−propanol, 0.8 mL/min, 254 nm); minor enantiomer t = 20.0 min, major enantiomer t =33.5 min, 84% ee))
1 H NMR (500 MHz, CDCl 3 ) δ 8.65 (br, 1H), 6.74 (m, 1H), 6.12 (m, 1H), 6.07 (m, 1H), 4.99-4 .96 (m, 1H) 4.15 (d, 1H), 1.60 (d, 3H), 1.46 (s, 9H); 13 C NMR (125 MHz, CDCl 3 ) δ 168.9, 122. 8, 118.9, 108.9, 108.7, 85.4, 83.3, 49.9, 27.9, 17.5; Enantiomeric excess was determined by HPLC with a chiralcel AD-H + OD-H column ( 95: 5 hexane: 2-propanol , 0.8 mL / min, 254 nm); minor enantiomer t r = 21.3 min, major enantiomer t r = 22.6 min, 84% ee); IR (neat) 3411, 2981, 1722,1553, 1369,1152 cm -1
(Syn addt: 1 H NMR (500 MHz, CDCl 3 ) δ 8.68 (br, 1H), 6.77 (m, 1H), 6.15 (m, 1H), 6.10 (m, 1H), 4 .99-4.96 (m, 1H), 4.12 (d, 1H), 1.41 (d, 3H), 1.41 (s, 9H); 13 C NMR (125 MHz, CDCl 3 ) δ 169 8, 122.5, 118.9, 109.1, 109.9, 85.4, 83.1, 49.9, 27.8, 17.8; Enantiomerically excerced was determined by HPLC with a chiralcel AD-. H + OD-H column (95: 5 hexane: 2-propanol, 0.8 mL / min, 254 nm); minor enantiomer t r = 20.0 min, major enantiomer t r = 33.5 min, 84% ee))

(実施例2)
本実施例は、上記実施例1と同じ条件下、反応温度を23℃にて60時間反応させた。この結果、下記に示す化合物(2−2)を0.018g得ることができた。また(2−1)の収率は52%(メジャー体:マイナー体=80/20)、エナンチオ過剰率はメジャー体は87%ee、マイナー体は67%eeであった。
(Example 2)
In this example, the reaction was performed at a reaction temperature of 23 ° C. for 60 hours under the same conditions as in Example 1. As a result, 0.018 g of the following compound (2-2) could be obtained. The yield of (2-1) was 52% (major body: minor body = 80/20), and the enantiomeric excess was 87% ee for the major body and 67% ee for the minor body.

H NMR (500MHz, CDCl) δ 7.87(br,1H),7.22−7.35(m, 5H),6.64(m, 1H),6.12−6.10(m,2H),5.18−5.15(m,1H),4.55(d,1H),1.43(d,3H); 13C NMR(125MHz,CDCl) δ 137.9,129.3,128.6,128.0,127.8,118.0,108.7,106.2,86.9,49.3,18.9;Enantiomeric excess was determined by HPLC with a Chiralcel AD−H column (97:3 hexane: 2−propanol, 1.0 mL/min, 254 nm);major enantiomer t =22.7 min,minor enantiomer t = 24.8 min, 87% ee; IR (neat) 3426, 2923, 1547, 1359 cm−1
(minor product:H NMR (500MHz, CDCl) δ 7.89(br,1H),7.22−7.35(m, 5H),6.68(m, 1H),6.15(m,1H),6.12(m,1H),5.18−5.15(m,1H),4.46(d,1H),1.66(d,3H); 13C NMR(125MHz,CDCl) δ 137.9,129.5,129.1,128.4,127.9,118.0,109.0,107.0,86.9,49.8,19.1;Enantiomeric excess was determined by HPLC with a ChiralcelAD−H column (97:3 hexane: 2−propanol, 1.0 mL/min, 254 nm);minor enantiomer t = 26.8 min,major enantiomer t =29.7 min,67% ee)
1 H NMR (500 MHz, CDCl 3 ) δ 7.87 (br, 1H), 7.22-7.35 (m, 5H), 6.64 (m, 1H), 6.12-6.10 (m , 2H), 5.18-5.15 (m, 1H), 4.55 (d, 1H), 1.43 (d, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 137.9, 129 .3,128.6,128.0,127.8,118.0,108.7,106.2,86.9,49.3,18.9; Enantiomerically excess was determined by HPLC with a chiralcel AD-. H column (97: 3 hexane: 2-propanol, 1.0 mL / min, 254 nm); major enantiomer t r = 22.7 m in, minor enantiomer t r = 24.8 min, 87% ee; IR (neat) 3426, 2923, 1547, 1359 cm -1
(Minor product: 1 H NMR (500 MHz, CDCl 3 ) δ 7.89 (br, 1H), 7.22-7.35 (m, 5H), 6.68 (m, 1H), 6.15 (m , 1H), 6.12 (m, 1H), 5.18-5.15 (m, 1H), 4.46 (d, 1H), 1.66 (d, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ 137.9, 129.5, 129.1, 128.4, 127.9, 118.0, 109.0, 107.0, 86.9, 49.8, 19.1; Enantiomeric excess was determined by HPLC with a chiralcel AD-H column (97: 3 hexane: 2-propanol, 1.0 mL / min, 254 nm); enantiomer t r = 26.8 min, major enantiomer t r = 29.7 min, 67% ee)

