JP2015051955A - Optically active asymmetric bisindole compound and method for manufacturing the same - Google Patents

Optically active asymmetric bisindole compound and method for manufacturing the same Download PDF

Info

Publication number
JP2015051955A
JP2015051955A JP2013185950A JP2013185950A JP2015051955A JP 2015051955 A JP2015051955 A JP 2015051955A JP 2013185950 A JP2013185950 A JP 2013185950A JP 2013185950 A JP2013185950 A JP 2013185950A JP 2015051955 A JP2015051955 A JP 2015051955A
Authority
JP
Japan
Prior art keywords
optically active
group
asymmetric
oxindole
active asymmetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013185950A
Other languages
Japanese (ja)
Other versions
JP6188066B2 (en
Inventor
孝義 荒井
Takayoshi Arai
孝義 荒井
篤子 阿波田
Atsuko Awada
篤子 阿波田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2013185950A priority Critical patent/JP6188066B2/en
Publication of JP2015051955A publication Critical patent/JP2015051955A/en
Application granted granted Critical
Publication of JP6188066B2 publication Critical patent/JP6188066B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Indole Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a methodology for synthesizing an optically active asymmetric bisindole compound.SOLUTION: The provided optically active asymmetric bisindole compound is expressed by the following formula (2): (where Rand Rare mutually independent and express H, halogen, alkyl group, or alkoxy group; a plurality of Rand Rmay, furthermore, be coupled at any position on the benzene ring of an indole or oxyindole skeleton; moreover, Ris an ester group; Ris H, Me, Et, Bn, Boc, MOM, MEM, SEM, or Alloc).

Description

本発明は、光学活性非対称ビスインドール化合物及びその製造方法に関する。   The present invention relates to an optically active asymmetric bisindole compound and a method for producing the same.

光学活性なアミノ酸や糖を基本構成単位とする生体高分子は、高度な不斉空間を構築しており、この生体高分子を受容体とする医薬品も光学活性を有している必要がある。このような光学活性な物質を合成する方法は不斉合成法と呼ばれており、不斉合成法の中でも少量の不斉源から理論上無限の光学活性体を合成することが可能な触媒的不斉合成法は極めて有用、重要なものとなっている。   A biopolymer having an optically active amino acid or sugar as a basic structural unit constructs a highly asymmetric space, and a drug using the biopolymer as a receptor needs to have optical activity. Such a method for synthesizing an optically active substance is called an asymmetric synthesis method. Among the asymmetric synthesis methods, a catalytically capable of synthesizing a theoretically infinite optically active substance from a small amount of an asymmetric source. Asymmetric synthesis methods are extremely useful and important.

光学活性非対称ビスインドール化合物は、種々のキラル触媒を用いることにより触媒的不斉合成が達成されているおり、例えば、従来の技術としてキラルパラジウム触媒存在下、3’−インドリル−3−オキシインドールとアレンを用いる例が下記非特許文献1に、インジウム触媒存在下、ピロールもしくはインドールとイサチンを用いる例が下記非特許文献2に記載されている。   The optically active asymmetric bisindole compound has been achieved by catalytic asymmetric synthesis by using various chiral catalysts. For example, in the presence of a chiral palladium catalyst as a conventional technique, 3'-indolyl-3-oxindole and An example using allene is described in Non-Patent Document 1 below, and an example using pyrrole or indole and isatin in the presence of an indium catalyst is described in Non-Patent Document 2 below.

Trost,B.M.;Xie,J.;Sieber,J.D.J.Am.Chem.Soc.2011,133,20611.Trost, B.M. M.M. Xie, J .; Sieber, J .; D. J. et al. Am. Chem. Soc. 2011, 133, 20611. Gutierreaz,E.G.;Wong,C.J.;Sahin,A.H.;Franz,A.K.,Org.Lett.2011,13,5754Gutierreaz, E .; G. Wong, C .; J. et al. Sahin, A .; H. Franz, A .; K. Org. Lett. 2011, 13, 5754

しかしながら、上記文献に記載のいずれにおいても、ニトロエチレンと3’−インドリル−3−オキシインドールを用いた不斉1,4−付加反応を触媒的不斉合成法に応用した例はなく、ニトロエチル基を有する光学活性非対称ビスインドール化合物の供給のためには新規反応系の開発が望まれる。   However, in any of the documents described above, there is no example in which an asymmetric 1,4-addition reaction using nitroethylene and 3′-indolyl-3-oxindole is applied to a catalytic asymmetric synthesis method. Development of a new reaction system is desired for the supply of an optically active asymmetric bisindole compound having the above.

そこで、本発明は、上記課題を鑑み、金属触媒による、3’−インドリル−3−オキシインドールとニトロエチレンの不斉1,4−付加反応及び、それにより得られる光学活性非対称ビスインドール化合物を提供することを目的とする。   In view of the above problems, the present invention provides an asymmetric 1,4-addition reaction of 3′-indolyl-3-oxindole and nitroethylene by a metal catalyst, and an optically active asymmetric bisindole compound obtained thereby. The purpose is to do.

本発明者らは、上記課題について鋭意検討を行なっていたところ、金属にイミダゾリン配位子を配位させた触媒の存在下で、3’−インドリル−3−オキシインドール化合物とニトロエレンを反応させることで、光学活性非対称ビスインドール化合物を得ることができる点を発見し、本発明を完成させるに至った。   The inventors of the present invention have been diligently studying the above problem, and reacting a 3′-indolyl-3-oxindole compound with nitroelene in the presence of a catalyst in which an imidazoline ligand is coordinated to a metal. Thus, it was discovered that an optically active asymmetric bisindole compound can be obtained, and the present invention has been completed.

