WO2017043626A1 - Method for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative - Google Patents

Method for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative Download PDF

Info

Publication number
WO2017043626A1
WO2017043626A1 PCT/JP2016/076605 JP2016076605W WO2017043626A1 WO 2017043626 A1 WO2017043626 A1 WO 2017043626A1 JP 2016076605 W JP2016076605 W JP 2016076605W WO 2017043626 A1 WO2017043626 A1 WO 2017043626A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbamoyl
substituent
following formula
optically active
Prior art date
Application number
PCT/JP2016/076605
Other languages
French (fr)
Japanese (ja)
Inventor
西山 章
昇平 山本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201680052341.0A priority Critical patent/CN108026032B/en
Priority to JP2017538538A priority patent/JPWO2017043626A1/en
Publication of WO2017043626A1 publication Critical patent/WO2017043626A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B51/00Introduction of protecting groups or activating groups, not provided for in the preceding groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B53/00Asymmetric syntheses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/65Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/30Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative useful as an intermediate of an opioid receptor agonist.
  • a dimethyltyrosine derivative is used as a starting material, a phenol hydroxyl group is triflated, and then reacted with carbon monoxide gas in the presence of a palladium catalyst to produce a corresponding carboxylic acid. Subsequently, an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative is produced by condensing carboxylic acid with ammonia to convert to a corresponding amide, and further hydrolyzing the ester.
  • dehydrophenylalanine derivative is asymmetrically hydrogenated in the presence of a rhodium catalyst, and then the ester is hydrolyzed to produce an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative.
  • Patent Document 1 or 2 The method of Patent Document 1 or 2 described above is poor in economic efficiency in that an expensive palladium catalyst is used, and is difficult to implement on an industrial scale in terms of using highly toxic carbon monoxide gas.
  • the method of Patent Document 3 is also economical in that it uses an expensive palladium catalyst, has a high environmental impact in that it uses highly toxic cyanide compounds and heavy metals, and is a suitable process from the viewpoint of industrial implementation. It's hard to say.
  • the problem to be solved by the present invention with respect to the above-described conventional techniques is that high-purity and high-optical purity optically active 4-carbamoyl-2,6-dimethylphenylalanine derivatives required for pharmaceutical intermediates can be easily and efficiently produced. There is to manufacture.
  • the present invention is as follows.
  • R 5 represents a hydrogen atom, a C1-C12 alkyl group which may have a substituent, or a C6-C12 which may have a substituent.
  • a method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative comprising the following formula (2): 4-carbamoyl-2,6-dimethylbenzoic acid represented by the following formula (3); (Wherein R 1 and R 2 are C1-C12 alkyl groups which may have a substituent, C6-C12 aryl groups which may have a substituent, C7- A C12 aralkyl group, a C3 to C12 cycloalkyl group which may have a substituent, and R 1 and R 2 may form a ring together.)
  • the following formula (4) (Wherein R 1 and R 2 are the same as above), and by reducing the mixed acid anhydride, the following formula (5):
  • the optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by the above formula (1) which comprises a step of producing 4-carbamoyl-2,6-dimethylbenzyl alcohol
  • R 6 Is a C1-C12 alkyl group which may have a substituent, a C6-C12 aryl group which may have a substituent, a C7-C20 aralkyl group which may have a substituent, or a substituent.
  • the base is potassium hydroxide
  • the optically active phase transfer catalyst is (11bR)-( ⁇ )-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4, [5] or [6], which is 5-trifluorophenyl) -3H-dinaphtho [2,1-c: 1 ′, 2′-e] azepinium bromide.
  • the present invention includes the following inventions [II] to [V].
  • R 6 Is a C1-C12 alkyl group which may have a substituent, a C6-C12 aryl group which may have a substituent, a C7-C20 aralkyl group which may have a substituent, or a substituent.
  • a glycine Schiff base represented by the following formula (8): (Wherein R 3 , R 4 , R 6 , and * are the same as those described above) are produced, and are further subjected to acid hydrolysis, or the amino group is protected after acid hydrolysis.
  • a method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by:
  • R 6 Is a C1-C12 alkyl group which may have a substituent, a C6-C12 aryl group which may have a substituent, a C7-C20 aralkyl group which may have a substituent, or a substituent.
  • a glycine Schiff base represented by the following formula (8): (Wherein R 3 , R 4 , R 6 , and * are the same as those described above) are produced, and are further subjected to acid hydrolysis, or the amino group is protected after acid hydrolysis.
  • a method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by:
  • the present invention also provides the following formula (6): (Wherein X represents a leaving group) and the 4-carbamoyl-2,6-dimethylbenzyl derivative.
  • the present invention relates to a 4-carbamoyl-2,6-dimethylbenzyl derivative according to [VI], wherein X is a chlorine atom or a bromine atom.
  • the present invention also provides the following formula (4): (Wherein R 1 and R 2 are C1-C12 alkyl groups which may have a substituent, C6-C12 aryl groups which may have a substituent, C7- A C12 aralkyl group, a C3-C12 cycloalkyl group which may have a substituent, and R 1 and R 2 may form a ring together.)
  • R 1 and R 2 may form a ring together.
  • the present invention relates to the mixed acid anhydride according to [VII], wherein R 1 is a methyl group or an ethyl group, and R 2 is a methyl group or an ethyl group.
  • an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative having high purity and high optical purity required for a pharmaceutical intermediate can be easily and efficiently produced.
  • the C1-C12 alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, an n- A pentyl group, n-hexyl group, n-decyl group, n-dodecyl group and the like can be mentioned.
  • Examples of the C6 to C12 aryl group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
  • Examples of the aralkyl group of C7 to C20 include benzyl group, 1-phenethyl group, trityl group and the like.
  • Examples of the C3-12 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an adamantyl group.
  • Substituents for C1-C12 alkyl groups, C6-C12 aryl groups, C7-C12 aralkyl groups and C3-12 cycloalkyl groups include, for example, halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom Atom; hydroxyl group; alkoxy group such as methoxy group and ethoxy group; methylthio group; trifluoromethyl group; acetyl group; benzoyl group; cyano group; nitro group; carboxyl group; alkoxycarbonyl group such as methoxycarbonyl group and ethoxycarbonyl group Is mentioned.
  • the number of substitution groups and the substitution position are not particularly limited.
  • optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative which is the target product of the present invention, has the following formula (1);
  • P represents a hydrogen atom or an amino-protecting group.
  • P represents a hydrogen atom or an amino-protecting group.
  • carbamate-type protecting group such as methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, allyloxycarbonyl group, tert-butoxycarbonyl group, benzyloxycarbonyl group, fluoren-9-ylmethoxycarbonyl group; formyl Acyl-type protecting groups such as acetyl, acetyl, trifluoroacetyl, pivaloyl, benzoyl and p-nitrobenzoyl groups; sulfonyl-type protecting groups such as mesyl, p-toluenesulfonyl and p-nitrobenzenesulfonyl More preferably a hydrogen atom, a tert-butoxycarbonyl group, or a benzyloxycarbonyl group, and
  • R 5 is a hydrogen atom, an optionally substituted C1 to C12 alkyl group, an optionally substituted C6 to C12 aryl group, or an optionally substituted C7 to C20.
  • a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a 1-adamantyl group, a cyclohexyl group, a phenyl group, a p-chlorophenyl group, a p-nitrophenyl group, a benzyl group, or a trityl group A hydrogen atom, a methyl group, an ethyl group, or a tert-butyl group is more preferable, a hydrogen atom or a methyl group is still more preferable, and a hydrogen atom is particularly preferable.
  • the absolute configuration of compound (1) may be either R or S, and the preferred absolute configuration is S.
  • the optical purity of the R-form or S-form compound (1) obtained by the production method according to the present invention is preferably 70% ee or more, more preferably 80% ee or more, and further preferably 90% ee or more.
  • the compound (1) is preferably a compound of the following formulas (1-1) to (1-12), more preferably (S) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- It is methyl (tert-butoxycarbonylamino) propanoic acid or (S) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- (tert-butoxycarbonylamino) propanoic acid.
  • This compound can be easily produced from 2,4,6-trimethylbenzoic acid, which is easily available at low cost, according to the method described in JP-A-63-253061.
  • 2,4,6-trimethylbenzoic acid is oxidized with potassium permanganate to produce 2,6-dimethylbenzene-1,4-dicarboxylic acid, and treated with methanol in the presence of a sulfuric acid catalyst.
  • 4-methoxycarbonyl-2,6-dimethylbenzoic acid can be obtained, followed by treatment with ammonia gas, whereby the 4-carbamoyl-2,6-dimethylbenzoic acid can be produced.
  • the carbamoyl chloride used in the present invention has the following formula (3):
  • R 1 and R 2 each independently have a C1-C12 alkyl group which may have a substituent, a C6-C12 aryl group which may have a substituent, or a substituent. Or a C7 to C12 aralkyl group or a C3 to C12 cycloalkyl group which may have a substituent.
  • R 1 and R 2 may be different but are preferably the same.
  • R 1 and R 2 are methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl.
  • R 1 and R 2 may form a ring together.
  • R 1 and R 2 examples include a butylene group, a pentylene group, a diethyl ether-2,2′-diyl group, and the like.
  • R 1 and R 2 are preferably a methyl group or an ethyl group, and more preferably an ethyl group.
  • Compound (3) is preferably a compound of the following formulas (3-1) to (3-9), more preferably dimethylcarbamoyl chloride or diethylcarbamoyl chloride, and still more preferably diethylcarbamoyl chloride.
  • the mixed acid anhydride which is an intermediate product of the present invention has the following formula (4):
  • R 1 and R 2 are the same as described above.
  • This compound is a novel compound not described in any literature.
  • the compound (4) is preferably a compound of the following formulas (4-1) to (4-9), more preferably 4-carbamoyl-2,6-dimethylbenzoic acid, N, N-dimethylcarbamic anhydride or 4-carbamoyl-2,6-dimethylbenzoic acid is N, N-diethylcarbamic anhydride, more preferably 4-carbamoyl-2,6-dimethylbenzoic acid is N, N-diethylcarbamic anhydride.
  • 4-carbamoyl-2,6-dimethylbenzyl alcohol which is an intermediate product of the present invention, has the following formula (5):
  • the intermediate product of the present invention 4-carbamoyl-2,6-dimethylbenzyl derivative, has the following formula (6):
  • X represents a leaving group. Specifically, halogen atoms such as chlorine atom, bromine atom and iodine atom; methanesulfonyloxy group, ethanesulfonyloxy group, benzenesulfonyloxy group, p-toluenesulfonyloxy group, p-nitrobenzenesulfonyloxy group, trifluoromethanesulfonyl Examples include sulfonyloxy groups such as oxy groups.
  • halogen atoms such as a chlorine atom, a bromine atom, and an iodine atom, More preferably, they are a chlorine atom or a bromine atom.
  • This compound is a novel compound not described in any literature.
  • the glycine Schiff base used in the present invention has the following formula (7):
  • R 3 represents a hydrogen atom or a C6 to C12 aryl group which may have a substituent.
  • a hydrogen atom, a phenyl group, a p-chlorophenyl group, a p-nitrophenyl group, and a p-methoxyphenyl group are preferable, and a phenyl group is more preferable.
  • R 4 represents a C6 to C12 aryl group which may have a substituent.
  • R 3 and R 4 are each independently preferably a phenyl group, a p-methylphenyl group, a p-chlorophenyl group, a p-nitrophenyl group, or a p-methoxyphenyl group, and more preferably a phenyl group.
  • R 3 and R 4 may be the same as or different from each other, but are preferably the same.
  • R 6 is an optionally substituted C1-C12 alkyl group, an optionally substituted C6-C12 aryl group, an optionally substituted C7-C20 aralkyl group, or a substituted group. Represents a C3-12 cycloalkyl group which may have a group.
  • it is a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a 1-adamantyl group, a cyclohexyl group, a phenyl group, a p-chlorophenyl group, a p-nitrophenyl group, a benzyl group, or a trityl group, more preferably A methyl group, an ethyl group, or a tert-butyl group, more preferably a methyl group or a tert-butyl group, and particularly preferably a tert-butyl group.
  • R 6 may be the same as or different from R 5 depending on the synthesis route.
  • Compound (7) is preferably a compound of the following formulas (7-1) to (7-15), more preferably 2- (diphenylmethylidene) glycine tert-butyl ester.
  • optically active amino acid derivative that is an intermediate product of the present invention has the following formula (8):
  • R 3 , R 4 , R 6 and * are the same as described above.
  • the compound (8) is preferably a compound of the following formulas (8-1) to (8-15), more preferably (S) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- (Diphenylmethylideneamino) tert-butyl propanoate.
  • the dehydroamino acid derivative which is an intermediate product of the present invention has the following formula (10):
  • the compound (10) is preferably a compound of the following formulas (10-1) to (10-4), more preferably 3- (4-carbamoyl-2,6-dimethylphenyl) -2- (tert-butoxy Carbonylamino) methyl acrylate.
  • the present invention is illustrated as follows, and each step will be described step by step.
  • the amount of the carbamoyl chloride to be used is preferably 1 to 10 equivalents (times mol), more preferably 1 to 3 equivalents (times mol) based on the compound (2).
  • Examples of the base include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like; trimethylamine And amines such as triethylamine, tributylamine, diisopropylethylamine, N-methylpyrrolidine, N-methylmorpholine, 1,8-diazabicyclo [5,4,0] undec-7-ene, pyridine, quinoline, and imidazole. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited.
  • amines such as trimethylamine, triethylamine, tributylamine, diisopropylethylamine, N-methylpyrrolidine, N-methylmorpholine, 1,8-diazabicyclo [5,4,0] undec-7-ene, pyridine, quinoline, imidazole, etc. More preferably triethylamine or pyridine.
  • the amount of the base used is preferably 1 to 10 equivalents (fold moles), more preferably 1 to 3 equivalents (fold moles) relative to the compound (2).
  • the solvent in this step is not particularly limited as long as it does not affect the reaction. Specifically, for example, tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether, etc.
  • Ether solvents such as acetonitrile and nitrile solvents such as propionitrile; ester solvents such as ethyl acetate, n-propyl acetate and isopropyl acetate; aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane; benzene Aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and mesitylene; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; halogen solvents such as methylene chloride and 1,2-dichloroethane; Sulfoxide solvents such as til sulfoxide; N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N-ethy
  • the mixing ratio is not particularly limited.
  • Preferred are ether solvents, nitrile solvents, ketone solvents, or amide solvents, more preferred are tetrahydrofuran, acetonitrile, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, and particularly preferred is N. , N-dimethylformamide, or N, N-dimethylacetamide.
  • the upper limit is preferably 100 times weight, more preferably 50 times weight with respect to the compound (2). Particularly preferred is 20 times the weight.
  • the lower limit is preferably 0.1 times the weight of the compound (2), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
  • the reaction temperature in this reaction is not particularly limited and may be set as appropriate.
  • the upper limit is preferably 150 ° C., more preferably 100 ° C., and particularly preferably 50 ° C.
  • the lower limit is preferably ⁇ 80 ° C., more preferably ⁇ 30 ° C., and particularly preferably 0 ° C.
  • the reaction time in this reaction is not particularly limited and may be appropriately set.
  • the upper limit is preferably 100 hours, more preferably 50 hours, and particularly preferably 25 hours.
  • the lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
  • a general process for obtaining a product from the reaction solution may be performed.
  • the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • the desired product is obtained.
  • water is added to the reaction solution
  • the target product precipitates as a solid, which may be filtered off.
  • the target product thus obtained has a sufficient purity that can be used in the subsequent steps.
  • crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used.
  • the purity may be further increased by a simple purification method.
  • the reduction may be performed using a reducing agent.
  • Reducing agents include lithium aluminum hydride, diisobutylaluminum hydride, sodium bis (2-methoxyethoxy) aluminum hydride, triacetoxyaluminum hydride, lithium borohydride, sodium borohydride, potassium borohydride, hydrogenated Calcium boron, sodium cyanoborohydride, lithium triethylborohydride, lithium tri (sec-butyl) borohydride, potassium tri (sec-butyl) borohydride, borane, tributyltin hydride, silane, trichlorosilane, trimethoxy Examples thereof include silane and triethoxysilane.
  • the amount of the reducing agent to be used is preferably 1 to 20 equivalents (times mole), more preferably 1 to 5 equivalents (times mole) based on the compound (4).
  • the solvent in this step is not particularly limited as long as it does not affect the reaction.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, and ethylene glycol are used.
  • Solvents ether solvents such as tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ethyl acetate, n-propyl acetate, Ester solvents such as isopropyl acetate; Aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and methylcyclohexane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and mesitylene Solvents: N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone,
  • the upper limit is preferably 100 times weight, more preferably 50 times weight, relative to the compound (4). Particularly preferred is 20 times the weight.
  • the lower limit is preferably 0.1 times the weight of the compound (4), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
  • the reaction temperature in this reaction is not particularly limited and may be set as appropriate.
  • the upper limit is preferably 150 ° C., more preferably 100 ° C., and particularly preferably 50 ° C.
  • the lower limit is preferably ⁇ 80 ° C., more preferably ⁇ 30 ° C., and particularly preferably 0 ° C.
  • the reaction time in this reaction is not particularly limited and may be appropriately set.
  • the upper limit is preferably 100 hours, more preferably 50 hours, and particularly preferably 25 hours.
  • the lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
  • a general process for obtaining a product from the reaction solution may be performed.
  • the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • the reaction solvent and the extraction solvent are distilled off from the resulting extract by an operation such as heating under reduced pressure
  • the desired product is obtained.
  • the target product precipitated from the reaction solution is filtered off and washed with methanol or ethanol.
  • the target product thus obtained has a sufficient purity that can be used in the subsequent steps.
  • crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used.
  • the purity may be further increased by a simple purification method.
  • the compound (5) is sulfonylated to methanesulfonyl chloride, ethanesulfonyl chloride, benzenesulfonyl chloride, p-toluenesulfonyl chloride, p-nitrobenzenesulfonyl chloride, trifluoromethanesulfonic anhydride, etc.
  • Agents such as trimethylamine, triethylamine, tributylamine, diisopropylethylamine, N-methylpyrrolidine, N-methylmorpholine, 1,8-diazabicyclo [5,4,0] undec-7-ene, pyridine, quinoline, imidazole It is good to let them.
  • the amount of the sulfonylating agent to be used is preferably 1 to 10 equivalents (fold moles), more preferably 1 to 3 equivalents (fold moles) relative to the compound (5).
  • the amine is preferably used in an amount of 1 to 10 equivalents (times mole), more preferably 1 to 3 equivalents (times mole) based on the compound (5).
  • the compound (5) includes sulfonyl chloride, phosphorus trichloride, phosphorus pentachloride, sulfonyl bromide, phosphorus tribromide, iodine / triphenylphosphine, boron tribromide, thionyl chloride and the like.
  • a halogenating agent may be allowed to act.
  • Preferred is sulfonyl chloride, phosphorus tribromide, or thionyl chloride, and more preferred is phosphorus tribromide.
  • the amount of the halogenating agent to be used is preferably 1 to 10 equivalents (fold moles), more preferably 1 to 3 equivalents (fold moles) relative to the compound (5).
  • these halogenating agents are allowed to act, if necessary, trimethylamine, triethylamine, tributylamine, diisopropylethylamine, N-methylpyrrolidine, N-methylmorpholine, 1,8-diazabicyclo [5,4,0] undec-7- Amines such as ene, pyridine, quinoline and imidazole may be used.
  • the amount of the amine to be used is preferably 0.01 to 1 mol, more preferably 0.05 to 0.5 mol, per 1 mol of the compound (5).
  • sodium chloride, potassium chloride, tetrabutylammonium chloride, sodium bromide, potassium bromide, tetrabutylammonium bromide, sodium iodide, iodine X may be converted to the compound (6) wherein a halogen atom such as a chlorine atom, a bromine atom or an iodine atom is allowed to act on a halide such as potassium iodide or tetrabutylammonium iodide.
  • the solvent in this step is not particularly limited as long as it does not affect the reaction. Specifically, for example, tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether, etc.
  • Ether solvents such as acetonitrile and nitrile solvents such as propionitrile; ester solvents such as ethyl acetate, n-propyl acetate and isopropyl acetate; aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane; benzene Aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and mesitylene; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; halogen solvents such as methylene chloride and 1,2-dichloroethane; Sulfoxide solvents such as til sulfoxide; N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N-ethy
  • the mixing ratio is not particularly limited.
  • Preferred are ether solvents, nitrile solvents, ester solvents, halogen solvents, or amide solvents, and more preferred are tetrahydrofuran, acetonitrile, ethyl acetate, methylene chloride, N, N-dimethylformamide, or N, N—.
  • Dimethylacetamide particularly preferably tetrahydrofuran, acetonitrile, ethyl acetate, or methylene chloride.
  • the upper limit is preferably 100 times weight, more preferably 50 times weight, relative to the compound (5). Particularly preferred is 20 times the weight.
  • the lower limit is preferably 0.1 times the weight of the compound (5), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
  • the reaction temperature in this reaction is not particularly limited and may be set as appropriate.
  • the upper limit is preferably 100 ° C., more preferably 70 ° C., and particularly preferably 40 ° C.
  • the lower limit is preferably ⁇ 80 ° C., more preferably ⁇ 50 ° C., and particularly preferably ⁇ 20 ° C.
  • the reaction time in this reaction is not particularly limited and may be appropriately set.
  • the upper limit is preferably 100 hours, more preferably 50 hours, and particularly preferably 25 hours.
  • the lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
  • the mixing order of compound (5) in this step, solvent, sulfonylating agent, amine, or compound (5) in this step, solvent, and halogenating agent is not particularly limited.
  • a general process for obtaining a product from the reaction solution may be performed.
  • the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • the reaction solvent and the extraction solvent are distilled off from the resulting extract by an operation such as heating under reduced pressure, the desired product is obtained.
  • the target product precipitated from the reaction solution is filtered off and washed with water, ethyl acetate, methylene chloride, hexane, heptane or the like.
  • the target product thus obtained has a sufficient purity that can be used in the subsequent steps.
  • crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used.
  • the purity may be further increased by a simple purification method.
  • Examples of the base include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate and the like.
  • Sodium hydroxide or potassium hydroxide is preferable, and potassium hydroxide is more preferable.
  • the amount of the base used is preferably 0.5 to 50 equivalents (fold moles), more preferably 1 to 10 equivalents (fold moles) relative to the compound (6).
  • optically active phase transfer catalyst examples include an optically active quaternary ammonium salt phase transfer catalyst, an optically active quaternary phosphonium salt phase transfer catalyst having a biphenyl skeleton and / or a binaphthyl skeleton, and a complex with an optically active metal atom.
  • optically active phase transfer catalyst examples include the formed phase transfer catalyst.
  • optically active quaternary ammonium salt having biphenyl skeleton and / or binaphthyl skeleton, optically active tartaric acid type quaternary ammonium salt, or optically active cinchona alkaloid type quaternary ammonium salt, biphenyl skeleton and / or binaphthyl skeleton
  • Optically active quaternary phosphonium salt phase transfer catalyst nickel complexed with N, N′-bis (salicylidene) -1,2-cyclohexanediamine derivative (Jacobsen ligand), or copper catalyst .
  • the upper limit is preferably 1 equivalent (times mol), more preferably 0, relative to the compound (6).
  • the lower limit is preferably 0.0001 equivalent (times mol), more preferably 0.001 equivalent (times mol), and particularly preferably 0.01 equivalent (times mol) relative to the compound (6). It is.
  • the amount of the compound (7) to be used is preferably 1 to 10 equivalents (times mole), more preferably 1 to 3 equivalents (times mole) with respect to the compound (6).
  • the solvent in this step is not particularly limited as long as it does not affect the reaction.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, and ethylene glycol are used.
  • Solvents ether solvents such as tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ethyl acetate, n-propyl acetate, Ester solvents such as isopropyl acetate; Aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and methylcyclohexane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and mesitylene Solvents; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone; halogen solvents such as methylene chloride and 1,2-dichloroethane;
  • ether solvents preferably tetrahydrofuran, methyl tert-butyl ether, hexane, heptane, toluene, xylene, ethylbenzene, mesitylene, methylene chloride, Or 1,2-dichloroethane, particularly preferably methyl tert-butyl ether, toluene, xylene, ethylbenzene, or mesitylene.
  • the upper limit is preferably 100 times weight, more preferably 50 times weight with respect to the compound (6). Particularly preferred is 20 times the weight.
  • the lower limit is preferably 0.1 times the weight of the compound (6), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
  • water may be added for the purpose of accelerating the reaction rate of this reaction.
  • the amount of water used is preferably 0.1 to 100 equivalents (times mole), more preferably 1 to 30 equivalents (times mole), relative to the compound (6).
  • the reaction temperature in this reaction is not particularly limited and may be set as appropriate.
  • the upper limit is preferably 120 ° C., more preferably 50 ° C., and particularly preferably 30 ° C.
  • the lower limit is preferably ⁇ 80 ° C., more preferably ⁇ 50 ° C., and particularly preferably ⁇ 20 ° C.
  • the reaction time in this reaction is not particularly limited and may be appropriately set.
  • the upper limit is preferably 120 hours, more preferably 100 hours, and particularly preferably 80 hours.
  • the lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
  • a general process for obtaining a product from the reaction solution may be performed.
  • the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • the optical purity of the R-form or S-form compound (8) obtained by this step is preferably 80% ee (where% ee represents the enantiomeric excess), more preferably 85% ee or more, and still more preferably 88 % Ee or higher.
  • the target product thus obtained has a sufficient purity that can be used in the subsequent steps.
  • crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used.
  • the purity may be further increased by a simple purification method.
  • optically active amino acid derivative represented by the formula (8) is produced and further subjected to acid hydrolysis, or the amino group is protected after acid hydrolysis, whereby the optical activity represented by the formula (1).
  • a process for producing a 4-carbamoyl-2,6-dimethylphenylalanine derivative will be described.
  • the acid used for the acid hydrolysis is preferably hydrochloric acid, hydrobromic acid, sulfuric acid, acetic acid, citric acid, trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, more preferably sulfuric acid or methane. Sulfonic acid.
  • the amount of the acid used is preferably 0.5 to 100 equivalents (fold moles), more preferably 1 to 20 equivalents (fold moles) relative to the compound (8).
  • the amount of water used is preferably 0.1 to 100 times the weight of the compound (8), more preferably 1 to 30 weights.
  • the reaction temperature in this hydrolysis is not particularly limited and may be appropriately set.
  • the upper limit is preferably 120 ° C., and more preferably 100 ° C.
  • it is 0 degreeC as a minimum, More preferably, it is 20 degreeC.
  • Protecting conditions for the amino group may be appropriately set according to the type of protecting group (P). Specifically, for example, when tert-butoxycarbonyl protection or benzyloxycarbonyl protection is performed, an aqueous solution of optically active 4-carbamoyl-2,6-dimethylphenylalanine obtained by the hydrolysis is added with sodium hydroxide, potassium hydroxide. After neutralization with a base such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc., di-tert-butyl dicarbonate or benzyloxycarbonyl chloride may be added. For the purpose of accelerating the reaction, the base may be further added to control the pH during the reaction to 7 or more.
  • P type of protecting group
  • the optical purity of the R-form or S-form compound (1) obtained in this step is the same as that of the raw material compound (8) or lower than that of the raw material compound (8), or the compound (8). Higher optical purity.
  • the optical purity of the R-form or S-form compound (1) is preferably 85% ee, more preferably 88% ee or more, and even more preferably 89% ee or more.
  • the compound (1) thus obtained has a sufficient purity that can be used in the subsequent steps.
  • the compound (1) can be further purified by a general purification method such as column chromatography. May be raised.
  • the compound (1) having high chemical purity and high optical purity can be obtained by crystallization from methanol or a mixed solvent of methanol / water.
  • the optical purity of the R-form or S-form compound (1) after purification is preferably 90% ee or more, more preferably 95% ee or more, and further preferably 98% ee or more.
  • oxidation reaction As a method for converting alcohol to aldehyde, a generally well-known oxidation reaction may be used. Specifically, for example, Jones oxidation reaction using chromic acid or pyridinium chlorochromate; oxidation reaction using sulfur trioxide / pyridine complex, etc .; Swan using dimethyl sulfoxide / trifluoroacetic anhydride, dimethyl sulfoxide / oxalyl chloride, etc.
  • Oxidation reaction sodium hypochlorite / 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-acetamido-2 , 2,6,6-tetramethylpiperidine-1-oxyl and other oxyl radicals, etc.
  • a tempo oxidation reaction is preferred.
  • the amount of the sodium hypochlorite to be used is preferably 1 to 10 equivalents (times mole), more preferably 1 to 3 equivalents (times mole) based on the compound (5).
  • the amount of the oxyl radical used is preferably 0.001 to 1 equivalent (times mole), more preferably 0.01 to 0.5 equivalent (times mole) with respect to the compound (5). is there.
  • the solvent in this step is not particularly limited as long as it does not affect the reaction. Specifically, for example, water; tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol Ether solvents such as dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ester solvents such as ethyl acetate, n-propyl acetate and isopropyl acetate; aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane Aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene and mesitylene; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; halogen solvent
  • the mixing ratio is not particularly limited.
  • water, ether solvent, ester solvent, aromatic hydrocarbon solvent, or halogen solvent more preferably water, tetrahydrofuran, methyl tert-butyl ether, ethyl acetate, n-propyl acetate, isopropyl acetate, toluene , Xylene, ethylbenzene, mesitylene, methylene chloride, or 1,2-dichloroethane, particularly preferably water, methyl tert-butyl ether, ethyl acetate, or toluene.
  • the upper limit is preferably 100 times weight, more preferably 50 times weight, relative to the compound (5). Particularly preferred is 20 times the weight.
  • the lower limit is preferably 0.1 times the weight of the compound (5), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
  • the reaction temperature in this reaction is not particularly limited and may be set as appropriate.
  • the upper limit is preferably 100 ° C., more preferably 50 ° C., and particularly preferably 20 ° C.
  • the lower limit is preferably ⁇ 80 ° C., more preferably ⁇ 50 ° C., and particularly preferably ⁇ 20 ° C.
  • the reaction time in this reaction is not particularly limited and may be appropriately set.
  • the upper limit is preferably 120 hours, more preferably 100 hours, and particularly preferably 80 hours.
  • the lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
  • a general process for obtaining a product from the reaction solution may be performed.
  • the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • the target product thus obtained has a sufficient purity that can be used in the subsequent steps.
  • crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used.
  • the purity may be further increased by a simple purification method.
  • Examples of the glycine derivative include phosphonoglycine derivatives.
  • the phosphonoglycine derivative is preferably N- (tert-butoxycarbonyl) -phosphonoglycine trimethyl ester, N- (tert-butoxycarbonyl) -phosphonoglycine triethyl ester, N- (benzyloxycarbonyl) -phosphonoglycine. And trimethyl ester, N- (benzyloxycarbonyl) -phosphonoglycine triethyl ester, and the like.
  • the amount of the phosphonoglycine derivative to be used is preferably 1 to 10 equivalents (fold moles), more preferably 1 to 3 equivalents (fold moles) relative to the compound (9).
  • the base when reacting the phosphonoglycine derivative, it is better to use a base.
  • the base include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate.
  • Inorganic bases such as lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate; lithium methoxide, lithium ethoxide, lithium isopropoxide, lithium tert-butoxide, sodium methoxide, sodium ethoxide, sodium isopropoxide, sodium tert Alkoxides such as butoxide, potassium methoxide, potassium ethoxide, potassium isopropoxide, potassium tert-butoxide; metal hydrides such as sodium hydride, potassium hydride, calcium hydride; Ethylamine, triethylamine, tributylamine, diisopropylethylamine, N- methylpyrrolidine, N- methylmorpholine, 1,8-diazabicyclo [5,4,0] undec-7-ene, pyridine, quinoline, include amines such as imidazole.
  • the mixing ratio is not particularly limited.
  • the amount of the base to be used is preferably 1 to 10 equivalents (fold moles), more preferably 1 to 3 equivalents (fold moles) relative to the compound (9).
  • the solvent in this step is not particularly limited as long as it does not affect the reaction.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, and ethylene glycol are used.
  • Solvents ether solvents such as tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ethyl acetate, n-propyl acetate, Ester solvents such as isopropyl acetate; Aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and methylcyclohexane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and mesitylene Solvents; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone; halogen solvents such as methylene chloride and 1,2-dichloroethane;
  • the mixing ratio is not particularly limited.
  • Preferred are ether solvents, ester solvents, aromatic hydrocarbon solvents, or halogen solvents, more preferably tetrahydrofuran, methyl tert-butyl ether, ethyl acetate, n-propyl acetate, isopropyl acetate, toluene, xylene, ethylbenzene.
  • the upper limit is preferably 100 times weight, more preferably 50 times weight with respect to the compound (9). Particularly preferred is 20 times the weight.
  • the lower limit is preferably 0.1 times the weight of the compound (9), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
  • the reaction temperature in this reaction is not particularly limited and may be set as appropriate.
  • the upper limit is preferably 120 ° C., more preferably 80 ° C., and particularly preferably 50 ° C.
  • the lower limit is preferably ⁇ 80 ° C., more preferably ⁇ 30 ° C., and particularly preferably 0 ° C.
  • the reaction time in this reaction is not particularly limited and may be appropriately set.
  • the upper limit is preferably 120 hours, more preferably 100 hours, and particularly preferably 80 hours.
  • the lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
  • a general process for obtaining a product from the reaction solution may be performed.
  • the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • the target product thus obtained has a sufficient purity that can be used in the subsequent steps.
  • crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used.
  • the purity may be further increased by a simple purification method.
  • a method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by the formula (1) by asymmetric hydrogenation of the dehydroamino acid derivative represented by the formula (10) As for, there is no particular limitation as long as the desired configuration can be obtained. Examples thereof include a method of reducing by hydrogenation using an optically active transition metal complex as a catalyst, or a method of reducing by a microorganism such as yeast. Among them, a method of reducing by hydrogenation using an optically active transition metal complex as a catalyst is preferable.
  • the optically active transition metal catalyst is preferably an optically active phosphorus-containing ligand, more preferably an optically active bisphosphine, and particularly preferably (R, R) -1,2-ethanediylbis [(2 -Methoxyphenyl) phenylphosphine] ((R, R) -DIPAMP).
  • the transition metal catalyst is preferably palladium, rhodium, platinum, or iridium, preferably rhodium.
  • the usage amount of the catalyst, the reaction temperature, the reaction solvent, the hydrogen pressure, and the like may be in accordance with the conditions described in Patent Document 2.
  • the optical purity of the R-form or S-form compound (1) obtained by this step is preferably 85% ee, more preferably 88% ee or more, and still more preferably 89% ee or more.
  • the precipitated manganese dioxide was filtered off and washed with a 5% aqueous sodium hydroxide solution (1000 mL). Concentrated hydrochloric acid (about 600 mL) was added to the filtrate and acidified to precipitate a solid, which was stirred at 10 ° C. for 5 hours. The solid was filtered off under reduced pressure, washed with water (3000 mL), and the wet crystals were transferred to another container. Methanol (2500 mL) and water (2500 mL) were added thereto, and the mixture was refluxed for 3 hours. The mixture was cooled to 20 to 25 ° C., and the precipitated solid was filtered off under reduced pressure. The solid was washed with water (2000 mL) and dried under reduced pressure to give 2,6-dimethylbenzene-1,4-dicarboxylic acid as a white solid (285 g, yield: 48%).
  • Example 1 4-Carbamoyl-2,6-dimethylbenzoic acid Production of N, N-diethylcarbamic anhydride
  • An N, N-dimethylformamide solution of the compound obtained in Reference Example 1 255 g, 1.32 mol
  • diethylcarbamoyl chloride 270 g, 1.98 mol
  • triethylamine 213 g, 2.11 mol
  • pyridine 104 g, 1.32 mol
  • Example 2 Preparation of 4-carbamoyl-2,6-dimethylbenzyl alcohol
  • the solid (339 g, 1.28 mol) obtained in Example 1 was added to ethanol (6780 mL), water (339 mL), and sodium borohydride ( 154 g, 4.06 mol) was added continuously at 10-20 ° C.
  • the reaction temperature was raised to 30 to 35 ° C. and the mixture was stirred for 8 hours.
  • the precipitated solid was filtered off and washed with ethanol (200 mL).
  • the obtained filtrate was concentrated under reduced pressure to obtain 239 g of the title compound (yield: 100%).
  • 1 H NMR (CDCl 3 ): ⁇ 7.48 (s, 2H), 4.78 (d, J 5.5 Hz, 2H), 2.49 (s, 6H)
  • Example 3 Production of 4-carbamoyl-2,6-dimethylbenzyl bromide
  • methylene chloride 2390 mL
  • phosphorus tribromide 376 g, 1.39 mol
  • water 2400 mL
  • the precipitated solid was collected by filtration, washed with cold water (500 mL), and dried under reduced pressure.
  • Example 5 Production of (S) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- (tert-butoxycarbonylamino) propanoic acid Solution obtained in Example 4 (88 g, 20 mmol) was heated to 60 ° C., methanesulfonic acid (19 g, 200 mmol) was added and stirred for 2 hours. The reaction solution was ice-cooled, water (60 mL) was added, and the mixture was stirred at room temperature for 30 min.
  • Example 8 Preparation of 4-carbamoyl-2,6-dimethylbenzaldehyde To the solid (179 mg, 1 mmol) obtained in Example 2, water (2 mL), sodium hydrogen carbonate (252 mg, 3 mmol), 2, 2, 6,6-Tetramethylpiperidine-1-oxyl (7.8 mg, 0.05 mmol) and ethyl acetate (2 mL) were added and cooled to 5 ° C. A solution consisting of sodium hypochlorite pentahydrate (296 mg, 1.8 mmol) and water (4 mL) was added dropwise over 10 minutes. After stirring at 5 ° C.
  • Example 9 Preparation of methyl 3- (4-carbamoyl-2,6-dimethylphenyl) -2- (tert-butoxycarbonylamino) acrylate
  • the solid (177 mg, 1 mmol) obtained in Example 8 was mixed with N -(Tert-butoxycarbonyl) -phosphonoglycine trimethyl ester (357 mg, 1.2 mmol), methylene chloride (10 mL), 1.8-diazabicyclo [5,4,0] undec-7-ene (198 mg, 1.3 mmol) ) And stirred at 25 ° C. for 4 days.
  • Example 10 Preparation of methyl (S) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- (tert-butoxycarbonylamino) propanoate
  • the solid obtained in Example 9 (174 mg, 0 0.5 mmol), methanol (20 mL), tetrafluoroboric acid (R, R)-( ⁇ )-1,2-bis [(o-methoxyphenyl) (phenyl) phosphino] ethane (1,5-cyclooctadiene)
  • R, R tetrafluoroboric acid
  • R, R tetrafluoroboric acid
  • R, R tetrafluoroboric acid
  • R, R tetrafluoroboric acid
  • R, R tetrafluoroboric acid
  • R, R tetrafluoroboric acid
  • I rhodium

