JP4654444B2 - Diamine ligand and catalyst using the same - Google Patents

Diamine ligand and catalyst using the same Download PDF

Info

Publication number
JP4654444B2
JP4654444B2 JP2006217728A JP2006217728A JP4654444B2 JP 4654444 B2 JP4654444 B2 JP 4654444B2 JP 2006217728 A JP2006217728 A JP 2006217728A JP 2006217728 A JP2006217728 A JP 2006217728A JP 4654444 B2 JP4654444 B2 JP 4654444B2
Authority
JP
Japan
Prior art keywords
ligand
group
catalyst
asymmetric
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006217728A
Other languages
Japanese (ja)
Other versions
JP2008037838A (en
Inventor
孝義 荒井
雅彦 渡邊
章 柳澤
Original Assignee
国立大学法人 千葉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 千葉大学 filed Critical 国立大学法人 千葉大学
Priority to JP2006217728A priority Critical patent/JP4654444B2/en
Publication of JP2008037838A publication Critical patent/JP2008037838A/en
Application granted granted Critical
Publication of JP4654444B2 publication Critical patent/JP4654444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、ジアミン配位子及びそれを用いた触媒に関する。   The present invention relates to a diamine ligand and a catalyst using the same.

光学活性なアミノ酸や糖を基本構成単位とする生体高分子は、高度な不斉空間を構築しており、この生体高分子を受容体とする医薬品も光学活性を有している必要がある。このような光学活性な物質を合成する方法は不斉合成法とよばれており、不斉合成法の中でも少量の不斉源から理論上無限の光学活性体を合成することが可能な触媒的不斉合成法は極めて有用、重要なものとなっている。   A biopolymer having an optically active amino acid or sugar as a basic structural unit constructs a highly asymmetric space, and a drug using the biopolymer as a receptor needs to have optical activity. This method of synthesizing optically active substances is called asymmetric synthesis, and it is a catalytic method that can synthesize theoretically infinite optically active substances from a small amount of asymmetric sources. Asymmetric synthesis methods are extremely useful and important.

現在、触媒的不斉合成法は様々な金属触媒を用いることにより達成されているが、これら触媒には高度に立体選択的な反応場を構築すべく緻密に設計された配位子が用いられている。例えば、従来の技術として、光学活性ジアミンと光学活性ビナフチル骨格を有するC2対称なジアミン配位子が下記非特許文献1に記載されている。   At present, catalytic asymmetric synthesis methods are achieved by using various metal catalysts, and these catalysts use ligands that are closely designed to construct highly stereoselective reaction fields. ing. For example, as a conventional technique, a C2-symmetric diamine ligand having an optically active diamine and an optically active binaphthyl skeleton is described in Non-Patent Document 1 below.

また、本発明者らは、今回の発明に先立ち、光学活性ジアミン配位子−銅錯体を用いる触媒的不斉反応の研究を行い、Henry反応に有用であることを下記非特許文献2に報告している。   In addition, prior to the present invention, the present inventors conducted research on catalytic asymmetric reaction using an optically active diamine ligand-copper complex, and reported that it is useful for the Henry reaction in Non-Patent Document 2 below. is doing.

J.−L.Vasse,R.Stranne,R.Zalubovskis,C.Gayet,C.Moberg,J.Org.Chem.2003, 68,3258−3270.J. et al. -L. Vase, R.M. Strain, R.M. Zarubovskis, C.I. Gayet, C.I. Moberg, J. et al. Org. Chem. 2003, 68, 3258-3270. T.Arai,M.Watanabe,A.Fujiwara,N.Yokoyama,A.Yanagisawa,Angew.Chem.Int.EdT.A. Arai, M .; Watanabe, A.M. Fujiwara, N .; Yokoyama, A .; Yanagisawa, Angew. Chem. Int. Ed

しかしながら、上記非特許文献1に記載の技術では、不斉配位子ならびに不斉触媒として顕著な応用例は報告されていない。   However, in the technique described in Non-Patent Document 1, no remarkable application example has been reported as an asymmetric ligand and an asymmetric catalyst.

また、上記非特許文献2に記載の技術においては、1価の銅錯体を用いるという点で触媒活性が高いという利点があるが、それでも目的に反応に用いた場合の不斉収率おいて改良すべき余地がある。また、先の1価の錯体は、空気中の酸素や湿気に不安定であるという問題があった。   Further, the technique described in Non-Patent Document 2 has an advantage of high catalytic activity in that a monovalent copper complex is used, but it still improves the asymmetric yield when used for the reaction for the purpose. There is room to do. Further, the above monovalent complex has a problem that it is unstable to oxygen and moisture in the air.