(実施例3)
本実施例は、無水トルエン0.750mlに溶解したtrans−β−メチル−β−ニトロスチレン25mg、ピロール0.031mlを上記触媒の存在下、23℃、16時間反応させることで行なった。この結果、下記に示す化合物(2−3)を0.036g得ることができた。また(2−3)の収率は92%(メジャー体:マイナー体=67/33)であった。
(Example 3)
In this example, 25 mg of trans-β-methyl-β-nitrostyrene dissolved in 0.750 ml of anhydrous toluene and 0.031 ml of pyrrole were reacted in the presence of the above catalyst at 23 ° C. for 16 hours. As a result, 0.036 g of the compound (2-3) shown below could be obtained. The yield of (2-3) was 92% (major body: minor body = 67/33).

H NMR (500MHz, CDCl) δ 7.52(br,1H),7.35−7.22(m, 5H),5.97(m, 1H),5.77(m,1H),5.20−5.10(m,1H),4.49(d,1H),2.55−2.45(m, 2H),1.40(d,3H),1.20−1.10(m,3H);
(minor product:H NMR (500MHz, CDCl)7.57(br,1H),7.35−7.22(m, 5H),5.76(m, 1H),5.75(m,2H),5.20−5.10(m,1H),4.40(d,1H),2.55−2.45(m, 2H),1.65(d,3H),1.20−1.10(m,3H)
1 H NMR (500 MHz, CDCl 3 ) δ 7.52 (br, 1H), 7.35-7.22 (m, 5H), 5.97 (m, 1H), 5.77 (m, 1H), 5.20-5.10 (m, 1H), 4.49 (d, 1H), 2.55-2.45 (m, 2H), 1.40 (d, 3H), 1.20-1. 10 (m, 3H);
(Minor product: 1 H NMR (500 MHz, CDCl 3 ) 7.57 (br, 1H), 7.35-7.22 (m, 5H), 5.76 (m, 1H), 5.75 (m, 2H), 5.20-5.10 (m, 1H), 4.40 (d, 1H), 2.55-2.45 (m, 2H), 1.65 (d, 3H), 1.20. -1.10 (m, 3H)

(実施例4)
本実施例は、無水トルエン0.184mlに溶解した(E)−tert−ブチルエチル 3−ニトロブト−2−エノエート28mg、無水トルエン0.184mlに溶解したインドール17mgを上記触媒の存在下、10℃、92時間反応させることで行なった。なお触媒は炭酸カリウム0.003gによって、配位子−銅錯体からトリフルオロメタンスルホン酸を除いた触媒を用いる。なお、酸の除去に用いた炭酸カリウムは、ろ過を行い、反応系から除いている。この結果、下記に示す化合物(2−4)を0.042g得ることができた。また(2−4)の収率は94%(メジャー体:マイナー体=90/10)、エナンチオ過剰率はメジャー体は87%ee、マイナー体は62%eeであった。
Example 4
In this example, 28 mg of (E) -tert-butylethyl 3-nitrobut-2-enoate dissolved in 0.184 ml of anhydrous toluene and 17 mg of indole dissolved in 0.184 ml of anhydrous toluene were added at 10 ° C., 92 It was performed by reacting for hours. The catalyst is a catalyst obtained by removing trifluoromethanesulfonic acid from a ligand-copper complex with 0.003 g of potassium carbonate. In addition, the potassium carbonate used for acid removal is filtered and removed from the reaction system. As a result, 0.042 g of the compound (2-4) shown below could be obtained. The yield of (2-4) was 94% (major body: minor body = 90/10), and the enantiomeric excess was 87% ee for the major body and 62% ee for the minor body.