即ち、本発明の一手段に係る光学活性非対称ビスインドール化合物を製造する方法は、下記式(1)で示される触媒の存在下で、3’−インドリル−3−オキシインドール化合物とニトロエレンを反応させる。
(ここでXは、ブロモ基又はニトロ基である。)
That is, in the method for producing an optically active asymmetric bisindole compound according to one means of the present invention, a 3′-indolyl-3-oxindole compound and nitroelene are reacted in the presence of a catalyst represented by the following formula (1). .
(Here, X is a bromo group or a nitro group.)

なおこの結果、下記式(2)で示される光学活性非対称ビスインドール化合物を得ることができる。
(ここでRおよびRは、おのおの独立して、H、ハロゲン、アルキル基、又はアルコキシ基である。またRおよびRは、インドールもしくはオキシインドール骨格のベンゼン環上であれば、いずれ位置に複数結合していてもかまわない。また、Rは、エステル基であり、RはH、Me、Et、Bn、Boc、MOM、MEM、SEM、又はAllocである。)
As a result, an optically active asymmetric bisindole compound represented by the following formula (2) can be obtained.
(Wherein R 1 and R 3 are each independently H, halogen, an alkyl group, or an alkoxy group. R 1 and R 3 may be any one on the benzene ring of the indole or oxindole skeleton) (A plurality may be bonded to the position, R 2 is an ester group, and R 4 is H, Me, Et, Bn, Boc, MOM, MEM, SEM, or Alloc.)

以上、本発明により、3’−インドリル−3−オキシインドールとニトロエチレンの1,4−付加反応及びそれにより得られる光学活性非対称ビスインドール化合物を提供することが可能となり、得られる光学活性非対称ビスインドール化合物の多様性の拡大を行なうことができる。また、本発明によると非常に高い収率を得ることもできる。   As described above, according to the present invention, it is possible to provide 1,4-addition reaction of 3′-indolyl-3-oxindole and nitroethylene and the optically active asymmetric bisindole compound obtained thereby, and the optically active asymmetric bisindole obtained is obtained. The diversity of indole compounds can be expanded. Also, according to the present invention, a very high yield can be obtained.

以下、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は多くの異なる態様で実施することが可能であり、以下に示す実施形態に限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, the present invention can be implemented in many different modes and is not limited to the embodiments shown below.

(実施形態1)
本実施形態に係る光学活性非対称ビスインドール化合物の製造方法は、下記式(1)で示される触媒の存在下で、3’−インドリル−3−オキシインドールとニトロエチレンを反応させる。
(ここでXは、ブロモ基もしくはニトロ基である。)
(Embodiment 1)
In the method for producing an optically active asymmetric bisindole compound according to this embodiment, 3′-indolyl-3-oxindole and nitroethylene are reacted in the presence of a catalyst represented by the following formula (1).
(Here, X is a bromo group or a nitro group.)

本実施形態において用いられる触媒における配位子は、その構成中に窒素で架橋されたイミダゾリン骨格とフェニル骨格とを有しているため、反応場が広い。   Since the ligand in the catalyst used in the present embodiment has an imidazoline skeleton and a phenyl skeleton bridged with nitrogen in its structure, the reaction field is wide.

また、配位子を配位させる金属としては、配位させることができる限りにおいてこれに限定されるわけではないが、例えば銅、ニッケル、コバルト、ルテニウム、ロジウム又は鉄を例示することができる。また配位子を金属に配位させる方法としては、周知の方法を採用することができ、限定されるわけではないが、金属塩と配位子を混合することで配位させることができる。金属塩としては、限定されるわけではないが、金属がニッケルである場合、Ni(OAc)、NiI、Ni(OTf)、Ni(ClO等を用いることができる。 Moreover, as long as it can coordinate, the metal which coordinates a ligand is not necessarily limited to this, For example, copper, nickel, cobalt, ruthenium, rhodium, or iron can be illustrated. Moreover, as a method of coordinating a ligand to a metal, a well-known method can be adopted, and although not limited, it can be coordinated by mixing a metal salt and a ligand. The metal salt is not limited, but when the metal is nickel, Ni (OAc) 2 , NiI 2 , Ni (OTf) 2 , Ni (ClO 4 ) 2 or the like can be used.

本実施形態に係る触媒は、3’−インドリル−3−オキシインドールを用いた不斉1,4−付加反応を行なうために用いることができる。具体的には、本実施形態に係る触媒の存在下で、下記式で示される反応のように、3’−インドリル−3−オキシインドールとニトロエチレンを反応させて光学活性非対称ビスインドール化合物を合成することができる。
The catalyst according to this embodiment can be used to perform an asymmetric 1,4-addition reaction using 3′-indolyl-3-oxindole. Specifically, in the presence of the catalyst according to this embodiment, an optically active asymmetric bisindole compound is synthesized by reacting 3′-indolyl-3-oxindole and nitroethylene as shown by the following formula. can do.

上記反応は、非極性溶媒、特にオルトキシレン中において行なうことが好ましい。   The above reaction is preferably performed in a nonpolar solvent, particularly ortho-xylene.

