WO2015076346A1 - Method for producing optically active 2,6-dimethyltyrosine derivative - Google Patents

Method for producing optically active 2,6-dimethyltyrosine derivative Download PDF

Info

Publication number
WO2015076346A1
WO2015076346A1 PCT/JP2014/080811 JP2014080811W WO2015076346A1 WO 2015076346 A1 WO2015076346 A1 WO 2015076346A1 JP 2014080811 W JP2014080811 W JP 2014080811W WO 2015076346 A1 WO2015076346 A1 WO 2015076346A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dimethyltyrosine
optical purity
derivative
optically active
Prior art date
Application number
PCT/JP2014/080811
Other languages
French (fr)
Japanese (ja)
Inventor
西山 章
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2015076346A1 publication Critical patent/WO2015076346A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C249/00Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C249/02Preparation of compounds containing nitrogen atoms doubly-bound to a carbon skeleton of compounds containing imino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/08Separation; Purification; Stabilisation; Use of additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing an optically active 2,6-dimethyltyrosine derivative useful as a pharmaceutical intermediate.
  • (S) -4-acetyl-N-acetyl-2,6-dimethyltyrosine methyl ester is hydrolyzed with an aqueous hydrochloric acid solution and then Boc converted into (S) -N-Boc-2,6-dimethyl.
  • Tyrosine is produced and crystallized from a mixed solvent of ethyl acetate / hexane to obtain 96% ee (S) -N-Boc-2,6-dimethyltyrosine with a yield of 83% (Patent Document 1).
  • an optically active 2,6-dimethyltyrosine derivative having 93% ee is produced by asymmetric hydrogenation, but the optical purity is not improved at all even if crystallization is performed thereafter, and 93% ee.
  • the optically pure object cannot be obtained.
  • the background art 3 has not yet obtained an optically pure optically active 2,6-dimethyltyrosine derivative.
  • a complicated operation of asymmetric hydrolysis using an expensive acylase as in Background Art 2) is further required, and the yield is also reduced. There was a problem.
  • the background technology 1) and the background technology 2) use an ethyl acetate / heptane mixed solvent
  • the background technology 3) uses an ethyl acetate / hexane mixed solvent.
  • the present inventor has found a method for easily producing a high optical purity target by efficiently improving the optical purity of the optically active 2,6-dimethyltyrosine derivative, thereby completing the present invention. It came.
  • R 1 is a hydrogen atom or a protecting group for a phenolic hydroxyl group
  • R 2 is a protecting group for an amino group
  • * represents an asymmetric carbon atom.
  • the optical purity of the compound (1) before the precipitate formation is, for example, 91% ee or less.
  • R 1 is preferably a hydrogen atom or a benzyl group
  • R 2 is preferably a tert-butoxycarbonyl group.
  • An auxiliary solvent may be further mixed with the organic solvent.
  • the organic solvent is preferably at least one of isopropyl acetate, methyl tert-butyl ether, tetrahydrofuran, ethanol, isopropanol, acetone, methyl isobutyl ketone, or acetonitrile, and the auxiliary solvent is preferably hexane or heptane.
  • the compound (1) is, for example, the following formula (2); (Wherein R 3 represents a hydrogen atom or a protecting group for a phenolic hydroxyl group; X represents a chlorine atom, a bromine atom or an iodine atom) and the following formula (3); Wherein R 4 represents a hydrogen atom or an aryl group having 6 to 12 carbon atoms which may have a substituent, and R 5 represents an aryl group having 6 to 12 carbon atoms which may have a substituent.
  • R 6 represents an alkyl group having 1 to 12 carbon atoms.
  • a glycine Schiff base represented by the following formula (4) By reacting a glycine Schiff base represented by the following formula (4) with a base in the presence of an optically active phase transfer catalyst: (Wherein R 3 , R 4 , R 5 , R 6 , * are the same as above), and can be produced by further hydrolyzing and then protecting the amino group. It is.
  • R 3 is preferably an ethoxycarbonyl group or a benzyl group
  • R 4 is preferably a hydrogen atom or a phenyl group
  • R 5 is preferably a phenyl group
  • R 6 is preferably an ethyl group or a tert-butyl group
  • the absolute configuration is S is preferred.
  • Examples of the base include potassium hydroxide
  • examples of the optically active phase transfer catalyst include (11bR)-( ⁇ )-4,4-dibutyl-4,5-dihydro-2,6- Bis (3,4,5-trifluorophenyl) -3H-dinaphtho [2,1-c: 1 ′, 2′-e] azepinium bromide, (15bR) -14,14-dibutyl-5,6 7,8,14,15-Hexahydro-1,12-bis (3,4,5-trifluorophenyl) -13H- [1,6] benzodioxetino [9.8,7-def] [2] Benzazepinium bromide or N- (2-chlorobenzyl) cinconidinium bromide can be used.
  • an optically active 2,6-dimethyltyrosine derivative having a high optical purity required for a pharmaceutical intermediate can be easily and efficiently produced.
  • optically active 2,6-dimethyltyrosine derivative has the following formula (1):
  • R 1 represents a hydrogen atom or a protecting group for a phenol hydroxyl group.
  • the protecting group for the phenolic hydroxyl group include ether-type protecting groups such as aliphatic hydrocarbon groups (such as methyl, allyl and tert-butyl groups) and aralkyl groups (such as benzyl and p-nitrobenzyl groups); acyl Ester-type protecting groups such as groups (acetyl group, pivaloyl group, benzoyl group, trifluoroacetyl group, etc.); alkoxycarbonyl groups (methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, tert-butoxycarbonyl group, etc.), allyl Carbonate-type protecting groups such as oxycarbonyl group and benzyloxycarbonyl group; silyl groups such as trimethylsilyl group, triethylsilyl group, tert-butyldi
  • R 2 represents an amino-protecting group.
  • Carbamate-type protecting groups such as alkoxycarbonyl groups (methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, tert-butoxycarbonyl group), allyloxycarbonyl group, benzyloxycarbonyl group, fluoren-9-ylmethoxycarbonyl group, etc.
  • Acyl-type protecting groups such as formyl group, acetyl group, trifluoroacetyl group, pivaloyl group, benzoyl group and p-nitrobenzoyl group; sulfonyl-type protecting groups such as mesyl group, p-toluenesulfonyl group and p-nitrobenzenesulfonyl group And more preferably a tert-butoxycarbonyl group or a benzyloxycarbonyl group, and particularly preferably a tert-butoxycarbonyl group.
  • * In the formula (1) represents an asymmetric carbon atom.
  • the optically active 2,6-dimethyltyrosine derivative preferably has S in absolute configuration.
  • the optical purity of the 2,6-dimethyltyrosine derivative that can be used in the present invention is preferably 30% ee or more, more preferably 50% ee or more, and particularly preferably 70% ee or more.
  • a 2,6-dimethyltyrosine derivative having a high optical purity that is acceptable as a pharmaceutical intermediate can be produced from such an optically pure starting material by the production method of the present invention.
  • the production method of the 2,6-dimethyltyrosine derivative is not particularly limited.
  • the asymmetric hydrogenation method described in Non-Patent Document 1 or Patent Document 1 (see the following formula (A)) Is mentioned.
  • Tetrahedron Asymmetry 2000, 11, 2917-2925.
  • An optically active 2,6-dimethyltyrosine derivative may be produced using a chiral synthon as described in (see formula (B) below).
  • an arylmethyl halide compound and a glycine Schiff base are reacted in the presence of a base and an optically active phase transfer catalyst, then the reaction product is hydrolyzed, and the amino group is protected. Yes (see formula (C) below).
  • the arylmethyl halide compound has the following formula (2):
  • R 3 represents a hydrogen atom or a protecting group for a phenol hydroxyl group.
  • protecting groups for phenolic hydroxyl groups include ether type protecting groups such as aliphatic hydrocarbon groups (such as methyl, allyl and tert-butyl groups) and aralkyl groups (such as benzyl and p-nitrobenzyl groups); acyl groups ( Ester-type protecting groups such as acetyl group, pivaloyl group, benzoyl group, trifluoroacetyl group, etc .; alkoxycarbonyl groups (methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, tert-butoxycarbonyl group, etc.), allyloxycarbonyl Carbonate-type protecting groups such as benzyloxycarbonyl group; silyl groups such as trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl
  • X represents a chlorine atom, a bromine atom, or an iodine atom.
  • a bromine atom or an iodine atom is preferable.
  • the synthesis method of 4-benzyloxy-2,6-dimethylbenzyl bromide is Tetrahedron Asymmetry, 2000, 11, 2917-2925.
  • the method for synthesizing 4-iodomethyl-3,5-dimethylphenyl ethyl carbonate is described in Tetrahedron Asymmetry, 2009, 20, 1398-1401. It can be used as a reference.
  • the glycine Schiff base has the following formula (3):
  • R 4 represents a hydrogen atom or an aryl group having 6 to 12 carbon atoms which may have a substituent.
  • a hydrogen atom, a phenyl group, and a p-chlorophenyl group are preferable, and a hydrogen atom or a phenyl group is more preferable.
  • R 5 represents an aryl group having 6 to 12 carbon atoms which may have a substituent.
  • a phenyl group, a p-methylphenyl group, a p-chlorophenyl group, a p-nitrophenyl group, and a p-methoxyphenyl group are preferable, and a phenyl group is more preferable.
  • R 4 and R 5 are aryl groups
  • R 4 and R 5 may be the same as or different from each other.
  • R 6 represents an alkyl group having 1 to 12 carbon atoms. A methyl group, an ethyl group, an isopropyl group, a tert-butyl group, or a benzyl group is preferable, and an ethyl group or a tert-butyl group is more preferable.
  • the amount of the glycine Schiff base (3) to be used is preferably 1 to 10 equivalents (fold molar amount), more preferably 1 to 3 equivalents, and particularly preferably the arylmethyl halide (2). 1.1 to 1.5 equivalents.
  • reaction product (hereinafter sometimes referred to as tyrosine Schiff base) is represented by the following formula (4);
  • R 3 , R 4 , R 5 and R 6 are the same as described above. * Represents an asymmetric carbon atom, and S is preferably the absolute configuration.
  • Examples of the base include metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; carbonates such as sodium carbonate, potassium carbonate, and cesium carbonate.
  • Sodium hydroxide or potassium hydroxide is preferable, and potassium hydroxide is more preferable.
  • the amount of the base used is preferably 0.5 to 50 equivalents (double molar amount), more preferably 1 to 10 equivalents, relative to the aryl methyl halide (2).
  • optically active phase transfer catalyst examples include an optically active quaternary ammonium salt phase transfer catalyst and an optically active phase transfer catalyst complexed with metal atoms.
  • an optically active quaternary ammonium salt having a biphenyl skeleton and / or a binaphthyl skeleton, an optically active tartaric acid type quaternary ammonium salt, an optically active benzazepine type quaternary ammonium salt, or an optically active cinchona alkaloid type quaternary ammonium
  • examples thereof include a salt, or a nickel or copper catalyst complexed with an N, N′-bis (salicylidene) -1,2-cyclohexanediamine derivative (Jacobsen ligand).
  • a particularly preferred catalyst is an optically active quaternary ammonium salt having a biphenyl skeleton and / or a binaphthyl skeleton, an optically active benzazepine-type quaternary ammonium salt, or an optically active cinchona alkaloid-type quaternary ammonium salt.
  • the upper limit is preferably 1 equivalent (times mol) to the arylmethyl halide (2), and more preferably. Is 0.5 equivalent, particularly preferably 0.1 equivalent.
  • the lower limit is preferably 0.0001 equivalent, more preferably 0.001 equivalent, and particularly preferably 0.01 equivalent with respect to the arylmethyl halide (2).
  • the solvent for this reaction is not particularly limited as long as it does not affect the reaction.
  • alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, and ethylene glycol are used.
  • Solvents; ether solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ethyl acetate, n-propyl acetate, isopropyl acetate, etc.
  • Ester solvents aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene and mesitylene; acetone and methyl Ketone solvents such as tilketone; halogen solvents such as methylene chloride and 1,2-dichloroethane; sulfoxide solvents such as dimethyl sulfoxide; N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, Amide solvents such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl- ⁇ -caprolactam, hexamethylphosphoramide; urea solvents such as dimethylpropylene urea; hexamethylphosphonic acid triamide, etc.
  • aromatic hydrocarbon solvents
  • a phosphonic acid triamide solvent or the like can be used. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited.
  • ether solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; hydrocarbon solvents such as pentane, hexane, heptane; benzene, toluene, xylene, ethylbenzene, mesitylene, etc.
  • Aromatic hydrocarbon solvents such as methylene chloride and 1,2-dichloroethane, more preferably tetrahydrofuran, methyl tert-butyl ether, hexane, heptane, toluene, xylene, ethylbenzene, mesitylene, methylene chloride, or 1 2-dichloroethane, particularly preferably toluene, xylene, ethylbenzene, or mesitylene.
  • halogen solvents such as methylene chloride and 1,2-dichloroethane, more preferably tetrahydrofuran, methyl tert-butyl ether, hexane, heptane, toluene, xylene, ethylbenzene, mesitylene, methylene chloride, or 1 2-dichloroethane, particularly preferably toluene, xylene, ethylbenz
  • the upper limit is preferably 100 times weight, more preferably 50 times weight with respect to the arylmethyl halide (2). Yes, particularly preferably 20 times the weight.
  • the lower limit is preferably 0.1 times the weight, more preferably 0.5 times the weight, and particularly preferably 1 times the weight with respect to the arylmethyl halide (2).
  • the amount of water used is preferably 1 to 100 equivalents (fold moles), more preferably 3 to 30 equivalents, relative to the aryl methyl halide (2).
  • the reaction temperature in this reaction is not particularly limited and may be set as appropriate.
  • the upper limit is preferably 120 ° C., more preferably 50 ° C., and particularly preferably 30 ° C.
  • the lower limit is preferably ⁇ 80 ° C., more preferably ⁇ 50 ° C., and particularly preferably ⁇ 20 ° C.
  • the reaction time in this reaction is not particularly limited and may be appropriately set.
  • the upper limit is preferably 120 hours, more preferably 100 hours, and particularly preferably 80 hours.
  • the lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
  • a general process for obtaining a product from the reaction solution may be performed.
  • the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like.
  • the target product thus obtained has a sufficient purity that can be used in the subsequent steps.
  • crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used.
  • the purity may be further increased by a simple purification method.
  • an optically active 2,6-dimethyltyrosine is produced by hydrolyzing the protecting group of the tyrosine Schiff base (4), an ester, and optionally a phenol hydroxyl protecting group, and further protecting the amino group.
  • An optically active 2,6-dimethyltyrosine derivative represented by the formula (1) can be produced.
  • the hydrolysis is preferably acid hydrolysis, and the acid is preferably hydrochloric acid, hydrobromic acid, sulfuric acid or the like.
  • the amount of the acid used is preferably 1 to 100 equivalents, more preferably 3 to 30 equivalents, relative to the tyrosine Schiff base (4).
  • the amount of water used is preferably 1 to 100 times the weight, more preferably 3 to 30 times the weight of the tyrosine Schiff base (4).
  • the reaction temperature in this hydrolysis is not particularly limited and may be appropriately set.
  • the upper limit is preferably 120 ° C., and more preferably 100 ° C.
  • it is 0 degreeC as a minimum, More preferably, it is 20 degreeC.
  • Protecting conditions for amino groups may be appropriately set according to the type of protecting group. Specifically, for example, when tert-butoxycarbonyl protection or benzyloxycarbonyl protection is performed, an aqueous solution of optically active 2,6-dimethyltyrosine obtained by the hydrolysis is added with sodium hydroxide, potassium hydroxide, sodium carbonate, After neutralization by adding a base such as potassium carbonate, sodium hydrogen carbonate or potassium hydrogen carbonate, dibock (ie di-tert-butyl dicarbonate) or benzyloxycarbonyl chloride may be added. For the purpose of accelerating the reaction, the base may be further added to control the pH during the reaction to 7 or more.
  • a base such as potassium carbonate, sodium hydrogen carbonate or potassium hydrogen carbonate, dibock (ie di-tert-butyl dicarbonate) or benzyloxycarbonyl chloride may be added.
  • the base may be further added to control the pH during the reaction to 7 or more.
  • the optically active 2,6-dimethyltyrosine derivative (1) thus obtained has a sufficient purity that can be used in the subsequent steps.
  • a general method such as column chromatography is used.
  • the purity may be further increased by a purification method.
  • any of the optically active 2,6-dimethyltyrosine derivatives (1) produced by the method described above preferably has an optical purity acceptable as a pharmaceutical intermediate such as 98% ee or more, more preferably 99% ee or more.
  • an optical purity acceptable as a pharmaceutical intermediate such as 98% ee or more, more preferably 99% ee or more.
  • the present inventor preferentially precipitated the 2,6-dimethyltyrosine derivative (1) having a low optical purity as a solid from an organic solvent, whereby the 2,6-dimethyltyrosine derivative ( 1)
  • the optical purity of the optically active 2,6-dimethyltyrosine derivative (1) having high optical purity was successfully developed by improving the optical purity.
  • the 2,6-dimethyltyrosine derivative is considered to cause preferential crystallization in which the crystallized product has higher optical purity than the mother liquor (or at least the optical purity of the crystallized product does not decrease)
  • Non-patent Document 1 and Patent Document 1 described above 2,6-dimethyltyrosine derivatives were crystallized based on this idea. Contrary to these conventional ideas, specific 2,6-dimethyltyrosine derivatives (1) The present inventors have found that the optical purity of the crystallized product is poor and the optical purity of the mother liquor is increased.
  • organic solvent examples include ester solvents such as ethyl acetate, isopropyl acetate, and methyl propionate; ether solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, and tert-butyl methyl ether; methanol, ethanol, isopropanol Alcohol solvents such as N-butanol and ethylene glycol; ketone solvents such as acetone, methyl ethyl ketone, acetophenone and methyl isobutyl ketone; nitrile solvents such as acetonitrile, propionitrile and benzonitrile; N, N-dimethylformamide, N , N-dimethylacetamide, N, N-diethylformamide, N, N-dipropylformamide, N, N-dibutylformamide, dimethyl sulfoxide, N-methylpyrrolidone, 1,
  • the said organic solvent may be used independently and may be used in mixture of 2 or more types.
  • the mixing ratio is not particularly limited. If the amount of the solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore the upper limit is preferably 100 times or less, more preferably 50 times the weight of the 2,6-dimethyltyrosine derivative (1). Less than weight.
  • the lower limit is preferably 1-fold weight or more, more preferably 3-fold weight or more with respect to the 2,6-dimethyltyrosine derivative (1).
  • an auxiliary solvent may be added from the viewpoint of improving the recovery rate, improving the purity, and ensuring fluidity.
  • the auxiliary solvent include water; aliphatic hydrocarbon solvents such as hexane and heptane; halogen solvents such as dichloromethane, 1,2-dichloroethane, chloroform and chlorobenzene; aromatic hydrocarbons such as toluene, xylene and mesitylene. And system solvents. Preferred are water, hexane, heptane, methylene chloride and toluene, and more preferred is hexane or heptane.
  • the auxiliary solvent may be used alone or in combination of two or more. When mixing, the mixing ratio is not particularly limited.
  • the upper limit is preferably 100 times or less, more preferably 50 times the weight of the 2,6-dimethyltyrosine derivative (1). Less than weight.
  • the lower limit is preferably 1 or more times the weight, more preferably 3 or more times the weight of the compound (1).
  • the ratio thereof can be appropriately set according to the type of the solvent.
  • the amount of the organic solvent is, for example, 10 with respect to the total of the organic solvent and the auxiliary solvent. About 90% by weight, preferably about 20-80% by weight.
  • the amount of organic solvent is, for example, relative to the sum of the organic solvent and auxiliary solvent, It is about 10 to 80% by weight, preferably about 20 to 60% by weight, and more preferably about 25 to 45% by weight.
  • the method for precipitating the optically active 2,6-dimethyltyrosine derivative of low optical purity as a solid is not particularly limited, and examples thereof include the following methods.
  • A A method in which an optically active 2,6-dimethyltyrosine derivative is dissolved in an organic solvent and then cooled to precipitate a solid.
  • B A method in which an optically active 2,6-dimethyltyrosine derivative is dissolved in an organic solvent and then concentrated to precipitate a solid.
  • C A method of precipitating a solid by dissolving an optically active 2,6-dimethyltyrosine derivative in an organic solvent and further adding an auxiliary solvent.
  • D A method of precipitating a solid by dissolving an optically active 2,6-dimethyltyrosine derivative in an organic solvent and then concentrating and substituting with an auxiliary solvent.
  • solids may be precipitated by appropriately combining the methods (a) to (d). Further, when the solid is precipitated, a seed solid may be added.
  • the solid used as a seed include low optical purity (for example, 50% ee or less, preferably 30% ee or less, more preferably 10% ee or less), particularly racemic 2, which is an equivalent mixture of S and R isomers. 6-dimethyltyrosine derivatives are preferred.
  • the implementation temperature in the method for depositing solids (a) to (d) is not particularly limited. Preferably, the temperature may be set below the temperature at which the optically active 2,6-dimethyltyrosine derivative is dissolved in the solvent species or mixed solvent species to be used, depending on the target precipitation amount and solid quality.
  • optically active 2,6-dimethyltyrosine derivative of low optical purity deposited by the method of depositing the solids (a) to (d) is removed or separated by a method such as vacuum filtration, pressure filtration, or centrifugation. Can do. If the optical purity of the optically active 2,6-dimethyltyrosine derivative in the mother liquor is not sufficiently improved, the method of precipitating any of the solids (a) to (d) may be repeated again.
  • the optical purity of the 2,6-dimethyltyrosine derivative (1) before precipitation is, for example, It may be 91% ee or less, 90% ee or less, 85% ee or less, or 80% ee or less. Even from such low optical purity, the 2,6-dimethyltyrosine derivative (1) having high photochemical purity can be left in the mother liquor.
  • the optical purity of the 2,6-dimethyltyrosine derivative (1) before precipitation is, for example, 30% ee or more, preferably 50% ee or more, and more preferably 70% ee or more.
  • the optical purity (E 2 ) of the 2,6-dimethyltyrosine derivative (1) that precipitates may be lower than the optical purity (E 1 ) before the precipitation.
  • the optical purity (E 3 ) of the 2,6-dimethyltyrosine derivative (1) in the mother liquor can be increased by making the optical purity (E 2 ) of the precipitate lower than the optical purity before precipitation (E 1 ).
  • the difference (E 1 -E 2 ) between the optical purity (E 1 ) before precipitation and the optical purity (E 2 ) of the precipitate is, for example, 5% ee or more, preferably 20% ee or more, more preferably 40% ee. That's it.
  • the upper limit of the difference (E 1 ⁇ E 2 ) is not particularly limited. For example, it is 95% ee or less, preferably 80% ee or less, and may be 60% ee or less.
  • the amount of precipitated 2,6-dimethyltyrosine derivative (1) (A 2 ) is, for example, 1% by weight relative to the amount of 2,6-dimethyltyrosine derivative (1) before precipitation (A 1 ). Above, preferably 5% by weight or more, more preferably 10% by weight or more. The greater the amount (A 2 ) of the precipitate having low optical purity, the higher the optical purity of the mother liquor.
  • the upper limit of the amount of precipitate (A 2 ) is, for example, 60% by weight or less, preferably 40% by weight or less, relative to the amount (A 1 ) of the 2,6-dimethyltyrosine derivative (1) before precipitation. More preferably, it is 20% by weight or less, particularly 15% by weight or less.
  • the optical purity (E 3 ) of the 2,6-dimethyltyrosine derivative (1) in the mother liquor is, for example, 85% ee or more, preferably 90% ee or more, more preferably 95% ee or more, particularly preferably 98% ee. That's it.
  • the amount (A 3 ) of the 2,6-dimethyltyrosine derivative (1) in the mother liquor is, for example, 40% by weight or more with respect to the amount (A 1 ) of the 2,6-dimethyltyrosine derivative (1) before precipitation.
  • the amount is preferably 60% by weight or more, more preferably 80% by weight or more, and particularly preferably 8% by weight or more, for example, 99% by weight or less, 95% by weight or less, or 90% by weight or less.
  • the organic solvent and auxiliary solvent are distilled off by an operation such as heating under reduced pressure to thereby improve optical purity of optically active 2,6-dimethyl.
  • a tyrosine derivative can be obtained.
  • a target product having a high optical purity of 99% ee or more can be obtained as a solid.
  • the first solid precipitation / solid-liquid separation treatment (recrystallization) is performed in the next solid precipitation / solid-liquid separation treatment (recrystallization).
  • the precipitated solid tends to have higher optical purity than the mother liquor.
  • the extent to which the optical purity on the mother liquor side can be increased by solid precipitation / solid-liquid separation treatment will increase the optical purity of the precipitated solid by the next solid precipitation / solid-liquid separation treatment. Can be easily set experimentally.
  • the optical purity of the 2,6-dimethyltyrosine derivative on the mother liquor side is increased in the first solid precipitation / solid-liquid separation treatment, and the optical purity on the precipitate side in the next solid precipitation / solid-liquid separation treatment. It is possible to make the equipment common or shared in the first and subsequent solid precipitation / solid-liquid separation processes. Therefore, the equipment burden can be reduced. In addition, the target having high optical purity can be finally recovered as a solid separated from the liquid (mother liquid), and impurities other than the optical isomer can be easily removed.
  • Example 2 Synthesis of (S) -N-Boc-2,6-dimethyltyrosine N- (diphenylmethylene) glycine tert-butyl ester (384 mg, 1.3 mmol), N- (2-chlorobenzyl) cinchodi To a solution of nitrobromide (46 mg, 10 mol%), 85 wt% potassium hydroxide (330 mg, 5 mmol), water (234 mg), toluene (10 mL), 4-iodomethyl-3,5-dimethylphenyl ethyl carbonate (73.
  • a toluene solution (1.5 mL) of 4 wt%, 455 mg, 1 mmol) was added at 5 ° C. and stirred for 20 hours.
  • Water (10 mL) was added for washing, and water (10 mL) and concentrated hydrochloric acid (1 mL) were added to the organic layer, followed by stirring at 90 ° C. for 5 hours.
  • the organic layer was separated and the aqueous layer was washed with toluene (3 mL).
  • Tetrahydrofuran (5 mL), potassium carbonate (1105 mg, 8 mmol), and ditert-butyl dicarbonate (327 mg, 1.5 mmol) were sequentially added, and the mixture was stirred at 25 ° C. for 16 hours.
  • a toluene solution (10 mL) of (73.0 wt%, 915 mg, 2 mmol) was added at 5 ° C. and stirred for 3 hours.
  • Water (10 mL) was added for washing, and water (8 mL) and concentrated hydrochloric acid (2083 mg, 20 mmol) were added to the organic layer, followed by stirring at 90 ° C. for 16 hours. After cooling to room temperature, the organic layer was separated and the aqueous layer was washed with toluene (5 mL).
  • Tetrahydrofuran (5 mL), potassium carbonate (2211 mg, 16 mmol) and ditert-butyl dicarbonate (654 mg, 3 mmol) were sequentially added, and the mixture was stirred at 40 ° C. for 3 hours. After cooling to room temperature, the pH was adjusted to 2 with concentrated hydrochloric acid, and the mixture was extracted with ethyl acetate (20 mL). The organic layer was washed twice with water (5 mL) and concentrated under reduced pressure to give the title compound as a brown oil (yield: 88%, optical purity: 82.6% ee).
  • a toluene solution (10 mL) of ⁇ 3,5-dimethylphenyl ethyl carbonate (73.0 wt%, 915 mg, 2 mmol) was added at 20 ° C., and 2 And the mixture was stirred time.
  • Water (10 mL) was added for washing, and water (8 mL) and concentrated hydrochloric acid (2083 mg, 20 mmol) were added to the organic layer, followed by stirring at 90 ° C. for 5 hours. After cooling to room temperature, the organic layer was separated and the aqueous layer was washed with toluene (5 mL).
  • Example 14 Purification of (S) -N-Boc-2,6-dimethyltyrosine Crude (S) -N-Boc-2,6-dimethyltyrosine (55.6 wt%, prepared in Example 1) Acetone (10 mL) and hexane (15 mL) were added to 3.0 g (5.4 mmol) of optical purity: 88.9% ee). When a racemic seed crystal was added thereto, a solid was precipitated. After stirring at 25 ° C. for 1 hour, the solid was filtered under reduced pressure (yield: 7%, solid optical purity: 9.2% ee, mother liquid optical purity: 98.0% ee).
  • Example 15 Purification of (S) -N-Boc-2,6-dimethyltyrosine Crude (S) -N-Boc-2,6-dimethyltyrosine (55.6% by weight, prepared in Example 1) Acetone (10 mL) and hexane (25 mL) were added to 3.0 g (5.4 mmol) of optical purity: 88.9% ee). When a racemic seed crystal was added thereto, a solid was precipitated. After stirring at 25 ° C. for 1 hour, the solid was filtered under reduced pressure (yield: 8%, optical purity of solid: 11.0% ee, optical purity of mother liquor: 99.0% ee).
  • the present invention can be used for the production of an optically active 2,6-dimethyltyrosine derivative useful as a pharmaceutical intermediate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