H NMR (500MHz, CDCl) δ 8.16(br,1H),7.69(d,2H),7.35(d,2H),7.23−7.13(m, 3H),5.20−5.25(m,1H),4.41(d,1H),1.70(d,3H)1.41(s,9H); 13C NMR(125MHz,CDCl) δ 169.6,136.1,126.2,123.5,122.6,120.1,119.0,111.5,108.8,85.0,82.6,48.7,28.0,18.0;Enantiomeric excess was determined by HPLC with a Chiralcel OJ−H column (90:10 hexane: 2−propanol, 1.0 mL/min, 254 nm);, major enantiomer t =27.3 min, minor enantiomer t = 31.7 min, 87% ee);IR (neat) 3412, 2979, 1721,1550, 1367,1151 cm−1
(syn product:H NMR (500MHz, CDCl) δ 8.20(br,1H),7.69(d,2H),7.40(d,2H),7.23−7.13(m, 3H),5.20−5.25(m,1H),4.38(d,1H),1.40(d,3H)1.37(s,9H); 13C NMR(125MHz,CDCl) δ 169.6,136.4,125.9,123.5,122.8,120.3,119.1,111.7,108.8,83.7,82.4,48.3,27.9,18.5;Enantiomeric excess was determined by HPLC with a Chiralcel OJ−H column (90:10 hexane: 2−propanol, 1.0 mL/min, 254 nm);minor enantiomer t = 15.7 min, major enantiomer t =24.2 min, 62% ee))
1 H NMR (500 MHz, CDCl 3 ) δ 8.16 (br, 1H), 7.69 (d, 2H), 7.35 (d, 2H), 7.23-7.13 (m, 3H), 5.20-5.25 (m, 1H), 4.41 (d, 1H), 1.70 (d, 3H) 1.41 (s, 9H); 13 C NMR (125 MHz, CDCl 3 ) δ 169 6, 136.1, 126.2, 123.5, 122.6, 120.1, 119.0, 111.5, 108.8, 85.0, 82.6, 48.7, 28.0 , 18.0; Enantiomerically excess was determined by HPLC with a chiralcel OJ-H column (90:10 hexane: 2-propanol, 1.0 mL / min, 254 nm) ;, m jor enantiomer t r = 27.3 min, minor enantiomer t r = 31.7 min, 87% ee); IR (neat) 3412, 2979, 1721,1550, 1367,1151 cm -1
(Syn product: 1 H NMR (500 MHz, CDCl 3 ) δ 8.20 (br, 1H), 7.69 (d, 2H), 7.40 (d, 2H), 7.23-7.13 (m , 3H), 5.20-5.25 (m, 1H), 4.38 (d, 1H), 1.40 (d, 3H) 1.37 (s, 9H); 13 C NMR (125 MHz, CDCl 3 ) δ 169.6, 136.4, 125.9, 123.5, 122.8, 120.3, 119.1, 111.7, 108.8, 83.7, 82.4, 48.3 , 27.9, 18.5; Enantiomerically excess was determined by HPLC with a chiralcel OJ-H column (90:10 hexane: 2-propanol, 1.0 mL / mi) n, 254 nm); minor enantiomer t r = 15.7 min, major enantiomer t r = 24.2 min, 62% ee))

(実施例5)
本実施例は、上記実施例4と同じ条件下、反応温度を23℃にて46時間反応させた。この結果、下記に示す化合物(2−5)を0.047g得ることができた。また(2−5)の収率は96%(メジャー体:マイナー体=90/10)、エナンチオ過剰率はメジャー体は87%ee、マイナー体は65%であった。
(Example 5)
In this example, the reaction was performed at a reaction temperature of 23 ° C. for 46 hours under the same conditions as in Example 4 above. As a result, 0.047 g of the following compound (2-5) was obtained. The yield of (2-5) was 96% (major body: minor body = 90/10), and the enantiomeric excess was 87% ee for the major body and 65% for the minor body.