Abstract

Provided is a method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative, which is a compound useful as an intermediate for a medicine, in a simple manner and with high efficiency. 4-carbamoyl-2,6-dimethylbenzoic acid, a carbamoyl chloride and a base are reacted together to produce a corresponding acid anhydride mixture, and then the acid anhydride mixture is reduced to produce 4-carbamoyl-2,6-dimethylbenzyl alcohol. The use of this compound enables an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative to be produced in a simple manner and with high efficiency.

Description

光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法Process for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative
 本発明は、オピオイドレセプターアゴニストの中間体として有用な光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法に関する。 The present invention relates to a method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative useful as an intermediate of an opioid receptor agonist.
 光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法としては、以下の方法が知られている。 The following methods are known as methods for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivatives.
 特許文献1に記載の方法では、ジメチルチロシン誘導体を出発原料として、フェノール水酸基をトリフレート化した後、パラジウム触媒存在下に一酸化炭素ガスと反応させて対応するカルボン酸を製造する。続いてカルボン酸とアンモニアを縮合させて対応するアミド体に変換し、更にエステルを加水分解することにより、光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体を製造する。 In the method described in Patent Document 1, a dimethyltyrosine derivative is used as a starting material, a phenol hydroxyl group is triflated, and then reacted with carbon monoxide gas in the presence of a palladium catalyst to produce a corresponding carboxylic acid. Subsequently, an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative is produced by condensing carboxylic acid with ammonia to convert to a corresponding amide, and further hydrolyzing the ester.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 特許文献2に記載の方法では、4-ブロモ-3,5-ジメチルフェノールを出発原料として、フェノール水酸基をトリフレート化した後、パラジウム触媒存在下に一酸化炭素ガスと反応させて対応するカルボン酸を製造する。次に、カルボン酸をアミド化することにより4-ブロモ-3,5-ジメチルベンズアミドを製造し、セリンから誘導したデヒドロアミノ酸誘導体とパラジウム触媒存在下にカップリングを行う。得られたデヒドロフェニルアラニン誘導体をロジウム触媒存在下に不斉水素化した後、エステルを加水分解することにより、光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体を製造する。 In the method described in Patent Document 2, 4-bromo-3,5-dimethylphenol is used as a starting material, a phenol hydroxyl group is triflated, and then reacted with carbon monoxide gas in the presence of a palladium catalyst to give a corresponding carboxylic acid. Manufacturing. Next, 4-bromo-3,5-dimethylbenzamide is produced by amidating the carboxylic acid and coupled with a dehydroamino acid derivative derived from serine in the presence of a palladium catalyst. The obtained dehydrophenylalanine derivative is asymmetrically hydrogenated in the presence of a rhodium catalyst, and then the ester is hydrolyzed to produce an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 また、特許文献3に記載の方法では、4-ブロモ-3,5-ジメチルフェノールを出発原料として、フェノール水酸基をトリフレート化した後、パラジウム触媒と銅触媒存在下にジシアノ亜鉛とカップリングさせて4-ブロモ-3,5-ジメチルベンゾニトリルを製造する。また、セリンから多段階を経て誘導されたN-Boc-β-ヨード-L-アラニンメチルエステルと亜鉛から対応するジンク化合物を調製し、これと先に製造したベンゾニトリル誘導体をパラジウム触媒存在下にカップリングさせる。続いてニトリルの水和とエステルの加水分解を同時に行うことにより、光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体を製造する。 In addition, in the method described in Patent Document 3, trihydroxylation of a phenol hydroxyl group using 4-bromo-3,5-dimethylphenol as a starting material, followed by coupling with dicyanozinc in the presence of a palladium catalyst and a copper catalyst. 4-Bromo-3,5-dimethylbenzonitrile is produced. Also, a corresponding zinc compound was prepared from N-Boc-β-iodo-L-alanine methyl ester derived from serine through multiple steps and zinc, and this and the previously prepared benzonitrile derivative were prepared in the presence of a palladium catalyst. Make a coupling. Subsequently, an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative is produced by simultaneously performing nitrile hydration and ester hydrolysis.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 前記の特許文献1または2の方法は、高価なパラジウム触媒を使用する点で経済性に乏しく、また猛毒の一酸化炭素ガスを使用する点で工業的規模での実施が困難である。特許文献3の方法も、高価なパラジウム触媒を使用する点で経済性に乏しく、毒性の高いシアン化合物や重金属を使用する点で環境に負荷が高く、工業的実施の観点で好適なプロセスとは言いがたい。 The method of Patent Document 1 or 2 described above is poor in economic efficiency in that an expensive palladium catalyst is used, and is difficult to implement on an industrial scale in terms of using highly toxic carbon monoxide gas. The method of Patent Document 3 is also economical in that it uses an expensive palladium catalyst, has a high environmental impact in that it uses highly toxic cyanide compounds and heavy metals, and is a suitable process from the viewpoint of industrial implementation. It's hard to say.
特表2005-530749号公報JP 2005-530749 gazette 特表2007-529527号公報Special table 2007-529527 特開2015-013862号公報Japanese Patent Laying-Open No. 2015-013862
 上記の従来技術に対し、本発明が解決しようとする課題は、医薬中間体に求められる高純度、且つ高光学純度の光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体を、簡便且つ効率よく製造することにある。 The problem to be solved by the present invention with respect to the above-described conventional techniques is that high-purity and high-optical purity optically active 4-carbamoyl-2,6-dimethylphenylalanine derivatives required for pharmaceutical intermediates can be easily and efficiently produced. There is to manufacture.
 本発明者らは鋭意検討の結果、入手容易な出発原料から簡便且つ効率的に光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体を製造する方法を見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventors have found a method for easily and efficiently producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative from readily available starting materials, and have completed the present invention.
 即ち、本発明は、以下の通りである。 That is, the present invention is as follows.
 [I][1]下記式(1);
Figure JPOXMLDOC01-appb-C000020