そこで、本発明は上記課題を鑑み、新規でより高い不斉収率で目的物を与える触媒及びそれに用いられる配位子を提供することを目的とする。   Then, in view of the said subject, this invention aims at providing the catalyst which gives a target object with a new and higher asymmetric yield, and the ligand used for it.

本発明者は、上記課題の解決につき鋭意検討を行っていたところ、空気中で安定に取り扱える2価の銅錯体を触媒に用いることを念頭に不斉反応場の設計を綿密に行ったところ、非常に高い収率にて新規光学活性配位子を得ることができることを確認し、本発明を完成させるに至った。   The present inventor has been diligently studying the solution of the above problems, and has carefully designed the asymmetric reaction field in consideration of using a divalent copper complex that can be stably handled in air as a catalyst. It was confirmed that a novel optically active ligand can be obtained with a very high yield, and the present invention has been completed.

即ち、上記課題を解決する一手段としての配位子は、下記式(1)で示される。
(R1〜R5は独立に水素、アルキル基、ハロゲン基、アルコキシル基又は芳香環であり、R1〜R5は同一であっても異なっていても良い。また、R1、R2は連結して環を形成していても良い。)
That is, a ligand as one means for solving the above problem is represented by the following formula (1).
(R1 to R5 are independently hydrogen, an alkyl group, a halogen group, an alkoxyl group or an aromatic ring, and R1 to R5 may be the same or different. R1 and R2 are linked to form a ring. You may do it.)

また、本手段において限定されるわけではないが、R1〜R5の少なくともいずれかがアルキル基である場合、メチル、エチル又はプロピル基であることが好ましく、R1〜R5の少なくともいずれかがハロゲン基である場合は、フッ素基、塩素基又は臭素基であることが好ましく、またR1〜R5の少なくともいずれかが芳香環である場合は、フェニル基又はピリジル基であることが好ましい。   Further, although not limited in this means, when at least one of R1 to R5 is an alkyl group, it is preferably a methyl, ethyl or propyl group, and at least one of R1 to R5 is a halogen group. In some cases, it is preferably a fluorine group, a chlorine group or a bromine group. When at least one of R1 to R5 is an aromatic ring, it is preferably a phenyl group or a pyridyl group.

また、上記課題を解決する他の一手段としての配位子は、下記式(2)で示される。
Moreover, the ligand as another means to solve the said subject is shown by following formula (2).

また、上記課題を解決する他の一手段である触媒は、金属に下記式(1)で示される配位子が配位させてなる。
(R1〜R5は独立に水素、アルキル基、ハロゲン基、アルコキシル基又は芳香環であり、R1〜R5は同一であっても異なっていても良い。また、R1、R2は連結して環を形成していても良い。)
In addition, a catalyst which is another means for solving the above-described problem is obtained by coordinating a ligand represented by the following formula (1) to a metal.
(R1 to R5 are independently hydrogen, an alkyl group, a halogen group, an alkoxyl group or an aromatic ring, and R1 to R5 may be the same or different. R1 and R2 are linked to form a ring. You may do it.)

また、本手段において限定されるわけではないが、R1〜R5の少なくともいずれかがアルキル基である場合、メチル、エチル又はプロピル基であることが好ましく、R1〜R5の少なくともいずれかがハロゲン基である場合は、フッ素基、塩素基又は臭素基であることが好ましく、またR1〜R5の少なくともいずれかが芳香環である場合は、フェニル基又はピリジル基であることが好ましい。   Further, although not limited in this means, when at least one of R1 to R5 is an alkyl group, it is preferably a methyl, ethyl or propyl group, and at least one of R1 to R5 is a halogen group. In some cases, it is preferably a fluorine group, a chlorine group or a bromine group. When at least one of R1 to R5 is an aromatic ring, it is preferably a phenyl group or a pyridyl group.

またこの手段において、限定されるわけではないが、上記式(1)の配位子の具体例としては、上記式(2)の配位子であることもが好ましい。   Further, in this means, the ligand of the formula (1) is preferably a ligand of the formula (2) as a specific example of the ligand of the formula (1).

以上、本発明により、新規で収率の高い触媒及びそれに用いられる配位子を提供することができる。   As described above, the present invention can provide a novel and high yield catalyst and a ligand used therefor.

以下、本発明の実施の形態について、詳細に説明する。なお、本発明については多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例に狭く限定されるものではない。   Hereinafter, embodiments of the present invention will be described in detail. The present invention can be implemented in many different forms, and is not limited to the embodiments and examples shown below.