上記反応において、反応基質として用いられる3’−インドリル−3−オキシインドールを有するアルケンは下記式(3)で示される。ここにおいてRおよびRは限定されるわけではないが、例えば、H、ハロゲン、アルキル基、アルコキシ基を用いることができる。またRおよびRは、インドールもしくはオキシインドール骨格のベンゼン環上であれば、いずれ位置に複数結合していてもかまわない。また、Rは、エステル基であり、RはH、Me、Et、Bn、Boc、MOM、MEM、SEM、Allocを用いることができる。なお、上記反応において、用いるニトロエチレンの量は、3’−インドリル−3−オキシインドールを1モルとした場合、1.0モル以上5.0モル以下の範囲にあることが好ましく、より好ましくは1.2モル以上2.2モル以下の範囲内である。
(ここでRおよびRは、おのおの独立して、H、ハロゲン、アルキル基、又はアルコキシ基である。またRおよびRは、インドールもしくはオキシインドール骨格のベンゼン環上であれば、いずれ位置に複数結合していてもかまわない。また、Rは、エステル基であり、RはH、Me、Et、Bn、Boc、MOM、MEM、SEM、又はAllocである。)
In the above reaction, an alkene having 3′-indolyl-3-oxindole used as a reaction substrate is represented by the following formula (3). Here, R 1 and R 3 are not limited, and for example, H, halogen, an alkyl group, and an alkoxy group can be used. In addition, R 1 and R 3 may be bonded at any position as long as they are on the benzene ring of the indole or oxindole skeleton. R 2 is an ester group, and R 4 can be H, Me, Et, Bn, Boc, MOM, MEM, SEM, or Alloc. In the above reaction, the amount of nitroethylene used is preferably in the range of 1.0 mol or more and 5.0 mol or less, more preferably 3 mol when 3′-indolyl-3-oxindole is 1 mol. It is in the range of 1.2 mol or more and 2.2 mol or less.
(Wherein R 1 and R 3 are each independently H, halogen, an alkyl group, or an alkoxy group. R 1 and R 3 may be any one on the benzene ring of the indole or oxindole skeleton) (A plurality may be bonded to the position, R 2 is an ester group, and R 4 is H, Me, Et, Bn, Boc, MOM, MEM, SEM, or Alloc.)

この結果、本実施形態に係る方法によると、下記式(2)で示す光学活性非対称ビスインドール化合物を得ることができる。
(ここでRおよびRは、おのおの独立して、H、ハロゲン、アルキル基、又はアルコキシ基である。またRおよびRは、インドールもしくはオキシインドール骨格のベンゼン環上であれば、いずれ位置に複数結合していてもかまわない。また、Rは、エステル基であり、RはH、Me、Et、Bn、Boc、MOM、MEM、SEM、又はAllocである。)
As a result, according to the method according to the present embodiment, an optically active asymmetric bisindole compound represented by the following formula (2) can be obtained.
(Wherein R 1 and R 3 are each independently H, halogen, an alkyl group, or an alkoxy group. R 1 and R 3 may be any one on the benzene ring of the indole or oxindole skeleton) (A plurality may be bonded to the position, R 2 is an ester group, and R 4 is H, Me, Et, Bn, Boc, MOM, MEM, SEM, or Alloc.)

(配位子の合成)
また本実施形態に係る配位子及び触媒は、合成できる限りにおいて限定されるわけではないが、例えば特開2008−044928号公報に記載された技術によって合成できる。
(Synthesis of ligand)
In addition, the ligand and the catalyst according to this embodiment are not limited as long as they can be synthesized, but can be synthesized by the technique described in, for example, Japanese Patent Application Laid-Open No. 2008-044928.

そしてこの得られた配位子をXがブロモ基の場合0.0128g用い、これに酢酸ニッケル(II)を配位させることで触媒として不斉1,4付加反応を行なった。   Then, 0.0128 g of the obtained ligand was used when X was a bromo group, and nickel (II) acetate was coordinated thereto to carry out an asymmetric 1,4 addition reaction as a catalyst.

(実施例1)
本実施例は、上記触媒(5 mol%)の存在下、−20℃において、tert−butyl 3−(1−methyl−1H−indol−3−yl)−2−oxoindoline−1−carboxylate 0.0544mg、1,1,1,3,3,3−Hexafluoro−2−propanol 32μlを1.5mlのオルトキシレンに溶解させ、ニトロエチレン30w/w% トルエン溶液73mgを0.5mlのオルトキシレンに溶解させた溶液を5時間かけてゆっくりと滴下し、その後20時間攪拌することで行なった。この結果、下記に示す化合物(2−1)を0.063g得ることができた。また(2−1)の収率は95%(90% ee)であった。
Example 1
In this example, tert-butyl 3- (1-methyl-1H-indol-3-yl) -2-oxindolin-1-carboxylate 0.0544 mg at −20 ° C. in the presence of the above catalyst (5 mol%). 1,1,1,3,3,3-Hexafluoro-2-propanol 32 μl was dissolved in 1.5 ml of orthoxylene, and 73 mg of a nitroethylene 30 w / w% toluene solution was dissolved in 0.5 ml of orthoxylene. The solution was slowly added dropwise over 5 hours and then stirred for 20 hours. As a result, 0.063 g of the compound (2-1) shown below could be obtained. The yield of (2-1) was 95% (90% ee).