H NMR (500MHz, CDCl) δ 8.14(br,1H),7.18−7.13(m, 3H),6.84(dd,1H),5.24−5.19(m,1H),4.37(d,1H),3.87(s,1H),1.72(d,3H)1.42(s,9H);Enantiomeric excess was determined by HPLC with a Chiralcel AD−H+OD−H column (90:10 hexane: 2−propanol, 0.8 mL/min, 254 nm); major enantiomer t = 30.7 min, minor enantiomer t = 43.1 min, 87% ee)
(minor product:H NMR (500MHz, CDCl)δ 8.21(br,1H),7.18−7.13(m, 3H),6.89(dd,1H),5.24−5.19(m,1H),4.33(d,1H),3.87(s,1H),1.41(d,3H)1.39(s,9H);Enantiomeric excess was determined by HPLC with a Chiralcel AD−H+OD−H column (90:10 hexane: 2−propanol, 0.8 mL/min, 254 nm); minor enantiomer t = 38.9 min, major enantiomer t = 44.8 min,65% ee)
1 H NMR (500 MHz, CDCl 3 ) δ 8.14 (br, 1H), 7.18-7.13 (m, 3H), 6.84 (dd, 1H), 5.24-5.19 (m , 1H), 4.37 (d, 1H), 3.87 (s, 1H), 1.72 (d, 3H) 1.42 (s, 9H); Enantiomerically excess was determined by HPLC with a Chiralcel AD- H + OD-H column (90:10 hexane: 2-propanol, 0.8 mL / min, 254 nm); major enantiomer t r = 30.7 min, minor enantiomer t r = 43.1 min, 87% ee)
(Minor product: 1 H NMR (500 MHz, CDCl 3 ) δ 8.21 (br, 1H), 7.18-7.13 (m, 3H), 6.89 (dd, 1H), 5.24-5 .19 (m, 1H), 4.33 (d, 1H), 3.87 (s, 1H), 1.41 (d, 3H) 1.39 (s, 9H); Enantiomerically excess was determined by HPLC with a Chiralcel AD-H + OD- H column (90:10 hexane: 2-propanol, 0.8 mL / min, 254 nm); minor enantiomer t r = 38.9 min, major enantiomer t r = 44.8 min, 65 % Ee)

(実施例6)
本実施例は、上記実地例4と同じ条件下、反応温度を23℃にて40時間反応させた。この結果、下記に示す化合物(2−6)を0.029g得ることができた。また(2−6)の収率は51%(メジャー体:マイナー体=91/9)、エナンチオ過剰率はメジャー体は87%eeであった。
(Example 6)
In this example, the reaction was carried out at the reaction temperature of 23 ° C. for 40 hours under the same conditions as in Example 4. As a result, 0.029 g of the following compound (2-6) could be obtained. The yield of (2-6) was 51% (major body: minor body = 91/9), and the enantiomeric excess was 87% ee for the major body.

H NMR (500MHz, CDCl) δ 8.21(br,1H),7.86(s,1H),7.27−7.24(d,1H),7.19−7.17(m, 2H),5.26−5.20(m,1H),4.30(d,1H),1.72(d,3H)1.42(s,9H);Enantiomeric excess was determined by HPLC with a Chiralcel OD−H+OD−H column (90:10 hexane: 2−propanol, 1.0 mL/min, 254 nm);, major enantiomer t = 18.2 min, minor enantiomer t = 21.87 min, 87% ee)
(minor product:H NMR (500MHz, CDCl)δ 8.21(br,1H),7.85(s,1H),7.27−7.24(d,1H),7.19−7.17(m, 2H),5.26−5.20(m,1H),4.30(d,1H),1.40(d,3H)1.38(s,9H)
1 H NMR (500 MHz, CDCl 3 ) δ 8.21 (br, 1H), 7.86 (s, 1H), 7.27-7.24 (d, 1H), 7.19-7.17 (m , 2H), 5.26-5.20 (m, 1H), 4.30 (d, 1H), 1.72 (d, 3H) 1.42 (s, 9H); Enantiomeric excess was determined by HPLC with a Chiralcel OD-H + OD- H column (90:10 hexane: 2-propanol, 1.0 mL / min, 254 nm) ;, major enantiomer t r = 18.2 min, minor enantiomer t r = 21.87 min, 87% ee)
(Minor product: 1 H NMR (500 MHz, CDCl 3 ) δ 8.21 (br, 1H), 7.85 (s, 1H), 7.27-7.24 (d, 1H), 7.19-7 .17 (m, 2H), 5.26-5.20 (m, 1H), 4.30 (d, 1H), 1.40 (d, 3H) 1.38 (s, 9H)

以上の通り、本実施例によると、触媒量の銅錯体を用いて連続した不斉中心を有するピロールもしくはインドール誘導体を高い光学純度で合成できることが分かった。   As described above, according to this example, it was found that a pyrrole or indole derivative having a continuous asymmetric center can be synthesized with high optical purity using a catalytic amount of a copper complex.