(式中、Pは水素原子、又はアミノ基の保護基を表す。R5は水素原子、置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C20のアラルキル基、又は置換基を有しても良いC3~12のシクロアルキル基を表す。*は不斉炭素原子を表す。)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法であって、下記式(2);
Figure JPOXMLDOC01-appb-C000021

で表される4-カルバモイル-2,6-ジメチル安息香酸と下記式(3);
Figure JPOXMLDOC01-appb-C000022

(式中、R1、R2は置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C12のアラルキル基、置換基を有しても良いC3~C12のシクロアルキル基を表す。またR1とR2が一緒になって環を形成してもよい。)で表されるカルバモイルクロリドと塩基を反応させることにより、下記式(4);
Figure JPOXMLDOC01-appb-C000023

(式中、R1、R2は前記に同じである。)で表される混合酸無水物を製造し、これを還元することにより、下記式(5);
Figure JPOXMLDOC01-appb-C000024

で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを製造する工程を含むことを特徴とする、前記式(1)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法。
[2]前記Pが水素原子、又はtert-ブトキシカルボニル基であり、R5が水素原子であり、*の絶対立体配置がSである、[1]に記載の製造法。
[3]前記R1がメチル基、又はエチル基であり、R2がメチル基、又はエチル基である、[1]又は[2]に記載の製造法。
[4]前記化合物(4)をアルコール溶媒中、水素化ホウ素ナトリウムで還元することを特徴とする、[1]~[3]のいずれかに記載の製造法。
[5][1]~[4]のいずれかに記載の工程で製造された下記式(5);
Figure JPOXMLDOC01-appb-C000025

で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを、下記式(6);
Figure JPOXMLDOC01-appb-C000026

(式中、Xは脱離基を表す。)で表される4-カルバモイル-2,6-ジメチルベンジル誘導体に変換し、これを塩基と光学活性な相関移動触媒存在下、下記式(7);
Figure JPOXMLDOC01-appb-C000027

(式中、R3は水素原子、又は置換基を有しても良いC6~C12のアリール基を表し、R4は置換基を有しても良いC6~C12のアリール基を表す。R6は置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C20のアラルキル基、又は置換基を有しても良いC3~12のシクロアルキル基を表す。)で表されるグリシンシッフ塩基と反応させることにより、下記式(8);
Figure JPOXMLDOC01-appb-C000028

(式中、R3、R4、R6、*は前記に同じである。)で表される光学活性アミノ酸誘導体を製造し、更に酸加水分解する、若しくは酸加水分解後にアミノ基を保護することを特徴とする、下記式(1);
Figure JPOXMLDOC01-appb-C000029

(式中、P、R5、*は前記に同じである。)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法。
[6]前記Xが塩素原子、又は臭素原子であり、R3がフェニル基であり、R4がフェニル基であり、R6がメチル基、エチル基、又はtert-ブチル基である、[5]に記載の製造法。
[7]前記塩基が水酸化カリウムであり、前記光学活性な相関移動触媒が(11bR)-(-)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミドである、[5]又は[6]に記載の製造法。
[8][1]~[4]のいずれかに記載の工程で製造された下記式(5);
Figure JPOXMLDOC01-appb-C000030

で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを、下記式(9);
Figure JPOXMLDOC01-appb-C000031

で表される4-カルバモイル-2,6-ジメチルベンズアルデヒドに変換し、次にグリシン誘導体と反応させて、下記式(10);
Figure JPOXMLDOC01-appb-C000032

(式中、Pは水素原子、又はアミノ基の保護基である。R6は置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C20のアラルキル基、又は置換基を有しても良いC3~C12のシクロアルキル基を表す。)で表されるデヒドロアミノ酸誘導体を製造し、続いて不斉水素化を行うことを特徴とする、下記式(1);
Figure JPOXMLDOC01-appb-C000033

(式中、P、R5、*は前記に同じである。)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法。
[9]前記R6がメチル基、エチル基、又はtert-ブチル基である、[8]に記載の製造法。
[I] [1] The following formula (1);
Figure JPOXMLDOC01-appb-C000020

(In the formula, P represents a hydrogen atom or an amino-protecting group. R 5 represents a hydrogen atom, a C1-C12 alkyl group which may have a substituent, or a C6-C12 which may have a substituent. A C7 to C20 aralkyl group which may have a substituent, or a C3 to C12 cycloalkyl group which may have a substituent (* represents an asymmetric carbon atom). A method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative, comprising the following formula (2):
Figure JPOXMLDOC01-appb-C000021

4-carbamoyl-2,6-dimethylbenzoic acid represented by the following formula (3);
Figure JPOXMLDOC01-appb-C000022

(Wherein R 1 and R 2 are C1-C12 alkyl groups which may have a substituent, C6-C12 aryl groups which may have a substituent, C7- A C12 aralkyl group, a C3 to C12 cycloalkyl group which may have a substituent, and R 1 and R 2 may form a ring together.) By reacting a base, the following formula (4):
Figure JPOXMLDOC01-appb-C000023

(Wherein R 1 and R 2 are the same as above), and by reducing the mixed acid anhydride, the following formula (5):
Figure JPOXMLDOC01-appb-C000024

Of the optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by the above formula (1), which comprises a step of producing 4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the formula: Manufacturing method.
[2] The production method according to [1], wherein P is a hydrogen atom or a tert-butoxycarbonyl group, R 5 is a hydrogen atom, and the absolute configuration of * is S.
[3] The production method according to [1] or [2], wherein R 1 is a methyl group or an ethyl group, and R 2 is a methyl group or an ethyl group.
[4] The production method according to any one of [1] to [3], wherein the compound (4) is reduced with sodium borohydride in an alcohol solvent.
[5] The following formula (5) produced by the process according to any one of [1] to [4];
Figure JPOXMLDOC01-appb-C000025

4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the following formula (6):
Figure JPOXMLDOC01-appb-C000026

(Wherein X represents a leaving group) is converted into a 4-carbamoyl-2,6-dimethylbenzyl derivative represented by the following formula (7) in the presence of a base and an optically active phase transfer catalyst. ;
Figure JPOXMLDOC01-appb-C000027

(Wherein R 3 represents a hydrogen atom or an optionally substituted C 6 to C 12 aryl group, and R 4 represents an optionally substituted C 6 to C 12 aryl group. R 6 Is a C1-C12 alkyl group which may have a substituent, a C6-C12 aryl group which may have a substituent, a C7-C20 aralkyl group which may have a substituent, or a substituent. And a glycine Schiff base represented by the following formula (8):
Figure JPOXMLDOC01-appb-C000028

(Wherein R 3 , R 4 , R 6 , and * are the same as those described above) are produced, and are further subjected to acid hydrolysis, or the amino group is protected after acid hydrolysis. The following formula (1):
Figure JPOXMLDOC01-appb-C000029

(Wherein P, R 5 and * are the same as defined above). A method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by:
[6] X is a chlorine atom or bromine atom, R 3 is a phenyl group, R 4 is a phenyl group, and R 6 is a methyl group, an ethyl group, or a tert-butyl group. ] The manufacturing method of description.
[7] The base is potassium hydroxide, and the optically active phase transfer catalyst is (11bR)-(−)-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4, [5] or [6], which is 5-trifluorophenyl) -3H-dinaphtho [2,1-c: 1 ′, 2′-e] azepinium bromide.
[8] The following formula (5) produced by the process according to any one of [1] to [4];
Figure JPOXMLDOC01-appb-C000030

4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the following formula (9):
Figure JPOXMLDOC01-appb-C000031

Is converted to 4-carbamoyl-2,6-dimethylbenzaldehyde represented by the following formula, and then reacted with a glycine derivative to give the following formula (10):
Figure JPOXMLDOC01-appb-C000032

(Wherein P is a hydrogen atom or an amino-protecting group. R 6 is a C1-C12 alkyl group which may have a substituent, or a C6-C12 aryl group which may have a substituent. Represents a C7 to C20 aralkyl group which may have a substituent, or a C3 to C12 cycloalkyl group which may have a substituent. The following formula (1), characterized by carrying out simultaneous hydrogenation;
Figure JPOXMLDOC01-appb-C000033

(Wherein P, R 5 and * are the same as defined above). A method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by:
[9] The production method according to [8], wherein R 6 is a methyl group, an ethyl group, or a tert-butyl group.
 また本発明は、以下[II]~[V]の発明を包含する。 The present invention includes the following inventions [II] to [V].
 [II]下記式(4);
Figure JPOXMLDOC01-appb-C000034

(式中、R1、R2は前記に同じである。)で表される混合酸無水物を製造し、これを還元することにより、下記式(5);
Figure JPOXMLDOC01-appb-C000035

で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを製造する工程を含むことを特徴とする、下記式(1);
Figure JPOXMLDOC01-appb-C000036

(式中、P、R5、*は前記に同じである。)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法。
[II] The following formula (4);
Figure JPOXMLDOC01-appb-C000034

(Wherein R 1 and R 2 are the same as above), and by reducing the mixed acid anhydride, the following formula (5):
Figure JPOXMLDOC01-appb-C000035

A process for producing 4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the following formula (1):
Figure JPOXMLDOC01-appb-C000036

(Wherein P, R 5 and * are the same as defined above). A method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by:
 [III]下記式(5);
Figure JPOXMLDOC01-appb-C000037

で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを、下記式(6);
Figure JPOXMLDOC01-appb-C000038

(式中、Xは脱離基を表す。)で表される4-カルバモイル-2,6-ジメチルベンジル誘導体に変換し、これを塩基と光学活性な相関移動触媒存在下、下記式(7);
Figure JPOXMLDOC01-appb-C000039

(式中、R3は水素原子、又は置換基を有しても良いC6~C12のアリール基を表し、R4は置換基を有しても良いC6~C12のアリール基を表す。R6は置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C20のアラルキル基、又は置換基を有しても良いC3~12のシクロアルキル基を表す。)で表されるグリシンシッフ塩基と反応させることにより、下記式(8);
Figure JPOXMLDOC01-appb-C000040

(式中、R3、R4、R6、*は前記に同じである。)で表される光学活性アミノ酸誘導体を製造し、更に酸加水分解する、若しくは酸加水分解後にアミノ基を保護することを特徴とする、下記式(1);
Figure JPOXMLDOC01-appb-C000041

(式中、P、R5、*は前記に同じである。)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法。
[III] The following formula (5);
Figure JPOXMLDOC01-appb-C000037

4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the following formula (6):
Figure JPOXMLDOC01-appb-C000038

(Wherein X represents a leaving group) is converted into a 4-carbamoyl-2,6-dimethylbenzyl derivative represented by the following formula (7) in the presence of a base and an optically active phase transfer catalyst. ;
Figure JPOXMLDOC01-appb-C000039

(Wherein R 3 represents a hydrogen atom or an optionally substituted C 6 to C 12 aryl group, and R 4 represents an optionally substituted C 6 to C 12 aryl group. R 6 Is a C1-C12 alkyl group which may have a substituent, a C6-C12 aryl group which may have a substituent, a C7-C20 aralkyl group which may have a substituent, or a substituent. And a glycine Schiff base represented by the following formula (8):
Figure JPOXMLDOC01-appb-C000040

(Wherein R 3 , R 4 , R 6 , and * are the same as those described above) are produced, and are further subjected to acid hydrolysis, or the amino group is protected after acid hydrolysis. The following formula (1):
Figure JPOXMLDOC01-appb-C000041

(Wherein P, R 5 and * are the same as defined above). A method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by:
 [IV]下記式(5);
Figure JPOXMLDOC01-appb-C000042

で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを、下記式(9);
Figure JPOXMLDOC01-appb-C000043

で表される4-カルバモイル-2,6-ジメチルベンズアルデヒドに変換し、次にグリシン誘導体と反応させて、下記式(10);
Figure JPOXMLDOC01-appb-C000044

(式中、P、R6は前記に同じである。)で表されるデヒドロアミノ酸誘導体を製造し、続いて不斉水素化を行うことを特徴とする、下記式(1);
Figure JPOXMLDOC01-appb-C000045

(式中、P、R5、*は前記に同じである。)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法。
[IV] Formula (5) below;
Figure JPOXMLDOC01-appb-C000042

4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the following formula (9):
Figure JPOXMLDOC01-appb-C000043

Is converted to 4-carbamoyl-2,6-dimethylbenzaldehyde represented by the following formula, and then reacted with a glycine derivative to give the following formula (10):
Figure JPOXMLDOC01-appb-C000044

(Wherein P and R 6 are the same as defined above), wherein the dehydroamino acid derivative is produced, followed by asymmetric hydrogenation;
Figure JPOXMLDOC01-appb-C000045

(Wherein P, R 5 and * are the same as defined above). A method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by:
 [V]下記式(4);
Figure JPOXMLDOC01-appb-C000046

(式中、R1、R2は前記に同じである。)で表される混合酸無水物を製造し、これを還元することにより、下記式(5);
Figure JPOXMLDOC01-appb-C000047

で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを製造し、これを下記式(6);
Figure JPOXMLDOC01-appb-C000048

(式中、Xは脱離基を表す。)で表される4-カルバモイル-2,6-ジメチルベンジル誘導体に変換し、これを塩基と光学活性な相関移動触媒存在下、下記式(7);
Figure JPOXMLDOC01-appb-C000049

(式中、R3は水素原子、又は置換基を有しても良いC6~C12のアリール基を表し、R4は置換基を有しても良いC6~C12のアリール基を表す。R6は置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C20のアラルキル基、又は置換基を有しても良いC3~12のシクロアルキル基を表す。)で表されるグリシンシッフ塩基と反応させることにより、下記式(8);
Figure JPOXMLDOC01-appb-C000050

(式中、R3、R4、R6、*は前記に同じである。)で表される光学活性アミノ酸誘導体を製造し、更に酸加水分解する、若しくは酸加水分解後にアミノ基を保護することを特徴とする、下記式(1);
Figure JPOXMLDOC01-appb-C000051

(式中、P、R5、*は前記に同じである。)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法。
[V] Formula (4) below;
Figure JPOXMLDOC01-appb-C000046

(Wherein R 1 and R 2 are the same as above), and by reducing the mixed acid anhydride, the following formula (5):
Figure JPOXMLDOC01-appb-C000047

4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the following formula (6):
Figure JPOXMLDOC01-appb-C000048

(Wherein X represents a leaving group) is converted into a 4-carbamoyl-2,6-dimethylbenzyl derivative represented by the following formula (7) in the presence of a base and an optically active phase transfer catalyst. ;
Figure JPOXMLDOC01-appb-C000049

(Wherein R 3 represents a hydrogen atom or an optionally substituted C 6 to C 12 aryl group, and R 4 represents an optionally substituted C 6 to C 12 aryl group. R 6 Is a C1-C12 alkyl group which may have a substituent, a C6-C12 aryl group which may have a substituent, a C7-C20 aralkyl group which may have a substituent, or a substituent. And a glycine Schiff base represented by the following formula (8):
Figure JPOXMLDOC01-appb-C000050

(Wherein R 3 , R 4 , R 6 , and * are the same as those described above) are produced, and are further subjected to acid hydrolysis, or the amino group is protected after acid hydrolysis. The following formula (1):
Figure JPOXMLDOC01-appb-C000051

(Wherein P, R 5 and * are the same as defined above). A method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by:
 [VI]また本発明は、下記式(6);
Figure JPOXMLDOC01-appb-C000052

(式中、Xは脱離基を表す。)で表される4-カルバモイル-2,6-ジメチルベンジル誘導体に関する。特に前記Xが塩素原子、又は臭素原子である、[VI]に記載の4-カルバモイル-2,6-ジメチルベンジル誘導体に関する。
[VI] The present invention also provides the following formula (6):
Figure JPOXMLDOC01-appb-C000052

(Wherein X represents a leaving group) and the 4-carbamoyl-2,6-dimethylbenzyl derivative. In particular, the present invention relates to a 4-carbamoyl-2,6-dimethylbenzyl derivative according to [VI], wherein X is a chlorine atom or a bromine atom.
 [VII]また本発明は、下記式(4);
Figure JPOXMLDOC01-appb-C000053

(式中、R1、R2は置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C12のアラルキル基、置換基を有しても良いC3~C12のシクロアルキル基を表す。またR1とR2が一緒になって環を形成してもよい。)で表される混合酸無水物に関する。特に前記R1がメチル基、又はエチル基であり、R2がメチル基、又はエチル基である、[VII]に記載の混合酸無水物に関する。
[VII] The present invention also provides the following formula (4):
Figure JPOXMLDOC01-appb-C000053

(Wherein R 1 and R 2 are C1-C12 alkyl groups which may have a substituent, C6-C12 aryl groups which may have a substituent, C7- A C12 aralkyl group, a C3-C12 cycloalkyl group which may have a substituent, and R 1 and R 2 may form a ring together.) Related to things. In particular, the present invention relates to the mixed acid anhydride according to [VII], wherein R 1 is a methyl group or an ethyl group, and R 2 is a methyl group or an ethyl group.
 本発明によれば、医薬中間体に求められる高純度且つ高光学純度の光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体を、簡便且つ効率よく製造することができる。 According to the present invention, an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative having high purity and high optical purity required for a pharmaceutical intermediate can be easily and efficiently produced.
 以下に本発明にかかる方法を詳細に述べる。まずは、本発明に使用する原料、中間生成物、及び目的生成物について説明する。 Hereinafter, the method according to the present invention will be described in detail. First, the raw materials, intermediate products, and target products used in the present invention will be described.
 本明細書において、C1~C12のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、n-デシル基、n-ドデシル基等が挙げられる。
 C6~C12のアリール基としては、フェニル基、1-ナフチル基、2-ナフチル基等が挙げられる。
 C7~C20(より好ましくはC7~C12)のアラルキル基としては、ベンジル基、1-フェネチル基、トリチル基等が挙げられる。
 C3~12のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基等が挙げられる。
 C1~C12のアルキル基、C6~C12のアリール基、C7~C12のアラルキル基及びC3~12のシクロアルキル基の置換基としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;水酸基;メトキシ基、エトキシ基等のアルコキシ基;メチルチオ基;トリフルオロメチル基;アセチル基;ベンゾイル基;シアノ基;ニトロ基;カルボキシル基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基等が挙げられる。前記置換基の数及び置換位置は特に限定されない。
In this specification, the C1-C12 alkyl group includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an iso-butyl group, a sec-butyl group, a tert-butyl group, an n- A pentyl group, n-hexyl group, n-decyl group, n-dodecyl group and the like can be mentioned.
Examples of the C6 to C12 aryl group include a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
Examples of the aralkyl group of C7 to C20 (more preferably C7 to C12) include benzyl group, 1-phenethyl group, trityl group and the like.
Examples of the C3-12 cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and an adamantyl group.
Substituents for C1-C12 alkyl groups, C6-C12 aryl groups, C7-C12 aralkyl groups and C3-12 cycloalkyl groups include, for example, halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom Atom; hydroxyl group; alkoxy group such as methoxy group and ethoxy group; methylthio group; trifluoromethyl group; acetyl group; benzoyl group; cyano group; nitro group; carboxyl group; alkoxycarbonyl group such as methoxycarbonyl group and ethoxycarbonyl group Is mentioned. The number of substitution groups and the substitution position are not particularly limited.
 本発明の目的生成物である光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体は、下記式(1); The optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative, which is the target product of the present invention, has the following formula (1);
Figure JPOXMLDOC01-appb-C000054

で表される(以下、化合物(1)と称する場合がある)。ここで、Pは水素原子、又はアミノ基の保護基を表す。好ましくは水素原子;メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、アリルオキシカルボニル基、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、フルオレン-9-イルメトキシカルボニル基などのカルバメート型保護基;ホルミル基、アセチル基、トリフルオロアセチル基、ピバロイル基、ベンゾイル基、p-ニトロベンゾイル基などのアシル型保護基;メシル基、p-トルエンスルホニル基、p-ニトロベンゼンスルホニル基などのスルホニル型保護基であり、更に好ましくは水素原子、tert-ブトキシカルボニル基、又はベンジルオキシカルボニル基であり、特に好ましくはtert-ブトキシカルボニル基である。
Figure JPOXMLDOC01-appb-C000054

(Hereafter, it may be called a compound (1).). Here, P represents a hydrogen atom or an amino-protecting group. Preferably hydrogen atom; carbamate-type protecting group such as methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, allyloxycarbonyl group, tert-butoxycarbonyl group, benzyloxycarbonyl group, fluoren-9-ylmethoxycarbonyl group; formyl Acyl-type protecting groups such as acetyl, acetyl, trifluoroacetyl, pivaloyl, benzoyl and p-nitrobenzoyl groups; sulfonyl-type protecting groups such as mesyl, p-toluenesulfonyl and p-nitrobenzenesulfonyl More preferably a hydrogen atom, a tert-butoxycarbonyl group, or a benzyloxycarbonyl group, and particularly preferably a tert-butoxycarbonyl group.
 ここで、R5は水素原子、置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C20のアラルキル基、又は置換基を有しても良いC3~12のシクロアルキル基を表す。好ましくは水素原子、メチル基、エチル基、イソプロピル基、tert-ブチル基、1-アダマンチル基、シクロヘキシル基、フェニル基、p-クロロフェニル基、p-ニトロフェニル基、ベンジル基、又はトリチル基であり、より好ましくは水素原子、メチル基、エチル基、又はtert-ブチル基であり、更に好ましくは水素原子又はメチル基であり、特に好ましくは水素原子である。 Here, R 5 is a hydrogen atom, an optionally substituted C1 to C12 alkyl group, an optionally substituted C6 to C12 aryl group, or an optionally substituted C7 to C20. An aralkyl group or a C3-12 cycloalkyl group which may have a substituent. Preferably a hydrogen atom, a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a 1-adamantyl group, a cyclohexyl group, a phenyl group, a p-chlorophenyl group, a p-nitrophenyl group, a benzyl group, or a trityl group, A hydrogen atom, a methyl group, an ethyl group, or a tert-butyl group is more preferable, a hydrogen atom or a methyl group is still more preferable, and a hydrogen atom is particularly preferable.
 ここで、*は不斉炭素原子を表す。化合物(1)の絶対立体配置はR或いはSのいずれであってもよく、好ましい絶対立体配置はSである。本発明に係る製造法により得られるR体又はS体の化合物(1)の光学純度は、好ましくは70%ee以上、より好ましくは80%ee以上、更に好ましくは90%ee以上である。 Here, * represents an asymmetric carbon atom. The absolute configuration of compound (1) may be either R or S, and the preferred absolute configuration is S. The optical purity of the R-form or S-form compound (1) obtained by the production method according to the present invention is preferably 70% ee or more, more preferably 80% ee or more, and further preferably 90% ee or more.
 化合物(1)として好ましくは、下記式(1-1)~(1-12)の化合物であり、より好ましくは(S)-3-(4-カルバモイル-2,6-ジメチルフェニル)-2-(tert-ブトキシカルボニルアミノ)プロパン酸又は(S)-3-(4-カルバモイル-2,6-ジメチルフェニル)-2-(tert-ブトキシカルボニルアミノ)プロパン酸メチルである。 The compound (1) is preferably a compound of the following formulas (1-1) to (1-12), more preferably (S) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- It is methyl (tert-butoxycarbonylamino) propanoic acid or (S) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- (tert-butoxycarbonylamino) propanoic acid.
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 本発明の出発原料である4-カルバモイル-2,6-ジメチル安息香酸は、下記式(2); 4-Carbamoyl-2,6-dimethylbenzoic acid which is a starting material of the present invention has the following formula (2):
Figure JPOXMLDOC01-appb-C000056