An optically active 2,6-dimethyltyrosine derivative represented by formula (1) (wherein R1 represents a hydrogen atom or a protecting group for a phenol group; R2 represents a protecting group for an amino group; and * represents an asymmetric carbon atom) and having improved optical purity can be produced by precipitating and removing a solid material having low optical purity from a solution comprising the optically active 2,6-dimethyltyrosine derivative and an organic solvent to improve the optical purity of the derivative in the mother liquor.

Description

光学活性2,6-ジメチルチロシン誘導体の製造法Process for producing optically active 2,6-dimethyltyrosine derivative
 本発明は、医薬中間体として有用な光学活性2,6-ジメチルチロシン誘導体の製造法に関する。 The present invention relates to a method for producing an optically active 2,6-dimethyltyrosine derivative useful as a pharmaceutical intermediate.
 光学活性2,6-ジメチルチロシン誘導体の製造法としては、以下の方法が知られている。 The following methods are known as methods for producing optically active 2,6-dimethyltyrosine derivatives.
 背景技術1)
 酢酸4-ヨード-3,5-ジメチルフェニルとセリン誘導体を出発原料とし、(Z)-2-アセトアミド-3-(4-アセトキシ-2,6-ジメチルフェニル)-2-プロペン酸メチルを収率65%で製造する。次に、これを不斉ロジウム触媒存在下に水素化することにより、収率95%で93%eeの(S)-4-アセチル-N-アセチル-2,6-ジメチルチロシンメチルエステルを製造する。続いて、これをBoc化した後に、アセチル基をアルカリ加水分解することにより(S)-N-Boc-2,6-ジメチルチロシンを製造、酢酸エチル/ヘプタン混合溶媒から晶析することにより、収率91%で93%eeの(S)-N-Boc-2,6-ジメチルチロシンを取得する(非特許文献1)。
Background art 1)
Using 4-iodo-3,5-dimethylphenyl acetate and a serine derivative as starting materials, methyl (Z) -2-acetamido-3- (4-acetoxy-2,6-dimethylphenyl) -2-propenoate was obtained. Produced at 65%. Next, this is hydrogenated in the presence of an asymmetric rhodium catalyst to produce 93% ee (S) -4-acetyl-N-acetyl-2,6-dimethyltyrosine methyl ester in a yield of 95%. . Subsequently, this was converted to Boc, and then (S) -N-Boc-2,6-dimethyltyrosine was produced by alkaline hydrolysis of the acetyl group and crystallized from a mixed solvent of ethyl acetate / heptane. (S) -N-Boc-2,6-dimethyltyrosine having a rate of 91% and 93% ee is obtained (Non-patent Document 1).
 背景技術2)
 前記背景技術1)と同様の方法で94.6%eeの(S)-4-アセチル-N-アセチル-2,6-ジメチルチロシンメチルエステルを製造した後、アルカリ水溶液を用いてエステルを加水分解することにより、N-アセチル-2,6-ジメチルチロシンを製造する。続いて、アシラーゼを用いてアセチル基を不斉水解した後、Boc化することにより(S)-N-Boc-2,6-ジメチルチロシンを製造、酢酸エチル/ヘプタン混合溶媒から晶析することにより、収率54%で99%eeの(S)-N-Boc-2,6-ジメチルチロシンを取得する(非特許文献1)。
Background Art 2)
94.6% ee (S) -4-acetyl-N-acetyl-2,6-dimethyltyrosine methyl ester was prepared in the same manner as in Background Art 1), and then the ester was hydrolyzed using an aqueous alkaline solution. As a result, N-acetyl-2,6-dimethyltyrosine is produced. Subsequently, the acetyl group is asymmetrically hydrolyzed with acylase and then Boc converted to produce (S) -N-Boc-2,6-dimethyltyrosine, which is crystallized from an ethyl acetate / heptane mixed solvent. (S) -N-Boc-2,6-dimethyltyrosine having a yield of 54% and 99% ee is obtained (Non-patent Document 1).
 背景技術3)
 O-ベンジル-3,5-ジメチル-4-ヨードフェノールと2-アセトアミドアクリル酸メチルを出発原料とし、(Z)-2-アセトアミド-3-(4-ベンジロキシ-2,6-ジメチルフェニル)-2-プロペン酸メチルを収率70%で製造する。次に、これを不斉ロジウム触媒存在下に水素化した後、パラジウム触媒存在下に水素化して脱ベンジル化することにより、収率69%で(S)-N-アセチル-2,6-ジメチルチロシンメチルエステルを製造する。続いて、(S)-4-アセチル-N-アセチル-2,6-ジメチルチロシンメチルエステルを塩酸水溶液で加水分解した後、Boc化することにより(S)-N-Boc-2,6-ジメチルチロシンを製造、酢酸エチル/ヘキサン混合溶媒から晶析することにより、収率83%で96%eeの(S)-N-Boc-2,6-ジメチルチロシンを取得する(特許文献1)。
Background Art 3)
Starting from O-benzyl-3,5-dimethyl-4-iodophenol and methyl 2-acetamidoacrylate, (Z) -2-acetamido-3- (4-benzyloxy-2,6-dimethylphenyl) -2 -Produce methyl propenoate in 70% yield. Next, this was hydrogenated in the presence of an asymmetric rhodium catalyst and then debenzylated by hydrogenation in the presence of a palladium catalyst, thereby yielding (S) -N-acetyl-2,6-dimethyl in a yield of 69%. Produces tyrosine methyl ester. Subsequently, (S) -4-acetyl-N-acetyl-2,6-dimethyltyrosine methyl ester is hydrolyzed with an aqueous hydrochloric acid solution and then Boc converted into (S) -N-Boc-2,6-dimethyl. Tyrosine is produced and crystallized from a mixed solvent of ethyl acetate / hexane to obtain 96% ee (S) -N-Boc-2,6-dimethyltyrosine with a yield of 83% (Patent Document 1).
米国特許第4879398号公報U.S. Pat. No. 4,879,398
 前記背景技術1)では、不斉水素化により93%eeの光学活性2,6-ジメチルチロシン誘導体を製造しているが、その後に晶析しても光学純度が全く向上せずに93%eeのままであり、光学的に純粋な目的物を取得できていない。前記背景技術3)も同様に、光学的に純粋な光学活性2,6-ジメチルチロシン誘導体を取得するには至っていない。光学的に純粋な2,6-ジメチルチロシン誘導体を得るには背景技術2)のように、高価なアシラーゼを用いて不斉水解するという煩雑な操作が更に必要となり、収率も低くなる点に課題があった。
 なお、2,6-ジメチルチロシン誘導体を晶析するに当たって、背景技術1)及び背景技術2)では酢酸エチル/ヘプタン混合溶媒を用いており、背景技術3)では酢酸エチル/ヘキサン混合溶媒を用いており、これらは析出物の光学純度が高い点で共通しており、いわゆる優先晶析法に分類される。
In the background art 1), an optically active 2,6-dimethyltyrosine derivative having 93% ee is produced by asymmetric hydrogenation, but the optical purity is not improved at all even if crystallization is performed thereafter, and 93% ee. The optically pure object cannot be obtained. Similarly, the background art 3) has not yet obtained an optically pure optically active 2,6-dimethyltyrosine derivative. In order to obtain an optically pure 2,6-dimethyltyrosine derivative, a complicated operation of asymmetric hydrolysis using an expensive acylase as in Background Art 2) is further required, and the yield is also reduced. There was a problem.
In crystallization of the 2,6-dimethyltyrosine derivative, the background technology 1) and the background technology 2) use an ethyl acetate / heptane mixed solvent, and the background technology 3) uses an ethyl acetate / hexane mixed solvent. These are common in that the optical purity of the precipitate is high, and is classified as a so-called preferential crystallization method.
 本発明者は鋭意検討の結果、光学活性2,6-ジメチルチロシン誘導体の光学純度を効率よく向上させることにより、高光学純度の目的物を簡便に製造する方法を見出し、本発明を完成するに至った。 As a result of intensive studies, the present inventor has found a method for easily producing a high optical purity target by efficiently improving the optical purity of the optically active 2,6-dimethyltyrosine derivative, thereby completing the present invention. It came.
 即ち、本発明は、下記式(1); That is, the present invention provides the following formula (1);
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、R1は水素原子、又はフェノール水酸基の保護基である。R2はアミノ基の保護基である。*は不斉炭素原子を表す。)で表される光学活性2,6-ジメチルチロシン誘導体の製造法であって、2,6-ジメチルチロシン誘導体と有機溶媒からなる溶液から低光学純度の2,6-ジメチルチロシン誘導体を有機溶媒中から固体として析出させて除去することにより、母液中の2,6-ジメチルチロシン誘導体の光学純度を向上させることを特徴とする光学活性2,6-ジメチルチロシン誘導体の製造法である。
 前記化合物(1)の析出物の光学純度は、通常、析出前の光学純度よりも低い。析出物生成前の化合物(1)の光学純度は、例えば、91%ee以下である。前記R1は、水素原子又はベンジル基であるのが好ましく、R2はtert-ブトキシカルボニル基であるのが好ましい。前記有機溶媒に、更に補助的な溶媒を混合してもよい。前記有機溶媒としては、酢酸イソプロピル、メチルtert-ブチルエーテル、テトラヒドロフラン、エタノール、イソプロパノール、アセトン、メチルイソブチルケトン、又はアセトニトリルの少なくとも1つが好ましく、前記補助的な溶媒はヘキサン又はヘプタンが好ましい。
 前記化合物(1)は、例えば、下記式(2);
Figure JPOXMLDOC01-appb-C000006
(式中、R3は水素原子、又はフェノール水酸基の保護基を表す。Xは塩素原子、臭素原子、又はヨウ素原子を表す。)で表されるアリールメチルハライド化合物と下記式(3);
Figure JPOXMLDOC01-appb-C000007
(式中、R4は水素原子、又は置換基を有しても良い炭素数6~12のアリール基を表し、R5は置換基を有しても良い炭素数6~12のアリール基を表し、R6は炭素数1~12のアルキル基を表す。)で表されるグリシンシッフ塩基を、塩基と光学活性な相関移動触媒の存在下に反応させることにより、下記式(4);
Figure JPOXMLDOC01-appb-C000008
(式中、R3、R4、R5、R6、*は前記に同じである。)で表される光学活性化合物を製造し、更に加水分解した後にアミノ基を保護する事によって製造可能である。前記R3はエトキシカルボニル基又はベンジル基が好ましく、前記R4は水素原子又はフェニル基が好ましく、R5はフェニル基が好ましく、R6はエチル基又はtert-ブチル基が好ましく、絶対立体配置はSであるのが好ましい。前記塩基としては、例えば、水酸化カリウムが使用でき、前記光学活性な相関移動触媒としては、例えば、(11bR)-(-)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド、(15bR)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミド、又はN-(2-クロロベンジル)シンコニジニウムブロミドが使用できる。
Wherein R 1 is a hydrogen atom or a protecting group for a phenolic hydroxyl group, R 2 is a protecting group for an amino group, and * represents an asymmetric carbon atom. A method for producing a dimethyltyrosine derivative, wherein a low optical purity 2,6-dimethyltyrosine derivative is precipitated as a solid from an organic solvent and removed from a solution comprising the 2,6-dimethyltyrosine derivative and an organic solvent, This is a method for producing an optically active 2,6-dimethyltyrosine derivative characterized in that the optical purity of the 2,6-dimethyltyrosine derivative in the mother liquor is improved.
The optical purity of the precipitate of the compound (1) is usually lower than the optical purity before the precipitation. The optical purity of the compound (1) before the precipitate formation is, for example, 91% ee or less. R 1 is preferably a hydrogen atom or a benzyl group, and R 2 is preferably a tert-butoxycarbonyl group. An auxiliary solvent may be further mixed with the organic solvent. The organic solvent is preferably at least one of isopropyl acetate, methyl tert-butyl ether, tetrahydrofuran, ethanol, isopropanol, acetone, methyl isobutyl ketone, or acetonitrile, and the auxiliary solvent is preferably hexane or heptane.
The compound (1) is, for example, the following formula (2);
Figure JPOXMLDOC01-appb-C000006
(Wherein R 3 represents a hydrogen atom or a protecting group for a phenolic hydroxyl group; X represents a chlorine atom, a bromine atom or an iodine atom) and the following formula (3);
Figure JPOXMLDOC01-appb-C000007
Wherein R 4 represents a hydrogen atom or an aryl group having 6 to 12 carbon atoms which may have a substituent, and R 5 represents an aryl group having 6 to 12 carbon atoms which may have a substituent. R 6 represents an alkyl group having 1 to 12 carbon atoms.) By reacting a glycine Schiff base represented by the following formula (4) with a base in the presence of an optically active phase transfer catalyst:
Figure JPOXMLDOC01-appb-C000008
(Wherein R 3 , R 4 , R 5 , R 6 , * are the same as above), and can be produced by further hydrolyzing and then protecting the amino group. It is. R 3 is preferably an ethoxycarbonyl group or a benzyl group, R 4 is preferably a hydrogen atom or a phenyl group, R 5 is preferably a phenyl group, R 6 is preferably an ethyl group or a tert-butyl group, and the absolute configuration is S is preferred. Examples of the base include potassium hydroxide, and examples of the optically active phase transfer catalyst include (11bR)-(−)-4,4-dibutyl-4,5-dihydro-2,6- Bis (3,4,5-trifluorophenyl) -3H-dinaphtho [2,1-c: 1 ′, 2′-e] azepinium bromide, (15bR) -14,14-dibutyl-5,6 7,8,14,15-Hexahydro-1,12-bis (3,4,5-trifluorophenyl) -13H- [1,6] benzodioxetino [9.8,7-def] [2] Benzazepinium bromide or N- (2-chlorobenzyl) cinconidinium bromide can be used.
 本発明によれば、医薬中間体に求められる高光学純度の光学活性2,6-ジメチルチロシン誘導体を簡便且つ効率よく製造することができる。 According to the present invention, an optically active 2,6-dimethyltyrosine derivative having a high optical purity required for a pharmaceutical intermediate can be easily and efficiently produced.
 以下に本発明にかかる方法を詳細に述べる。 Hereinafter, the method according to the present invention will be described in detail.
 光学活性2,6-ジメチルチロシン誘導体は、下記式(1); The optically active 2,6-dimethyltyrosine derivative has the following formula (1):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
で表される。ここで、R1は水素原子、又はフェノール水酸基の保護基を表す。前記フェノール水酸基の保護基としては、脂肪族炭化水素基(メチル基、アリル基、tert-ブチル基など)、アラルキル基(ベンジル基、p-ニトロベンジル基など)などのエーテル型保護基;、アシル基(アセチル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基など)などのエステル型保護基;アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、tert-ブトキシカルボニル基など)、アリルオキシカルボニル基、ベンジルオキシカルボニル基などのカーボネート型保護基;トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基などのシリル基;メシル基、トシル基、p-ニトロベンゼンスルホニル基、トリフルオロメタンスルホニル基などのスルホニル基などが挙げられる。好ましくは水素原子、メチル基、アリル基、tert-ブチル基、ベンジル基、アセチル基、ピバロイル基、エトキシカルボニル基、メシル基、又はtert-ブチルジメチルシリル基であり、更に好ましくは水素原子、又はベンジル基であり、特に好ましくは水素原子である。 It is represented by Here, R 1 represents a hydrogen atom or a protecting group for a phenol hydroxyl group. Examples of the protecting group for the phenolic hydroxyl group include ether-type protecting groups such as aliphatic hydrocarbon groups (such as methyl, allyl and tert-butyl groups) and aralkyl groups (such as benzyl and p-nitrobenzyl groups); acyl Ester-type protecting groups such as groups (acetyl group, pivaloyl group, benzoyl group, trifluoroacetyl group, etc.); alkoxycarbonyl groups (methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, tert-butoxycarbonyl group, etc.), allyl Carbonate-type protecting groups such as oxycarbonyl group and benzyloxycarbonyl group; silyl groups such as trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, tert-butyldiphenylsilyl group; mesyl group, tosyl group, p-nitrobenzenesulfo group D Group, a sulfonyl group such as trifluoromethanesulfonyl group. A hydrogen atom, a methyl group, an allyl group, a tert-butyl group, a benzyl group, an acetyl group, a pivaloyl group, an ethoxycarbonyl group, a mesyl group, or a tert-butyldimethylsilyl group, more preferably a hydrogen atom or benzyl A group, particularly preferably a hydrogen atom.
 R2はアミノ基の保護基を表す。好ましくはアルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、tert-ブトキシカルボニル基)、アリルオキシカルボニル基、ベンジルオキシカルボニル基、フルオレン-9-イルメトキシカルボニル基などのカルバメート型保護基;ホルミル基、アセチル基、トリフルオロアセチル基、ピバロイル基、ベンゾイル基、p-ニトロベンゾイル基などのアシル型保護基;メシル基、p-トルエンスルホニル基、p-ニトロベンゼンスルホニル基などのスルホニル型保護基であり、更に好ましくはtert-ブトキシカルボニル基、又はベンジルオキシカルボニル基であり、特に好ましくはtert-ブトキシカルボニル基である。
 式(1)の*は不斉炭素原子を表す。前記光学活性2,6-ジメチルチロシン誘導体は、好ましくは絶対立体配置がSである。