H NMR(500MHz,CDCl) δ8.00(d,J=8.3Hz,1H),7.44−7.40(m,1H),7.32−7.18(m,5H),7.04−7.01(m,1H),6.86(s,1H),4.43−4.37(m,1H),4.27−4.21(m,1H),3.72(s,3H),3.36−3.30(m,1H),3.05−2.99(m,1H),1.62(s,9H);
13C NMR(100MHz,CDCl) δ175.3,149.1,139.4,137.6,129.3(2C),127.8,125.3,125.0,124.2,122.2,1204,119.8,115.6,111.8,109.7,84.7,71.3,50.8,33.6,32.9,28.0;
HRMS calcd for C2425Na(M+Na):458.1686,found: m/z 458.1680;
Enantiomeric excess was determined by HPLC with a Chiralpack IC−3 column (80:20 hexane: 2−propanol,1.0 mL/min,254nm); major enantiomer t=13.9,minor enantiomer t=17.2 min;
[α] 21=−140.1(c=1.0,CHCl,90%ee);
IR(neat) 2980,1764,1727,1552,1287,1249,1146,738cm−1
1 H NMR (500 MHz, CDCl 3 ) δ 8.00 (d, J = 8.3 Hz, 1H), 7.44-7.40 (m, 1H), 7.32-7.18 (m, 5H), 7.04-7.01 (m, 1H), 6.86 (s, 1H), 4.43-4.37 (m, 1H), 4.27-4.21 (m, 1H), 3. 72 (s, 3H), 3.36-3.30 (m, 1H), 3.05-2.99 (m, 1H), 1.62 (s, 9H);
13 C NMR (100 MHz, CDCl 3 ) δ 175.3, 149.1, 139.4, 137.6, 129.3 (2C), 127.8, 125.3, 125.0, 124.2, 122. 2, 1204, 119.8, 115.6, 111.8, 109.7, 84.7, 71.3, 50.8, 33.6, 32.9, 28.0;
HRMS calcd for C 24 H 25 N 3 O 5 Na (M + Na) +: 458.1686, found: m / z 458.1680;
Enantiomeric excess was determined by HPLC with a Chiralpack IC-3 column (80:20 hexane: 2-propanol, 1.0 mL / min, 254nm); major enantiomer t r = 13.9, minor enantiomer t r = 17.2 min;
[Α] D 21 = −140.1 (c = 1.0, CHCl 3 , 90% ee);
IR (neat) 2980, 1764, 1727, 1552, 1287, 1249, 1146, 738 cm −1 .

(実施例2)
本実施例は、上記触媒(5mol%)の存在下、−20℃において、tert−butyl 5−methoxy−3−(1−methyl−1H−indol−3−yl)−2−oxoindoline−1−carboxylate 0.0589mg、1,1,1,3,3,3−Hexafluoro−2−propanol 32μlを1.5mlのオルトキシレンに溶解させ、ニトロエチレン 30w/w% トルエン溶液73mgを0.5mlのオルトキシレンに溶解させた溶液を5時間かけてゆっくりと滴下し、その後20時間攪拌することで行なった。この結果、下記に示す化合物(2−2)を0.066g得ることができた。また(2−2)の収率は94%(93%ee)であった。
(Example 2)
In this example, tert-butyl 5-methyl-3- (1-methyl-1H-indol-3-yl) -2-oxindolin-1-carboxylate was present at −20 ° C. in the presence of the above catalyst (5 mol%). 0.0589 mg, 1,1,1,3,3,3-Hexafluoro-2-propanol 32 μl was dissolved in 1.5 ml of orthoxylene, and 73 mg of nitroethylene 30 w / w% toluene solution was dissolved in 0.5 ml of orthoxylene. The dissolved solution was slowly dropped over 5 hours and then stirred for 20 hours. As a result, 0.066 g of the compound (2-2) shown below could be obtained. The yield of (2-2) was 94% (93% ee).

H NMR(500MHz,CDCl)δ7.92 (d,J=9.2Hz,1H),7.30(d,J=8.3Hz,1H),7.27(d,J=8.3Hz,1H),7.21−7.18(m,1H),7.03−7.00(m,1H),6.94−6.90(m,2H),6.82(d,J=2.6Hz,1H)4.42−4.36(m,1H),4.25−4.20(m,1H),3.76(s,3H),3.71(s,3H),3.56−3.30(m,1H),3.02−2.96(m,1H),1.61(s,9H);
13C NMR(125MHz,CDCl)δ175.4,157.2,149.2,137.6,132.7,130.8,127.7,125.3,122.1,120.3,119.8,116.5,113.9,111.9,110.4,109.6,84.6,71.3,55.6,51.1,33.6,32.8,28.0;
HRMS calcd for for C2527Na (M+Na):488.1792,found:m/z 488.1789;
Enantiomeric excess was determined by HPLC with a Chiralpack IA column (70:30 hexane:2−propanol,1.0mL/min,254nm); major enantiomer t=5.9min, minor enantiomer t=13.6min;
[α] 21=−120.5(c=1.0,CHCl,93%ee);
IR(neat)2931,1759,1728,1551,1486,1278,1249,1149,741cm−1
1 H NMR (500 MHz, CDCl 3 ) δ 7.92 (d, J = 9.2 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 7.27 (d, J = 8.3 Hz) , 1H), 7.21-7.18 (m, 1H), 7.03-7.00 (m, 1H), 6.94-6.90 (m, 2H), 6.82 (d, J = 2.6 Hz, 1H) 4.42-4.36 (m, 1H), 4.25-4.20 (m, 1H), 3.76 (s, 3H), 3.71 (s, 3H) 3.56-3.30 (m, 1H), 3.02-2.96 (m, 1H), 1.61 (s, 9H);
13 C NMR (125 MHz, CDCl 3 ) δ 175.4, 157.2, 149.2, 137.6, 132.7, 130.8, 127.7, 125.3, 122.1, 120.3, 119 8, 116.5, 113.9, 111.9, 110.4, 109.6, 84.6, 71.3, 55.6, 51.1, 33.6, 32.8, 28.0 ;
HRMS calcd for for C 25 H 27 N 3 O 6 Na (M + Na) + : 488.1792, found: m / z 488.1789;
Enantiomeric excess was determined by HPLC with a Chiralpack IA column (70:30 hexane: 2-propanol, 1.0mL / min, 254nm); major enantiomer t r = 5.9min, minor enantiomer t r = 13.6min;
[Α] D 21 = −120.5 (c = 1.0, CHCl 3 , 93% ee);
IR (neat) 2931, 1759, 1728, 1551, 1486, 1278, 1249, 1149, 741 cm −1 .