本発明は、ピロール誘導体およびインドール誘導体を非常に高い光学純度で供給できることから、医薬・農薬の開発と生産に有用であり、産業上の利用可能性がある。   Since the pyrrole derivative and the indole derivative can be supplied with very high optical purity, the present invention is useful for the development and production of pharmaceuticals and agricultural chemicals and has industrial applicability.

Claims (2)

下記式(1)で示される配位子を用いて調製される金属触媒を用いて下記式(2)で示されるピロール誘導体を合成する方法。
(ここで、Xは臭素、フッ素、ニトロ基、又はスルホニル基であり、Phはフェニル基、Tsはトシル基である。また、PhとTsは置換基を有していてもよい。)
(ここでR、Rは、水素もしくはアルキル基であり、Rは、水素、アルキル基、アリ−ル基、カルボニル基、Rはアルキル基、アリール基である。但し、Rは水素ではない。)
The method to synthesize | combine the pyrrole derivative shown by following formula (2) using the metal catalyst prepared using the ligand shown by following formula (1).
(Here, X is bromine, fluorine, nitro group, or sulfonyl group, Ph is a phenyl group, and Ts is a tosyl group. Ph and Ts may have a substituent.)
(Wherein R 1 and R 2 are hydrogen or an alkyl group, R 3 is hydrogen, an alkyl group, an aryl group, a carbonyl group, R 4 is an alkyl group or an aryl group, provided that R 4 is Not hydrogen.)
下記式(1)で示される配位子を用いて調製される金属触媒を用いて下記式(3)で示されるインドール誘導体を合成する方法。
(ここで、Xは臭素、フッ素、ニトロ基、スルホニル基であり、Phはフェニル基、Tsは、トシル基である。また、PhとTsは置換基を有していてもよい。)
(ここでRは、水素、アルキル基、アリ−ル基、カルボニル基、Rはアルキル基、アリール基である。但し、Rは水素ではない。また、Rは、水素、臭素、塩素、フッ素、アルキル基、アルコキシ基、カルボニル基、ニトロ基であり、複数有していてもよい。)
A method of synthesizing an indole derivative represented by the following formula (3) using a metal catalyst prepared using a ligand represented by the following formula (1).
(Here, X is bromine, fluorine, nitro group, sulfonyl group, Ph is phenyl group, Ts is tosyl group. Ph and Ts may have a substituent.)
(Wherein R 3 is hydrogen, an alkyl group, an aryl group, a carbonyl group, R 4 is an alkyl group or an aryl group, provided that R 4 is not hydrogen, and R 5 is hydrogen, bromine, Chlorine, fluorine, alkyl group, alkoxy group, carbonyl group, nitro group, which may have a plurality.)
JP2010241731A 2010-10-28 2010-10-28 Pyrrole and indole derivatives and process for producing the same Active JP5843186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010241731A JP5843186B2 (en) 2010-10-28 2010-10-28 Pyrrole and indole derivatives and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010241731A JP5843186B2 (en) 2010-10-28 2010-10-28 Pyrrole and indole derivatives and process for producing the same

Publications (2)

Publication Number Publication Date
JP2012092066A true JP2012092066A (en) 2012-05-17
JP5843186B2 JP5843186B2 (en) 2016-01-13

Family

ID=46385862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010241731A Active JP5843186B2 (en) 2010-10-28 2010-10-28 Pyrrole and indole derivatives and process for producing the same

Country Status (1)

Country Link
JP (1) JP5843186B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108942A (en) * 2012-11-30 2014-06-12 Chiba Univ Bisoxazolidine ligand and catalyst using the same
JP2015051955A (en) * 2013-09-09 2015-03-19 国立大学法人 千葉大学 Optically active asymmetric bisindole compound and method for manufacturing the same
JP2015059091A (en) * 2013-09-17 2015-03-30 国立大学法人 千葉大学 Indole compound, dp prostanoid receptor antagonist, agent prepared using the same, and use of dp prostanoid receptor antagonist
CN111196778A (en) * 2020-01-14 2020-05-26 郑州轻工业大学 Synthetic method of 3-ethylamino pyrrole compound