R 2 represents an amino-protecting group. Carbamate-type protecting groups such as alkoxycarbonyl groups (methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, tert-butoxycarbonyl group), allyloxycarbonyl group, benzyloxycarbonyl group, fluoren-9-ylmethoxycarbonyl group, etc. Acyl-type protecting groups such as formyl group, acetyl group, trifluoroacetyl group, pivaloyl group, benzoyl group and p-nitrobenzoyl group; sulfonyl-type protecting groups such as mesyl group, p-toluenesulfonyl group and p-nitrobenzenesulfonyl group And more preferably a tert-butoxycarbonyl group or a benzyloxycarbonyl group, and particularly preferably a tert-butoxycarbonyl group.
* In the formula (1) represents an asymmetric carbon atom. The optically active 2,6-dimethyltyrosine derivative preferably has S in absolute configuration.
 本発明において使用可能な2,6-ジメチルチロシン誘導体の光学純度として好ましくは30%ee以上であり、更に好ましくは50%ee以上であり、特に好ましくは70%ee以上である。このような光学純度の出発物質から本発明の製造方法により、医薬中間体として許容される光学純度の高い2,6-ジメチルチロシン誘導体を製造することができる。 The optical purity of the 2,6-dimethyltyrosine derivative that can be used in the present invention is preferably 30% ee or more, more preferably 50% ee or more, and particularly preferably 70% ee or more. A 2,6-dimethyltyrosine derivative having a high optical purity that is acceptable as a pharmaceutical intermediate can be produced from such an optically pure starting material by the production method of the present invention.
 本発明において、2,6-ジメチルチロシン誘導体の製法は特に限定されないが、例えば非特許文献1、又は特許文献1に記載されているような不斉水素化法(下記式(A)を参照)が挙げられる。 In the present invention, the production method of the 2,6-dimethyltyrosine derivative is not particularly limited. For example, the asymmetric hydrogenation method described in Non-Patent Document 1 or Patent Document 1 (see the following formula (A)) Is mentioned.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 また、Tetrahedron Asymmetry,2000,11,2917-2925.に記載されているようなキラルシントンを利用して、光学活性2,6-ジメチルチロシン誘導体を製造してもよい(下記式(B)を参照)。 Also, Tetrahedron Asymmetry, 2000, 11, 2917-2925. An optically active 2,6-dimethyltyrosine derivative may be produced using a chiral synthon as described in (see formula (B) below).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 好ましくは、アリールメチルハライド化合物とグリシンシッフ塩基を、塩基と光学活性な相関移動触媒の存在下に反応させた後、反応生成物を加水分解し、更にアミノ基を保護することにより製造する方法である(下記式(C)を参照)。 Preferably, an arylmethyl halide compound and a glycine Schiff base are reacted in the presence of a base and an optically active phase transfer catalyst, then the reaction product is hydrolyzed, and the amino group is protected. Yes (see formula (C) below).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 前記アリールメチルハライド化合物は、下記式(2); The arylmethyl halide compound has the following formula (2):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
で表される。ここで、R3は水素原子、又はフェノール水酸基の保護基を表す。フェノール水酸基の保護基としては、脂肪族炭化水素基(メチル基、アリル基、tert-ブチル基など)、アラルキル基(ベンジル基、p-ニトロベンジル基など)などのエーテル型保護基;アシル基(アセチル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基など)などのエステル型保護基;アルコキシカルボニル基(メトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、tert-ブトキシカルボニル基など)、アリルオキシカルボニル基、ベンジルオキシカルボニル基などのカーボネート型保護基;トリメチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基などのシリル基;メシル基、トシル基、p-ニトロベンゼンスルホニル基、トリフルオロメタンスルホニル基などのスルホニル基などが挙げられる。好ましくはメチル基、アリル基、tert-ブチル基、ベンジル基、アセチル基、ピバロイル基、エトキシカルボニル基、メシル基、又はtert-ブチルジメチルシリル基であり、更に好ましくは、ベンジル基、又はエトキシカルボニル基である。Xは塩素原子、臭素原子、又はヨウ素原子を表す。好ましくは臭素原子、又はヨウ素原子である。なお、4-ベンジロキシ-2,6-ジメチルベンジルブロミドの合成法はTetrahedron Asymmetry,2000,11,2917-2925.に記載されており、4-ヨードメチル-3,5-ジメチルフェニル エチルカーボネートの合成法はTetrahedron Asymmetry,2009,20,1398-1401.に記載されているので、参考にすればよい。 It is represented by Here, R 3 represents a hydrogen atom or a protecting group for a phenol hydroxyl group. Examples of protecting groups for phenolic hydroxyl groups include ether type protecting groups such as aliphatic hydrocarbon groups (such as methyl, allyl and tert-butyl groups) and aralkyl groups (such as benzyl and p-nitrobenzyl groups); acyl groups ( Ester-type protecting groups such as acetyl group, pivaloyl group, benzoyl group, trifluoroacetyl group, etc .; alkoxycarbonyl groups (methoxycarbonyl group, ethoxycarbonyl group, isopropoxycarbonyl group, tert-butoxycarbonyl group, etc.), allyloxycarbonyl Carbonate-type protecting groups such as benzyloxycarbonyl group; silyl groups such as trimethylsilyl group, triethylsilyl group, tert-butyldimethylsilyl group, tert-butyldiphenylsilyl group; mesyl group, tosyl group, p-nitrobenzenesulfonyl group, A sulfonyl group such as trifluoromethane sulfonyl group. A methyl group, an allyl group, a tert-butyl group, a benzyl group, an acetyl group, a pivaloyl group, an ethoxycarbonyl group, a mesyl group, or a tert-butyldimethylsilyl group, more preferably a benzyl group or an ethoxycarbonyl group It is. X represents a chlorine atom, a bromine atom, or an iodine atom. A bromine atom or an iodine atom is preferable. In addition, the synthesis method of 4-benzyloxy-2,6-dimethylbenzyl bromide is Tetrahedron Asymmetry, 2000, 11, 2917-2925. The method for synthesizing 4-iodomethyl-3,5-dimethylphenyl ethyl carbonate is described in Tetrahedron Asymmetry, 2009, 20, 1398-1401. It can be used as a reference.
 前記グリシンシッフ塩基は、下記式(3); The glycine Schiff base has the following formula (3):
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
で表される。ここで、R4は水素原子、又は置換基を有しても良い炭素数6~12のアリール基を表す。好ましくは水素原子、フェニル基、p-クロロフェニル基であり、更に好ましくは水素原子、又はフェニル基である。R5は置換基を有しても良い炭素数6~12のアリール基を表す。好ましくはフェニル基、p-メチルフェニル基、p-クロロフェニル基、p-ニトロフェニル基、p-メトキシフェニル基であり、更に好ましくはフェニル基である。なおR4及びR5の両方がアリール基である場合、R4とR5は互いに同じであってもよく、異なっていてもよい。R6は炭素数1~12のアルキル基を表す。好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、又はベンジル基であり、更に好ましくはエチル基、又はtert-ブチル基である。 It is represented by Here, R 4 represents a hydrogen atom or an aryl group having 6 to 12 carbon atoms which may have a substituent. A hydrogen atom, a phenyl group, and a p-chlorophenyl group are preferable, and a hydrogen atom or a phenyl group is more preferable. R 5 represents an aryl group having 6 to 12 carbon atoms which may have a substituent. A phenyl group, a p-methylphenyl group, a p-chlorophenyl group, a p-nitrophenyl group, and a p-methoxyphenyl group are preferable, and a phenyl group is more preferable. When both R 4 and R 5 are aryl groups, R 4 and R 5 may be the same as or different from each other. R 6 represents an alkyl group having 1 to 12 carbon atoms. A methyl group, an ethyl group, an isopropyl group, a tert-butyl group, or a benzyl group is preferable, and an ethyl group or a tert-butyl group is more preferable.
 前記グリシンシッフ塩基(3)の使用量としては、前記アリールメチルハライド(2)に対して好ましくは1~10当量(倍モル量)であり、更に好ましくは1~3当量であり、特に好ましくは1.1~1.5当量である。 The amount of the glycine Schiff base (3) to be used is preferably 1 to 10 equivalents (fold molar amount), more preferably 1 to 3 equivalents, and particularly preferably the arylmethyl halide (2). 1.1 to 1.5 equivalents.
 前記反応生成物(以下、チロシンシッフ塩基と称する場合がある)は、下記式(4); The reaction product (hereinafter sometimes referred to as tyrosine Schiff base) is represented by the following formula (4);
Figure JPOXMLDOC01-appb-C000015
で表される。ここで、R3、R4、R5、R6は前記に同じである。*は不斉炭素原子を表し、絶対立体配置として好ましくはSである。
Figure JPOXMLDOC01-appb-C000015
It is represented by Here, R 3 , R 4 , R 5 and R 6 are the same as described above. * Represents an asymmetric carbon atom, and S is preferably the absolute configuration.
 前記塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウムなどの金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸セシウムなどの炭酸塩などが挙げられる。好ましくは水酸化ナトリウム、又は水酸化カリウムであり、更に好ましくは水酸化カリウムである。前記塩基の使用量としては、前記アリールメチルハライド(2)に対して好ましくは0.5~50当量(倍モル量)であり、更に好ましくは1~10当量である。 Examples of the base include metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; carbonates such as sodium carbonate, potassium carbonate, and cesium carbonate. Sodium hydroxide or potassium hydroxide is preferable, and potassium hydroxide is more preferable. The amount of the base used is preferably 0.5 to 50 equivalents (double molar amount), more preferably 1 to 10 equivalents, relative to the aryl methyl halide (2).
 前記光学活性な相関移動触媒としては、光学活性な4級アンモニウム塩系相関移動触媒、金属原子で錯形成された光学活性な相関移動触媒が挙げられる。好ましくは、ビフェニル骨格および/又はビナフチル骨格を有する光学活性な4級アンモニウム塩、光学活性な酒石酸型4級アンモニウム塩、光学活性なベンザゼピン型4級アンモニウム塩又は光学活性なシンコナアルカロイド型4級アンモニウム塩、或いはN,N’-ビス(サリシリデン)-1,2-シクロヘキサンジアミン誘導体(Jacobsen配位子)と錯形成されたニッケル、又は銅触媒が挙げられる。特に好ましい触媒は、ビフェニル骨格および/又はビナフチル骨格を有する光学活性な4級アンモニウム塩、光学活性なベンザゼピン型4級アンモニウム塩、又は光学活性なシンコナアルカロイド型4級アンモニウム塩である。
 具体的には、(11bS)-(+)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド、(11bR)-(-)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミドなどの丸岡触媒(登録商標);(S,S)-3,4,5-トリフルオロフェニル-NASブロミド、(R,R)-3,4,5-トリフルオロフェニル-NASブロミド、(S,S)-β-ナフチル-NASブロミド、(R,R)-β-ナフチル-NASブロミド、(15bR)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミド、(15bS)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミド;N-ベンジルシンコニジニウムクロリド;N-ベンジルシンコニウムクロリド;N-アントラセニルシンコニジニウムクロリド;N-アントラセニルシンコニウムクロリド;N-アントラセニルキニジニウムクロリド;N-アントラセニルキニウムクロリド;N-(2-クロロベンジル)シンコニジニウムブロミド;N-(2-クロロベンジル)シンコニウムブロミド;6,10-ジベンジル-N,N’-ジメチル-N,N,N’,N’-テトラキス(4-メチルベンジル)-1,4-ジオキサスピロ[4.5]デカン-(2R,3R)-ジイルビス(メチルアンモニウム)テトラフルオロボラート((R,R)-TaDiAS);6,10-ジベンジル-N,N’-ジメチル-N,N,N’,N’-テトラキス(4-メチルベンジル)-1,4-ジオキサスピロ[4.5]デカン-(2S,3S)-ジイルビス(メチルアンモニウム)テトラフルオロボラート((S,S)-TaDiAS)などが挙げられる。特に好ましくは(11bR)-(-)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド、(15bR)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミド、又はN-(2-クロロベンジル)シンコニジニウムブロミドである。
Examples of the optically active phase transfer catalyst include an optically active quaternary ammonium salt phase transfer catalyst and an optically active phase transfer catalyst complexed with metal atoms. Preferably, an optically active quaternary ammonium salt having a biphenyl skeleton and / or a binaphthyl skeleton, an optically active tartaric acid type quaternary ammonium salt, an optically active benzazepine type quaternary ammonium salt, or an optically active cinchona alkaloid type quaternary ammonium Examples thereof include a salt, or a nickel or copper catalyst complexed with an N, N′-bis (salicylidene) -1,2-cyclohexanediamine derivative (Jacobsen ligand). A particularly preferred catalyst is an optically active quaternary ammonium salt having a biphenyl skeleton and / or a binaphthyl skeleton, an optically active benzazepine-type quaternary ammonium salt, or an optically active cinchona alkaloid-type quaternary ammonium salt.
Specifically, (11bS)-(+)-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4,5-trifluorophenyl) -3H-dinaphtho [2,1- c: 1 ′, 2′-e] azepinium bromide, (11bR)-(−)-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4,5-trifluorophenyl) ) -3H-dinaphtho [2,1-c: 1 ′, 2′-e] Azepinium bromide and other Maruoka catalysts (registered trademark); (S, S) -3,4,5-trifluorophenyl-NAS Bromide, (R, R) -3,4,5-trifluorophenyl-NAS bromide, (S, S) -β-naphthyl-NAS bromide, (R, R) -β-naphthyl-NAS bromide, (15bR) -14,14-dibutyl-5,6,7,8,14,15-hexahydro- , 12-bis (3,4,5-trifluorophenyl) -13H- [1,6] benzodioxetino [9.8,7-def] [2] benzazepinium bromide, (15bS) -14 14-dibutyl-5,6,7,8,14,15-hexahydro-1,12-bis (3,4,5-trifluorophenyl) -13H- [1,6] benzodioxetino [9.8 , 7-def] [2] benzazepinium bromide; N-benzyl cinchonidinium chloride; N-benzyl cinchonium chloride; N-anthracenyl cinchonidinium chloride; N-anthracenyl cinchonium chloride; Cenylquinidinium chloride; N-anthracenylquinium chloride; N- (2-chlorobenzyl) cinconidinium bromide; N- (2-chlorobenzyl) Cinconium bromide; 6,10-dibenzyl-N, N′-dimethyl-N, N, N ′, N′-tetrakis (4-methylbenzyl) -1,4-dioxaspiro [4.5] decane- (2R, 3R) -diylbis (methylammonium) tetrafluoroborate ((R, R) -TaDiAS); 6,10-dibenzyl-N, N′-dimethyl-N, N, N ′, N′-tetrakis (4-methyl) And benzyl) -1,4-dioxaspiro [4.5] decane- (2S, 3S) -diylbis (methylammonium) tetrafluoroborate ((S, S) -TaDiAS). Particularly preferably, (11bR)-(−)-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4,5-trifluorophenyl) -3H-dinaphtho [2,1-c: 1 ', 2'-e] azepinium bromide, (15bR) -14,14-dibutyl-5,6,7,8,14,15-hexahydro-1,12-bis (3,4,5-tri Fluorophenyl) -13H- [1,6] benzodioxetino [9.8,7-def] [2] benzazepinium bromide or N- (2-chlorobenzyl) cinchonidinium bromide.
 前記光学活性な相関移動触媒の使用量としては、多すぎるとコスト面で好ましくないため、上限としては前記アリールメチルハライド(2)に対して、好ましくは1当量(倍モル)であり、更に好ましくは0.5当量であり、特に好ましくは0.1当量である。下限としては前記アリールメチルハライド(2)に対して、好ましくは0.0001当量であり、更に好ましくは0.001当量であり、特に好ましくは0.01当量である。 As the amount of the optically active phase transfer catalyst used is too large, it is not preferable in terms of cost. Therefore, the upper limit is preferably 1 equivalent (times mol) to the arylmethyl halide (2), and more preferably. Is 0.5 equivalent, particularly preferably 0.1 equivalent. The lower limit is preferably 0.0001 equivalent, more preferably 0.001 equivalent, and particularly preferably 0.01 equivalent with respect to the arylmethyl halide (2).