(実施例3)
本実施例は、上記触媒(5mol%)の存在下、−20℃において、tert−butyl 6−chloro−3−(1−methyl−1H−indol−3−yl)−2−oxoindoline−1−carboxylate 0.0595mg、1,1,1,3,3,3−Hexafluoro−2−propanol 32μlを1.5mlのオルトキシレンに溶解させ、ニトロエチレン30w/w%、トルエン溶液73mgを0.5mlのオルトキシレンに溶解させた溶液を5時間かけてゆっくりと滴下し、その後20時間攪拌することで行なった。この結果、下記に示す化合物(2−3)を0.0592g得ることができた。また(2−3)の収率は84%(88%ee)であった。
(Example 3)
In this example, tert-butyl 6-chloro-3- (1-methyl-1H-indol-3-yl) -2-oxindolinine-1-carboxylate is present at −20 ° C. in the presence of the above catalyst (5 mol%). 0.0595 mg, 1,1,1,3,3,3-Hexafluoro-2-propanol 32 μl was dissolved in 1.5 ml of orthoxylene, nitroethylene 30 w / w%, toluene solution 73 mg was dissolved in 0.5 ml of orthoxylene The solution dissolved in was slowly dropped over 5 hours and then stirred for 20 hours. As a result, 0.0592 g of the compound (2-3) shown below could be obtained. The yield of (2-3) was 84% (88% ee).

H NMR (400MHz,CDCl)δ8.08(t,J=1.1Hz,1H),7.33(d,J=8.2Hz,1H),7.28(d,J=8.2Hz,1H),7.24−7.19(m,3H),7.07−7.03(m,1H),6.84(s,1H),4.43−4.35(m,1H),4.28−4.22(m,1H),3.72(s,3H),3.35−3.27(m,1H),3.04−2.96(m,1H),1.62(s,9H);
13C NMR(100MHz,CDCl)δ174.8,148.9,140.3,137.7,135.0,127.8,127.7,125.2,125.0(2C),122.3,120.2,120.0,116.3,111.3,109.8,85.4,71.2,50.6,33.5,32.9,28.0;
HRMS calcd for for C2424ClNa(M+Na): 492.1297,found:m/z 492.1292;
Enantiomeric excess was determined by HPLC with a Chiralpack IA column(85:15 hexane:2−propanol,1.0mL/min,254nm); major enantiomer t=6.4min,minor enantiomer t=14.0min;
[α] 21=−73.4(c=1.0,CHCl,88%ee);
IR(neat)2979,1766,1730,1552,1284,1244,1144,740cm−1
1 H NMR (400 MHz, CDCl 3 ) δ 8.08 (t, J = 1.1 Hz, 1H), 7.33 (d, J = 8.2 Hz, 1H), 7.28 (d, J = 8.2 Hz) , 1H), 7.24-7.19 (m, 3H), 7.07-7.03 (m, 1H), 6.84 (s, 1H), 4.43-4.35 (m, 1H) ), 4.28-4.22 (m, 1H), 3.72 (s, 3H), 3.35-3.27 (m, 1H), 3.04-2.96 (m, 1H), 1.62 (s, 9H);
13 C NMR (100 MHz, CDCl 3 ) δ 174.8, 148.9, 140.3, 137.7, 135.0, 127.8, 127.7, 125.2, 125.0 (2C), 122. 3, 120.2, 120.0, 116.3, 111.3, 109.8, 85.4, 71.2, 50.6, 33.5, 32.9, 28.0;
HRMS calcd for for C 24 H 24 N 3 O 5 ClNa (M + Na) + : 492.1297, found: m / z 492.1292;
Enantiomeric excess was determined by HPLC with a Chiralpack IA column (85:15 hexane: 2-propanol, 1.0mL / min, 254nm); major enantiomer t r = 6.4min, minor enantiomer t r = 14.0min;
[Α] D 21 = −73.4 (c = 1.0, CHCl 3 , 88% ee);
IR (neat) 2979, 1766, 1730, 1552, 1284, 1244, 1144, 740 cm −1 .

(実施例3)
本実施例は、上記触媒(5mol%)の存在下、−20℃において、tert−butyl 3−(1,7−dimethyl−1H−indol−3−yl)−5−methyl−2−oxoindoline−1−carboxylate 0.0586mg、1,1,1,3,3,3−Hexafluoro−2−propanol 32μlを1.5 mlのオルトキシレンに溶解させ、ニトロエチレン 30w/w% トルエン溶液73mgを0.5mlのオルトキシレンに溶解させた溶液を5時間かけてゆっくりと滴下し、その後20時間攪拌することで行なった。この結果、下記に示す化合物(2−4)を0.0674g得ることができた。また(2−4)の収率は91%(95%ee)であった。
(Example 3)
In this example, tert-butyl 3- (1,7-dimethyl-1H-indol-3-yl) -5-methyl-2-oxindoleline-1 was present at −20 ° C. in the presence of the above catalyst (5 mol%). -Carboxylate 0.0586 mg, 1,1,1,3,3,3-Hexafluoro-2-propanol 32 μl was dissolved in 1.5 ml ortho-xylene, and 73 ml of nitroethylene 30 w / w% toluene solution was dissolved in 0.5 ml. The solution dissolved in orthoxylene was slowly added dropwise over 5 hours, and then stirred for 20 hours. As a result, 0.0674 g of the compound (2-4) shown below could be obtained. The yield of (2-4) was 91% (95% ee).