で表される(以下、化合物(2)と称する場合がある)。
Figure JPOXMLDOC01-appb-C000056

(Hereinafter, sometimes referred to as compound (2)).
 なお、この化合物は安価に入手容易な2,4,6-トリメチル安息香酸から特開昭63-253061に記載の方法に従って、簡便に製造することができる。具体的には、2,4,6-トリメチル安息香酸を過マンガン酸カリウムで酸化して2,6-ジメチルベンゼン-1,4-ジカルボン酸を製造し、硫酸触媒存在下にメタノールで処理することにより、4-メトキシカルボニル-2,6-ジメチル安息香酸を得、続いてアンモニアガスで処理することにより、前記4-カルバモイル-2,6-ジメチル安息香酸を製造することができる。 This compound can be easily produced from 2,4,6-trimethylbenzoic acid, which is easily available at low cost, according to the method described in JP-A-63-253061. Specifically, 2,4,6-trimethylbenzoic acid is oxidized with potassium permanganate to produce 2,6-dimethylbenzene-1,4-dicarboxylic acid, and treated with methanol in the presence of a sulfuric acid catalyst. Thus, 4-methoxycarbonyl-2,6-dimethylbenzoic acid can be obtained, followed by treatment with ammonia gas, whereby the 4-carbamoyl-2,6-dimethylbenzoic acid can be produced.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 本発明に使用するカルバモイルクロリドは、下記式(3); The carbamoyl chloride used in the present invention has the following formula (3):
Figure JPOXMLDOC01-appb-C000058

で表される(以下、化合物(3)と称する場合がある)。ここで、R1、R2は、それぞれ独立に、置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C12のアラルキル基、置換基を有しても良いC3~C12のシクロアルキル基を表す。R1とR2とは、異なっていてもよいが同じであることが好ましい。具体的には、R1、R2としては、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、シクロヘキシル基、アリル基、フェニル基、ナフチル基、ベンジル基、1-フェネチル基、フェニル基、1-ナフチル基等が挙げられる。またR1とR2は一緒になって環を形成してもよい。またR1とR2が一緒になって形成した基には、ブチレン基、ペンチレン基、ジエチルエーテル-2,2’-ジイル基等も挙げられる。R1、R2として好ましくはメチル基、又はエチル基であり、更に好ましくはエチル基である。
Figure JPOXMLDOC01-appb-C000058

(Hereafter, it may be called a compound (3).). Here, R 1 and R 2 each independently have a C1-C12 alkyl group which may have a substituent, a C6-C12 aryl group which may have a substituent, or a substituent. Or a C7 to C12 aralkyl group or a C3 to C12 cycloalkyl group which may have a substituent. R 1 and R 2 may be different but are preferably the same. Specifically, R 1 and R 2 are methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, cyclobutyl. Group, n-pentyl group, cyclohexyl group, allyl group, phenyl group, naphthyl group, benzyl group, 1-phenethyl group, phenyl group, 1-naphthyl group and the like. R 1 and R 2 may form a ring together. Examples of the group formed by combining R 1 and R 2 include a butylene group, a pentylene group, a diethyl ether-2,2′-diyl group, and the like. R 1 and R 2 are preferably a methyl group or an ethyl group, and more preferably an ethyl group.
 化合物(3)として好ましくは、下記式(3-1)~(3-9)の化合物であり、より好ましくはジメチルカルバモイルクロリド、又はジエチルカルバモイルクロリドであり、更に好ましくはジエチルカルバモイルクロリドである。 Compound (3) is preferably a compound of the following formulas (3-1) to (3-9), more preferably dimethylcarbamoyl chloride or diethylcarbamoyl chloride, and still more preferably diethylcarbamoyl chloride.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 本発明の中間生成物である混合酸無水物は、下記式(4); The mixed acid anhydride which is an intermediate product of the present invention has the following formula (4):
Figure JPOXMLDOC01-appb-C000060

で表され(以下、化合物(4)と称する場合がある)、R1、R2は前記に同じである。なお、本化合物は文献未記載の新規化合物である。
Figure JPOXMLDOC01-appb-C000060

(Hereinafter sometimes referred to as compound (4)), R 1 and R 2 are the same as described above. This compound is a novel compound not described in any literature.
 化合物(4)として好ましくは、下記式(4-1)~(4-9)の化合物であり、より好ましくは4-カルバモイル-2,6-ジメチル安息香酸 N,N-ジメチルカルバミン酸無水物又は4-カルバモイル-2,6-ジメチル安息香酸 N,N-ジエチルカルバミン酸無水物であり、更に好ましくは4-カルバモイル-2,6-ジメチル安息香酸 N,N-ジエチルカルバミン酸無水物である。 The compound (4) is preferably a compound of the following formulas (4-1) to (4-9), more preferably 4-carbamoyl-2,6-dimethylbenzoic acid, N, N-dimethylcarbamic anhydride or 4-carbamoyl-2,6-dimethylbenzoic acid is N, N-diethylcarbamic anhydride, more preferably 4-carbamoyl-2,6-dimethylbenzoic acid is N, N-diethylcarbamic anhydride.
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
 本発明の中間生成物である4-カルバモイル-2,6-ジメチルベンジルアルコールは、下記式(5); 4-carbamoyl-2,6-dimethylbenzyl alcohol, which is an intermediate product of the present invention, has the following formula (5):
Figure JPOXMLDOC01-appb-C000062

で表される(以下、化合物(5)と称する場合がある)。
Figure JPOXMLDOC01-appb-C000062

(Hereinafter, it may be referred to as a compound (5).)
 本発明の中間生成物である4-カルバモイル-2,6-ジメチルベンジル誘導体は、下記式(6); The intermediate product of the present invention, 4-carbamoyl-2,6-dimethylbenzyl derivative, has the following formula (6):
Figure JPOXMLDOC01-appb-C000063

で表される(以下、化合物(6)と称する場合がある)。ここで、Xは脱離基を表す。具体的には、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;メタンスルホニルオキシ基、エタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、p-トルエンスルホニルオキシ基、p-ニトロベンゼンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基等のスルホニルオキシ基等が挙げられる。好ましくは塩素原子、臭素原子、ヨウ素原子等のハロゲン原子であり、更に好ましくは塩素原子、又は臭素原子である。なお、本化合物は文献未記載の新規化合物である。
Figure JPOXMLDOC01-appb-C000063

(Hereinafter, it may be referred to as a compound (6).) Here, X represents a leaving group. Specifically, halogen atoms such as chlorine atom, bromine atom and iodine atom; methanesulfonyloxy group, ethanesulfonyloxy group, benzenesulfonyloxy group, p-toluenesulfonyloxy group, p-nitrobenzenesulfonyloxy group, trifluoromethanesulfonyl Examples include sulfonyloxy groups such as oxy groups. Preferably they are halogen atoms, such as a chlorine atom, a bromine atom, and an iodine atom, More preferably, they are a chlorine atom or a bromine atom. This compound is a novel compound not described in any literature.
 本発明に使用されるグリシンシッフ塩基は、下記式(7); The glycine Schiff base used in the present invention has the following formula (7):
Figure JPOXMLDOC01-appb-C000064

で表される(以下、化合物(7)と称する場合がある)。ここで、R3は水素原子、又は置換基を有しても良いC6~C12のアリール基を表す。好ましくは水素原子、フェニル基、p-クロロフェニル基、p-ニトロフェニル基、p-メトキシフェニル基であり、更に好ましくはフェニル基である。R4は置換基を有しても良いC6~C12のアリール基を表す。R3及びR4は、それぞれ独立に、好ましくはフェニル基、p-メチルフェニル基、p-クロロフェニル基、p-ニトロフェニル基、p-メトキシフェニル基であり、更に好ましくはフェニル基である。またR3とR4とは互いに同一であってもよく、異なっていてもよいが、同一であるのが好ましい。
Figure JPOXMLDOC01-appb-C000064

(Hereinafter, it may be referred to as a compound (7).) Here, R 3 represents a hydrogen atom or a C6 to C12 aryl group which may have a substituent. A hydrogen atom, a phenyl group, a p-chlorophenyl group, a p-nitrophenyl group, and a p-methoxyphenyl group are preferable, and a phenyl group is more preferable. R 4 represents a C6 to C12 aryl group which may have a substituent. R 3 and R 4 are each independently preferably a phenyl group, a p-methylphenyl group, a p-chlorophenyl group, a p-nitrophenyl group, or a p-methoxyphenyl group, and more preferably a phenyl group. R 3 and R 4 may be the same as or different from each other, but are preferably the same.
 R6は置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C20のアラルキル基、又は置換基を有しても良いC3~12のシクロアルキル基を表す。好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、1-アダマンチル基、シクロヘキシル基、フェニル基、p-クロロフェニル基、p-ニトロフェニル基、ベンジル基、又はトリチル基であり、より好ましくはメチル基、エチル基、又はtert-ブチル基であり、更に好ましくはメチル基又はtert-ブチル基であり、特に好ましくはtert-ブチル基である。
 なおR6は、合成ルートによってはR5と同一である場合と、異なる場合とがある。
R 6 is an optionally substituted C1-C12 alkyl group, an optionally substituted C6-C12 aryl group, an optionally substituted C7-C20 aralkyl group, or a substituted group. Represents a C3-12 cycloalkyl group which may have a group. Preferably, it is a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a 1-adamantyl group, a cyclohexyl group, a phenyl group, a p-chlorophenyl group, a p-nitrophenyl group, a benzyl group, or a trityl group, more preferably A methyl group, an ethyl group, or a tert-butyl group, more preferably a methyl group or a tert-butyl group, and particularly preferably a tert-butyl group.
R 6 may be the same as or different from R 5 depending on the synthesis route.
 化合物(7)として好ましくは、下記式(7-1)~(7-15)の化合物であり、より好ましくは2-(ジフェニルメチリデン)グリシンtert-ブチルエステルである。 Compound (7) is preferably a compound of the following formulas (7-1) to (7-15), more preferably 2- (diphenylmethylidene) glycine tert-butyl ester.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 本発明の中間生成物である光学活性アミノ酸誘導体は、下記式(8); The optically active amino acid derivative that is an intermediate product of the present invention has the following formula (8):
Figure JPOXMLDOC01-appb-C000066

で表される(以下、化合物(8)と称する場合がある)。ここで、R3、R4、R6、*は前記に同じである。
Figure JPOXMLDOC01-appb-C000066

(Hereinafter, it may be referred to as compound (8).) Here, R 3 , R 4 , R 6 and * are the same as described above.
 化合物(8)として好ましくは、下記式(8-1)~(8-15)の化合物であり、より好ましくは(S)-3-(4-カルバモイル-2,6-ジメチルフェニル)-2-(ジフェニルメチリデンアミノ)プロパン酸tert-ブチルである。 The compound (8) is preferably a compound of the following formulas (8-1) to (8-15), more preferably (S) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- (Diphenylmethylideneamino) tert-butyl propanoate.
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 本発明の中間生成物である4-カルバモイル-2,6-ジメチルベンズアルデヒドは、下記式(9); 4-carbamoyl-2,6-dimethylbenzaldehyde, which is an intermediate product of the present invention, has the following formula (9);
Figure JPOXMLDOC01-appb-C000069

で表される(以下、化合物(9)と称する場合がある)。
Figure JPOXMLDOC01-appb-C000069

(Hereinafter, it may be referred to as the compound (9).)
 本発明の中間生成物であるデヒドロアミノ酸誘導体は、下記式(10); The dehydroamino acid derivative which is an intermediate product of the present invention has the following formula (10):
Figure JPOXMLDOC01-appb-C000070