 本反応の溶媒としては、反応に影響を与えない限りにおいては特に制限はなく、具体的には例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、tert-ブタノール、エチレングリコール等のアルコール系溶媒;テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒;アセトニトリル、プロピオニトリル等のニトリル系溶媒;酢酸エチル、酢酸n-プロピル、酢酸イソプロピル等のエステル系溶媒;ペンタン、ヘキサン、ヘプタン、メチルシクロヘキサン等の脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチル-ε-カプロラクタム、ヘキサメチルホスホルアミド等のアミド系溶媒;ジメチルプロピレンウレア等のウレア系溶媒;ヘキサメチルホスホン酸トリアミド等のホスホン酸トリアミド系溶媒等を用いることができる。これらは単独で用いても良く、2種以上を併用してもよい。2種以上を併用する場合、その混合比は特に制限されない。好ましくはテトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、メチルtert-ブチルエーテル、エチレングリコールジメチルエーテル等のエーテル系溶媒;ペンタン、ヘキサン、ヘプタン等の炭化水素系溶媒;ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレン等の芳香族炭化水素系溶媒;塩化メチレン、1,2-ジクロロエタン等のハロゲン系溶媒であり、更に好ましくはテトラヒドロフラン、メチルtert-ブチルエーテル、ヘキサン、ヘプタン、トルエン、キシレン、エチルベンゼン、メシチレン、塩化メチレン、又は1,2-ジクロロエタンであり、特に好ましくはトルエン、キシレン、エチルベンゼン、又はメシチレンである。 The solvent for this reaction is not particularly limited as long as it does not affect the reaction. Specifically, for example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, tert-butanol, and ethylene glycol are used. Solvents; ether solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; nitrile solvents such as acetonitrile and propionitrile; ethyl acetate, n-propyl acetate, isopropyl acetate, etc. Ester solvents; aliphatic hydrocarbon solvents such as pentane, hexane, heptane and methylcyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene and mesitylene; acetone and methyl Ketone solvents such as tilketone; halogen solvents such as methylene chloride and 1,2-dichloroethane; sulfoxide solvents such as dimethyl sulfoxide; N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, Amide solvents such as N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, N-methyl-ε-caprolactam, hexamethylphosphoramide; urea solvents such as dimethylpropylene urea; hexamethylphosphonic acid triamide, etc. A phosphonic acid triamide solvent or the like can be used. These may be used alone or in combination of two or more. When using 2 or more types together, the mixing ratio is not particularly limited. Preferably ether solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane, methyl tert-butyl ether, ethylene glycol dimethyl ether; hydrocarbon solvents such as pentane, hexane, heptane; benzene, toluene, xylene, ethylbenzene, mesitylene, etc. Aromatic hydrocarbon solvents; halogen solvents such as methylene chloride and 1,2-dichloroethane, more preferably tetrahydrofuran, methyl tert-butyl ether, hexane, heptane, toluene, xylene, ethylbenzene, mesitylene, methylene chloride, or 1 2-dichloroethane, particularly preferably toluene, xylene, ethylbenzene, or mesitylene.
 前記溶媒の使用量は、多すぎるとコストや後処理の点で好ましくないため、上限としては、前記アリールメチルハライド(2)に対して好ましくは100倍重量であり、更に好ましくは50倍重量であり、特に好ましくは20倍重量である。下限としては、前記アリールメチルハライド(2)に対して好ましくは0.1倍重量であり、更に好ましくは0.5倍重量であり、特に好ましくは1倍重量である。 When the amount of the solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore, the upper limit is preferably 100 times weight, more preferably 50 times weight with respect to the arylmethyl halide (2). Yes, particularly preferably 20 times the weight. The lower limit is preferably 0.1 times the weight, more preferably 0.5 times the weight, and particularly preferably 1 times the weight with respect to the arylmethyl halide (2).
 本反応の反応速度を加速させる目的で更に水を添加してもよい。水の使用量としては、前記アリールメチルハライド(2)に対して好ましくは1~100当量(倍モル)であり、更に好ましくは3~30当量である。 Further water may be added for the purpose of accelerating the reaction rate of this reaction. The amount of water used is preferably 1 to 100 equivalents (fold moles), more preferably 3 to 30 equivalents, relative to the aryl methyl halide (2).
 本反応における反応温度には特に制限はなく、適宜設定すればよいが、副生成物の生成を少なくするため、上限としては好ましくは120℃であり、更に好ましくは50℃であり、特に好ましくは30℃である。下限としては好ましくは-80℃であり、更に好ましくは-50℃であり、特に好ましくは-20℃である。 The reaction temperature in this reaction is not particularly limited and may be set as appropriate. However, in order to reduce the production of by-products, the upper limit is preferably 120 ° C., more preferably 50 ° C., and particularly preferably 30 ° C. The lower limit is preferably −80 ° C., more preferably −50 ° C., and particularly preferably −20 ° C.
 本反応における反応時間には特に制限はなく、適宜設定すればよいが、上限としては好ましくは120時間であり、更に好ましくは100時間であり、特に好ましくは80時間である。下限として好ましくは0.1時間であり、更に好ましくは1時間であり、特に好ましくは3時間である。 The reaction time in this reaction is not particularly limited and may be appropriately set. However, the upper limit is preferably 120 hours, more preferably 100 hours, and particularly preferably 80 hours. The lower limit is preferably 0.1 hour, more preferably 1 hour, and particularly preferably 3 hours.
 本工程のアリールメチルハライド(2)、グリシンシッフ塩基(3)、光学活性な相関移動触媒、塩基、水、溶媒の混合順序について特に制限はない。 There is no particular limitation on the order of mixing the arylmethyl halide (2), glycine Schiff base (3), optically active phase transfer catalyst, base, water, and solvent in this step.
 反応後の処理としては、反応液から生成物を取得するための一般的な処理を行えばよい。例えば、反応終了後の反応液に水、一般的な抽出溶媒、例えば酢酸エチル、ジエチルエーテル、塩化メチレン、トルエン、ヘキサン等を用いて抽出操作を行う。得られた抽出液から減圧加熱等の操作により、反応溶媒及び抽出溶媒を留去すると目的物が得られる。 As a process after the reaction, a general process for obtaining a product from the reaction solution may be performed. For example, the reaction solution after completion of the reaction is subjected to an extraction operation using water, a general extraction solvent such as ethyl acetate, diethyl ether, methylene chloride, toluene, hexane and the like. When the reaction solvent and the extraction solvent are distilled off from the resulting extract by an operation such as heating under reduced pressure, the desired product is obtained.
 このようにして得られた目的物は、後続工程に使用できる十分な純度を有しているが、純度を更に高める目的で、晶析、分別蒸留、転溶洗浄、カラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。 The target product thus obtained has a sufficient purity that can be used in the subsequent steps. However, in order to further increase the purity, crystallization, fractional distillation, solution washing, column chromatography, etc. are generally used. The purity may be further increased by a simple purification method.
 続いて、前記チロシンシッフ塩基(4)のシッフ塩基、エステル、場合によりフェノール水酸基の保護基を加水分解することにより、光学活性2,6-ジメチルチロシンを製造し、更にアミノ基を保護することより、前記式(1)で表わされる光学活性2,6-ジメチルチロシン誘導体を製造することができる。 Subsequently, an optically active 2,6-dimethyltyrosine is produced by hydrolyzing the protecting group of the tyrosine Schiff base (4), an ester, and optionally a phenol hydroxyl protecting group, and further protecting the amino group. An optically active 2,6-dimethyltyrosine derivative represented by the formula (1) can be produced.
 前記加水分解は酸加水分解が好ましく、酸としては塩酸、臭化水素酸、硫酸などが好ましい。前記酸の使用量としては、前記チロシンシッフ塩基(4)に対して好ましくは1~100当量であり、更に好ましくは3~30当量である。水の使用量としては、前記チロシンシッフ塩基(4)に対して好ましくは1~100倍重量であり、更に好ましくは3~30倍重量である。 The hydrolysis is preferably acid hydrolysis, and the acid is preferably hydrochloric acid, hydrobromic acid, sulfuric acid or the like. The amount of the acid used is preferably 1 to 100 equivalents, more preferably 3 to 30 equivalents, relative to the tyrosine Schiff base (4). The amount of water used is preferably 1 to 100 times the weight, more preferably 3 to 30 times the weight of the tyrosine Schiff base (4).
 本加水分解における反応温度には特に制限はなく、適宜設定すればよいが、副生成物の生成を少なくするため、上限として好ましくは120℃であり、更に好ましくは100℃である。下限として好ましくは0℃であり、更に好ましくは20℃である。 The reaction temperature in this hydrolysis is not particularly limited and may be appropriately set. However, in order to reduce the formation of by-products, the upper limit is preferably 120 ° C., and more preferably 100 ° C. Preferably it is 0 degreeC as a minimum, More preferably, it is 20 degreeC.
 アミノ基の保護条件は、保護基の種類に応じて適宜設定すればよい。具体的には例えば、tert-ブトキシカルボニル保護、若しくはベンジルオキシカルボニル保護を行う場合、前記加水分解により得た光学活性2,6-ジメチルチロシンの水溶液に、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムなどの塩基を加えて中和した後、ジボック(すなわち二炭酸ジ-tert-ブチル)やベンジルオキシカルボニルクロリドを添加すればよい。また反応を加速する目的で、前記塩基を更に添加して反応中のpHを7以上にコントロールするとよい。 Protecting conditions for amino groups may be appropriately set according to the type of protecting group. Specifically, for example, when tert-butoxycarbonyl protection or benzyloxycarbonyl protection is performed, an aqueous solution of optically active 2,6-dimethyltyrosine obtained by the hydrolysis is added with sodium hydroxide, potassium hydroxide, sodium carbonate, After neutralization by adding a base such as potassium carbonate, sodium hydrogen carbonate or potassium hydrogen carbonate, dibock (ie di-tert-butyl dicarbonate) or benzyloxycarbonyl chloride may be added. For the purpose of accelerating the reaction, the base may be further added to control the pH during the reaction to 7 or more.
 このようにして得られた光学活性2,6-ジメチルチロシン誘導体(1)は、後続工程に使用できる十分な純度を有しているが、化学純度を高める目的でカラムクロマトグラフィー等の一般的な精製手法により、更に純度を高めてもよい。 The optically active 2,6-dimethyltyrosine derivative (1) thus obtained has a sufficient purity that can be used in the subsequent steps. However, in order to increase the chemical purity, a general method such as column chromatography is used. The purity may be further increased by a purification method.
 前述の方法で製造した光学活性2,6-ジメチルチロシン誘導体(1)はいずれも、好ましくは98%ee以上、更に好ましくは99%ee以上といった医薬中間体として許容される光学純度を有していない点に課題があった。そこで本発明者は鋭意検討の結果、低光学純度の2,6-ジメチルチロシン誘導体(1)を有機溶媒中から固体として優先的に析出させることにより、母液中の2,6-ジメチルチロシン誘導体(1)の光学純度を向上させることに成功し、高光学純度の光学活性2,6-ジメチルチロシン誘導体(1)を効率よく取得する方法を開発するに至った。従来、2,6-ジメチルチロシン誘導体は晶析物の方が母液よりも高光学純度になる(或いは少なくとも晶析物の光学純度が低下しない)優先晶析を生じるするものと考えられており、前掲非特許文献1や特許文献1ではこの発想の下で2,6-ジメチルチロシン誘導体を晶析していたが、こうした従来の考え方に反し、特定の2,6-ジメチルチロシン誘導体(1)は、晶析物の光学純度が劣り、母液の光学純度が高まることを本発明者は見いだした。 Any of the optically active 2,6-dimethyltyrosine derivatives (1) produced by the method described above preferably has an optical purity acceptable as a pharmaceutical intermediate such as 98% ee or more, more preferably 99% ee or more. There was a problem with no point. Therefore, as a result of intensive studies, the present inventor preferentially precipitated the 2,6-dimethyltyrosine derivative (1) having a low optical purity as a solid from an organic solvent, whereby the 2,6-dimethyltyrosine derivative ( 1) The optical purity of the optically active 2,6-dimethyltyrosine derivative (1) having high optical purity was successfully developed by improving the optical purity. Conventionally, the 2,6-dimethyltyrosine derivative is considered to cause preferential crystallization in which the crystallized product has higher optical purity than the mother liquor (or at least the optical purity of the crystallized product does not decrease) In Non-patent Document 1 and Patent Document 1 described above, 2,6-dimethyltyrosine derivatives were crystallized based on this idea. Contrary to these conventional ideas, specific 2,6-dimethyltyrosine derivatives (1) The present inventors have found that the optical purity of the crystallized product is poor and the optical purity of the mother liquor is increased.
 前記有機溶媒としては、酢酸エチル、酢酸イソプロピル、プロピオン酸メチル等のエステル系溶媒;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、tert-ブチルメチルエーテル等のエーテル系溶媒;メタノール、エタノール、イソプロパノール、n-ブタノール、エチレングリコール等のアルコール系溶媒;アセトン、メチルエチルケトン、アセトフェノン、メチルイソブチルケトン等のケトン系溶媒;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N,N-ジプロピルホルムアミド、N,N-ジブチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、1,3-ジメチルプロピレンウレア等の非プロトン性極性溶媒が挙げられる。好ましくは酢酸イソプロピル、メチルtert-ブチルエーテル、テトラヒドロフラン、エタノール、イソプロパノール、アセトン、メチルイソブチルケトン、アセトニトリルであり、更に好ましくはアセトンである。前記有機溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。混合する場合、その混合比は特に制限はない。溶媒の使用量は多すぎるとコストや後処理の点で好ましくないため、上限として好ましくは、前記2,6-ジメチルチロシン誘導体(1)に対して100倍重量以下であり、更に好ましくは50倍重量以下である。下限として好ましくは、前記2,6-ジメチルチロシン誘導体(1)に対して1倍重量以上であり、更に好ましくは3倍重量以上である。 Examples of the organic solvent include ester solvents such as ethyl acetate, isopropyl acetate, and methyl propionate; ether solvents such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, and tert-butyl methyl ether; methanol, ethanol, isopropanol Alcohol solvents such as N-butanol and ethylene glycol; ketone solvents such as acetone, methyl ethyl ketone, acetophenone and methyl isobutyl ketone; nitrile solvents such as acetonitrile, propionitrile and benzonitrile; N, N-dimethylformamide, N , N-dimethylacetamide, N, N-diethylformamide, N, N-dipropylformamide, N, N-dibutylformamide, dimethyl sulfoxide, N-methylpyrrolidone, 1,3 Aprotic polar solvents such as dimethyl propylene urea and the like. Preferred are isopropyl acetate, methyl tert-butyl ether, tetrahydrofuran, ethanol, isopropanol, acetone, methyl isobutyl ketone, and acetonitrile, and more preferred is acetone. The said organic solvent may be used independently and may be used in mixture of 2 or more types. When mixing, the mixing ratio is not particularly limited. If the amount of the solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore the upper limit is preferably 100 times or less, more preferably 50 times the weight of the 2,6-dimethyltyrosine derivative (1). Less than weight. The lower limit is preferably 1-fold weight or more, more preferably 3-fold weight or more with respect to the 2,6-dimethyltyrosine derivative (1).
 また、回収率の向上、純度の向上、流動性の確保などの観点から、更に補助的な溶媒を添加してもよい。前記補助的な溶媒としては、水;ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒;ジクロロメタン、1,2-ジクロロエタン、クロロホルム、クロロベンゼン等のハロゲン系溶媒;トルエン、キシレン、メシチレン等の芳香族炭化水素系溶媒が挙げられる。好ましくは、水、ヘキサン、ヘプタン、塩化メチレン、トルエンであり、更に好ましくはヘキサン、又はヘプタンである。前記補助的な溶媒は単独で用いてもよく、2種以上を混合して用いてもよい。混合する場合、その混合比は特に制限はない。溶媒の使用量は多すぎるとコストや後処理の点で好ましくないため、上限として好ましくは、前記2,6-ジメチルチロシン誘導体(1)に対して100倍重量以下であり、更に好ましくは50倍重量以下である。下限として好ましくは前記化合物(1)に対して1倍重量以上であり、更に好ましくは3倍重量以上である。
 有機溶媒と補助的な溶媒の両方を用いる場合、それらの割合は、溶媒の種類に応じて適宜設定できるが、有機溶媒の量は、有機溶媒と補助的溶媒の合計に対して、例えば、10~90重量%程度、好ましくは20~80重量%程度である。有機溶媒が前記好ましい溶媒(特にアセトン)であり、補助的溶媒が前記好ましい溶媒(特にヘキサン又はヘプタン)である場合、有機溶媒の量は、有機溶媒と補助的溶媒の合計に対して、例えば、10~80重量%程度、好ましくは20~60重量%程度、より好ましくは25~45重量%程度である。