H NMR(500MHz,CDCl)δ7.86(d,J=8.6Hz,1H),7.19(dd,J=8.3,1.2Hz1H),7.03−7.02(m,2H),6.89−6.82(m,3H),4.42−4.36(m,1H),4.24−4.19(m, 1H),4.00(s,3H),3.31−3.25(m,1H),3.00−2.93(m, 1H),2.71(s,3H),2.31(s,3H),1.61(s,9H);
13C NMR(125MHz,CDCl)δ175.5,149.2,136.9,136.2,134.8,129.7,129.42,129.36,126.4,124.8,124.5,121.6,120.0,118.2,115.3,111.6,84.6,71.3,50.6,37.0,33.6,28.0,21.1,19.8;
HRMS calcd for for C2629Na(M+Na):486.1999,found:m/z 486.1996;
Enantiomeric excess was determined by HPLC with a Chiralpack IC−3 column(80:20 hexane:2−propanol,1.0mL/min,254nm);major enantiomer t=16.3min, minor enantiomer t=20.9min;
[α] 21=−89.3(c=1.0,CHCl,95%ee);
IR(neat)2924,1780,1560,1304,1247,1147,742cm−1
1 H NMR (500 MHz, CDCl 3 ) δ 7.86 (d, J = 8.6 Hz, 1H), 7.19 (dd, J = 8.3, 1.2 Hz 1H), 7.03-7.02 (m , 2H), 6.89-6.82 (m, 3H), 4.42-4.36 (m, 1H), 4.24-4.19 (m, 1H), 4.00 (s, 3H) ), 3.31-3.25 (m, 1H), 3.00-2.93 (m, 1H), 2.71 (s, 3H), 2.31 (s, 3H), 1.61 ( s, 9H);
13 C NMR (125 MHz, CDCl 3 ) δ 175.5, 149.2, 136.9, 136.2, 134.8, 129.7, 129.42, 129.36, 126.4, 124.8, 124 5, 121.6, 120.0, 118.2, 115.3, 111.6, 84.6, 71.3, 50.6, 37.0, 33.6, 28.0, 21.1 , 19.8;
HRMS calcd for for C 26 H 29 N 3 O 5 Na (M + Na) + : 486.1999, found: m / z 486.1996;
Enantiomeric excess was determined by HPLC with a Chiralpack IC-3 column (80:20 hexane: 2-propanol, 1.0mL / min, 254nm); major enantiomer t r = 16.3min, minor enantiomer t r = 20.9min;
[Α] D 21 = −89.3 (c = 1.0, CHCl 3 , 95% ee);
IR (neat) 2924, 1780, 1560, 1304, 1247, 1147, 742 cm −1 .

(実施例3)
本実施例は、上記触媒(5mol%)の存在下、−20℃において、tert−butyl 3−(1H−indol−3−yl)−2−oxoindoline−1−carboxylate 0.0523mg、1,1,1,3,3,3−Hexafluoro−2−propanol 32μlを1.5 mlのオルトキシレンに溶解させ、ニトロエチレン 30w/w% トルエン溶液73mgを0.5mlのオルトキシレンに溶解させた溶液を5時間かけてゆっくりと滴下し、その後20時間攪拌することで行なった。この結果、下記に示す化合物(2−5)を0.0536g得ることができた。また(2−5)の収率は88%(89%ee)であった。
(Example 3)
In this example, tert-butyl 3- (1H-indol-3-yl) -2-oxindolinine-1-carboxylate 0.0523 mg, 1,1, at −20 ° C. in the presence of the above catalyst (5 mol%) A solution prepared by dissolving 32 μl of 1,3,3,3-Hexafluoro-2-propanol in 1.5 ml of orthoxylene and dissolving 73 mg of nitroethylene 30 w / w% toluene solution in 0.5 ml of orthoxylene for 5 hours Over the course of 20 hours. As a result, 0.0536 g of the following compound (2-5) could be obtained. The yield of (2-5) was 88% (89% ee).