まず、本実施形態に係る配位子は、下記式(1)で示される。
(R1〜R5は独立に水素、アルキル基、ハロゲン基、アルコキシル基又は芳香環であり、R1〜R5は同一であっても異なっていても良い。また、R1、R2は連結して環を形成していても良い。)
First, the ligand according to the present embodiment is represented by the following formula (1).
(R1 to R5 are independently hydrogen, an alkyl group, a halogen group, an alkoxyl group or an aromatic ring, and R1 to R5 may be the same or different. R1 and R2 are linked to form a ring. You may do it.)

また、限定されるわけではないが、上記R1〜R5の少なくともいずれかがアルキル基である場合、メチル、エチル又はプロピル基であることが好ましく、R1〜R5の少なくともいずれかがハロゲン基である場合は、フッ素基、塩素基又は臭素基であることが好ましく、またR1〜R5の少なくともいずれかが芳香環である場合は、フェニル基又はピリジル基であることが好ましい。   Although not limited, when at least one of R1 to R5 is an alkyl group, it is preferably a methyl, ethyl or propyl group, and at least one of R1 to R5 is a halogen group. Is preferably a fluorine group, a chlorine group or a bromine group. When at least one of R1 to R5 is an aromatic ring, it is preferably a phenyl group or a pyridyl group.

本実施形態に係る配位子は、その構成中に反応場を適正に制御するために配位子の構造を非対称とすることにした。式(1)で示される配位子において、ビナフチル骨格の側の環状アミンは7員環であり、ビナフチル骨格が反応場に大きく張り出している。他方の環状アミンは5員環を形成し、非常にコンパクトである。このため、高度な不斉環境を強調しながら、嵩だかい2価の銅イオンとも安定な錯形成を行うできる利点を有する。   In the ligand according to the present embodiment, the structure of the ligand is asymmetric in order to appropriately control the reaction field during the configuration. In the ligand represented by the formula (1), the cyclic amine on the side of the binaphthyl skeleton is a seven-membered ring, and the binaphthyl skeleton largely protrudes from the reaction field. The other cyclic amine forms a 5-membered ring and is very compact. For this reason, there is an advantage that stable complex formation can be performed with a bulky divalent copper ion while emphasizing a highly asymmetric environment.

本実施形態に係る配位子の置換基は、限定されるわけではないが、式(1)で示される配位子において、R1、R2、R3、R4、R5は独立して、水素、アルキル基、ハロゲン基、アルコキシル基又は芳香環であり、R1〜R5は同一であっても異なっていても良い。また、R1、R2は連結して環を形成していても良い。   Although the substituent of the ligand which concerns on this embodiment is not necessarily limited, In the ligand shown by Formula (1), R1, R2, R3, R4, R5 is independently hydrogen, alkyl A group, a halogen group, an alkoxyl group or an aromatic ring, and R1 to R5 may be the same or different. R1 and R2 may be linked to form a ring.

また、限定されるわけではないが、上記R1〜R5の少なくともいずれかがアルキル基である場合、メチル、エチル又はプロピル基であることが好ましく、R1〜R5の少なくともいずれかがハロゲン基である場合は、フッ素基、塩素基又は臭素基であることが好ましく、またR1〜R5の少なくともいずれかが芳香環である場合は、フェニル基又はピリジル基であることが好ましい。   Although not limited, when at least one of R1 to R5 is an alkyl group, it is preferably a methyl, ethyl or propyl group, and at least one of R1 to R5 is a halogen group. Is preferably a fluorine group, a chlorine group or a bromine group. When at least one of R1 to R5 is an aromatic ring, it is preferably a phenyl group or a pyridyl group.

更に、本実施形態に係る配位子は、金属に配位させることで触媒として利用することができる。配位させる金属としては限定されるものではないが、例えば、銅、ニッケル、コバルト、ルテニウム、ロジウム又は鉄を例示することができる。金属に配位させる方法としては、周知の方法を採用することができ、限定されるわけではないが、金属塩と配位子を混合することで配位させることができる。金属塩としては、限定されるわけではないが、金属が銅である場合、CuCl、CuOAc、CuCl、Cu(OAc)、Cu(OTf)等を用いることができる。本実施形態により得られる触媒は、限定されるわけではないが、不斉Henry反応(別名:ニトロアルド−ル反応)に利用することができる。 Furthermore, the ligand according to this embodiment can be used as a catalyst by coordinating with a metal. Although it does not limit as a metal to coordinate, For example, copper, nickel, cobalt, ruthenium, rhodium, or iron can be illustrated. As a method of coordinating with a metal, a well-known method can be adopted, and although not limited, it can be coordinated by mixing a metal salt and a ligand. The metal salts include, but are not limited to, when the metal is copper, can be used CuCl, CuOAc, the CuCl 2, Cu (OAc) 2 , Cu (OTf) 2 and the like. Although the catalyst obtained by this embodiment is not necessarily limited, it can be utilized for asymmetric Henry reaction (alias: nitroaldol reaction).