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044928A (en) * 2006-07-20 2008-02-28 Chiba Univ Imidazoline ligand and catalyst containing the same
JP2009263313A (en) * 2008-04-28 2009-11-12 Chiba Univ Indole derivative and method for producing the same
JP2011006363A (en) * 2009-06-26 2011-01-13 Chiba Univ Tetrahydropyridine derivative and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044928A (en) * 2006-07-20 2008-02-28 Chiba Univ Imidazoline ligand and catalyst containing the same
JP2009263313A (en) * 2008-04-28 2009-11-12 Chiba Univ Indole derivative and method for producing the same
JP2011006363A (en) * 2009-06-26 2011-01-13 Chiba Univ Tetrahydropyridine derivative and method for producing the same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
JPN6014055421; Chemical Communications , 2009, p.3285-3287 *
JPN6014055423; Chemistry - A European Journal Vol.14, 2008, p.2052-2059 *
JPN6014055426; Synthetic Communications Vol.40, No.19, 2010, p.2935-2940 *
JPN6014055429; Synthetic Communications Vol.40, No.3, 2010, p.320-327 *
JPN6014055431; Tetrahedron Vol.64, 2008, p.5435-5441 *
JPN6014055434; Advanced Synthesis & Catalysis Vol.348, 2006, p.191-196 *
JPN6014055437; Journal of Organic Chemistry Vol.70, 2005, p.1941-1944 *
JPN6014055441; Journal of Organic Chemistry Vol.51, 1986, p.4294-4295 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108942A (en) * 2012-11-30 2014-06-12 Chiba Univ Bisoxazolidine ligand and catalyst using the same
JP2015051955A (en) * 2013-09-09 2015-03-19 国立大学法人 千葉大学 Optically active asymmetric bisindole compound and method for manufacturing the same
JP2015059091A (en) * 2013-09-17 2015-03-30 国立大学法人 千葉大学 Indole compound, dp prostanoid receptor antagonist, agent prepared using the same, and use of dp prostanoid receptor antagonist
CN111196778A (en) * 2020-01-14 2020-05-26 郑州轻工业大学 Synthetic method of 3-ethylamino pyrrole compound
CN111196778B (en) * 2020-01-14 2022-08-19 郑州轻工业大学 Synthetic method of 3-ethylamino pyrrole compound

Also Published As

Publication number Publication date
JP5843186B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
Chang et al. Pyrrolidine‐Camphor Derivative as an Organocatalyst for Asymmetic Michael Additions of α, α‐Disubstituted Aldehydes to β‐Nitroalkenes: Construction of Quaternary Carbon‐Bearing Aldehydes under Solvent‐Free Conditions
JP5843186B2 (en) Pyrrole and indole derivatives and process for producing the same
CN109734600B (en) Synthesis method of chiral beta-hydroxy acid ester compound
Mishra et al. Ru‐TsDPEN catalysts and derivatives in asymmetric transfer hydrogenation reactions
JP6048762B2 (en) Process for producing optically active β-hydroxy-α-aminocarboxylic acid ester
JP6548214B2 (en) Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same
JP6061223B2 (en) Optically active thiochroman derivative and method for producing the same
JP2015145344A (en) PRODUCTION METHOD OF α,β-DIAMINO ACID HAVING OPTICALLY ACTIVE ASYMMETRIC TETRASUBSTITUTED CARBON
JP2013142080A (en) Indole derivative and method for producing the same
JP2000327659A (en) Preparation of optically active pyridylalcohol
JP5569938B2 (en) Pyrrolidine derivative and method for producing the same
US9162963B2 (en) Phenylglyoxylic acid derivatives and their preparation and use
JP2022075375A (en) Method for producing optically active amine compound
JP5471069B2 (en) Tetrahydropyridine derivative and method for producing the same
JP2013142071A (en) Pyrrolidinyl-spirooxindole derivative and method for producing the same
CN106854125B (en) Method for preparing α -fluoro- β -ethynyl ketone compound containing two chiral centers
JP2008115178A (en) PRODUCTION METHOD OF DIPHENYLALANINE-Ni(II) COMPLEX
JP4427266B2 (en) β-alanine derivative and method for producing the same
JP6188066B2 (en) Optically active asymmetric bisindole compound and method for producing the same
US7145030B2 (en) Production method for optically active N-aryl-β-amino acid compounds
JP2008169204A (en) Method for preparing (1r, 2r)-2-amino-1-cyclopentanol
US7659424B2 (en) Process for the allylation of n-acylhydrazones
JP5396841B2 (en) Process for producing α-trifluoromethyl-β-substituted-β-amino acids
JP2009263313A (en) Indole derivative and method for producing the same
JP2017206485A (en) Optically active 1,3-diamine derivative and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151106

R150 Certificate of patent or registration of utility model

Ref document number: 5843186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250