H NMR(500MHz,CDCl)δ8.30(br,1H),7.99(d, J=8.3Hz,1H),7.43−7.40(m,1H),7.33−7.31(m,2H),7.27−7.26(m,1H),7.22−7.21(m,1H),7.17−7.14(m,1H),7.04−7.00(m,2H),4.44−4.38(m,1H),4.27−4.21(m,1H),3.36−3.30(m,1H),3.06−3.00(m, 1H),1.63(s,9H);
13C NMR(125MHz,CDCl)δ175.4,149.1,139.4, 136.9,129.4,129.3,125.0,124.8,124.2,123.2,122.6,120.3(2C),115.6,113.6,111.6,85.0,71.4,50.9,33.7,28.0;
HRMS calcd for for C2323Na(M+Na):444.1530,found:m/z 444.1526;
Enantiomeric excess was determined by HPLC with a Chiralpack AD−H column (90:10 hexane:2−propanol,1.0mL/min,254 nm);major enantiomer t=22.4 min,minor enantiomer t=26.1min;
[α] 21=−96.6(c=0.5,CHCl,89%ee);
IR(neat)3351,2980,1779,1731,1247,1144,735cm−1
1 H NMR (500 MHz, CDCl 3 ) δ 8.30 (br, 1H), 7.99 (d, J = 8.3 Hz, 1H), 7.43-7.40 (m, 1H), 7.33- 7.31 (m, 2H), 7.27-7.26 (m, 1H), 7.22-7.21 (m, 1H), 7.17-7.14 (m, 1H), 7. 04-7.00 (m, 2H), 4.44-4.38 (m, 1H), 4.27-4.21 (m, 1H), 3.36-3.30 (m, 1H), 3.06-3.00 (m, 1H), 1.63 (s, 9H);
13 C NMR (125 MHz, CDCl 3 ) δ 175.4, 149.1, 139.4, 136.9, 129.4, 129.3, 125.0, 124.8, 124.2, 123.2, 122 6, 120.3 (2C), 115.6, 113.6, 111.6, 85.0, 71.4, 50.9, 33.7, 28.0;
HRMS calcd for for C 23 H 23 N 3 O 5 Na (M + Na) +: 444.1530, found: m / z 444.1526;
Enantiomeric excess was determined by HPLC with a Chiralpack AD-H column (90:10 hexane: 2-propanol, 1.0mL / min, 254 nm); major enantiomer t r = 22.4 min, minor enantiomer t r = 26. 1 min;
[Α] D 21 = −96.6 (c = 0.5, CHCl 3 , 89% ee);
IR (neat) 3351, 2980, 1779, 1731, 1247, 1144, 735 cm −1 .

以上の通り、本実施例によると、3’−インドリル−オキシインドールの1,4−付加反応を行なうことができる有用な触媒が実現できることを確認した。   As described above, according to this example, it was confirmed that a useful catalyst capable of performing a 1,4-addition reaction of 3'-indolyl-oxindole could be realized.

本発明は、連続する立体中心を有する光学活性非対称ビスインドール化合物を非常に高い光学純度で供給できることから、医薬・農薬の開発と生産に有用であり、産業上の利用可能性がある。
INDUSTRIAL APPLICATION Since this invention can supply the optically active asymmetric bisindole compound which has a continuous stereocenter with very high optical purity, it is useful for development and production of a pharmaceutical and an agrochemical, and has industrial applicability.

Claims (2)

下記式(1)で示される配位子を金属に配位させた触媒を用いて、下記式(2)で示される光学活性非対称ビスインドール化合物を、下記式(3)で示される3’−インドリル−3−オキシインドールとスチレン化合物を用いて合成する方法。
(ここでXは、ブロモ基又はニトロ基である。)
(ここでRおよびRは、おのおの独立して、H、ハロゲン、アルキル基又はアルコキシ基である。またRおよびRは、インドールもしくはオキシインドール骨格のベンゼン環上であれば、いずれ位置に複数結合していてもかまわない。また、Rは、エステル基であり、RはH、Me、Et、Bn、Boc、MOM、MEM、SEM、又はAllocである。)
(ここでRおよびRは、おのおの独立して、H、ハロゲン、アルキル基、又はアルコキシ基である。またRおよびRは、インドールもしくはオキシインドール骨格のベンゼン環上であれば、いずれ位置に複数結合していてもかまわない。また、Rは、エステル基であり、RはH、Me、Et、Bn、Boc、MOM、MEM、SEM、又はAllocである。)
Using a catalyst in which a ligand represented by the following formula (1) is coordinated to a metal, an optically active asymmetric bisindole compound represented by the following formula (2) is converted into a 3′- represented by the following formula (3). A method of synthesis using indolyl-3-oxindole and a styrene compound.
(Here, X is a bromo group or a nitro group.)
(Wherein R 1 and R 3 are each independently H, halogen, an alkyl group or an alkoxy group, and R 1 and R 3 are any positions on the benzene ring of the indole or oxindole skeleton) And R 2 is an ester group, and R 4 is H, Me, Et, Bn, Boc, MOM, MEM, SEM, or Alloc.)
(Wherein R 1 and R 3 are each independently H, halogen, an alkyl group, or an alkoxy group. R 1 and R 3 may be any one on the benzene ring of the indole or oxindole skeleton) (A plurality may be bonded to the position, R 2 is an ester group, and R 4 is H, Me, Et, Bn, Boc, MOM, MEM, SEM, or Alloc.)
下記式(2)で示される光学活性非対称ビスインドール化合物。
(ここでRおよびRは、おのおの独立して、H、ハロゲン、アルキル基、又はアルコキシ基である。またRおよびRは、インドールもしくはオキシインドール骨格のベンゼン環上であれば、いずれ位置に複数結合していてもかまわない。また、Rは、エステル基であり、RはH、Me、Et、Bn、Boc、MOM、MEM、SEM、又はAllocである。)
An optically active asymmetric bisindole compound represented by the following formula (2).
(Wherein R 1 and R 3 are each independently H, halogen, an alkyl group, or an alkoxy group. R 1 and R 3 may be any one on the benzene ring of the indole or oxindole skeleton) (A plurality may be bonded to the position, R 2 is an ester group, and R 4 is H, Me, Et, Bn, Boc, MOM, MEM, SEM, or Alloc.)
JP2013185950A 2013-09-09 2013-09-09 Optically active asymmetric bisindole compound and method for producing the same Active JP6188066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013185950A JP6188066B2 (en) 2013-09-09 2013-09-09 Optically active asymmetric bisindole compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013185950A JP6188066B2 (en) 2013-09-09 2013-09-09 Optically active asymmetric bisindole compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015051955A true JP2015051955A (en) 2015-03-19
JP6188066B2 JP6188066B2 (en) 2017-08-30