Further, an auxiliary solvent may be added from the viewpoint of improving the recovery rate, improving the purity, and ensuring fluidity. Examples of the auxiliary solvent include water; aliphatic hydrocarbon solvents such as hexane and heptane; halogen solvents such as dichloromethane, 1,2-dichloroethane, chloroform and chlorobenzene; aromatic hydrocarbons such as toluene, xylene and mesitylene. And system solvents. Preferred are water, hexane, heptane, methylene chloride and toluene, and more preferred is hexane or heptane. The auxiliary solvent may be used alone or in combination of two or more. When mixing, the mixing ratio is not particularly limited. If the amount of the solvent used is too large, it is not preferable in terms of cost and post-treatment, and therefore the upper limit is preferably 100 times or less, more preferably 50 times the weight of the 2,6-dimethyltyrosine derivative (1). Less than weight. The lower limit is preferably 1 or more times the weight, more preferably 3 or more times the weight of the compound (1).
When both an organic solvent and an auxiliary solvent are used, the ratio thereof can be appropriately set according to the type of the solvent. The amount of the organic solvent is, for example, 10 with respect to the total of the organic solvent and the auxiliary solvent. About 90% by weight, preferably about 20-80% by weight. When the organic solvent is the preferred solvent (especially acetone) and the auxiliary solvent is the preferred solvent (especially hexane or heptane), the amount of organic solvent is, for example, relative to the sum of the organic solvent and auxiliary solvent, It is about 10 to 80% by weight, preferably about 20 to 60% by weight, and more preferably about 25 to 45% by weight.
 低光学純度の光学活性2,6-ジメチルチロシン誘導体を固体として析出させる方法としては特に限定されないが、例えば以下のような方法が挙げられる。
(a)光学活性2,6-ジメチルチロシン誘導体を有機溶媒に溶解後、冷却して固体を析出させる方法。
(b)光学活性2,6-ジメチルチロシン誘導体を有機溶媒に溶解後、濃縮することにより固体を析出させる方法。
(c)光学活性2,6-ジメチルチロシン誘導体を有機溶媒に溶解後、更に補助的な溶媒を添加することにより固体を析出させる方法。
(d)光学活性2,6-ジメチルチロシン誘導体を有機溶媒に溶解後、更に補助的な溶媒に濃縮置換することにより固体を析出させる方法。
The method for precipitating the optically active 2,6-dimethyltyrosine derivative of low optical purity as a solid is not particularly limited, and examples thereof include the following methods.
(A) A method in which an optically active 2,6-dimethyltyrosine derivative is dissolved in an organic solvent and then cooled to precipitate a solid.
(B) A method in which an optically active 2,6-dimethyltyrosine derivative is dissolved in an organic solvent and then concentrated to precipitate a solid.
(C) A method of precipitating a solid by dissolving an optically active 2,6-dimethyltyrosine derivative in an organic solvent and further adding an auxiliary solvent.
(D) A method of precipitating a solid by dissolving an optically active 2,6-dimethyltyrosine derivative in an organic solvent and then concentrating and substituting with an auxiliary solvent.
 また(a)~(d)の方法を適宜組み合わせて固体を析出させても良い。更に、固体を析出させる際には種となる固体を添加しても良い。種となる固体としては、低光学純度(例えば、50%ee以下、好ましくは30%ee以下、より好ましくは10%ee以下)、特にS体及びR体の等量混合物であるラセミの2,6-ジメチルチロシン誘導体が好ましい。
(a)~(d)の固体を析出させる方法における実施温度は、特に限定されない。好ましくは、目標とする析出量と固体の品質に応じて、使用する溶媒種又は混合溶媒種に光学活性2,6-ジメチルチロシン誘導体が溶解する温度未満で設定するとよい。
(a)~(d)の固体を析出させる方法により析出した低光学純度の光学活性2,6-ジメチルチロシン誘導体は、減圧濾過、加圧濾過、又は遠心分離等の方法により除去乃至分離することができる。また充分に母液中の光学活性2,6-ジメチルチロシン誘導体の光学純度が向上しなかった場合は、再度、前記(a)~(d)のいずれかの固体を析出させる方法を繰り返せばよい。
Further, solids may be precipitated by appropriately combining the methods (a) to (d). Further, when the solid is precipitated, a seed solid may be added. Examples of the solid used as a seed include low optical purity (for example, 50% ee or less, preferably 30% ee or less, more preferably 10% ee or less), particularly racemic 2, which is an equivalent mixture of S and R isomers. 6-dimethyltyrosine derivatives are preferred.
The implementation temperature in the method for depositing solids (a) to (d) is not particularly limited. Preferably, the temperature may be set below the temperature at which the optically active 2,6-dimethyltyrosine derivative is dissolved in the solvent species or mixed solvent species to be used, depending on the target precipitation amount and solid quality.
The optically active 2,6-dimethyltyrosine derivative of low optical purity deposited by the method of depositing the solids (a) to (d) is removed or separated by a method such as vacuum filtration, pressure filtration, or centrifugation. Can do. If the optical purity of the optically active 2,6-dimethyltyrosine derivative in the mother liquor is not sufficiently improved, the method of precipitating any of the solids (a) to (d) may be repeated again.
 上記低光学純度の2,6-ジメチルチロシン誘導体(1)を有機溶媒中から固体として優先的に析出させる方法では、析出前の2,6-ジメチルチロシン誘導体(1)の光学純度は、例えば、91%ee以下であり、90%ee以下、85%ee以下、又は80%ee以下であってもよい。こうした低い光学純度からでも、母液に高い光化学純度の2,6-ジメチルチロシン誘導体(1)を残すことができる。析出前の2,6-ジメチルチロシン誘導体(1)の光学純度は、例えば、30%ee以上、好ましくは50%ee以上であり、より好ましくは70%ee以上である。
 析出してくる2,6-ジメチルチロシン誘導体(1)の光学純度(E2)は、析出前の光学純度(E1)よりも低ければよい。析出物の光学純度(E2)が析出前光学純度(E1)より低くなることで、母液中の2,6-ジメチルチロシン誘導体(1)の光学純度(E3)を高める事が出来る。析出前の光学純度(E1)と析出物の光学純度(E2)の差(E1-E2)は、例えば、5%ee以上、好ましくは20%ee以上、より好ましくは40%ee以上である。この差(E1-E2)が大きい程、母液の光学純度を高めるのに有効である。なお前記差(E1-E2)の上限は特に限定されないが、例えば、95%ee以下、好ましくは80%ee以下であり、60%ee以下であってもよい。
 析出してくる2,6-ジメチルチロシン誘導体(1)の量(A2)は、析出前の2,6-ジメチルチロシン誘導体(1)の量(A1)に対して、例えば、1重量%以上、好ましくは5重量%以上、より好ましくは10重量%以上である。低光学純度である析出物の量(A2)が多い程、母液の光学純度が高まりやすい。なお析出物の量(A2)の上限は、析出前の2,6-ジメチルチロシン誘導体(1)の量(A1)に対して、例えば、60重量%以下、好ましくは40重量%以下、より好ましくは20重量%以下、特に15重量%以下である。析出物量(A2)が少ない程、母液中の高光学純度の2,6-ジメチルチロシン誘導体(1)を増やすことができる。
 母液中の2,6-ジメチルチロシン誘導体(1)の光学純度(E3)は、例えば、85%ee以上、好ましくは90%ee以上、より好ましくは95%ee以上、特に好ましくは98%ee以上である。母液中の2,6-ジメチルチロシン誘導体(1)の量(A3)は、析出前の2,6-ジメチルチロシン誘導体(1)の量(A1)に対して、例えば、40重量%以上、好ましくは60重量%以上、より好ましくは80重量%以上、特に好ましくは8重量5%以上であり、例えば、99重量%以下、95重量%以下、または90重量%以下である。
In the method of preferentially precipitating the low optical purity 2,6-dimethyltyrosine derivative (1) as a solid from an organic solvent, the optical purity of the 2,6-dimethyltyrosine derivative (1) before precipitation is, for example, It may be 91% ee or less, 90% ee or less, 85% ee or less, or 80% ee or less. Even from such low optical purity, the 2,6-dimethyltyrosine derivative (1) having high photochemical purity can be left in the mother liquor. The optical purity of the 2,6-dimethyltyrosine derivative (1) before precipitation is, for example, 30% ee or more, preferably 50% ee or more, and more preferably 70% ee or more.
The optical purity (E 2 ) of the 2,6-dimethyltyrosine derivative (1) that precipitates may be lower than the optical purity (E 1 ) before the precipitation. The optical purity (E 3 ) of the 2,6-dimethyltyrosine derivative (1) in the mother liquor can be increased by making the optical purity (E 2 ) of the precipitate lower than the optical purity before precipitation (E 1 ). The difference (E 1 -E 2 ) between the optical purity (E 1 ) before precipitation and the optical purity (E 2 ) of the precipitate is, for example, 5% ee or more, preferably 20% ee or more, more preferably 40% ee. That's it. The larger this difference (E 1 −E 2 ) is, the more effective it is to increase the optical purity of the mother liquor. The upper limit of the difference (E 1 −E 2 ) is not particularly limited. For example, it is 95% ee or less, preferably 80% ee or less, and may be 60% ee or less.
The amount of precipitated 2,6-dimethyltyrosine derivative (1) (A 2 ) is, for example, 1% by weight relative to the amount of 2,6-dimethyltyrosine derivative (1) before precipitation (A 1 ). Above, preferably 5% by weight or more, more preferably 10% by weight or more. The greater the amount (A 2 ) of the precipitate having low optical purity, the higher the optical purity of the mother liquor. The upper limit of the amount of precipitate (A 2 ) is, for example, 60% by weight or less, preferably 40% by weight or less, relative to the amount (A 1 ) of the 2,6-dimethyltyrosine derivative (1) before precipitation. More preferably, it is 20% by weight or less, particularly 15% by weight or less. The smaller the amount of precipitate (A 2 ), the more optically pure 2,6-dimethyltyrosine derivative (1) in the mother liquor can be increased.
The optical purity (E 3 ) of the 2,6-dimethyltyrosine derivative (1) in the mother liquor is, for example, 85% ee or more, preferably 90% ee or more, more preferably 95% ee or more, particularly preferably 98% ee. That's it. The amount (A 3 ) of the 2,6-dimethyltyrosine derivative (1) in the mother liquor is, for example, 40% by weight or more with respect to the amount (A 1 ) of the 2,6-dimethyltyrosine derivative (1) before precipitation. The amount is preferably 60% by weight or more, more preferably 80% by weight or more, and particularly preferably 8% by weight or more, for example, 99% by weight or less, 95% by weight or less, or 90% by weight or less.
 このような固体析出・固液分離処理によって得られた母液から、減圧加熱等の操作により前記有機溶媒や補助的な溶媒を留去することにより、光学純度の向上した光学活性2,6-ジメチルチロシン誘導体を取得することができる。更に塩化メチレン、トルエン、酢酸エチル、ヘキサンなどから再晶析することにより、99%ee以上の高光学純度の目的物を固体として取得することもできる。特に前記の固体析出・固液分離処理によって母液の2,6-ジメチルチロシン誘導体の光学純度が高くなる程、次の固体析出・固液分離処理(再晶析)では、最初の固体析出・固液分離処理とは逆に、析出固体の方が母液よりも光学純度が高くなり易い。なお、固体析出・固液分離処理でどの程度まで母液側の光学純度を上げれば、次の固体析出・固液分離処理で析出固体の光学純度が高まるかは2,6-ジメチルチロシン誘導体の種類に応じて実験的に簡便に設定できる。本発明の方法によれば、初めの固体析出・固液分離処理で母液側の2,6-ジメチルチロシン誘導体の光学純度を高め、次の固体析出・固液分離処理で析出物側の光学純度を高めることが可能であり、これら最初と次の固体析出・固液分離処理とで設備を共通化乃至共有化することが可能である。そのため、設備的負担を小さくできる。しかも高光学純度の目的物を最終的には固体として液体(母液)と分離して回収可能であり、光学異性体以外の不純物も容易に除去できる。 From the mother liquor obtained by such solid precipitation / solid-liquid separation treatment, the organic solvent and auxiliary solvent are distilled off by an operation such as heating under reduced pressure to thereby improve optical purity of optically active 2,6-dimethyl. A tyrosine derivative can be obtained. Furthermore, by recrystallization from methylene chloride, toluene, ethyl acetate, hexane, or the like, a target product having a high optical purity of 99% ee or more can be obtained as a solid. In particular, as the optical purity of the 2,6-dimethyltyrosine derivative of the mother liquor is increased by the solid precipitation / solid-liquid separation treatment, the first solid precipitation / solid-liquid separation treatment (recrystallization) is performed in the next solid precipitation / solid-liquid separation treatment (recrystallization). Contrary to the liquid separation treatment, the precipitated solid tends to have higher optical purity than the mother liquor. The extent to which the optical purity on the mother liquor side can be increased by solid precipitation / solid-liquid separation treatment will increase the optical purity of the precipitated solid by the next solid precipitation / solid-liquid separation treatment. Can be easily set experimentally. According to the method of the present invention, the optical purity of the 2,6-dimethyltyrosine derivative on the mother liquor side is increased in the first solid precipitation / solid-liquid separation treatment, and the optical purity on the precipitate side in the next solid precipitation / solid-liquid separation treatment. It is possible to make the equipment common or shared in the first and subsequent solid precipitation / solid-liquid separation processes. Therefore, the equipment burden can be reduced. In addition, the target having high optical purity can be finally recovered as a solid separated from the liquid (mother liquid), and impurities other than the optical isomer can be easily removed.
 本願は、2013年11月21日に出願された日本国特許出願第2013-240537号に基づく優先権の利益を主張するものである。2013年11月21日に出願された日本国特許出願第2013-240537号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2013-240537 filed on Nov. 21, 2013. The entire contents of the specification of Japanese Patent Application No. 2013-240537 filed on November 21, 2013 are incorporated herein by reference.
 以下に、実施例を示して本発明を更に詳細に説明するが、これら実施例は本発明を何ら限定するものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but these examples do not limit the present invention in any way.
 本実施例において、各化合物の収率、及び光学純度は高速液体クロマトグラフィーを用いて以下に記載の条件で分析した。
<化学純度分析系>
カラム:ナカライコスモシール5C18-AR-II 250x4.6mm、5μm
溶離液:アセトニトリル/リン酸バッファー水溶液(pH2.5)=1/1(v/v)
流速:1.0mL/min
カラム温度:40℃
検出波長:210nm
 保持時間:N-Boc-2,6-ジメチルチロシン=4.2分
O-ベンジル-N-Boc-2,6-ジメチルチロシン=24.0分
<光学純度分析系>
カラム:ダイセルキラルパックQN-AX 150x4.6mm、5μm
溶離液:メタノール/酢酸/酢酸アンモニウム=98/2/0.5(v/v/w)
流速:1.0mL/min
カラム温度:30℃
検出波長:254nm
 保持時間:(R)-N-Boc-2,6-ジメチルチロシン=4.0分
      (S)-N-Boc-2,6-ジメチルチロシン=4.6分
(R)-O-ベンジル-N-Boc-2,6-ジメチルチロシン=4.4分
(S)-O-ベンジル-N-Boc-2,6-ジメチルチロシン=4.8分
In this example, the yield and optical purity of each compound were analyzed using high performance liquid chromatography under the conditions described below.
<Chemical purity analysis system>
Column: Nakarai Cosmo Seal 5C18-AR-II 250 × 4.6 mm, 5 μm
Eluent: acetonitrile / phosphate buffer aqueous solution (pH 2.5) = 1/1 (v / v)
Flow rate: 1.0 mL / min
Column temperature: 40 ° C
Detection wavelength: 210 nm
Retention time: N-Boc-2,6-dimethyltyrosine = 4.2 minutes O-benzyl-N-Boc-2,6-dimethyltyrosine = 24.0 minutes <Optical purity analysis system>
Column: Daicel Chiral Pack QN-AX 150x4.6mm, 5μm
Eluent: methanol / acetic acid / ammonium acetate = 98/2 / 0.5 (v / v / w)
Flow rate: 1.0 mL / min
Column temperature: 30 ° C
Detection wavelength: 254 nm
Retention time: (R) -N-Boc-2,6-dimethyltyrosine = 4.0 minutes (S) -N-Boc-2,6-dimethyltyrosine = 4.6 minutes (R) -O-benzyl-N -Boc-2,6-dimethyltyrosine = 4.4 minutes (S) -O-benzyl-N-Boc-2,6-dimethyltyrosine = 4.8 minutes
(実施例1) (S)-N-Boc-2,6-ジメチルチロシンの合成