で表される(以下、化合物(10)と称する場合がある)。ここで、P、R6は前記に同じである。
Figure JPOXMLDOC01-appb-C000070

(Hereinafter, it may be referred to as compound (10).) Here, P and R 6 are the same as described above.
 化合物(10)として好ましくは、下記式(10-1)~(10-4)の化合物であり、より好ましくは3-(4-カルバモイル-2,6-ジメチルフェニル)-2-(tert-ブトキシカルボニルアミノ)アクリル酸メチルである。 The compound (10) is preferably a compound of the following formulas (10-1) to (10-4), more preferably 3- (4-carbamoyl-2,6-dimethylphenyl) -2- (tert-butoxy Carbonylamino) methyl acrylate.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 本発明を図で表すと以下となり、各工程を順を追って説明する。 The present invention is illustrated as follows, and each step will be described step by step.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
 前記式(2)で表される4-カルバモイル-2,6-ジメチル安息香酸と前記式(3)で表されるカルバモイルクロリドと塩基を反応させることにより、前記式(4)で表される混合酸無水物を製造する工程について説明する。 By reacting 4-carbamoyl-2,6-dimethylbenzoic acid represented by the formula (2), carbamoyl chloride represented by the formula (3) and a base, a mixture represented by the formula (4) The process for producing an acid anhydride will be described.
 前記カルバモイルクロリドの使用量としては、前記化合物(2)に対して好ましくは1~10当量(倍モル)であり、更に好ましくは1~3当量(倍モル)である。 The amount of the carbamoyl chloride to be used is preferably 1 to 10 equivalents (times mol), more preferably 1 to 3 equivalents (times mol) based on the compound (2).
 前記塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムなどの無機塩基;トリメチルアミン、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N-メチルピロリジン、N-メチルモルホリン、1,8-ジアザビシクロ[5,4,0]ウンデク-7-エン、ピリジン、キノリン、イミダゾール等のアミンが挙げられる。これらは単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、その混合比は特に制限されない。好ましくは、トリメチルアミン、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N-メチルピロリジン、N-メチルモルホリン、1,8-ジアザビシクロ[5,4,0]ウンデク-7-エン、ピリジン、キノリン、イミダゾール等のアミンであり、更に好ましくはトリエチルアミン、又はピリジンである。前記塩基の使用量としては、前記化合物(2)に対して好ましくは1~10当量(倍モル)であり、更に好ましくは1~3当量(倍モル)である。 Examples of the base include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like; trimethylamine And amines such as triethylamine, tributylamine, diisopropylethylamine, N-methylpyrrolidine, N-methylmorpholine, 1,8-diazabicyclo [5,4,0] undec-7-ene, pyridine, quinoline, and imidazole. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited. Preferably, amines such as trimethylamine, triethylamine, tributylamine, diisopropylethylamine, N-methylpyrrolidine, N-methylmorpholine, 1,8-diazabicyclo [5,4,0] undec-7-ene, pyridine, quinoline, imidazole, etc. More preferably triethylamine or pyridine. The amount of the base used is preferably 1 to 10 equivalents (fold moles), more preferably 1 to 3 equivalents (fold moles) relative to the compound (2).
 本工程の溶媒としては、反応に影響を与えない限りにおいては特に制限はなく、具体的には例えば、テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;ペンタン、ヘキサン、ヘプタン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ヘキサメチルホスホルアミド等のアミド系溶媒;ジメチルプロピレンウレア等のウレア系溶媒;ヘキサメチルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒等を用いることができる。これらは単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、その混合比は特に制限されない。好ましくはエーテル系溶媒、ニトリル系溶媒、ケトン系溶媒、又はアミド系溶媒であり、更に好ましくはテトラヒドロフラン、アセトニトリル、アセトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドであり、特に好ましくはN,N-ジメチルホルムアミド、又はN,N-ジメチルアセトアミドである。 The solvent in this step is not particularly limited as long as it does not affect the reaction. Specifically, for example, tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether, etc. Ether solvents such as acetonitrile and nitrile solvents such as propionitrile; ester solvents such as ethyl acetate, n-propyl acetate and isopropyl acetate; aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane; benzene Aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and mesitylene; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; halogen solvents such as methylene chloride and 1,2-dichloroethane; Sulfoxide solvents such as til sulfoxide; N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε -Amide solvents such as caprolactam and hexamethylphosphoramide; urea solvents such as dimethylpropylene urea; phosphonic acid triamide solvents such as hexamethylphosphonic acid triamide, and the like can be used. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited. Preferred are ether solvents, nitrile solvents, ketone solvents, or amide solvents, more preferred are tetrahydrofuran, acetonitrile, acetone, N, N-dimethylformamide, N, N-dimethylacetamide, and particularly preferred is N. , N-dimethylformamide, or N, N-dimethylacetamide.
 前記溶媒の使用量は、多すぎるとコストや後処理の点で好ましくないため、上限としては、前記化合物(2)に対して好ましくは100倍重量であり、更に好ましくは50倍重量であり、特に好ましくは20倍重量である。下限としては、前記化合物(2)に対して好ましくは0.1倍重量であり、更に好ましくは0.5倍重量であり、特に好ましくは1倍重量である。 When the amount of the solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore, the upper limit is preferably 100 times weight, more preferably 50 times weight with respect to the compound (2). Particularly preferred is 20 times the weight. The lower limit is preferably 0.1 times the weight of the compound (2), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
 本反応における反応温度には特に制限はなく、適宜設定すればよいが、副生成物の生成を少なくするため、上限としては好ましくは150℃であり、更に好ましくは100℃であり、特に好ましくは50℃である。下限としては好ましくは-80℃であり、更に好ましくは-30℃であり、特に好ましくは0℃である。 The reaction temperature in this reaction is not particularly limited and may be set as appropriate. However, in order to reduce the formation of by-products, the upper limit is preferably 150 ° C., more preferably 100 ° C., and particularly preferably 50 ° C. The lower limit is preferably −80 ° C., more preferably −30 ° C., and particularly preferably 0 ° C.
 本反応における反応時間には特に制限はなく、適宜設定すればよいが、上限としては好ましくは100時間であり、更に好ましくは50時間であり、特に好ましくは25時間である。下限として好ましくは0.1時間であり、更に好ましくは1時間であり、特に好ましくは3時間である。 The reaction time in this reaction is not particularly limited and may be appropriately set. However, the upper limit is preferably 100 hours, more preferably 50 hours, and particularly preferably 25 hours. The lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
 本工程の化合物(2)、化合物(3)、塩基、溶媒の混合順序について特に制限はない。 There is no particular limitation on the mixing order of compound (2), compound (3), base and solvent in this step.
 反応後の処理としては、反応液から生成物を取得するための一般的な処理を行えばよい。例えば、反応終了後の反応液に水、一般的な抽出溶媒、例えば酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が得られる。好ましくは、反応液に水を加えると目的物が固体として析出するので、これを濾別するとよい。このようにして得られた目的物は、後続工程に使用できる十分な純度を有しているが、純度を更に高める目的で、晶析、分別蒸留、転溶洗浄、カラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。 As a process after the reaction, a general process for obtaining a product from the reaction solution may be performed. For example, the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like. When the reaction solvent and the extraction solvent are distilled off from the resulting extract by an operation such as heating under reduced pressure, the desired product is obtained. Preferably, when water is added to the reaction solution, the target product precipitates as a solid, which may be filtered off. The target product thus obtained has a sufficient purity that can be used in the subsequent steps. However, in order to further increase the purity, crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used. The purity may be further increased by a simple purification method.
 続いて、前記式(4)で表される混合酸無水物を還元することにより、前記式(5)で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを製造する工程について説明する。 Subsequently, a process for producing 4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the formula (5) by reducing the mixed acid anhydride represented by the formula (4) will be described.
 前記還元は、還元剤を用いて行うとよい。還元剤としては、水素化リチウムアルミニウム、水素化ジイソブチルアルミニウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム、水素化トリアセトキシアルミニウム、水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ホウ素カルシウム、シアノ水素化ホウ素ナトリウム、水素化トリエチルホウ素リチウム、水素化トリ(sec-ブチル)ホウ素リチウム、水素化トリ(sec-ブチル)ホウ素カリウム、ボラン、水素化トリブチルスズ、シラン、トリクロロシラン、トリメトキシシラン、トリエトキシシランなどが挙げられる。好ましくは水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化ホウ素カリウムであり、更に好ましくは水素化ホウ素ナトリウムである。前記還元剤の使用量としては、前記化合物(4)に対して好ましくは1~20当量(倍モル)であり、更に好ましくは1~5当量(倍モル)である。 The reduction may be performed using a reducing agent. Reducing agents include lithium aluminum hydride, diisobutylaluminum hydride, sodium bis (2-methoxyethoxy) aluminum hydride, triacetoxyaluminum hydride, lithium borohydride, sodium borohydride, potassium borohydride, hydrogenated Calcium boron, sodium cyanoborohydride, lithium triethylborohydride, lithium tri (sec-butyl) borohydride, potassium tri (sec-butyl) borohydride, borane, tributyltin hydride, silane, trichlorosilane, trimethoxy Examples thereof include silane and triethoxysilane. Preferred are lithium borohydride, sodium borohydride, and potassium borohydride, and more preferred is sodium borohydride. The amount of the reducing agent to be used is preferably 1 to 20 equivalents (times mole), more preferably 1 to 5 equivalents (times mole) based on the compound (4).
 本工程の溶媒としては、反応に影響を与えない限りにおいては特に制限はなく、具体的には例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、エチレングリコール等のアルコール系溶媒;テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;ペンタン、ヘキサン、ヘプタン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ヘキサメチルホスホルアミド等のアミド系溶媒;ジメチルプロピレンウレア等のウレア系溶媒;ヘキサメチルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒等を用いることができる。これらは単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、その混合比は特に制限されない。好ましくはアルコール系溶媒であり、更に好ましくはメタノール、又はエタノールであり、特に好ましくはエタノールである。 The solvent in this step is not particularly limited as long as it does not affect the reaction. Specifically, for example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, and ethylene glycol are used. Solvents: ether solvents such as tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ethyl acetate, n-propyl acetate, Ester solvents such as isopropyl acetate; Aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and methylcyclohexane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and mesitylene Solvents: N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε-caprolactam, hexamethyl Amide solvents such as phosphoramides; urea solvents such as dimethylpropylene urea; phosphonic acid triamide solvents such as hexamethylphosphonic acid triamide can be used. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited. An alcohol solvent is preferable, methanol or ethanol is more preferable, and ethanol is particularly preferable.
 前記溶媒の使用量は、多すぎるとコストや後処理の点で好ましくないため、上限としては、前記化合物(4)に対して好ましくは100倍重量であり、更に好ましくは50倍重量であり、特に好ましくは20倍重量である。下限としては、前記化合物(4)に対して好ましくは0.1倍重量であり、更に好ましくは0.5倍重量であり、特に好ましくは1倍重量である。 If the amount of the solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore the upper limit is preferably 100 times weight, more preferably 50 times weight, relative to the compound (4). Particularly preferred is 20 times the weight. The lower limit is preferably 0.1 times the weight of the compound (4), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
 本反応における反応温度には特に制限はなく、適宜設定すればよいが、副生成物の生成を少なくするため、上限としては好ましくは150℃であり、更に好ましくは100℃であり、特に好ましくは50℃である。下限としては好ましくは-80℃であり、更に好ましくは-30℃であり、特に好ましくは0℃である。 The reaction temperature in this reaction is not particularly limited and may be set as appropriate. However, in order to reduce the formation of by-products, the upper limit is preferably 150 ° C., more preferably 100 ° C., and particularly preferably 50 ° C. The lower limit is preferably −80 ° C., more preferably −30 ° C., and particularly preferably 0 ° C.
 本反応における反応時間には特に制限はなく、適宜設定すればよいが、上限としては好ましくは100時間であり、更に好ましくは50時間であり、特に好ましくは25時間である。下限として好ましくは0.1時間であり、更に好ましくは1時間であり、特に好ましくは3時間である。 The reaction time in this reaction is not particularly limited and may be appropriately set. However, the upper limit is preferably 100 hours, more preferably 50 hours, and particularly preferably 25 hours. The lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
 本工程の化合物(4)、還元剤、溶媒の混合順序について特に制限はない。 There is no particular limitation on the mixing order of compound (4), reducing agent, and solvent in this step.
 反応後の処理としては、反応液から生成物を取得するための一般的な処理を行えばよい。例えば、反応終了後の反応液に水、一般的な抽出溶媒、例えば酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が得られる。好ましくは、反応液から析出している目的物を濾別し、メタノール、又はエタノールで洗浄するとよい。このようにして得られた目的物は、後続工程に使用できる十分な純度を有しているが、純度を更に高める目的で、晶析、分別蒸留、転溶洗浄、カラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。 As a process after the reaction, a general process for obtaining a product from the reaction solution may be performed. For example, the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like. When the reaction solvent and the extraction solvent are distilled off from the resulting extract by an operation such as heating under reduced pressure, the desired product is obtained. Preferably, the target product precipitated from the reaction solution is filtered off and washed with methanol or ethanol. The target product thus obtained has a sufficient purity that can be used in the subsequent steps. However, in order to further increase the purity, crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used. The purity may be further increased by a simple purification method.
 次に、前記式(5)で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを用いて、前記式(1)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体を製造する方法について説明する。 Next, using the 4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the formula (5), the optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by the formula (1) is obtained. A manufacturing method will be described.
 前記式(5)を出発原料に用いる方法であれば特に制限はないが、具体的には例えば、以下の図に示す方法が好ましい。 There is no particular limitation as long as it is a method using Formula (5) as a starting material, but specifically, for example, the method shown in the following figure is preferable.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 まず、前記式(5)で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを前記式(6)で表される4-カルバモイル-2,6-ジメチルベンジル誘導体に変換する方法について説明する。 First, a method for converting 4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the formula (5) into a 4-carbamoyl-2,6-dimethylbenzyl derivative represented by the formula (6) will be described. .
 Xがスルホニルオキシ基の場合は、前記化合物(5)に、塩化メタンスルホニル、塩化エタンスルホニル、塩化ベンゼンスルホニル、塩化p-トルエンスルホニル、塩化p-ニトロベンゼンスルホニル、トリフルオロメタンスルホン酸無水物等のスルホニル化剤とトリメチルアミン、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N-メチルピロリジン、N-メチルモルホリン、1,8-ジアザビシクロ[5,4,0]ウンデク-7-エン、ピリジン、キノリン、イミダゾール等のアミンを作用させるとよい。前記スルホニル化剤の使用量としては、前記化合物(5)に対して好ましくは1~10当量(倍モル)であり、更に好ましくは1~3当量(倍モル)である。また、前記アミンの使用量としては、前記化合物(5)に対して好ましくは1~10当量(倍モル)であり、更に好ましくは1~3当量(倍モル)である。 When X is a sulfonyloxy group, the compound (5) is sulfonylated to methanesulfonyl chloride, ethanesulfonyl chloride, benzenesulfonyl chloride, p-toluenesulfonyl chloride, p-nitrobenzenesulfonyl chloride, trifluoromethanesulfonic anhydride, etc. Agents such as trimethylamine, triethylamine, tributylamine, diisopropylethylamine, N-methylpyrrolidine, N-methylmorpholine, 1,8-diazabicyclo [5,4,0] undec-7-ene, pyridine, quinoline, imidazole It is good to let them. The amount of the sulfonylating agent to be used is preferably 1 to 10 equivalents (fold moles), more preferably 1 to 3 equivalents (fold moles) relative to the compound (5). The amine is preferably used in an amount of 1 to 10 equivalents (times mole), more preferably 1 to 3 equivalents (times mole) based on the compound (5).
 Xがハロゲン原子の場合は、前記化合物(5)に、塩化スルホニル、三塩化リン、五塩化リン、臭化スルホニル、三臭化リン、ヨウ素/トリフェニルホスフィン、三臭化ホウ素、塩化チオニル等のハロゲン化剤を作用させるとよい。好ましくは塩化スルホニル、三臭化リン、又は塩化チオニルであり、更に好ましくは三臭化リンである。前記ハロゲン化剤の使用量としては、前記化合物(5)に対して好ましくは1~10当量(倍モル)であり、更に好ましくは1~3当量(倍モル)である。なおこれらハロゲン化剤を作用させる場合、必要に応じてトリメチルアミン、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N-メチルピロリジン、N-メチルモルホリン、1,8-ジアザビシクロ[5,4,0]ウンデク-7-エン、ピリジン、キノリン、イミダゾール等のアミンを用いてもよい。アミンの使用量としては、前記化合物(5)1モルに対して、好ましくは0.01~1モルであり、より好ましくは0.05~0.5モルである。 When X is a halogen atom, the compound (5) includes sulfonyl chloride, phosphorus trichloride, phosphorus pentachloride, sulfonyl bromide, phosphorus tribromide, iodine / triphenylphosphine, boron tribromide, thionyl chloride and the like. A halogenating agent may be allowed to act. Preferred is sulfonyl chloride, phosphorus tribromide, or thionyl chloride, and more preferred is phosphorus tribromide. The amount of the halogenating agent to be used is preferably 1 to 10 equivalents (fold moles), more preferably 1 to 3 equivalents (fold moles) relative to the compound (5). When these halogenating agents are allowed to act, if necessary, trimethylamine, triethylamine, tributylamine, diisopropylethylamine, N-methylpyrrolidine, N-methylmorpholine, 1,8-diazabicyclo [5,4,0] undec-7- Amines such as ene, pyridine, quinoline and imidazole may be used. The amount of the amine to be used is preferably 0.01 to 1 mol, more preferably 0.05 to 0.5 mol, per 1 mol of the compound (5).
 また、Xがスルホニルオキシ基である前記化合物(6)を調製した後、更に塩化ナトリウム、塩化カリウム、塩化テトラブチルアンモニウム、臭化ナトリウム、臭化カリウム、臭化テトラブチルアンモニウム、ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化テトラブチルアンモニウム等のハロゲン化物を作用させることにより、Xが塩素原子、臭素原子、ヨウ素原子等のハロゲン原子である前記化合物(6)に変換してもよい。 Further, after preparing the compound (6) in which X is a sulfonyloxy group, sodium chloride, potassium chloride, tetrabutylammonium chloride, sodium bromide, potassium bromide, tetrabutylammonium bromide, sodium iodide, iodine X may be converted to the compound (6) wherein a halogen atom such as a chlorine atom, a bromine atom or an iodine atom is allowed to act on a halide such as potassium iodide or tetrabutylammonium iodide.
 本工程の溶媒としては、反応に影響を与えない限りにおいては特に制限はなく、具体的には例えば、テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;ペンタン、ヘキサン、ヘプタン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ヘキサメチルホスホルアミド等のアミド系溶媒;ジメチルプロピレンウレア等のウレア系溶媒;ヘキサメチルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒等を用いることができる。これらは単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、その混合比は特に制限されない。好ましくはエーテル系溶媒、ニトリル系溶媒、エステル系溶媒、ハロゲン系溶媒、又はアミド系溶媒であり、更に好ましくはテトラヒドロフラン、アセトニトリル、酢酸エチル、塩化メチレン、N,N-ジメチルホルムアミド、又はN,N-ジメチルアセトアミドであり、特に好ましくはテトラヒドロフラン、アセトニトリル、酢酸エチル、又は塩化メチレンである。 The solvent in this step is not particularly limited as long as it does not affect the reaction. Specifically, for example, tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether, etc. Ether solvents such as acetonitrile and nitrile solvents such as propionitrile; ester solvents such as ethyl acetate, n-propyl acetate and isopropyl acetate; aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane; benzene Aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and mesitylene; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; halogen solvents such as methylene chloride and 1,2-dichloroethane; Sulfoxide solvents such as til sulfoxide; N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε -Amide solvents such as caprolactam and hexamethylphosphoramide; urea solvents such as dimethylpropylene urea; phosphonic acid triamide solvents such as hexamethylphosphonic acid triamide, and the like can be used. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited. Preferred are ether solvents, nitrile solvents, ester solvents, halogen solvents, or amide solvents, and more preferred are tetrahydrofuran, acetonitrile, ethyl acetate, methylene chloride, N, N-dimethylformamide, or N, N—. Dimethylacetamide, particularly preferably tetrahydrofuran, acetonitrile, ethyl acetate, or methylene chloride.
 前記溶媒の使用量は、多すぎるとコストや後処理の点で好ましくないため、上限としては、前記化合物(5)に対して好ましくは100倍重量であり、更に好ましくは50倍重量であり、特に好ましくは20倍重量である。下限としては、前記化合物(5)に対して好ましくは0.1倍重量であり、更に好ましくは0.5倍重量であり、特に好ましくは1倍重量である。 If the amount of the solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore, the upper limit is preferably 100 times weight, more preferably 50 times weight, relative to the compound (5). Particularly preferred is 20 times the weight. The lower limit is preferably 0.1 times the weight of the compound (5), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
 本反応における反応温度には特に制限はなく、適宜設定すればよいが、副生成物の生成を少なくするため、上限としては好ましくは100℃であり、更に好ましくは70℃であり、特に好ましくは40℃である。下限としては好ましくは-80℃であり、更に好ましくは-50℃であり、特に好ましくは-20℃である。 The reaction temperature in this reaction is not particularly limited and may be set as appropriate. However, in order to reduce the production of by-products, the upper limit is preferably 100 ° C., more preferably 70 ° C., and particularly preferably 40 ° C. The lower limit is preferably −80 ° C., more preferably −50 ° C., and particularly preferably −20 ° C.
 本反応における反応時間には特に制限はなく、適宜設定すればよいが、上限としては好ましくは100時間であり、更に好ましくは50時間であり、特に好ましくは25時間である。下限として好ましくは0.1時間であり、更に好ましくは1時間であり、特に好ましくは3時間である。 The reaction time in this reaction is not particularly limited and may be appropriately set. However, the upper limit is preferably 100 hours, more preferably 50 hours, and particularly preferably 25 hours. The lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
 本工程の化合物(5)、溶媒、スルホニル化剤、アミン、若しくは本工程の化合物(5)、溶媒、ハロゲン化剤の混合順序について特に制限はない。 The mixing order of compound (5) in this step, solvent, sulfonylating agent, amine, or compound (5) in this step, solvent, and halogenating agent is not particularly limited.
 反応後の処理としては、反応液から生成物を取得するための一般的な処理を行えばよい。例えば、反応終了後の反応液に水、一般的な抽出溶媒、例えば酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が得られる。好ましくは、反応液から析出している目的物を濾別し、水、酢酸エチル、塩化メチレン、ヘキサン、ヘプタン等で洗浄するとよい。このようにして得られた目的物は、後続工程に使用できる十分な純度を有しているが、純度を更に高める目的で、晶析、分別蒸留、転溶洗浄、カラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。 As a process after the reaction, a general process for obtaining a product from the reaction solution may be performed. For example, the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like. When the reaction solvent and the extraction solvent are distilled off from the resulting extract by an operation such as heating under reduced pressure, the desired product is obtained. Preferably, the target product precipitated from the reaction solution is filtered off and washed with water, ethyl acetate, methylene chloride, hexane, heptane or the like. The target product thus obtained has a sufficient purity that can be used in the subsequent steps. However, in order to further increase the purity, crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used. The purity may be further increased by a simple purification method.
 次に、塩基と光学活性な相関移動触媒存在下、前記式(6)で表される4-カルバモイル-2,6-ジメチルベンジル誘導体と前記式(7)で表されるグリシンシッフ塩基を反応させることにより、前記式(8)で表される光学活性アミノ酸誘導体を製造する方法について説明する。 Next, the 4-carbamoyl-2,6-dimethylbenzyl derivative represented by the formula (6) is reacted with the glycine Schiff base represented by the formula (7) in the presence of a base and an optically active phase transfer catalyst. Thus, a method for producing the optically active amino acid derivative represented by the formula (8) will be described.
 前記塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどが挙げられる。好ましくは水酸化ナトリウム、又は水酸化カリウムであり、更に好ましくは水酸化カリウムである。前記塩基の使用量としては、前記化合物(6)に対して好ましくは0.5~50当量(倍モル)であり、更に好ましくは1~10当量(倍モル)である。 Examples of the base include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate and the like. Sodium hydroxide or potassium hydroxide is preferable, and potassium hydroxide is more preferable. The amount of the base used is preferably 0.5 to 50 equivalents (fold moles), more preferably 1 to 10 equivalents (fold moles) relative to the compound (6).