Family

ID=52701260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013185950A Active JP6188066B2 (en) 2013-09-09 2013-09-09 Optically active asymmetric bisindole compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP6188066B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044928A (en) * 2006-07-20 2008-02-28 Chiba Univ Imidazoline ligand and catalyst containing the same
JP2012046441A (en) * 2010-08-25 2012-03-08 Chiba Univ Pyrrolidine derivative and method for producing the same
JP2012092066A (en) * 2010-10-28 2012-05-17 Chiba Univ Pyrrole and indole derivative and method for producing the same
JP2013142080A (en) * 2012-01-12 2013-07-22 Chiba Univ Indole derivative and method for producing the same
JP2014172821A (en) * 2013-03-06 2014-09-22 Chiba Univ Optically active thiochroman derivative and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008044928A (en) * 2006-07-20 2008-02-28 Chiba Univ Imidazoline ligand and catalyst containing the same
JP2012046441A (en) * 2010-08-25 2012-03-08 Chiba Univ Pyrrolidine derivative and method for producing the same
JP2012092066A (en) * 2010-10-28 2012-05-17 Chiba Univ Pyrrole and indole derivative and method for producing the same
JP2013142080A (en) * 2012-01-12 2013-07-22 Chiba Univ Indole derivative and method for producing the same
JP2014172821A (en) * 2013-03-06 2014-09-22 Chiba Univ Optically active thiochroman derivative and method for producing the same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ARAI, T. ET AL, THE JOURNAL OF ORGANIC CHEMISTRY, vol. 76, no. 13, JPN6016050586, 2011, pages 5450 - 5456 *
ARAI, T. ET AL: "Catalytic Asymmetric Synthesis of Mixed 3,3'-Bisindoles and Their Evaluation as Wnt Signaling Inhibi", ANGEWANDTE CHEMIE (INTERNATIONAL ED.), vol. 52(9), JPN6016050574, 25 January 2013 (2013-01-25), pages 2486-2490 *
AWATA, A. ET AL, CHEMISTRY - A EUROPEAN JOURNAL, vol. 20, no. 9, JPN6016050571, 12 February 2014 (2014-02-12), pages 2470 - 2477 *
BUI, T. ET AL: "Thiourea-Catalyzed Highly Enantio- and Diastereoselective Additions of Oxindoles to Nitroolefins: Ap", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131(25), JPN6016050584, 2009, pages 8758-8759 *
HE, R. ET AL: "Enantioselective Base-Free Phase-Transfer Reaction in Water-Rich Solvent", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131(46), JPN6016050576, 2009, pages 16620-16621 *
KATO, Y. ET AL: "A Homodinuclear Mn(III)2-Schiff Base Complex for Catalytic Asymmetric 1,4-Additions of Oxindoles to", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131(26), JPN6016050582, 2009, pages 9168-9169 *
MITSUNUMA, H. ET AL: "Catalytic Asymmetric Total Synthesis of Chimonanthine, Folicanthine, and Calycanthine through Double", ANGEWANDTE CHEMIE (INTERNATIONAL ED.), vol. 51(21), JPN6016050578, 2012, pages 5217-5221 *
YOKOYAMA, N. ET AL, CHEM. COMM., vol. No.22, JPN6016050588, 2009, pages 3285 - 3287 *

Also Published As

Publication number Publication date
JP6188066B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
Gooßen et al. Synthesis of secondary enamides by ruthenium-catalyzed selective addition of amides to terminal alkynes
Gong et al. Enantioselective construction of a 2, 2′-bisindolylmethane scaffold via catalytic asymmetric reactions of 2-indolylmethanols with 3-alkylindoles
KR20130142477A (en) Method for preparation of nitrocyclopropane derivatives
Dong et al. Enantioselective palladium-catalyzed C (sp2)-H carbamoylation
Yu et al. Organocatalyzed asymmetric tandem conjugate addition–protonation of isocyanoacetates to 2-chloroacrylonitrile
JP2010512379A (en) process
JP5843186B2 (en) Pyrrole and indole derivatives and process for producing the same
Han et al. Chiral ferrocenyl P, S-ligands for highly efficient copper-catalyzed asymmetric [3+ 2] cycloaddition of azomethine ylides
CN104024218A (en) Method for producing optically active beta-hydroxy-alpha-aminocarboxylic acid ester
JP6548214B2 (en) Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same
JP6188066B2 (en) Optically active asymmetric bisindole compound and method for producing the same
JP6476497B2 (en) Process for producing optically active compound, and novel metal-diamine complex
JP5569938B2 (en) Pyrrolidine derivative and method for producing the same
WO2017043626A1 (en) Method for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative
JP2013142071A (en) Pyrrolidinyl-spirooxindole derivative and method for producing the same
JP2014172821A (en) Optically active thiochroman derivative and method for producing the same
JP7267932B2 (en) Chiral metal complex compound
JP5471069B2 (en) Tetrahydropyridine derivative and method for producing the same
JP2015172024A (en) Chiral bicyclic diene ligand having hydrogen bond formation amide group
JP2013142080A (en) Indole derivative and method for producing the same
JP4654444B2 (en) Diamine ligand and catalyst using the same
US9340519B2 (en) Paracyclophane-based ligands, their preparation and use in catalysis
KR20140030891A (en) Method for preparation of g-nitro ketone derivatives
CN109810056B (en) S-alkyl-S-quinolyl-N-sulfonyl nitrogen sulfur ylide compound and preparation and application thereof
JP2008540650A (en) Asymmetric hydrogenation for the preparation of diphenylalanine derivatives

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170727

R150 Certificate of patent or registration of utility model

Ref document number: 6188066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250