 N-(ジフェニルメチレン)グリシンtert-ブチルエステル(10.74g、36mmol)、丸岡触媒((11bR)-(-)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド)(21.0mg、0.1mol%)、85重量%水酸化カリウム(9.23g、140mmol)、水(6.55g)、トルエン(70mL)からなる溶液に、4-ヨードメチル-3,5-ジメチルフェニル エチルカーボネート(76.4重量%、12.23g、28mmol)のトルエン溶液(70mL)を20℃で添加し、17時間撹拌した。水70mLを加えて洗浄し、有機層に水(56mL)と濃塩酸(29.17g、280mmol)を加えて90℃、5時間撹拌した。室温まで冷却後、有機層を分離し、水層をトルエン(35mL)で洗浄した。テトラヒドロフラン(35mL)、炭酸カリウム(30.96g、224mmol)、二炭酸ジtert-ブチル(9.17g、42mmol)を順次加え、40℃、3時間撹拌した。室温まで冷却後、濃塩酸でpH=2に調整後、酢酸エチル(140mL)を加えて抽出した。有機層を水(35mL)で2回洗浄後、減圧濃縮することにより表題化合物を褐色油状物(15.17g)として得た(55.6重量%、収率:90%、光学純度:88.9%ee)。
Example 1 Synthesis of (S) —N-Boc-2,6-dimethyltyrosine N- (diphenylmethylene) glycine tert-butyl ester (10.74 g, 36 mmol), Maruoka Catalyst ((11bR)-(−) -4,4-dibutyl-4,5-dihydro-2,6-bis (3,4,5-trifluorophenyl) -3H-dinaphtho [2,1-c: 1 ', 2'-e] azepi Nitrobromide) (21.0 mg, 0.1 mol%), 85 wt% potassium hydroxide (9.23 g, 140 mmol), water (6.55 g), toluene (70 mL), 4-iodomethyl-3, A toluene solution (70 mL) of 5-dimethylphenyl ethyl carbonate (76.4 wt%, 12.23 g, 28 mmol) was added at 20 ° C., and the mixture was stirred for 17 hours. 70 mL of water was added for washing, and water (56 mL) and concentrated hydrochloric acid (29.17 g, 280 mmol) were added to the organic layer, followed by stirring at 90 ° C. for 5 hours. After cooling to room temperature, the organic layer was separated and the aqueous layer was washed with toluene (35 mL). Tetrahydrofuran (35 mL), potassium carbonate (30.96 g, 224 mmol), and ditert-butyl dicarbonate (9.17 g, 42 mmol) were sequentially added, and the mixture was stirred at 40 ° C. for 3 hours. After cooling to room temperature, the pH was adjusted to 2 with concentrated hydrochloric acid, and extracted with ethyl acetate (140 mL). The organic layer was washed twice with water (35 mL) and concentrated under reduced pressure to give the title compound as a brown oil (15.17 g) (55.6 wt%, yield: 90%, optical purity: 88. 9% ee).
(実施例2) (S)-N-Boc-2,6-ジメチルチロシンの合成
 N-(ジフェニルメチレン)グリシンtert-ブチルエステル(384mg、1.3mmol)、N-(2-クロロベンジル)シンコジニウムブロミド(46mg、10mol%)、85重量%水酸化カリウム(330mg、5mmol)、水(234mg)、トルエン(10mL)からなる溶液に、4-ヨードメチル-3,5-ジメチルフェニル エチルカーボネート(73.4重量%、455mg、1mmol)のトルエン溶液(1.5mL)を5℃で添加し、20時間撹拌した。水(10mL)を加えて洗浄し、有機層に水(10mL)と濃塩酸(1mL)を加えて90℃、5時間撹拌した。室温まで冷却後、有機層を分離し、水層をトルエン(3mL)で洗浄した。テトラヒドロフラン(5mL)、炭酸カリウム(1105mg、8mmol)、二炭酸ジtert-ブチル(327mg、1.5mmol)を順次加え、25℃、16時間撹拌した。濃塩酸でpH=2に調整後、酢酸エチル(20mL)を加えて抽出した。有機層を水(5mL)で2回洗浄後、減圧濃縮することにより表題化合物を褐色油状物として得た(収率:59%、光学純度:74.6%ee)。
(Example 2) Synthesis of (S) -N-Boc-2,6-dimethyltyrosine N- (diphenylmethylene) glycine tert-butyl ester (384 mg, 1.3 mmol), N- (2-chlorobenzyl) cinchodi To a solution of nitrobromide (46 mg, 10 mol%), 85 wt% potassium hydroxide (330 mg, 5 mmol), water (234 mg), toluene (10 mL), 4-iodomethyl-3,5-dimethylphenyl ethyl carbonate (73. A toluene solution (1.5 mL) of 4 wt%, 455 mg, 1 mmol) was added at 5 ° C. and stirred for 20 hours. Water (10 mL) was added for washing, and water (10 mL) and concentrated hydrochloric acid (1 mL) were added to the organic layer, followed by stirring at 90 ° C. for 5 hours. After cooling to room temperature, the organic layer was separated and the aqueous layer was washed with toluene (3 mL). Tetrahydrofuran (5 mL), potassium carbonate (1105 mg, 8 mmol), and ditert-butyl dicarbonate (327 mg, 1.5 mmol) were sequentially added, and the mixture was stirred at 25 ° C. for 16 hours. After adjusting to pH = 2 with concentrated hydrochloric acid, ethyl acetate (20 mL) was added for extraction. The organic layer was washed twice with water (5 mL) and concentrated under reduced pressure to give the title compound as a brown oil (yield: 59%, optical purity: 74.6% ee).
(実施例3) (S)-N-Boc-2,6-ジメチルチロシンの合成
 N-(ベンジリデン)グリシンエチルエステル/トルエン溶液(45重量%、1104mg、2.6mmol)、丸岡触媒((11bR)-(-)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド)(3mg、0.2mol%)、85重量%水酸化カリウム粉末(660mg、10mmol)、トルエン(10mL)からなる溶液に、4-ヨードメチル-3,5-ジメチルフェニル エチルカーボネート(73.0重量%、915mg、2mmol)のトルエン溶液(10mL)を5℃で添加し、3時間撹拌した。水(10mL)を加えて洗浄し、有機層に水(8mL)と濃塩酸(2083mg、20mmol)を加えて90℃、16時間撹拌した。室温まで冷却後、有機層を分離し、水層をトルエン(5mL)で洗浄した。テトラヒドロフラン(5mL)、炭酸カリウム(2211mg、16mmol)、二炭酸ジtert-ブチル(654mg、3mmol)を順次加え、40℃、3時間撹拌した。室温まで冷却後、濃塩酸でpH=2に調整し、酢酸エチル(20mL)を加えて抽出した。有機層を水(5mL)で2回洗浄後、減圧濃縮することにより表題化合物を褐色油状物として得た(収率:88%、光学純度:82.6%ee)。
Example 3 Synthesis of (S) -N-Boc-2,6-dimethyltyrosine N- (benzylidene) glycine ethyl ester / toluene solution (45 wt%, 1104 mg, 2.6 mmol), Maruoka catalyst ((11bR) -(-)-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4,5-trifluorophenyl) -3H-dinaphtho [2,1-c: 1 ', 2'- e] Azepinium bromide) (3 mg, 0.2 mol%), 85 wt% potassium hydroxide powder (660 mg, 10 mmol), and 4-iodomethyl-3,5-dimethylphenyl ethyl carbonate in a solution of toluene (10 mL). A toluene solution (10 mL) of (73.0 wt%, 915 mg, 2 mmol) was added at 5 ° C. and stirred for 3 hours. Water (10 mL) was added for washing, and water (8 mL) and concentrated hydrochloric acid (2083 mg, 20 mmol) were added to the organic layer, followed by stirring at 90 ° C. for 16 hours. After cooling to room temperature, the organic layer was separated and the aqueous layer was washed with toluene (5 mL). Tetrahydrofuran (5 mL), potassium carbonate (2211 mg, 16 mmol) and ditert-butyl dicarbonate (654 mg, 3 mmol) were sequentially added, and the mixture was stirred at 40 ° C. for 3 hours. After cooling to room temperature, the pH was adjusted to 2 with concentrated hydrochloric acid, and the mixture was extracted with ethyl acetate (20 mL). The organic layer was washed twice with water (5 mL) and concentrated under reduced pressure to give the title compound as a brown oil (yield: 88%, optical purity: 82.6% ee).
(実施例4) (S)-N-Boc-2,6-ジメチルチロシンの合成
 N-(ジフェニルメチレン)グリシンtert-ブチルエステル(768mg、2.6mmol)、丸岡触媒((15bR)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミド)(3mg、0.2mol%)、85重量%水酸化カリウム(660mg、10mmol)、水(468mg)、トルエン(10mL)からなる溶液に、4-ヨードメチル-3,5-ジメチルフェニル エチルカーボネート(73.0重量%、915mg、2mmol)のトルエン溶液(10mL)を20℃で添加し、20時間撹拌した。水(10mL)を加えて洗浄し、有機層に水(8mL)と濃塩酸(2083mg、20mmol)を加えて90℃、5時間撹拌した。室温まで冷却後、有機層を分離し、水層をトルエン(5mL)で洗浄した。テトラヒドロフラン(5mL)、炭酸カリウム(2211mg、16mmol)、ジボック(654mg、3mmol)を順次加え、25℃、16時間撹拌した。濃塩酸でpH=2に調整後、酢酸エチル(20mL)を加えて抽出した。有機層を水(5mL)で2回洗浄後、減圧濃縮することにより表題化合物を褐色油状物として得た(収率:71%、光学純度:87.8%ee)。
Example 4 Synthesis of (S) -N-Boc-2,6-dimethyltyrosine N- (diphenylmethylene) glycine tert-butyl ester (768 mg, 2.6 mmol), Maruoka Catalyst ((15bR) -14,14 -Dibutyl-5,6,7,8,14,15-hexahydro-1,12-bis (3,4,5-trifluorophenyl) -13H- [1,6] benzodioxetino [9.8, 7-def] [2] benzazepinium bromide) (3 mg, 0.2 mol%), 85 wt% potassium hydroxide (660 mg, 10 mmol), water (468 mg), toluene (10 mL) in a solution of 4-iodomethyl. A toluene solution (10 mL) of −3,5-dimethylphenyl ethyl carbonate (73.0 wt%, 915 mg, 2 mmol) was added at 20 ° C., and 2 And the mixture was stirred time. Water (10 mL) was added for washing, and water (8 mL) and concentrated hydrochloric acid (2083 mg, 20 mmol) were added to the organic layer, followed by stirring at 90 ° C. for 5 hours. After cooling to room temperature, the organic layer was separated and the aqueous layer was washed with toluene (5 mL). Tetrahydrofuran (5 mL), potassium carbonate (2211 mg, 16 mmol) and dibok (654 mg, 3 mmol) were sequentially added, and the mixture was stirred at 25 ° C. for 16 hours. After adjusting to pH = 2 with concentrated hydrochloric acid, ethyl acetate (20 mL) was added for extraction. The organic layer was washed twice with water (5 mL) and concentrated under reduced pressure to give the title compound as a brown oil (yield: 71%, optical purity: 87.8% ee).
(実施例5~12) (S)-N-Boc-2,6-ジメチルチロシンの精製
 73.3%eeの(S)-N-Boc-2,6-ジメチルチロシン(90.3重量%、342mg、1mmol)に有機溶媒を加えて加温溶解させた後、冷却して晶析を行った。必要に応じて補助的な溶媒を加え、固体が析出していない場合はラセミ体の種晶を加えた。固体が析出してから25℃、30分撹拌した後、固体を減圧濾別した。固体と母液中の表題化合物の光学純度に関して分析した結果を以下に示す。
Examples 5-12 Purification of (S) -N-Boc-2,6-dimethyltyrosine 73.3% ee (S) -N-Boc-2,6-dimethyltyrosine (90.3% by weight, 342 mg, 1 mmol) was added with an organic solvent and dissolved by heating, and then cooled and crystallized. If necessary, an auxiliary solvent was added. If no solid was precipitated, racemic seed crystals were added. After the solid precipitated, the mixture was stirred at 25 ° C. for 30 minutes, and then the solid was filtered off under reduced pressure. The results analyzed for the optical purity of the title compound in the solid and mother liquor are shown below.
Figure JPOXMLDOC01-appb-T000016
表1において、AcOPr:酢酸イソプロピル、MTBE:メチルtert-ブチルエーテル、THF:テトラヒドロフラン、IPA:イソプロパノール、EtOH:エタノール、MIBK:メチルイソブチルケトン、AN:アセトニトリルを表す。
Figure JPOXMLDOC01-appb-T000016
In Table 1, AcO i Pr: isopropyl acetate, MTBE: methyl tert-butyl ether, THF: tetrahydrofuran, IPA: isopropanol, EtOH: ethanol, MIBK: methyl isobutyl ketone, AN: acetonitrile.
(実施例13) (S)-N-Boc-2,6-ジメチルチロシンの精製
 73.3%eeの(S)-N-Boc-2,6-ジメチルチロシン(90.3重量%、342mg、1mmol)にアセトン(6mL)を加えて溶解させた後、ヘキサン(6mL)を加えて固体を析出させた。ここにヘキサンを1mLずつ添加して、母液の表題化合物の光学純度の推移を調べた結果を以下の表に示す。
Example 13 Purification of (S) -N-Boc-2,6-dimethyltyrosine 73.3% ee (S) -N-Boc-2,6-dimethyltyrosine (90.3% by weight, 342 mg, 1 mmol) was added with acetone (6 mL) and dissolved, and then hexane (6 mL) was added to precipitate a solid. The following table shows the results of adding 1 mL each of hexane and examining the transition of the optical purity of the title compound in the mother liquor.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
(実施例14) (S)-N-Boc-2,6-ジメチルチロシンの精製
 実施例1で製造したクルードの(S)-N-Boc-2,6-ジメチルチロシン(55.6重量%、光学純度:88.9%ee)3.0g(5.4mmol)に、アセトン(10mL)とヘキサン(15mL)を加えた。ここにラセミ種晶を加えると固体が析出し、25℃、1時間撹拌後、固体を減圧濾別した(収率:7%、固体の光学純度:9.2%ee、母液の光学純度:98.0%ee)。母液を減圧濃縮することにより黄色油状物を得、ここにジクロロメタン(10mL)を加えると結晶が析出した。5℃に冷却して30分撹拌後、結晶を減圧濾別し、ジクロロメタン/ヘキサン=1/1(10mL)で洗浄、真空乾燥することにより表題化合物を白色固体として得た(1032mg、収率:62%、98.5%ee)。
(Example 14) Purification of (S) -N-Boc-2,6-dimethyltyrosine Crude (S) -N-Boc-2,6-dimethyltyrosine (55.6 wt%, prepared in Example 1) Acetone (10 mL) and hexane (15 mL) were added to 3.0 g (5.4 mmol) of optical purity: 88.9% ee). When a racemic seed crystal was added thereto, a solid was precipitated. After stirring at 25 ° C. for 1 hour, the solid was filtered under reduced pressure (yield: 7%, solid optical purity: 9.2% ee, mother liquid optical purity: 98.0% ee). The mother liquor was concentrated under reduced pressure to obtain a yellow oily substance, and dichloromethane (10 mL) was added thereto to precipitate crystals. After cooling to 5 ° C. and stirring for 30 minutes, the crystals were filtered off under reduced pressure, washed with dichloromethane / hexane = 1/1 (10 mL), and dried in vacuo to give the title compound as a white solid (1032 mg, yield: 62%, 98.5% ee).
(実施例15) (S)-N-Boc-2,6-ジメチルチロシンの精製
 実施例1で製造したクルードの(S)-N-Boc-2,6-ジメチルチロシン(55.6重量%、光学純度:88.9%ee)3.0g(5.4mmol)に、アセトン(10mL)とヘキサン(25mL)を加えた。ここにラセミ種晶を加えると固体が析出し、25℃、1時間撹拌後、固体を減圧濾別した(収率:8%、固体の光学純度:11.0%ee、母液の光学純度:99.0%ee)。母液を減圧濃縮することにより黄色油状物を得、ここにメチルイソブチルケトン(5mL)とヘキサン(5mL)を加えると結晶が析出した。5℃に冷却して30分撹拌後、結晶を減圧濾別し、メチルイソブチルケトン/ヘキサン=1/2(15mL)で洗浄、真空乾燥することにより表題化合物を白色固体として得た(768mg、収率:46%、100%ee)。
Example 15 Purification of (S) -N-Boc-2,6-dimethyltyrosine Crude (S) -N-Boc-2,6-dimethyltyrosine (55.6% by weight, prepared in Example 1) Acetone (10 mL) and hexane (25 mL) were added to 3.0 g (5.4 mmol) of optical purity: 88.9% ee). When a racemic seed crystal was added thereto, a solid was precipitated. After stirring at 25 ° C. for 1 hour, the solid was filtered under reduced pressure (yield: 8%, optical purity of solid: 11.0% ee, optical purity of mother liquor: 99.0% ee). The mother liquor was concentrated under reduced pressure to obtain a yellow oily substance, and when methyl isobutyl ketone (5 mL) and hexane (5 mL) were added thereto, crystals were precipitated. After cooling to 5 ° C. and stirring for 30 minutes, the crystals were filtered off under reduced pressure, washed with methyl isobutyl ketone / hexane = 1/2 (15 mL), and dried in vacuo to give the title compound as a white solid (768 mg, yield). Rate: 46%, 100% ee).
(実施例16) (S)-O-ベンジル-N-Boc-2,6-ジメチルチロシンの精製69.4%eeの(S)-O-ベンジル-N-Boc-2,6-ジメチルチロシン300.5mg(0.75mmol)に、アセトン(1mL)とヘキサン(3mL)を加えると固体が析出した。25℃、3時間撹拌後、固体を減圧濾別した(収率:9%、固体の光学純度:33.4%ee)。母液を減圧濃縮することにより無色油状物を得、ここに酢酸エチル(2mL)、ヘキサン(6mL)を加えると結晶が析出した。5℃に冷却して30分撹拌後、結晶を減圧濾別し、ヘキサン(5mL)で洗浄、真空乾燥することにより表題化合物を白色固体として得た(105.2mg、収率:35%、96.4%ee)。 (Example 16) Purification of (S) -O-benzyl-N-Boc-2,6-dimethyltyrosine 69.4% ee (S) -O-benzyl-N-Boc-2,6-dimethyltyrosine 300 When acetone (1 mL) and hexane (3 mL) were added to 0.5 mg (0.75 mmol), a solid was precipitated. After stirring at 25 ° C. for 3 hours, the solid was filtered off under reduced pressure (yield: 9%, optical purity of solid: 33.4% ee). The mother liquor was concentrated under reduced pressure to obtain a colorless oily substance. When ethyl acetate (2 mL) and hexane (6 mL) were added thereto, crystals were precipitated. After cooling to 5 ° C. and stirring for 30 minutes, the crystals were filtered off under reduced pressure, washed with hexane (5 mL) and dried in vacuo to give the title compound as a white solid (105.2 mg, yield: 35%, 96 .4% ee).
 本発明は、医薬中間体として有用な光学活性2,6-ジメチルチロシン誘導体の製造に利用することができる。 The present invention can be used for the production of an optically active 2,6-dimethyltyrosine derivative useful as a pharmaceutical intermediate.