 前記光学活性な相関移動触媒としては、光学活性な4級アンモニウム塩系相関移動触媒、ビフェニル骨格および/又はビナフチル骨格を有する光学活性な4級ホスホニウム塩系相関移動触媒、光学活性な金属原子で錯形成された相関移動触媒が挙げられる。好ましくは、ビフェニル骨格および/又はビナフチル骨格を有する光学活性な4級アンモニウム塩、光学活性な酒石酸型4級アンモニウム塩、又は光学活性なシンコナアルカロイド型4級アンモニウム塩、ビフェニル骨格および/又はビナフチル骨格を有する光学活性な4級ホスホニウム塩系相関移動触媒、N,N’-ビス(サリシリデン)-1,2-シクロヘキサンジアミン誘導体(Jacobsen配位子)と錯形成されたニッケル、又は銅触媒が挙げられる。更に好ましくは、(11bS)-(+)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド、(11bR)-(-)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド、(S,S)-3,4,5-トリフルオロフェニル-NASブロミド、(R,R)-3,4,5-トリフルオロフェニル-NASブロミド、(S,S)-β-ナフチル-NASブロミド、(R,R)-β-ナフチル-NASブロミド、(15bR)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミド、(15bS)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミド;N-ベンジルシンコニジニウムクロリド;N-ベンジルシンコニウムクロリド;N-アントラセニルシンコニジニウムクロリド;N-アントラセニルシンコニウムクロリド;N-アントラセニルキニジニウムクロリド;N-アントラセニルキニウムクロリド;N-(2-クロロベンジル)シンコジニウムブロミド;6,10-ジベンジル-N,N’-ジメチル-N,N,N’,N’-テトラキス(4-メチルベンジル)-1,4-ジオキサスピロ[4.5]デカン-(2R,3R)-ジイルビス(メチルアンモニウム)テトラフルオロボラート((R,R)-TaDiAS);6,10-ジベンジル-N,N’-ジメチル-N,N,N’,N’-テトラキス(4-メチルベンジル)-1,4-ジオキサスピロ[4.5]デカン-(2S,3S)-ジイルビス(メチルアンモニウム)テトラフルオロボラート((S,S)-TaDiAS)である。特に好ましくは(11bR)-(-)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミドである。 Examples of the optically active phase transfer catalyst include an optically active quaternary ammonium salt phase transfer catalyst, an optically active quaternary phosphonium salt phase transfer catalyst having a biphenyl skeleton and / or a binaphthyl skeleton, and a complex with an optically active metal atom. Examples include the formed phase transfer catalyst. Preferably, optically active quaternary ammonium salt having biphenyl skeleton and / or binaphthyl skeleton, optically active tartaric acid type quaternary ammonium salt, or optically active cinchona alkaloid type quaternary ammonium salt, biphenyl skeleton and / or binaphthyl skeleton Optically active quaternary phosphonium salt phase transfer catalyst, nickel complexed with N, N′-bis (salicylidene) -1,2-cyclohexanediamine derivative (Jacobsen ligand), or copper catalyst . More preferably, (11bS)-(+)-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4,5-trifluorophenyl) -3H-dinaphtho [2,1-c : 1 ′, 2′-e] azepinium bromide, (11bR)-(−)-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4,5-trifluorophenyl) -3H-dinaphtho [2,1-c: 1 ', 2'-e] azepinium bromide, (S, S) -3,4,5-trifluorophenyl-NAS bromide, (R, R) -3 , 4,5-trifluorophenyl-NAS bromide, (S, S) -β-naphthyl-NAS bromide, (R, R) -β-naphthyl-NAS bromide, (15bR) -14,14-dibutyl-5 6,7,8,14,15-hexahydro-1,12-bis (3 , 4,5-trifluorophenyl) -13H- [1,6] benzodioxetino [9.8,7-def] [2] benzazepinium bromide, (15bS) -14,14-dibutyl-5, 6,7,8,14,15-Hexahydro-1,12-bis (3,4,5-trifluorophenyl) -13H- [1,6] benzodioxetino [9.8,7-def] [ 2) Benzazepinium bromide; N-benzyl cinchonidinium chloride; N-benzyl cinchonium chloride; N-anthracenyl cinchonidinium chloride; N-anthracenyl cinchonium chloride; N-anthracenyl quinidinium chloride; N-anthracenylquinium chloride; N- (2-chlorobenzyl) cincodinium bromide; 6,10-dibenzyl-N, N′-dimethyl-N N, N ′, N′-tetrakis (4-methylbenzyl) -1,4-dioxaspiro [4.5] decane- (2R, 3R) -diylbis (methylammonium) tetrafluoroborate ((R, R) — TaDiAS); 6,10-dibenzyl-N, N′-dimethyl-N, N, N ′, N′-tetrakis (4-methylbenzyl) -1,4-dioxaspiro [4.5] decane- (2S, 3S ) -Diylbis (methylammonium) tetrafluoroborate ((S, S) -TaDiAS). Particularly preferably, (11bR)-(−)-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4,5-trifluorophenyl) -3H-dinaphtho [2,1-c: 1 ′, 2′-e] azepinium bromide.
 前記光学活性な相関移動触媒の使用量としては、多すぎるとコスト面で好ましくないため、上限としては前記化合物(6)に対して、好ましくは1当量(倍モル)であり、更に好ましくは0.5当量(倍モル)であり、特に好ましくは0.1当量(倍モル)である。下限としては前記化合物(6)に対して、好ましくは0.0001当量(倍モル)であり、更に好ましくは0.001当量(倍モル)であり、特に好ましくは0.01当量(倍モル)である。 As the amount of the optically active phase transfer catalyst used is too large, it is not preferable in terms of cost. Therefore, the upper limit is preferably 1 equivalent (times mol), more preferably 0, relative to the compound (6). 0.5 equivalent (fold mole), particularly preferably 0.1 equivalent (fold mole). The lower limit is preferably 0.0001 equivalent (times mol), more preferably 0.001 equivalent (times mol), and particularly preferably 0.01 equivalent (times mol) relative to the compound (6). It is.
 前記化合物(7)の使用量としては、前記化合物(6)に対して好ましくは1~10当量(倍モル)であり、更に好ましくは1~3当量(倍モル)である。 The amount of the compound (7) to be used is preferably 1 to 10 equivalents (times mole), more preferably 1 to 3 equivalents (times mole) with respect to the compound (6).
 本工程の溶媒としては、反応に影響を与えない限りにおいては特に制限はなく、具体的には例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、エチレングリコール等のアルコール系溶媒;テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;ペンタン、ヘキサン、ヘプタン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ヘキサメチルホスホルアミド等のアミド系溶媒;ジメチルプロピレンウレア等のウレア系溶媒;ヘキサメチルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒等を用いることができる。これらは単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、その混合比は特に制限されない。好ましくはエーテル系溶媒、炭化水素系溶媒、芳香族炭化水素系溶媒、又はハロゲン系溶媒であり、更に好ましくはテトラヒドロフラン、メチルtert-ブチルエーテル、ヘキサン、ヘプタン、トルエン、キシレン、エチルベンゼン、メシチレン、塩化メチレン、又は1,2-ジクロロエタンであり、特に好ましくはメチルtert-ブチルエーテル、トルエン、キシレン、エチルベンゼン、又はメシチレンである。 The solvent in this step is not particularly limited as long as it does not affect the reaction. Specifically, for example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, and ethylene glycol are used. Solvents: ether solvents such as tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ethyl acetate, n-propyl acetate, Ester solvents such as isopropyl acetate; Aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and methylcyclohexane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and mesitylene Solvents; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone; halogen solvents such as methylene chloride and 1,2-dichloroethane; sulfoxide solvents such as dimethyl sulfoxide; N, N-dimethylformamide, N, N-dimethyl Amide solvents such as acetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε-caprolactam, hexamethylphosphoramide; ureas such as dimethylpropylene urea Solvents such as phosphonic acid triamide solvents such as hexamethylphosphonic acid triamide can be used. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited. Preferred are ether solvents, hydrocarbon solvents, aromatic hydrocarbon solvents, or halogen solvents, more preferably tetrahydrofuran, methyl tert-butyl ether, hexane, heptane, toluene, xylene, ethylbenzene, mesitylene, methylene chloride, Or 1,2-dichloroethane, particularly preferably methyl tert-butyl ether, toluene, xylene, ethylbenzene, or mesitylene.
 前記溶媒の使用量は、多すぎるとコストや後処理の点で好ましくないため、上限としては、前記化合物(6)に対して好ましくは100倍重量であり、更に好ましくは50倍重量であり、特に好ましくは20倍重量である。下限としては、前記化合物(6)に対して好ましくは0.1倍重量であり、更に好ましくは0.5倍重量であり、特に好ましくは1倍重量である。 If the amount of the solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore, the upper limit is preferably 100 times weight, more preferably 50 times weight with respect to the compound (6). Particularly preferred is 20 times the weight. The lower limit is preferably 0.1 times the weight of the compound (6), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
 本反応の反応速度を加速させる目的で更に水を添加してもよい。水の使用量としては、前記化合物(6)に対して好ましくは0.1~100当量(倍モル)であり、更に好ましくは1~30当量(倍モル)である。 Further water may be added for the purpose of accelerating the reaction rate of this reaction. The amount of water used is preferably 0.1 to 100 equivalents (times mole), more preferably 1 to 30 equivalents (times mole), relative to the compound (6).
 本反応における反応温度には特に制限はなく、適宜設定すればよいが、副生成物の生成を少なくするため、上限としては好ましくは120℃であり、更に好ましくは50℃であり、特に好ましくは30℃である。下限としては好ましくは-80℃であり、更に好ましくは-50℃であり、特に好ましくは-20℃である。 The reaction temperature in this reaction is not particularly limited and may be set as appropriate. However, in order to reduce the production of by-products, the upper limit is preferably 120 ° C., more preferably 50 ° C., and particularly preferably 30 ° C. The lower limit is preferably −80 ° C., more preferably −50 ° C., and particularly preferably −20 ° C.
 本反応における反応時間には特に制限はなく、適宜設定すればよいが、上限としては好ましくは120時間であり、更に好ましくは100時間であり、特に好ましくは80時間である。下限として好ましくは0.1時間であり、更に好ましくは1時間であり、特に好ましくは3時間である。 The reaction time in this reaction is not particularly limited and may be appropriately set. However, the upper limit is preferably 120 hours, more preferably 100 hours, and particularly preferably 80 hours. The lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
 本工程の化合物(6)、化合物(7)、光学活性な相関移動触媒、塩基、水、溶媒の混合順序について特に制限はない。 There is no particular limitation on the mixing order of compound (6), compound (7), optically active phase transfer catalyst, base, water and solvent in this step.
 反応後の処理としては、反応液から生成物を取得するための一般的な処理を行えばよい。例えば、反応終了後の反応液に水、一般的な抽出溶媒、例えば酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が得られる。 As a process after the reaction, a general process for obtaining a product from the reaction solution may be performed. For example, the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like. When the reaction solvent and the extraction solvent are distilled off from the resulting extract by an operation such as heating under reduced pressure, the desired product is obtained.
 本工程により得られるR体又はS体の化合物(8)の光学純度は、好ましくは80%ee(ここで%eeはエナンチオマー過剰率を表す)、より好ましくは85%ee以上、更に好ましくは88%ee以上である。 The optical purity of the R-form or S-form compound (8) obtained by this step is preferably 80% ee (where% ee represents the enantiomeric excess), more preferably 85% ee or more, and still more preferably 88 % Ee or higher.
 このようにして得られた目的物は、後続工程に使用できる十分な純度を有しているが、純度を更に高める目的で、晶析、分別蒸留、転溶洗浄、カラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。 The target product thus obtained has a sufficient purity that can be used in the subsequent steps. However, in order to further increase the purity, crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used. The purity may be further increased by a simple purification method.
 続いて、前記式(8)で表される光学活性アミノ酸誘導体を製造し、更に酸加水分解する、若しくは酸加水分解後にアミノ基を保護することにより、前記式(1)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体を製造する工程について説明する。 Subsequently, the optically active amino acid derivative represented by the formula (8) is produced and further subjected to acid hydrolysis, or the amino group is protected after acid hydrolysis, whereby the optical activity represented by the formula (1). A process for producing a 4-carbamoyl-2,6-dimethylphenylalanine derivative will be described.
 前記酸加水分解に用いられる酸としては、好ましくは塩酸、臭化水素酸、硫酸、酢酸、クエン酸、トリフルオロ酢酸、メタンスルホン酸、p-トルエンスルホン酸であり、更に好ましくは硫酸、又はメタンスルホン酸である。前記酸の使用量としては、前記化合物(8)に対して好ましくは0.5~100当量(倍モル)であり、更に好ましくは1~20当量(倍モル)である。水の使用量としては、前記化合物(8)に対して好ましくは0.1~100倍重量であり、更に好ましくは1~30重量である。 The acid used for the acid hydrolysis is preferably hydrochloric acid, hydrobromic acid, sulfuric acid, acetic acid, citric acid, trifluoroacetic acid, methanesulfonic acid, p-toluenesulfonic acid, more preferably sulfuric acid or methane. Sulfonic acid. The amount of the acid used is preferably 0.5 to 100 equivalents (fold moles), more preferably 1 to 20 equivalents (fold moles) relative to the compound (8). The amount of water used is preferably 0.1 to 100 times the weight of the compound (8), more preferably 1 to 30 weights.
 本加水分解における反応温度には特に制限はなく、適宜設定すればよいが、副生成物の生成を少なくするため、上限として好ましくは120℃であり、更に好ましくは100℃である。下限として好ましくは0℃であり、更に好ましくは20℃である。 The reaction temperature in this hydrolysis is not particularly limited and may be appropriately set. However, in order to reduce the formation of by-products, the upper limit is preferably 120 ° C., and more preferably 100 ° C. Preferably it is 0 degreeC as a minimum, More preferably, it is 20 degreeC.
 アミノ基の保護条件としては、保護基(P)の種類に応じて適宜設定すればよい。具体的には例えば、tert-ブトキシカルボニル保護、若しくはベンジルオキシカルボニル保護を行う場合、前記加水分解により得た光学活性4-カルバモイル-2,6-ジメチルフェニルアラニンの水溶液に、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の塩基を加えて中和した後、二炭酸ジ-tert-ブチルや塩化ベンジルオキシカルボニルを添加すればよい。また反応を加速する目的で、前記塩基を更に添加して反応中のpHを7以上にコントロールするとよい。 Protecting conditions for the amino group may be appropriately set according to the type of protecting group (P). Specifically, for example, when tert-butoxycarbonyl protection or benzyloxycarbonyl protection is performed, an aqueous solution of optically active 4-carbamoyl-2,6-dimethylphenylalanine obtained by the hydrolysis is added with sodium hydroxide, potassium hydroxide. After neutralization with a base such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc., di-tert-butyl dicarbonate or benzyloxycarbonyl chloride may be added. For the purpose of accelerating the reaction, the base may be further added to control the pH during the reaction to 7 or more.
 本工程により得られるR体又はS体の化合物(1)の光学純度は、原料の化合物(8)の光学純度よりも低下することなく、原料の化合物(8)と同じ又は該化合物(8)よりも高い光学純度を有する。R体又はS体の化合物(1)の光学純度は、好ましくは85%ee、より好ましくは88%ee以上、更に好ましくは89%ee以上である。 The optical purity of the R-form or S-form compound (1) obtained in this step is the same as that of the raw material compound (8) or lower than that of the raw material compound (8), or the compound (8). Higher optical purity. The optical purity of the R-form or S-form compound (1) is preferably 85% ee, more preferably 88% ee or more, and even more preferably 89% ee or more.
 このようにして得られた前記化合物(1)は、後続工程に使用できる十分な純度を有しているが、化学純度を高める目的でカラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。好ましくは、メタノール、又はメタノール/水の混合溶媒から晶析することにより、高化学純度、且つ高光学純度の前記化合物(1)を取得することができる。精製後のR体又はS体の化合物(1)の光学純度は、好ましくは90%ee以上、より好ましくは95%ee以上、更に好ましくは98%ee以上である。 The compound (1) thus obtained has a sufficient purity that can be used in the subsequent steps. However, for the purpose of increasing the chemical purity, the compound (1) can be further purified by a general purification method such as column chromatography. May be raised. Preferably, the compound (1) having high chemical purity and high optical purity can be obtained by crystallization from methanol or a mixed solvent of methanol / water. The optical purity of the R-form or S-form compound (1) after purification is preferably 90% ee or more, more preferably 95% ee or more, and further preferably 98% ee or more.
 前記式(5)で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを用いて、前記式(1)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体を製造する別の方法についても説明する。 Another method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by the formula (1) using the 4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the formula (5) This method will also be described.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
 まず、前記式(5)で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを前記式(9)で表される4-カルバモイル-2,6-ジメチルベンズアルデヒドに変換する方法について説明する。 First, a method for converting 4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the formula (5) into 4-carbamoyl-2,6-dimethylbenzaldehyde represented by the formula (9) will be described.
 アルコールをアルデヒドに変換する方法は、一般的に広く知られている酸化反応を用いればよい。具体的には例えば、クロム酸やクロロクロム酸ピリジニウム等を用いるジョーンズ酸化反応;三酸化硫黄/ピリジン錯体等を用いる酸化反応;ジメチルスルホキシド/無水トリフルオロ酢酸やジメチルスルホキシド/オキザリルクロリド等を用いるスワン酸化反応;次亜塩素酸ナトリウム/2,2,6,6-テトラメチルピペリジン-1-オキシル、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル、4-アセトアミド-2,2,6,6-テトラメチルピペリジン-1-オキシル等のオキシルラジカルを用いるテンポ酸化反応;などが挙げられる。好ましくはテンポ酸化反応である。前記次亜塩素酸ナトリウムの使用量としては、前記化合物(5)に対して好ましくは1~10当量(倍モル)であり、更に好ましくは1~3当量(倍モル)である。また、前記オキシルラジカルの使用量としては、前記化合物(5)に対して好ましくは0.001~1当量(倍モル)であり、更に好ましくは0.01~0.5当量(倍モル)である。 As a method for converting alcohol to aldehyde, a generally well-known oxidation reaction may be used. Specifically, for example, Jones oxidation reaction using chromic acid or pyridinium chlorochromate; oxidation reaction using sulfur trioxide / pyridine complex, etc .; Swan using dimethyl sulfoxide / trifluoroacetic anhydride, dimethyl sulfoxide / oxalyl chloride, etc. Oxidation reaction; sodium hypochlorite / 2,2,6,6-tetramethylpiperidine-1-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl, 4-acetamido-2 , 2,6,6-tetramethylpiperidine-1-oxyl and other oxyl radicals, etc. A tempo oxidation reaction is preferred. The amount of the sodium hypochlorite to be used is preferably 1 to 10 equivalents (times mole), more preferably 1 to 3 equivalents (times mole) based on the compound (5). The amount of the oxyl radical used is preferably 0.001 to 1 equivalent (times mole), more preferably 0.01 to 0.5 equivalent (times mole) with respect to the compound (5). is there.
 本工程の溶媒としては、反応に影響を与えない限りにおいては特に制限はなく、具体的には例えば、水;テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;ペンタン、ヘキサン、ヘプタン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ヘキサメチルホスホルアミド等のアミド系溶媒;ジメチルプロピレンウレア等のウレア系溶媒;ヘキサメチルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒等を用いることができる。これらは単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、その混合比は特に制限されない。好ましくは水、エーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、又はハロゲン系溶媒であり、更に好ましくは水、テトラヒドロフラン、メチルtert-ブチルエーテル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、トルエン、キシレン、エチルベンゼン、メシチレン、塩化メチレン、又は1,2-ジクロロエタンであり、特に好ましくは水、メチルtert-ブチルエーテル、酢酸エチル、トルエンである。 The solvent in this step is not particularly limited as long as it does not affect the reaction. Specifically, for example, water; tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol Ether solvents such as dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ester solvents such as ethyl acetate, n-propyl acetate and isopropyl acetate; aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane Aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene and mesitylene; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; halogen solvents such as methylene chloride and 1,2-dichloroethane Sulfoxide solvents such as dimethyl sulfoxide; N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε -Amide solvents such as caprolactam and hexamethylphosphoramide; urea solvents such as dimethylpropylene urea; phosphonic acid triamide solvents such as hexamethylphosphonic acid triamide, and the like can be used. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited. Preferably, water, ether solvent, ester solvent, aromatic hydrocarbon solvent, or halogen solvent, more preferably water, tetrahydrofuran, methyl tert-butyl ether, ethyl acetate, n-propyl acetate, isopropyl acetate, toluene , Xylene, ethylbenzene, mesitylene, methylene chloride, or 1,2-dichloroethane, particularly preferably water, methyl tert-butyl ether, ethyl acetate, or toluene.
 前記溶媒の使用量は、多すぎるとコストや後処理の点で好ましくないため、上限としては、前記化合物(5)に対して好ましくは100倍重量であり、更に好ましくは50倍重量であり、特に好ましくは20倍重量である。下限としては、前記化合物(5)に対して好ましくは0.1倍重量であり、更に好ましくは0.5倍重量であり、特に好ましくは1倍重量である。 If the amount of the solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore, the upper limit is preferably 100 times weight, more preferably 50 times weight, relative to the compound (5). Particularly preferred is 20 times the weight. The lower limit is preferably 0.1 times the weight of the compound (5), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
 本反応における反応温度には特に制限はなく、適宜設定すればよいが、副生成物の生成を少なくするため、上限としては好ましくは100℃であり、更に好ましくは50℃であり、特に好ましくは20℃である。下限としては好ましくは-80℃であり、更に好ましくは-50℃であり、特に好ましくは-20℃である。 The reaction temperature in this reaction is not particularly limited and may be set as appropriate. However, in order to reduce the production of by-products, the upper limit is preferably 100 ° C., more preferably 50 ° C., and particularly preferably 20 ° C. The lower limit is preferably −80 ° C., more preferably −50 ° C., and particularly preferably −20 ° C.
 本反応における反応時間には特に制限はなく、適宜設定すればよいが、上限としては好ましくは120時間であり、更に好ましくは100時間であり、特に好ましくは80時間である。下限として好ましくは0.1時間であり、更に好ましくは1時間であり、特に好ましくは3時間である。 The reaction time in this reaction is not particularly limited and may be appropriately set. However, the upper limit is preferably 120 hours, more preferably 100 hours, and particularly preferably 80 hours. The lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
 本工程の化合物(5)、及び溶媒、テンポ酸化反応を採用する場合には、更には次亜塩素酸ナトリウム及びオキシラジカルの混合順序について特に制限はない。 In the case of employing the compound (5) of this step, the solvent, and the tempo oxidation reaction, there is no particular limitation on the mixing order of sodium hypochlorite and oxy radical.
 反応後の処理としては、反応液から生成物を取得するための一般的な処理を行えばよい。例えば、反応終了後の反応液に水、一般的な抽出溶媒、例えば酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が得られる。 As a process after the reaction, a general process for obtaining a product from the reaction solution may be performed. For example, the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like. When the reaction solvent and the extraction solvent are distilled off from the resulting extract by an operation such as heating under reduced pressure, the desired product is obtained.
 このようにして得られた目的物は、後続工程に使用できる十分な純度を有しているが、純度を更に高める目的で、晶析、分別蒸留、転溶洗浄、カラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。 The target product thus obtained has a sufficient purity that can be used in the subsequent steps. However, in order to further increase the purity, crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used. The purity may be further increased by a simple purification method.
 次に、前記式(9)で表される4-カルバモイル-2,6-ジメチルベンズアルデヒドとグリシン誘導体を反応させることにより、前記式(10)で表されるデヒドロアミノ酸誘導体に変換する方法について説明する。 Next, a method for converting into a dehydroamino acid derivative represented by the above formula (10) by reacting 4-carbamoyl-2,6-dimethylbenzaldehyde represented by the above formula (9) with a glycine derivative will be described. .
 前記グリシン誘導体としては例えば、ホスホノグリシン誘導体が挙げられる。前記ホスホノグリシン誘導体として好ましくは、N-(tert-ブトキシカルボニル)-ホスホノグリシントリメチルエステル、N-(tert-ブトキシカルボニル)-ホスホノグリシントリエチルエステル、N-(ベンジルオキシカルボニル)-ホスホノグリシントリメチルエステル、N-(ベンジルオキシカルボニル)-ホスホノグリシントリエチルエステル等が挙げられる。前記ホスホノグリシン誘導体の使用量としては、前記化合物(9)に対して好ましくは1~10当量(倍モル)であり、更に好ましくは1~3当量(倍モル)である。 Examples of the glycine derivative include phosphonoglycine derivatives. The phosphonoglycine derivative is preferably N- (tert-butoxycarbonyl) -phosphonoglycine trimethyl ester, N- (tert-butoxycarbonyl) -phosphonoglycine triethyl ester, N- (benzyloxycarbonyl) -phosphonoglycine. And trimethyl ester, N- (benzyloxycarbonyl) -phosphonoglycine triethyl ester, and the like. The amount of the phosphonoglycine derivative to be used is preferably 1 to 10 equivalents (fold moles), more preferably 1 to 3 equivalents (fold moles) relative to the compound (9).
 またホスホノグリシン誘導体を反応させる際は、更に塩基を用いるとよく、前記塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウムなどの無機塩基;リチウムメトキシド、リチウムエトキシド、リチウムイソプロポキシド、リチウムtert-ブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムイソプロポキシド、カリウムtert-ブトキシド等のアルコキシド;水素化ナトリウム、水素化カリウム、水素化カルシウム等の金属水素化物;トリメチルアミン、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N-メチルピロリジン、N-メチルモルホリン、1,8-ジアザビシクロ[5,4,0]ウンデク-7-エン、ピリジン、キノリン、イミダゾール等のアミンが挙げられる。これらは単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、その混合比は特に制限されない。好ましくは、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムイソプロポキシド、カリウムtert-ブトキシド、水素化ナトリウム、水素化カリウム、1,8-ジアザビシクロ[5,4,0]ウンデク-7-エンであり、更に好ましくは、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド、水素化ナトリウム、1,8-ジアザビシクロ[5,4,0]ウンデク-7-エンである。前記塩基の使用量としては、前記化合物(9)に対して好ましくは1~10当量(倍モル)であり、更に好ましくは1~3当量(倍モル)である。 Further, when reacting the phosphonoglycine derivative, it is better to use a base. Examples of the base include lithium hydroxide, sodium hydroxide, potassium hydroxide, cesium hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate. Inorganic bases such as lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate; lithium methoxide, lithium ethoxide, lithium isopropoxide, lithium tert-butoxide, sodium methoxide, sodium ethoxide, sodium isopropoxide, sodium tert Alkoxides such as butoxide, potassium methoxide, potassium ethoxide, potassium isopropoxide, potassium tert-butoxide; metal hydrides such as sodium hydride, potassium hydride, calcium hydride; Ethylamine, triethylamine, tributylamine, diisopropylethylamine, N- methylpyrrolidine, N- methylmorpholine, 1,8-diazabicyclo [5,4,0] undec-7-ene, pyridine, quinoline, include amines such as imidazole. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited. Preferably, sodium methoxide, sodium ethoxide, sodium isopropoxide, sodium tert-butoxide, potassium methoxide, potassium ethoxide, potassium isopropoxide, potassium tert-butoxide, sodium hydride, potassium hydride, 1,8 -Diazabicyclo [5,4,0] undec-7-ene, more preferably sodium tert-butoxide, potassium tert-butoxide, sodium hydride, 1,8-diazabicyclo [5,4,0] undec-7 -En. The amount of the base to be used is preferably 1 to 10 equivalents (fold moles), more preferably 1 to 3 equivalents (fold moles) relative to the compound (9).