Claims (9)

  1. 下記式(1);
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は水素原子、又はフェノール水酸基の保護基である。R2はアミノ基の保護基である。*は不斉炭素原子を表す。)で表される光学活性2,6-ジメチルチロシン誘導体の製造法であって、2,6-ジメチルチロシン誘導体と有機溶媒からなる溶液から、低光学純度の固体を析出および除去することにより、母液中の光学純度を向上させることを特徴とする、光学活性2,6-ジメチルチロシン誘導体の製造法。
    Following formula (1);
    Figure JPOXMLDOC01-appb-C000001
    Wherein R 1 is a hydrogen atom or a protecting group for a phenolic hydroxyl group, R 2 is a protecting group for an amino group, and * represents an asymmetric carbon atom. A method for producing a dimethyltyrosine derivative, characterized in that the optical purity in a mother liquor is improved by precipitating and removing a low optical purity solid from a solution comprising a 2,6-dimethyltyrosine derivative and an organic solvent. A process for producing an optically active 2,6-dimethyltyrosine derivative.
  2. 前記化合物(1)の析出物の光学純度が、析出前の光学純度よりも低い請求項1に記載の製造法。 The manufacturing method of Claim 1 with which the optical purity of the deposit of the said compound (1) is lower than the optical purity before precipitation.
  3. 析出物生成前の化合物(1)の光学純度が、91%ee以下である請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the optical purity of the compound (1) before the formation of the precipitate is 91% ee or less.
  4. 1が水素原子、又はベンジル基であり、R2がtert-ブトキシカルボニル基である請求項1~3のいずれかに記載の製造法。 The production method according to any one of claims 1 to 3, wherein R 1 is a hydrogen atom or a benzyl group, and R 2 is a tert-butoxycarbonyl group.
  5. 前記有機溶媒に、更に補助的な溶媒を混合することを特徴とする請求項1~4のいずれかに記載の製造法。 The production method according to any one of claims 1 to 4, wherein an auxiliary solvent is further mixed with the organic solvent.
  6. 前記有機溶媒が酢酸イソプロピル、メチルtert-ブチルエーテル、テトラヒドロフラン、エタノール、イソプロパノール、アセトン、メチルイソブチルケトン、又はアセトニトリルの少なくとも1つであり、前記補助的な溶媒がヘキサン、又はヘプタンである請求項5に記載の製造法。 6. The organic solvent is at least one of isopropyl acetate, methyl tert-butyl ether, tetrahydrofuran, ethanol, isopropanol, acetone, methyl isobutyl ketone, or acetonitrile, and the auxiliary solvent is hexane or heptane. Manufacturing method.
  7. 前記化合物(1)が、下記式(2);
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3は水素原子、又はフェノール水酸基の保護基を表す。Xは塩素原子、臭素原子、又はヨウ素原子を表す。)で表されるアリールメチルハライド化合物と下記式(3);
    Figure JPOXMLDOC01-appb-C000003
    (式中、R4は水素原子、又は置換基を有しても良い炭素数6~12のアリール基を表し、R5は置換基を有しても良い炭素数6~12のアリール基を表し、R6は炭素数1~12のアルキル基を表す。)で表されるグリシンシッフ塩基を、塩基と光学活性な相関移動触媒の存在下に反応させることにより、下記式(4);
    Figure JPOXMLDOC01-appb-C000004
    (式中、R3、R4、R5、R6、*は前記に同じである。)で表される光学活性化合物を製造し、更に加水分解した後にアミノ基を保護して製造することを特徴とする請求項1~6のいずれかに記載の製造法。
    The compound (1) is represented by the following formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 3 represents a hydrogen atom or a protecting group for a phenolic hydroxyl group; X represents a chlorine atom, a bromine atom or an iodine atom) and the following formula (3);
    Figure JPOXMLDOC01-appb-C000003
    Wherein R 4 represents a hydrogen atom or an aryl group having 6 to 12 carbon atoms which may have a substituent, and R 5 represents an aryl group having 6 to 12 carbon atoms which may have a substituent. R 6 represents an alkyl group having 1 to 12 carbon atoms.) By reacting a glycine Schiff base represented by the following formula (4) with a base in the presence of an optically active phase transfer catalyst:
    Figure JPOXMLDOC01-appb-C000004
    (Wherein R 3 , R 4 , R 5 , R 6 , and * are the same as above), and the amino group is protected after further hydrolysis to produce the compound. The production method according to any one of claims 1 to 6, wherein:
  8. 前記R3がエトキシカルボニル基、又はベンジル基であり、R4が水素原子、又はフェニル基であり、R5がフェニル基であり、R6がエチル基、又はtert-ブチル基であり、絶対立体配置がSである請求項7に記載の製造法。 R 3 is an ethoxycarbonyl group or a benzyl group, R 4 is a hydrogen atom or a phenyl group, R 5 is a phenyl group, R 6 is an ethyl group or a tert-butyl group, The manufacturing method according to claim 7, wherein the arrangement is S.
  9. 前記塩基が水酸化カリウムであり、前記光学活性な相関移動触媒が(11bR)-(-)-4,4-ジブチル-4,5-ジヒドロ-2,6-ビス(3,4,5-トリフルオロフェニル)-3H-ジナフト[2,1-c:1’,2’-e]アゼピニウムブロミド、(15bR)-14,14-ジブチル-5,6,7,8,14,15-ヘキサヒドロ-1,12-ビス(3,4,5-トリフルオロフェニル)-13H-[1,6]ベンゾジオキセチノ[9.8,7-デフ][2]ベンザゼピニウムブロミド、又はN-(2-クロロベンジル)シンコニジニウムブロミドである請求項7又は8に記載の製造法。 The base is potassium hydroxide, and the optically active phase transfer catalyst is (11bR)-(−)-4,4-dibutyl-4,5-dihydro-2,6-bis (3,4,5-tri Fluorophenyl) -3H-dinaphtho [2,1-c: 1 ′, 2′-e] azepinium bromide, (15bR) -14,14-dibutyl-5,6,7,8,14,15-hexahydro -1,12-bis (3,4,5-trifluorophenyl) -13H- [1,6] benzodioxetino [9.8,7-def] [2] benzazepinium bromide, or N- ( The production method according to claim 7 or 8, which is 2-chlorobenzyl) cinconidinium bromide.
PCT/JP2014/080811 2013-11-21 2014-11-20 Method for producing optically active 2,6-dimethyltyrosine derivative WO2015076346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-240537 2013-11-21
JP2013240537A JP2017014109A (en) 2013-11-21 2013-11-21 Manufacturing method of optically active 2,6-dimethyl tylosin derivative

Publications (1)

Publication Number Publication Date
WO2015076346A1 true WO2015076346A1 (en) 2015-05-28

Family

ID=53179606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080811 WO2015076346A1 (en) 2013-11-21 2014-11-20 Method for producing optically active 2,6-dimethyltyrosine derivative

Country Status (2)

Country Link
JP (1) JP2017014109A (en)
WO (1) WO2015076346A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104987302A (en) * 2015-06-24 2015-10-21 江苏苏利精细化工股份有限公司 N,N-diethyl-formic acid 4-halogenate methyl-3,5-dimethyl-phenol ester compound and preparing method thereof
WO2017043626A1 (en) * 2015-09-11 2017-03-16 株式会社カネカ Method for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879398A (en) * 1987-12-31 1989-11-07 Monsanto Company Process for producing 2,6-disubstituted tyrosine
JP2000247945A (en) * 1999-02-23 2000-09-12 Mitsui Chemicals Inc PURIFICATION OF OPTICALLY ACTIVE N-t- BUTOXYCARBONYLPHENYLALANINE ESTER
JP2000264870A (en) * 1999-03-19 2000-09-26 Mitsui Chemicals Inc Production of optically active tertiary butoxy carbonylphenylalanine ester
WO2005073196A1 (en) * 2004-01-30 2005-08-11 Nagase & Co., Ltd. OPTICALLY ACTIVE QUATERNARY AMMONIUM SALT HAVING AXIAL ASYMMETRY AND PROCESS FOR PRODUCING α-AMINO ACID AND DERIVATIVE THEREOF WITH THE SAME
WO2007013698A1 (en) * 2005-07-29 2007-02-01 Nagase & Co., Ltd. Process for production of mono-substituted alkylated compound using aldimine or derivative thereof
JP2010132646A (en) * 2008-11-07 2010-06-17 Mitsubishi Rayon Co Ltd Method for producing optically active n-alkoxycarbonyl-tert-leucine
JP2012250943A (en) * 2011-06-03 2012-12-20 Kaneka Corp Method for producing optically active 2,6-dimethylphenylalanine derivative
WO2013058241A1 (en) * 2011-10-18 2013-04-25 株式会社カネカ Method for producing (r)-2-amino-2-ethylhexanol

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4879398A (en) * 1987-12-31 1989-11-07 Monsanto Company Process for producing 2,6-disubstituted tyrosine
JP2000247945A (en) * 1999-02-23 2000-09-12 Mitsui Chemicals Inc PURIFICATION OF OPTICALLY ACTIVE N-t- BUTOXYCARBONYLPHENYLALANINE ESTER
JP2000264870A (en) * 1999-03-19 2000-09-26 Mitsui Chemicals Inc Production of optically active tertiary butoxy carbonylphenylalanine ester
WO2005073196A1 (en) * 2004-01-30 2005-08-11 Nagase & Co., Ltd. OPTICALLY ACTIVE QUATERNARY AMMONIUM SALT HAVING AXIAL ASYMMETRY AND PROCESS FOR PRODUCING α-AMINO ACID AND DERIVATIVE THEREOF WITH THE SAME
WO2007013698A1 (en) * 2005-07-29 2007-02-01 Nagase & Co., Ltd. Process for production of mono-substituted alkylated compound using aldimine or derivative thereof
JP2010132646A (en) * 2008-11-07 2010-06-17 Mitsubishi Rayon Co Ltd Method for producing optically active n-alkoxycarbonyl-tert-leucine
JP2012250943A (en) * 2011-06-03 2012-12-20 Kaneka Corp Method for producing optically active 2,6-dimethylphenylalanine derivative
WO2013058241A1 (en) * 2011-10-18 2013-04-25 株式会社カネカ Method for producing (r)-2-amino-2-ethylhexanol

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI,ZHI ET AL., GAODENG XUEXIAO HUAXUE XUEBAO, vol. 31, no. 8, 2010, pages 1564 - 1569 *
NORIAKI HIRAYAMA, YUKI KAGOBUTSU KESSHO SAKUSEI HANDBOOK -GENRI TO KNOW-HOW, 2008, pages 78, 79 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104987302A (en) * 2015-06-24 2015-10-21 江苏苏利精细化工股份有限公司 N,N-diethyl-formic acid 4-halogenate methyl-3,5-dimethyl-phenol ester compound and preparing method thereof
WO2017043626A1 (en) * 2015-09-11 2017-03-16 株式会社カネカ Method for producing optically active 4-carbamoyl-2,6-dimethylphenylalanine derivative
CN108026032A (en) * 2015-09-11 2018-05-11 株式会社钟化 The manufacture method of optical activity 4- carbamoyl -2,6- 3,5-dimethylphenyl alanine derivatives
CN108026032B (en) * 2015-09-11 2020-09-29 株式会社钟化 Method for producing optically active 4-carbamoyl-2, 6-dimethylphenylalanine derivative

Also Published As

Publication number Publication date
JP2017014109A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
CN108718527B (en) Process for preparing compounds
CA2610776C (en) Process for production of mono-substituted alkylated compound using aldimine or derivative thereof
CN1986516A (en) Process for preparing enantiomerically enriched 2-alkoxy-3-phenylpropionic acids
US9115052B2 (en) Separation of an enantiomer mixture of (R)- and (S)-3-amino-1-butanol
JP2009531313A5 (en)
WO2003064420A1 (en) Novel optically active compounds, method for kinetic optical resolution of carboxylic acid derivatives and catalysts therefor
WO2015076346A1 (en) Method for producing optically active 2,6-dimethyltyrosine derivative
US9828340B2 (en) Asymmetric synthesis of a substituted pyrrolidine-2-carboxamide
CN112154140B (en) Compound and application thereof in synthesizing Brivaracetam (Brivaracetam) bulk drug
CN114901644A (en) Method for preparing dexmedetomidine
JP4356060B2 (en) Method for producing optically active 1-protected indoline-2-carboxylic acid derivative and method for producing optically active indoline-2-carboxylic acid derivative
CN107814757B (en) Method for synthesizing polysubstituted pyrrole derivative
CN113121549B (en) Method for stereoselectively synthesizing chiral lactone, chiral compound and application thereof
CN112707899B (en) Preparation method of quininol
JP2005501028A (en) Kinetic separation of an intermediate useful for the production of benazepril and its analogs.
CN109020788B (en) Process for preparing optically pure 1,1 &#39;-spiroindane-6, 6&#39; -diol derivatives
EP2643284B1 (en) Synthetic method of enantiomerically pure 2,2&#39;-dihydroxy-1,1&#39;-binaphthyl-3-carboxylic acid
WO2013011999A1 (en) Method for producing optically active 2-methylproline derivative
JP2014031327A (en) Production method of optically active cis-2-amino-cyclohexane carboxylic acid derivative and precursor of the same
CN111094260B (en) Compound and application thereof in synthesis of Brivaracetam intermediate and bulk drug
JP2008115178A (en) PRODUCTION METHOD OF DIPHENYLALANINE-Ni(II) COMPLEX
JP4168416B2 (en) Process for producing optically active aminopentanenitrile
JP2797999B2 (en) Method for producing optically active piperazine derivative and intermediate for production
JP2008133261A (en) Process for producing asymmetric copper complex crystal
WO2010071117A1 (en) Method for manufacturing (s)-1-phenyl-1,2,3,4-tetrahydroisoquinoline

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14863723

Country of ref document: EP

Kind code of ref document: A1