 本工程の溶媒としては、反応に影響を与えない限りにおいては特に制限はなく、具体的には例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、エチレングリコール等のアルコール系溶媒;テトラヒドロフラン、メチルテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;ペンタン、ヘキサン、ヘプタン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ヘキサメチルホスホルアミド等のアミド系溶媒;ジメチルプロピレンウレア等のウレア系溶媒;ヘキサメチルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒等を用いることができる。これらは単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、その混合比は特に制限されない。好ましくはエーテル系溶媒、エステル系溶媒、芳香族炭化水素系溶媒、又はハロゲン系溶媒であり、更に好ましくはテトラヒドロフラン、メチルtert-ブチルエーテル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、トルエン、キシレン、エチルベンゼン、メシチレン、塩化メチレン、又は1,2-ジクロロエタンであり、特に好ましくはテトラヒドロフラン、メチルtert-ブチルエーテル、酢酸エチル、トルエン、又は塩化メチレンである。 The solvent in this step is not particularly limited as long as it does not affect the reaction. Specifically, for example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, and ethylene glycol are used. Solvents: ether solvents such as tetrahydrofuran, methyltetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ethyl acetate, n-propyl acetate, Ester solvents such as isopropyl acetate; Aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and methylcyclohexane; Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and mesitylene Solvents; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone; halogen solvents such as methylene chloride and 1,2-dichloroethane; sulfoxide solvents such as dimethyl sulfoxide; N, N-dimethylformamide, N, N-dimethyl Amide solvents such as acetamide, N, N-diethylacetamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε-caprolactam, hexamethylphosphoramide; ureas such as dimethylpropylene urea Solvents such as phosphonic acid triamide solvents such as hexamethylphosphonic acid triamide can be used. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited. Preferred are ether solvents, ester solvents, aromatic hydrocarbon solvents, or halogen solvents, more preferably tetrahydrofuran, methyl tert-butyl ether, ethyl acetate, n-propyl acetate, isopropyl acetate, toluene, xylene, ethylbenzene. , Mesitylene, methylene chloride, or 1,2-dichloroethane, particularly preferably tetrahydrofuran, methyl tert-butyl ether, ethyl acetate, toluene, or methylene chloride.
 前記溶媒の使用量は、多すぎるとコストや後処理の点で好ましくないため、上限としては、前記化合物(9)に対して好ましくは100倍重量であり、更に好ましくは50倍重量であり、特に好ましくは20倍重量である。下限としては、前記化合物(9)に対して好ましくは0.1倍重量であり、更に好ましくは0.5倍重量であり、特に好ましくは1倍重量である。 When the amount of the solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore, the upper limit is preferably 100 times weight, more preferably 50 times weight with respect to the compound (9). Particularly preferred is 20 times the weight. The lower limit is preferably 0.1 times the weight of the compound (9), more preferably 0.5 times the weight, and particularly preferably 1 times the weight.
 本反応における反応温度には特に制限はなく、適宜設定すればよいが、副生成物の生成を少なくするため、上限としては好ましくは120℃であり、更に好ましくは80℃であり、特に好ましくは50℃である。下限としては好ましくは-80℃であり、更に好ましくは-30℃であり、特に好ましくは0℃である。 The reaction temperature in this reaction is not particularly limited and may be set as appropriate. However, in order to reduce the production of by-products, the upper limit is preferably 120 ° C., more preferably 80 ° C., and particularly preferably 50 ° C. The lower limit is preferably −80 ° C., more preferably −30 ° C., and particularly preferably 0 ° C.
 本反応における反応時間には特に制限はなく、適宜設定すればよいが、上限としては好ましくは120時間であり、更に好ましくは100時間であり、特に好ましくは80時間である。下限として好ましくは0.1時間であり、更に好ましくは1時間であり、特に好ましくは3時間である。 The reaction time in this reaction is not particularly limited and may be appropriately set. However, the upper limit is preferably 120 hours, more preferably 100 hours, and particularly preferably 80 hours. The lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
 本工程の化合物(9)、グリシン誘導体、溶媒、及び必要に応じて添加される塩基の混合順序について特に制限はない。 There is no particular limitation on the mixing order of compound (9), glycine derivative, solvent, and base added as necessary in this step.
 反応後の処理としては、反応液から生成物を取得するための一般的な処理を行えばよい。例えば、反応終了後の反応液に水、一般的な抽出溶媒、例えば酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が得られる。 As a process after the reaction, a general process for obtaining a product from the reaction solution may be performed. For example, the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like. When the reaction solvent and the extraction solvent are distilled off from the resulting extract by an operation such as heating under reduced pressure, the desired product is obtained.
 このようにして得られた目的物は、後続工程に使用できる十分な純度を有しているが、純度を更に高める目的で、晶析、分別蒸留、転溶洗浄、カラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。 The target product thus obtained has a sufficient purity that can be used in the subsequent steps. However, in order to further increase the purity, crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used. The purity may be further increased by a simple purification method.
 次に、前記式(10)で表されるデヒドロアミノ酸誘導体を不斉水素化することにより、前記式(1)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体を製造する方法については、所望とする立体配置が得られる方法であれば特に制限はなく、例えば、光学活性な遷移金属錯体を触媒として水素添加によって還元する方法、若しくは酵母等の微生物により還元する方法などが挙げられ、なかでも光学活性な遷移金属錯体を触媒として水素添加によって還元する方法が好ましい。 Next, a method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by the formula (1) by asymmetric hydrogenation of the dehydroamino acid derivative represented by the formula (10) As for, there is no particular limitation as long as the desired configuration can be obtained. Examples thereof include a method of reducing by hydrogenation using an optically active transition metal complex as a catalyst, or a method of reducing by a microorganism such as yeast. Among them, a method of reducing by hydrogenation using an optically active transition metal complex as a catalyst is preferable.
 前記光学活性な遷移金属触媒として、好ましくは光学活性なリン含有配位子であり、更に好ましくは光学活性なビスホスフィンであり、特に好ましくは(R,R)-1,2-エタンジイルビス[(2-メトキシフェニル)フェニルホスフィン]((R,R)-DIPAMP)である。また、前記遷移金属触媒として好ましくは、パラジウム、ロジウム、白金、又はイリジウムであり、好ましくはロジウムである。ここで、触媒の使用量、反応温度、反応溶媒、水素圧などについては、特許文献2に記載の条件に従うとよい。 The optically active transition metal catalyst is preferably an optically active phosphorus-containing ligand, more preferably an optically active bisphosphine, and particularly preferably (R, R) -1,2-ethanediylbis [(2 -Methoxyphenyl) phenylphosphine] ((R, R) -DIPAMP). The transition metal catalyst is preferably palladium, rhodium, platinum, or iridium, preferably rhodium. Here, the usage amount of the catalyst, the reaction temperature, the reaction solvent, the hydrogen pressure, and the like may be in accordance with the conditions described in Patent Document 2.
 本工程により得られるR体又はS体の化合物(1)の光学純度は、好ましくは85%ee、より好ましくは88%ee以上、更に好ましくは89%ee以上である。 The optical purity of the R-form or S-form compound (1) obtained by this step is preferably 85% ee, more preferably 88% ee or more, and still more preferably 89% ee or more.
 本願は、2015年9月11日に出願された日本国特許出願第2015-180200号に基づく優先権の利益を主張するものである。2015年9月11日に出願された日本国特許出願第2015-180200号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2015-180200 filed on September 11, 2015. The entire contents of the specification of Japanese Patent Application No. 2015-180200 filed on September 11, 2015 are incorporated herein by reference.
 以下に、実施例を示して本発明を更に詳細に説明するが、これら実施例は本発明を何ら限定するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but these examples do not limit the present invention in any way.
 (参考例1)4-カルバモイル-2,6-ジメチル安息香酸の製造
 2,4,6-トリメチル安息香酸(500g、3.05mol)、水(6500mL)からなる溶液を5~10℃に冷却し、ここに水酸化ナトリウム(793g、19.83mol)を添加した。続いて過マンガン酸カリウム(1300g、8.23mol)を12時間で分割添加した。5~8℃で、16時間攪拌後、反応液に亜硫酸ナトリウム(20g)を添加し、15~20℃で1時間攪拌した。析出している二酸化マンガンを濾別し、5%水酸化ナトリウム水溶液(1000mL)で洗浄した。濾液に濃塩酸(約600mL)を加えて酸性化させることにより固体が析出し、10℃、5時間攪拌した。固体を減圧濾別し、水(3000mL)で洗浄後、湿結晶を別の容器に移した。ここに、メタノール(2500mL)、水(2500mL)を加えて3時間還流させた後、20~25℃まで冷却し、析出している固体を減圧濾別した。固体を水(2000mL)で洗浄後、減圧乾燥することにより、2,6-ジメチルベンゼン-1,4-ジカルボン酸を白色固体として得た(285g、収率:48%)。
Reference Example 1 Preparation of 4-carbamoyl-2,6-dimethylbenzoic acid A solution consisting of 2,4,6-trimethylbenzoic acid (500 g, 3.05 mol) and water (6500 mL) was cooled to 5-10 ° C. To this was added sodium hydroxide (793 g, 19.83 mol). Subsequently, potassium permanganate (1300 g, 8.23 mol) was added in portions over 12 hours. After stirring at 5-8 ° C. for 16 hours, sodium sulfite (20 g) was added to the reaction mixture, and the mixture was stirred at 15-20 ° C. for 1 hour. The precipitated manganese dioxide was filtered off and washed with a 5% aqueous sodium hydroxide solution (1000 mL). Concentrated hydrochloric acid (about 600 mL) was added to the filtrate and acidified to precipitate a solid, which was stirred at 10 ° C. for 5 hours. The solid was filtered off under reduced pressure, washed with water (3000 mL), and the wet crystals were transferred to another container. Methanol (2500 mL) and water (2500 mL) were added thereto, and the mixture was refluxed for 3 hours. The mixture was cooled to 20 to 25 ° C., and the precipitated solid was filtered off under reduced pressure. The solid was washed with water (2000 mL) and dried under reduced pressure to give 2,6-dimethylbenzene-1,4-dicarboxylic acid as a white solid (285 g, yield: 48%).
 前記2,6-ジメチルベンゼン-1,4-ジカルボン酸(285g、1.47mol)のメタノール溶液(1425mL)に、温度を10℃~20℃に保ちながら塩化チオニル(53g、0.441mol)を滴下した。滴下終了後、反応温度を50℃~55℃に設定し、8時間撹拌した。減圧濃縮を行いメタノールを除去した後、得られた残渣に22%アンモニア水溶液(4L)を添加、15~20℃で24時間撹拌した。その後、減圧濃縮を行い、反応溶液を1500~2000mL程度まで濃縮した後、濃塩酸(250mL)を滴下、0~5℃で5時間撹拌した。析出した固体を濾取し、水(1000mL)で結晶を洗浄することで、255gの表題化合物を得た(収率:89%)。
1H NMR(DMSO-d6):δ13.32(brs、1H)、7.96(s、1H)、7.59(s、2H)、7.38(s、1H)、2.31(s、6H)
Thionyl chloride (53 g, 0.441 mol) was dropped into a methanol solution (1425 mL) of 2,6-dimethylbenzene-1,4-dicarboxylic acid (285 g, 1.47 mol) while maintaining the temperature at 10 ° C. to 20 ° C. did. After completion of the dropwise addition, the reaction temperature was set to 50 ° C. to 55 ° C. and stirred for 8 hours. After concentration under reduced pressure to remove methanol, 22% aqueous ammonia (4 L) was added to the resulting residue, and the mixture was stirred at 15 to 20 ° C. for 24 hours. Thereafter, concentration was performed under reduced pressure, and the reaction solution was concentrated to about 1500 to 2000 mL, and then concentrated hydrochloric acid (250 mL) was added dropwise and stirred at 0 to 5 ° C. for 5 hours. The precipitated solid was collected by filtration, and the crystals were washed with water (1000 mL) to obtain 255 g of the title compound (yield: 89%).
1 H NMR (DMSO-d 6 ): δ 13.32 (brs, 1H), 7.96 (s, 1H), 7.59 (s, 2H), 7.38 (s, 1H), 2.31 ( s, 6H)
 (実施例1)4-カルバモイル-2,6-ジメチル安息香酸 N,N-ジエチルカルバミン酸無水物の製造
 参考例1で得られた化合物(255g、1.32mol)のN,N-ジメチルホルムアミド溶液(1275mL)に、ジエチルカルバモイルクロリド(270g、1.98mol)、トリエチルアミン(213g、2.11mol)、ピリジン(104g、1.32mol)を、反応温度28~32℃に保ちながら順次添加した。16時間撹拌後、反応溶液を0~10℃に冷却し、温度を保ちながら水(3825mL)を滴下した。得られたスラリー溶液を温度を保ちながら2~3時間撹拌し、析出した固体を濾取した。得られた固体を水(500mL)で洗浄し、減圧乾燥を行うことで339gの表題化合物を得た(収率:97%)。
Example 1 4-Carbamoyl-2,6-dimethylbenzoic acid Production of N, N-diethylcarbamic anhydride An N, N-dimethylformamide solution of the compound obtained in Reference Example 1 (255 g, 1.32 mol) To (1275 mL), diethylcarbamoyl chloride (270 g, 1.98 mol), triethylamine (213 g, 2.11 mol), and pyridine (104 g, 1.32 mol) were sequentially added while maintaining the reaction temperature at 28 to 32 ° C. After stirring for 16 hours, the reaction solution was cooled to 0 to 10 ° C., and water (3825 mL) was added dropwise while maintaining the temperature. The resulting slurry solution was stirred for 2 to 3 hours while maintaining the temperature, and the precipitated solid was collected by filtration. The obtained solid was washed with water (500 mL) and dried under reduced pressure to obtain 339 g of the title compound (yield: 97%).
 (実施例2)4-カルバモイル-2,6-ジメチルベンジルアルコールの製造
 実施例1で得られた固体(339g、1.28mol)にエタノール(6780mL)、水(339mL)、及び水素化ホウ素ナトリウム(154g、4.06mol)を10~20℃で続けて添加した。反応温度を30~35℃に上昇させ8時間撹拌後、析出している固体を濾別し、エタノール(200mL)で洗浄した。得られた濾液を減圧濃縮することで239gの表題化合物を得た(収率:100%)。
1H NMR(CDCl3):δ7.48(s、2H)、4.78(d、J=5.5Hz、2H)、2.49(s、6H)
Example 2 Preparation of 4-carbamoyl-2,6-dimethylbenzyl alcohol The solid (339 g, 1.28 mol) obtained in Example 1 was added to ethanol (6780 mL), water (339 mL), and sodium borohydride ( 154 g, 4.06 mol) was added continuously at 10-20 ° C. The reaction temperature was raised to 30 to 35 ° C. and the mixture was stirred for 8 hours. The precipitated solid was filtered off and washed with ethanol (200 mL). The obtained filtrate was concentrated under reduced pressure to obtain 239 g of the title compound (yield: 100%).
1 H NMR (CDCl 3 ): δ 7.48 (s, 2H), 4.78 (d, J = 5.5 Hz, 2H), 2.49 (s, 6H)
 (実施例3)4-カルバモイル-2,6-ジメチルベンジルブロミドの製造
 実施例2で得られた固体(239g、1.28mol)に塩化メチレン(2390mL)を添加し、0~10℃に冷却した。この溶液に三臭化リン(376g、1.39mol)を滴下し、6時間撹拌した。その後、温度を0~5℃に保ちながら水(2400mL)を1時間で添加し、更に5時間撹拌した。析出した固体を濾取し、冷水(500mL)で洗浄後、減圧乾燥を行った。得られた固体に酢酸エチル(800mL)を添加し、65~70℃で2時間撹拌後、ヘプタン(800mL)を添加、更に2時間撹拌した。25~30℃に冷却後、析出した固体をろ取し、ヘプタン(500mL)で固体を洗浄した。減圧乾燥を行うことで表題化合物204gを得た(収率:66%)。
1H NMR(CDCl3):δ7.48(s、2H)、6.16(brs、1H)、5.86(brs、1H)、4.55(s、2H)、2.46(s、6H)
Example 3 Production of 4-carbamoyl-2,6-dimethylbenzyl bromide To the solid obtained in Example 2 (239 g, 1.28 mol) was added methylene chloride (2390 mL) and cooled to 0-10 ° C. . To this solution, phosphorus tribromide (376 g, 1.39 mol) was added dropwise and stirred for 6 hours. Thereafter, water (2400 mL) was added over 1 hour while maintaining the temperature at 0 to 5 ° C., and the mixture was further stirred for 5 hours. The precipitated solid was collected by filtration, washed with cold water (500 mL), and dried under reduced pressure. Ethyl acetate (800 mL) was added to the obtained solid, and the mixture was stirred at 65 to 70 ° C. for 2 hr, heptane (800 mL) was added, and the mixture was further stirred for 2 hr. After cooling to 25-30 ° C., the precipitated solid was collected by filtration and washed with heptane (500 mL). The title compound 204g was obtained by drying under reduced pressure (yield: 66%).
1 H NMR (CDCl 3 ): δ 7.48 (s, 2H), 6.16 (brs, 1H), 5.86 (brs, 1H), 4.55 (s, 2H), 2.46 (s, 6H)
 (実施例4)(S)-3-(4-カルバモイル-2,6-ジメチルフェニル)-2-(ジフェニルメチリデンアミノ)プロパン酸tert-ブチルの製造
 (11bR)-(-)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド(9.3mg、0.012mmol)、4-カルバモイル-2,6-ジメチルベンジルブロミド(10g、41mmol)、2-(ジフェニルメチリデン)グリシンtert-ブチルエステル(13g、45mmol)にメチルtert-ブチルエーテル(207mL)を添加し、2℃まで冷却した。反応溶液を撹拌しながら50%水酸化カリウム水溶液(32g)を滴下し、2~10℃を保ちながら23時間撹拌した。水(100mL)を添加して抽出操作を行い、得られた有機層を更に水(100mL)で洗浄し、次工程に使用した(収率:100%、光学純度:90%ee)。なお光学純度は以下の分析で決定した。
Example 4 Production of tert-butyl (Sb) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- (diphenylmethylideneamino) propanoate (11bR)-(−)-4,4 Dibutyl-4,5-dihydro-2,6-bis (3,4,5-trifluorophenyl) -3H-dinaphtho [2,1-c: 1 ′, 2′-e] azepinium bromide (9 .3 mg, 0.012 mmol), 4-carbamoyl-2,6-dimethylbenzyl bromide (10 g, 41 mmol), 2- (diphenylmethylidene) glycine tert-butyl ester (13 g, 45 mmol) and methyl tert-butyl ether (207 mL) Was added and cooled to 2 ° C. While stirring the reaction solution, 50% aqueous potassium hydroxide solution (32 g) was added dropwise, and the mixture was stirred for 23 hours while maintaining 2 to 10 ° C. Extraction was performed by adding water (100 mL), and the obtained organic layer was further washed with water (100 mL) and used in the next step (yield: 100%, optical purity: 90% ee). The optical purity was determined by the following analysis.
〔光学純度分析〕
 カラム:ダイセル製AD-Hカラム
 移動相:Hex/IPA=95/5
 流速0.5mL/min
 波長:254nm
 カラム温度:30℃
(Optical purity analysis)
Column: Daicel AD-H column Mobile phase: Hex / IPA = 95/5
Flow rate 0.5mL / min
Wavelength: 254nm
Column temperature: 30 ° C
 (実施例5)(S)-3-(4-カルバモイル-2,6-ジメチルフェニル)-2-(tert-ブトキシカルボニルアミノ)プロパン酸の製造
 実施例4で得られた溶液(88g、20mmol)を60℃まで加熱し、メタンスルホン酸(19g、200mmol)を添加して2時間撹拌した。反応溶液を氷冷後、水(60mL)を添加し、室温で30分間撹拌した。抽出操作を行い、得られた水層のpHを30%水酸化ナトリウム水溶液で11に調整し、二炭酸ジtert-ブチル(5.2g、24mmol)を添加、pHを保ったまま40℃で9時間撹拌した。反応液にイソプロパノール(10mL)を添加し、氷冷後、撹拌しながら濃塩酸でpH3に調整した。そのままの温度で1時間撹拌後、析出した固体を濾取し、水/メタノール=2/1の混合溶液で洗浄した。減圧乾燥を行うことで6.41gの表題化合物が生成した(収率:95%、光学純度:92%ee)。なお光学純度は以下の分析で決定した。
Example 5 Production of (S) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- (tert-butoxycarbonylamino) propanoic acid Solution obtained in Example 4 (88 g, 20 mmol) Was heated to 60 ° C., methanesulfonic acid (19 g, 200 mmol) was added and stirred for 2 hours. The reaction solution was ice-cooled, water (60 mL) was added, and the mixture was stirred at room temperature for 30 min. Extraction was performed, and the pH of the obtained aqueous layer was adjusted to 11 with a 30% aqueous sodium hydroxide solution, ditert-butyl dicarbonate (5.2 g, 24 mmol) was added, and the pH was maintained at 40 ° C. while maintaining pH. Stir for hours. Isopropanol (10 mL) was added to the reaction solution, and after ice cooling, the pH was adjusted to 3 with concentrated hydrochloric acid while stirring. After stirring at the same temperature for 1 hour, the precipitated solid was collected by filtration and washed with a mixed solution of water / methanol = 2/1. Drying under reduced pressure yielded 6.41 g of the title compound (yield: 95%, optical purity: 92% ee). The optical purity was determined by the following analysis.
〔光学純度分析〕
 カラム:SUMICHIRAL OA-5000
 移動相:2mM硫酸銅水溶液/IPA=95/5
 流速1.0mL/min
 波長:254nm
 カラム温度:40℃
(Optical purity analysis)
Column: SUMICHIRAL OA-5000
Mobile phase: 2 mM copper sulfate aqueous solution / IPA = 95/5
Flow rate 1.0mL / min
Wavelength: 254nm
Column temperature: 40 ° C
 (実施例6)(S)-3-(4-カルバモイル-2,6-ジメチルフェニル)-2-(tert-ブトキシカルボニルアミノ)プロパン酸の製造
 実施例5で得られた固体(1.8g、5.4mmol)にメタノール(18mL)を添加し、60℃で30分間撹拌した。温度を保ったまま、水(4mL)を添加後、室温まで冷却し、更に30分間撹拌した。析出した固体を濾取し、水/メタノール=2/1の混合溶液で洗浄、減圧乾燥することで1.4gの固体を得た(収率:78%、光学純度:99%ee)。なお光学純度は以下の分析で決定した。
(Example 6) Production of (S) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- (tert-butoxycarbonylamino) propanoic acid The solid (1.8 g, (5.4 mmol) was added with methanol (18 mL) and stirred at 60 ° C. for 30 minutes. While maintaining the temperature, water (4 mL) was added, followed by cooling to room temperature and further stirring for 30 minutes. The precipitated solid was collected by filtration, washed with a mixed solution of water / methanol = 2/1, and dried under reduced pressure to obtain 1.4 g of a solid (yield: 78%, optical purity: 99% ee). The optical purity was determined by the following analysis.
〔光学純度分析〕
 カラム:SUMICHIRAL OA-5000
 移動相:2mM硫酸銅水溶液/IPA=95/5
 流速1.0mL/min
 波長:254nm
 カラム温度:40℃
1H NMR(DMSO):δ7.80(s、1H)、7.48(s、2H)、7.2(m、2H)、4.1(m、2H)、3.10(d、2H)、2.95(dd、1H)、2.32(s、6H)、1.30(s、9H)
(Optical purity analysis)
Column: SUMICHIRAL OA-5000
Mobile phase: 2 mM copper sulfate aqueous solution / IPA = 95/5
Flow rate 1.0mL / min
Wavelength: 254nm
Column temperature: 40 ° C
1 H NMR (DMSO): δ 7.80 (s, 1H), 7.48 (s, 2H), 7.2 (m, 2H), 4.1 (m, 2H), 3.10 (d, 2H) ), 2.95 (dd, 1H), 2.32 (s, 6H), 1.30 (s, 9H)
 (実施例7)4-カルバモイル-2,6-ジメチルベンジルクロリドの製造
 実施例2で得られた固体(179mg、1mmol)に塩化メチレン(5mL)とピリジン(7.8mg、0.1mmol)を添加し、5℃に冷却した。この溶液に塩化チオニル(376g、1.39mol)を添加し、1時間攪拌後、25℃に昇温して3時間撹拌した。析出している固体を濾取し、ジクロロメタン/ヘキサン=1/1(6mL)で固体を洗浄、減圧乾燥を行うことにより表題化合物198mgを得た(収率:100%)。
1H NMR(DMSO):δ8.1(brs、1H)、7.57(s、2H)、7.32(brs、1H)、4.80(s、2H)、2.40(s、6H)
Example 7 Preparation of 4-carbamoyl-2,6-dimethylbenzyl chloride To the solid obtained in Example 2 (179 mg, 1 mmol) was added methylene chloride (5 mL) and pyridine (7.8 mg, 0.1 mmol). And cooled to 5 ° C. To this solution was added thionyl chloride (376 g, 1.39 mol), and the mixture was stirred for 1 hour, heated to 25 ° C., and stirred for 3 hours. The precipitated solid was collected by filtration, washed with dichloromethane / hexane = 1/1 (6 mL), and dried under reduced pressure to obtain 198 mg of the title compound (yield: 100%).
1 H NMR (DMSO): δ 8.1 (brs, 1H), 7.57 (s, 2H), 7.32 (brs, 1H), 4.80 (s, 2H), 2.40 (s, 6H) )
 (実施例8)4-カルバモイル-2,6-ジメチルベンズアルデヒドの製造
 実施例2で得られた固体(179mg、1mmol)に、水(2mL)、炭酸水素ナトリウム(252mg、3mmol)、2,2,6,6-テトラメチルピペリジン-1-オキシル(7.8mg、0.05mmol)、酢酸エチル(2mL)を加え、5℃に冷却した。ここに、次亜塩素酸ナトリウム・5水和物(296mg、1.8mmol)と水(4mL)からなる溶液を10分で滴下した。5℃、1時間攪拌後、酢酸エチル(20mL)、水(5mL)を加えて抽出し、有機層を更に飽和食塩水(5mL)で洗浄、無水硫酸マグネシウムで乾燥した。有機層を減圧濃縮することにより白色スラリー(2mL)が得られ、ヘキサン2mLを加えて25℃、30分攪拌した。固体を減圧濾別し、ヘキサン(10mL)で洗浄、減圧乾燥することにより表題化合物を白色固体として得た(77mg、収率:42%)。
(Example 8) Preparation of 4-carbamoyl-2,6-dimethylbenzaldehyde To the solid (179 mg, 1 mmol) obtained in Example 2, water (2 mL), sodium hydrogen carbonate (252 mg, 3 mmol), 2, 2, 6,6-Tetramethylpiperidine-1-oxyl (7.8 mg, 0.05 mmol) and ethyl acetate (2 mL) were added and cooled to 5 ° C. A solution consisting of sodium hypochlorite pentahydrate (296 mg, 1.8 mmol) and water (4 mL) was added dropwise over 10 minutes. After stirring at 5 ° C. for 1 hour, ethyl acetate (20 mL) and water (5 mL) were added for extraction, and the organic layer was further washed with saturated brine (5 mL) and dried over anhydrous magnesium sulfate. A white slurry (2 mL) was obtained by concentrating the organic layer under reduced pressure, 2 mL of hexane was added, and the mixture was stirred at 25 ° C. for 30 minutes. The solid was filtered off under reduced pressure, washed with hexane (10 mL), and dried under reduced pressure to give the title compound as a white solid (77 mg, yield: 42%).
 (実施例9)3-(4-カルバモイル-2,6-ジメチルフェニル)-2-(tert-ブトキシカルボニルアミノ)アクリル酸メチルの製造
 実施例8で得られた固体(177mg、1mmol)に、N-(tert-ブトキシカルボニル)-ホスホノグリシントリメチルエステル(357mg、1.2mmol)、塩化メチレン(10mL)、1.8-ジアザビシクロ[5,4,0]ウンデク-7-エン(198mg、1.3mmol)を加えて25℃、4日間攪拌した。減圧下に塩化メチレンを留去し、残渣に酢酸エチル(3mL)、水(3mL)、濃塩酸(1.5mL)を加えて抽出し、有機層を更に水(5mL)で2回洗浄した。抽出液を減圧濃縮し、残渣に酢酸エチル(3mL)、ヘキサン(3mL)を加えると固体が析出した。25℃、15分攪拌後、固体を減圧濾別し、ヘキサン(10mL)で洗浄、減圧乾燥することにより表題化合物を白色固体として得た(268mg、収率:69%)
1H NMR(CD3OD):δ7.56(s、2H)、7.10(s、1H)、3.87(s、3H)、2.25(s、3H)、1.38(s、9H)
(Example 9) Preparation of methyl 3- (4-carbamoyl-2,6-dimethylphenyl) -2- (tert-butoxycarbonylamino) acrylate The solid (177 mg, 1 mmol) obtained in Example 8 was mixed with N -(Tert-butoxycarbonyl) -phosphonoglycine trimethyl ester (357 mg, 1.2 mmol), methylene chloride (10 mL), 1.8-diazabicyclo [5,4,0] undec-7-ene (198 mg, 1.3 mmol) ) And stirred at 25 ° C. for 4 days. Methylene chloride was distilled off under reduced pressure, and the residue was extracted with ethyl acetate (3 mL), water (3 mL) and concentrated hydrochloric acid (1.5 mL), and the organic layer was further washed twice with water (5 mL). The extract was concentrated under reduced pressure, and ethyl acetate (3 mL) and hexane (3 mL) were added to the residue to precipitate a solid. After stirring at 25 ° C. for 15 minutes, the solid was filtered off under reduced pressure, washed with hexane (10 mL), and dried under reduced pressure to give the title compound as a white solid (268 mg, yield: 69%).
1 H NMR (CD 3 OD): δ 7.56 (s, 2H), 7.10 (s, 1H), 3.87 (s, 3H), 2.25 (s, 3H), 1.38 (s) , 9H)
 (実施例10)(S)-3-(4-カルバモイル-2,6-ジメチルフェニル)-2-(tert-ブトキシカルボニルアミノ)プロパン酸メチルの製造
 実施例9で得られた固体(174mg、0.5mmol)、メタノール(20mL)、テトラフルオロホウ酸(R,R)-(-)-1,2-ビス[(o-メトキシフェニル)(フェニル)ホスフィノ]エタン(1,5-シクロオクタジエン)ロジウム(I)(3.8mg、1mol%)からなる溶液をオートクレーブに入れて、80気圧の水素雰囲気下、60℃、7日間反応させた。反応液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製することにより、表題化合物を白色固体として得た(100mg、収率:57%)。
1H NMR(CDCl3):δ7.46(s、2H)、6.09(brs、1H)、5.65(brs、1H)、5.12(d、1H)、4.5(m、1H)、3.65(s、3H)、3.11(d、2H)、2.39(s、6H)、1.36(s、9H)
 
Example 10 Preparation of methyl (S) -3- (4-carbamoyl-2,6-dimethylphenyl) -2- (tert-butoxycarbonylamino) propanoate The solid obtained in Example 9 (174 mg, 0 0.5 mmol), methanol (20 mL), tetrafluoroboric acid (R, R)-(−)-1,2-bis [(o-methoxyphenyl) (phenyl) phosphino] ethane (1,5-cyclooctadiene) A solution consisting of rhodium (I) (3.8 mg, 1 mol%) was put in an autoclave and reacted at 60 ° C. for 7 days in a hydrogen atmosphere of 80 atm. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to give the title compound as a white solid (100 mg, yield: 57%).
1 H NMR (CDCl 3 ): δ 7.46 (s, 2H), 6.09 (brs, 1H), 5.65 (brs, 1H), 5.12 (d, 1H), 4.5 (m, 1H), 3.65 (s, 3H), 3.11 (d, 2H), 2.39 (s, 6H), 1.36 (s, 9H)

Claims (13)

  1. 下記式(1);
    Figure JPOXMLDOC01-appb-C000001

    (式中、Pは水素原子、又はアミノ基の保護基を表す。R5は水素原子、置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C20のアラルキル基、又は置換基を有しても良いC3~12のシクロアルキル基を表す。*は不斉炭素原子を表す。)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法であって、下記式(2);
    Figure JPOXMLDOC01-appb-C000002

    で表される4-カルバモイル-2,6-ジメチル安息香酸と下記式(3);
    Figure JPOXMLDOC01-appb-C000003

    (式中、R1、R2は置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C12のアラルキル基、置換基を有しても良いC3~C12のシクロアルキル基を表す。またR1とR2が一緒になって環を形成してもよい。)で表されるカルバモイルクロリドと塩基を反応させることにより、下記式(4);
    Figure JPOXMLDOC01-appb-C000004

    (式中、R1、R2は前記に同じである。)で表される混合酸無水物を製造し、これを還元することにより、下記式(5);
    Figure JPOXMLDOC01-appb-C000005

    で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを製造する工程を含むことを特徴とする、前記式(1)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法。
    Following formula (1);
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, P represents a hydrogen atom or an amino-protecting group. R 5 represents a hydrogen atom, a C1-C12 alkyl group which may have a substituent, or a C6-C12 which may have a substituent. A C7 to C20 aralkyl group which may have a substituent, or a C3 to C12 cycloalkyl group which may have a substituent (* represents an asymmetric carbon atom). A method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative, comprising the following formula (2):
    Figure JPOXMLDOC01-appb-C000002

    4-carbamoyl-2,6-dimethylbenzoic acid represented by the following formula (3);
    Figure JPOXMLDOC01-appb-C000003

    (Wherein R 1 and R 2 are C1-C12 alkyl groups which may have a substituent, C6-C12 aryl groups which may have a substituent, C7- A C12 aralkyl group, a C3 to C12 cycloalkyl group which may have a substituent, and R 1 and R 2 may form a ring together.) By reacting a base, the following formula (4):
    Figure JPOXMLDOC01-appb-C000004

    (Wherein R 1 and R 2 are the same as above), and by reducing the mixed acid anhydride, the following formula (5):
    Figure JPOXMLDOC01-appb-C000005

    Of the optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by the above formula (1), which comprises a step of producing 4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the formula: Manufacturing method.
  2. 前記Pが水素原子、又はtert-ブトキシカルボニル基であり、R5が水素原子であり、*の絶対立体配置がSである、請求項1に記載の製造法。 The production method according to claim 1, wherein P is a hydrogen atom or a tert-butoxycarbonyl group, R 5 is a hydrogen atom, and the absolute configuration of * is S.
  3. 前記R1がメチル基、又はエチル基であり、R2がメチル基、又はエチル基である、請求項1、又は2に記載の製造法。 The production method according to claim 1, wherein R 1 is a methyl group or an ethyl group, and R 2 is a methyl group or an ethyl group.
  4. 前記化合物(4)をアルコール溶媒中、水素化ホウ素ナトリウムで還元することを特徴とする、請求項1~3のいずれかに記載の製造法。 The production method according to any one of claims 1 to 3, wherein the compound (4) is reduced with sodium borohydride in an alcohol solvent.
  5. 請求項1~4のいずれかに記載の工程で製造された下記式(5);
    Figure JPOXMLDOC01-appb-C000006

    で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを、下記式(6);
    Figure JPOXMLDOC01-appb-C000007

    (式中、Xは脱離基を表す。)で表される4-カルバモイル-2,6-ジメチルベンジル誘導体に変換し、これを塩基と光学活性な相関移動触媒存在下、下記式(7);
    Figure JPOXMLDOC01-appb-C000008

    (式中、R3は水素原子、又は置換基を有しても良いC6~C12のアリール基を表し、R4は置換基を有しても良いC6~C12のアリール基を表す。R6は置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C20のアラルキル基、又は置換基を有しても良いC3~12のシクロアルキル基を表す。)で表されるグリシンシッフ塩基と反応させることにより、下記式(8);
    Figure JPOXMLDOC01-appb-C000009

    (式中、R3、R4、R6、*は前記に同じである。)で表される光学活性アミノ酸誘導体を製造し、更に酸加水分解する、若しくは酸加水分解後にアミノ基を保護することを特徴とする、下記式(1);
    Figure JPOXMLDOC01-appb-C000010

    (式中、P、R5、*は前記に同じである。)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法。
    The following formula (5) produced by the process according to any one of claims 1 to 4;
    Figure JPOXMLDOC01-appb-C000006

    4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the following formula (6):
    Figure JPOXMLDOC01-appb-C000007

    (Wherein X represents a leaving group) is converted into a 4-carbamoyl-2,6-dimethylbenzyl derivative represented by the following formula (7) in the presence of a base and an optically active phase transfer catalyst. ;
    Figure JPOXMLDOC01-appb-C000008

    (Wherein R 3 represents a hydrogen atom or an optionally substituted C 6 to C 12 aryl group, and R 4 represents an optionally substituted C 6 to C 12 aryl group. R 6 Is a C1-C12 alkyl group which may have a substituent, a C6-C12 aryl group which may have a substituent, a C7-C20 aralkyl group which may have a substituent, or a substituent. And a glycine Schiff base represented by the following formula (8):
    Figure JPOXMLDOC01-appb-C000009

    (Wherein R 3 , R 4 , R 6 , and * are the same as those described above) are produced, and are further subjected to acid hydrolysis, or the amino group is protected after acid hydrolysis. The following formula (1):
    Figure JPOXMLDOC01-appb-C000010

    (Wherein P, R 5 and * are the same as defined above). A method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by:
  6. 前記Xが塩素原子、又は臭素原子であり、R3がフェニル基であり、R4がフェニル基であり、R6がメチル基、エチル基、又はtert-ブチル基である、請求項5に記載の製造法。 The X is a chlorine atom or a bromine atom, R 3 is a phenyl group, R 4 is a phenyl group, and R 6 is a methyl group, an ethyl group, or a tert-butyl group. Manufacturing method.
  7. 前記塩基が水酸化カリウムであり、前記光学活性な相関移動触媒が(11bR)-(-)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミドである、請求項5、又は6に記載の製造法。 The base is potassium hydroxide, and the optically active phase transfer catalyst is (11bR)-(−)-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4,5-tri The process according to claim 5 or 6, which is fluorophenyl) -3H-dinaphtho [2,1-c: 1 ', 2'-e] azepinium bromide.
  8. 請求項1~4のいずれかに記載の工程で製造された下記式(5);
    Figure JPOXMLDOC01-appb-C000011

    で表される4-カルバモイル-2,6-ジメチルベンジルアルコールを、下記式(9);
    Figure JPOXMLDOC01-appb-C000012

    で表される4-カルバモイル-2,6-ジメチルベンズアルデヒドに変換し、次にグリシン誘導体と反応させて、下記式(10);
    Figure JPOXMLDOC01-appb-C000013

    (式中、Pは水素原子、又はアミノ基の保護基である。R6は置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C20のアラルキル基、又は置換基を有しても良いC3~C12のシクロアルキル基を表す。)で表されるデヒドロアミノ酸誘導体を製造し、続いて不斉水素化を行うことを特徴とする、下記式(1);
    Figure JPOXMLDOC01-appb-C000014

    (式中、P、R5、*は前記に同じである。)で表される光学活性4-カルバモイル-2,6-ジメチルフェニルアラニン誘導体の製造法。
    The following formula (5) produced by the process according to any one of claims 1 to 4;
    Figure JPOXMLDOC01-appb-C000011

    4-carbamoyl-2,6-dimethylbenzyl alcohol represented by the following formula (9):
    Figure JPOXMLDOC01-appb-C000012

    Is converted to 4-carbamoyl-2,6-dimethylbenzaldehyde represented by the following formula, and then reacted with a glycine derivative to give the following formula (10):
    Figure JPOXMLDOC01-appb-C000013

    (Wherein P is a hydrogen atom or an amino-protecting group. R 6 is a C1-C12 alkyl group which may have a substituent, or a C6-C12 aryl group which may have a substituent. Represents a C7 to C20 aralkyl group which may have a substituent, or a C3 to C12 cycloalkyl group which may have a substituent. The following formula (1), characterized by carrying out simultaneous hydrogenation;
    Figure JPOXMLDOC01-appb-C000014

    (Wherein P, R 5 and * are the same as defined above). A method for producing an optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative represented by:
  9. 前記R6がメチル基、エチル基、又はtert-ブチル基である、請求項8に記載の製造法。 The production method according to claim 8, wherein R 6 is a methyl group, an ethyl group, or a tert-butyl group.
  10. 下記式(6);
    Figure JPOXMLDOC01-appb-C000015

    (式中、Xは脱離基を表す。)で表される4-カルバモイル-2,6-ジメチルベンジル誘導体。
    Following formula (6);
    Figure JPOXMLDOC01-appb-C000015

    A 4-carbamoyl-2,6-dimethylbenzyl derivative represented by the formula (wherein X represents a leaving group).
  11. 前記Xが塩素原子、又は臭素原子である、請求項10に記載の4-カルバモイル-2,6-ジメチルベンジル誘導体。 The 4-carbamoyl-2,6-dimethylbenzyl derivative according to claim 10, wherein X is a chlorine atom or a bromine atom.
  12. 下記式(4);
    Figure JPOXMLDOC01-appb-C000016

    (式中、R1、R2は置換基を有しても良いC1~C12のアルキル基、置換基を有しても良いC6~C12のアリール基、置換基を有しても良いC7~C12のアラルキル基、置換基を有しても良いC3~C12のシクロアルキル基を表す。またR1とR2が一緒になって環を形成してもよい。)で表される混合酸無水物。
    Following formula (4);
    Figure JPOXMLDOC01-appb-C000016

    (Wherein R 1 and R 2 are C1-C12 alkyl groups which may have a substituent, C6-C12 aryl groups which may have a substituent, C7- A C12 aralkyl group, a C3-C12 cycloalkyl group which may have a substituent, and R 1 and R 2 may form a ring together.) object.
  13. 前記R1がメチル基、又はエチル基であり、R2がメチル基、又はエチル基である、請求項12に記載の混合酸無水物。
     
    The mixed acid anhydride according to claim 12, wherein R 1 is a methyl group or an ethyl group, and R 2 is a methyl group or an ethyl group.
PCT/JP2016/076605 2015-09-11 2016-09-09 Method for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative WO2017043626A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680052341.0A CN108026032B (en) 2015-09-11 2016-09-09 Method for producing optically active 4-carbamoyl-2, 6-dimethylphenylalanine derivative
JP2017538538A JPWO2017043626A1 (en) 2015-09-11 2016-09-09 Process for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015180200 2015-09-11
JP2015-180200 2015-09-11

Publications (1)

Publication Number Publication Date
WO2017043626A1 true WO2017043626A1 (en) 2017-03-16

Family

ID=58239911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076605 WO2017043626A1 (en) 2015-09-11 2016-09-09 Method for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative

Country Status (3)

Country Link
JP (1) JPWO2017043626A1 (en)
CN (1) CN108026032B (en)
WO (1) WO2017043626A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110092735B (en) * 2018-01-31 2021-05-11 尚科生物医药(上海)有限公司 Preparation method of L-alanine derivative
CN111377832A (en) * 2018-12-27 2020-07-07 江苏联昇化学有限公司 Novel method for preparing irudoline intermediate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529527A (en) * 2004-03-15 2007-10-25 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Novel compounds as opioid receptor modulators
JP2008533141A (en) * 2005-03-14 2008-08-21 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Method for producing opioid modulator
JP2012506909A (en) * 2008-10-27 2012-03-22 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Method for preparing protected L-alanine derivative
JP2012250943A (en) * 2011-06-03 2012-12-20 Kaneka Corp Method for producing optically active 2,6-dimethylphenylalanine derivative
WO2015076346A1 (en) * 2013-11-21 2015-05-28 株式会社カネカ Method for producing optically active 2,6-dimethyltyrosine derivative

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842846A1 (en) * 2006-04-07 2007-10-10 Santhera Pharmaceuticals (Schweiz) AG Phenylpiperidine derivatives as melanocortin-4 receptor modulators
CN106459169A (en) * 2014-03-03 2017-02-22 康德生物医疗技术公司 Pharmaceutically relevant aromatic-cationic peptides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529527A (en) * 2004-03-15 2007-10-25 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Novel compounds as opioid receptor modulators
JP2008533141A (en) * 2005-03-14 2008-08-21 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Method for producing opioid modulator
JP2012506909A (en) * 2008-10-27 2012-03-22 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Method for preparing protected L-alanine derivative
JP2012250943A (en) * 2011-06-03 2012-12-20 Kaneka Corp Method for producing optically active 2,6-dimethylphenylalanine derivative
WO2015076346A1 (en) * 2013-11-21 2015-05-28 株式会社カネカ Method for producing optically active 2,6-dimethyltyrosine derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BENDER, AARON M. ET AL.: "Rapid Synthesis of Boc-2',6'-dimethyl-L-tyrosine and Derivatives and Incorporation into Opioid Peptidomimetics", ACS MED. CHEM. LETT., vol. 6, 19 October 2015 (2015-10-19), pages 1199 - 1203, XP055367676 *

Also Published As

Publication number Publication date
CN108026032B (en) 2020-09-29
CN108026032A (en) 2018-05-11
JPWO2017043626A1 (en) 2018-06-21

Similar Documents

Publication Publication Date Title
US9126906B2 (en) Asymmetric synthetic processes for the preparation of aminosulfone compounds
TW201623213A (en) Method of preparing (1R,2S)-2-(3,4-difluorophenyl)cyclopropy lamine
TWI397380B (en) Method for producing α-amino acid including phosphorus and its production intermediate
WO2017043626A1 (en) Method for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative
JP6048762B2 (en) Process for producing optically active β-hydroxy-α-aminocarboxylic acid ester
CN111925356B (en) Synthesis method and application of chiral quinoline-imidazoline ligand
AU2014220865B2 (en) Asymmetric synthesis of a substituted pyrrolidine-2-carboxamide
JP2009096791A (en) Method for producing amino acid
US8940919B2 (en) Compound, method for producing the same, and method for producing oseltamivir phosphate
JP2010090031A (en) Method of producing bicyclic proline compound
US20080194825A1 (en) Process for obtaining montelukast
JP5140776B1 (en) Process for producing 1-substituted-3-fluoroalkylpyrazole-4-carboxylic acid ester
WO2011019066A1 (en) Method for producing optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester
JP5569938B2 (en) Pyrrolidine derivative and method for producing the same
JP5350767B2 (en) Novel phosphine borane compound and method for producing the same, and method for producing hydrogen-phosphine borane compound
JP2008115178A (en) PRODUCTION METHOD OF DIPHENYLALANINE-Ni(II) COMPLEX
KR100743617B1 (en) Process for the preparation of chiral 3-hydroxy pyrrolidine compound and derivatives thereof having high optical purity
CN108250008B (en) Chiral resolution method of 3,3,3',3' -tetramethyl-1, 1 '-spiroindane-6, 6' -diol derivative
JP5471069B2 (en) Tetrahydropyridine derivative and method for producing the same
JP4308155B2 (en) Process for producing δ-iminomalonic acid derivative and catalyst therefor
JP2008115179A (en) Production method of optically active 2-[(n-benzylprolyl)amino]benzophenone compound
JP4524424B2 (en) Novel optically active diaminophosphine oxide and method for producing the same, diaminophosphine oxide-palladium complex and method for constructing asymmetric quaternary carbon using the same
CN107531624B (en) Pyrrolidine compounds
CN112876376A (en) Synthesis method of allyl aryl compound
JP2021070660A (en) Method for Producing Optically Active 2-Pyrrolidone Compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16844487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538538

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16844487

Country of ref document: EP

Kind code of ref document: A1