(配位子の合成)
本実施形態に係る配位子は、限定されるわけではないが、合成によって製造することができる。合成方法も、上記配位子を得ることができる限りにおいて限定されるわけではないが、例えば以下に示す方法により合成することができる。
(Synthesis of ligand)
The ligand according to this embodiment is not limited, but can be produced by synthesis. The synthesis method is not limited as long as the above ligand can be obtained. For example, the ligand can be synthesized by the following method.

まず、下記式(3)で示されるジアミン化合物に対し、1,3−dimethyl−5−acetyl−barbituric acid(DAB)を反応させることで、下記式(4)で示される一方のアミノ基が保護されたモノ保護体を得る。
First, 1,3-dimethyl-5-acetyl-barbituric acid (DAB) is reacted with a diamine compound represented by the following formula (3) to protect one amino group represented by the following formula (4). A protected monoprotector is obtained.

次に、上記式(4)で示されるモノ保護体に対し、ジイソプロピルエチルアミン存在下、o−キシリレンジブロミド類を反応させることで、下記式(5)で示される化合物を得ることができる。
Next, the monoprotector represented by the above formula (4) can be reacted with o-xylylene dibromide in the presence of diisopropylethylamine to obtain a compound represented by the following formula (5).

次に、上記式(5)で示される化合物に対し、2‐アミノエタノールを反応させることで、下記式(6)で示される化合物を得ることができる。
Next, the compound represented by the following formula (6) can be obtained by reacting the compound represented by the above formula (5) with 2-aminoethanol.

次に、上記式(6)で示される化合物に対し、トリエチルアミン存在下 2,2’−dibromomethyl−1,1’−binaphthalene類を反応させることで上記式(1)の本実施形態に係る配位子を得ることができる。   Next, the compound represented by the above formula (6) is reacted with 2,2′-dibromomethyl-1,1′-binaphthalenes in the presence of triethylamine to coordinate according to this embodiment of the above formula (1). You can get a child.

以上の実施形態において説明した配位子につき実際に製造し、更に、それを用いた触媒としての効果を確認した。以下説明する。   The ligand described in the above embodiment was actually produced, and the effect as a catalyst using the ligand was confirmed. This will be described below.

(実施例1)
本実施例では、下記式(2)で示される配位子を合成し、その配位子を不斉Henry反応に用いた。
Example 1
In this example, a ligand represented by the following formula (2) was synthesized and used for the asymmetric Henry reaction.

(配位子の合成)
まず、アルゴン雰囲気下、(1R,2R)‐1,2‐diphenylethane−1,2−diamine(1061mg, 5mmol)および1,3−dimethyl−5−acetyl−barbituric acid(DAB)(991mg, 5mmol)をテトラヒドロフラン(15ml)に溶解し、室温にて48時間攪拌した後、減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n−ヘキサン/ 酢酸エチル=1:1)により精製することで1922mg(98%)の目的化合物(2−1)を淡黄白色粉末状固体として得た。
(2−1)の機器データ:H NMR (400 MHz, CDCl3) δ 2.34(s, 3H), 3.27(s, 3H), 3.44(s, 3H), 4.50(d, 1H), 4.90(dd, 1H), 7.27−7.47(m, 10H, aromatic); 13C NMR (100MHz, CDCl) δ 18.5, 27.8, 60.6, 64.6, 91.1, 126.2, 126.6, 128.1, 128.2, 128.7, 129.2, 138.8, 141.2, 151.4, 163.1, 166.3, 174.1; FT/IR 3015, 1702, 1634, 1611, 1569, 1468, 1380, 1349, 1216, 744 cm−1; m/z = 393 ([M+H]+
(Synthesis of ligand)
First, under an argon atmosphere, (1R, 2R) -1,2-diphenylethane-1,2-diamine (1061 mg, 5 mmol) and 1,3-dimethyl-5-acetyl-barbituric acid (DAB) (991 mg, 5 mmol) were added. The residue was dissolved in tetrahydrofuran (15 ml), stirred at room temperature for 48 hours, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent: n-hexane / ethyl acetate = 1: 1) to give 1922 mg (98%) of the target compound (2-1) as a pale yellowish white powdery solid. Obtained.
Instrument data of (2-1): 1 H NMR (400 MHz, CDCl 3) δ 2.34 (s, 3H), 3.27 (s, 3H), 3.44 (s, 3H), 4.50 ( d, 1H), 4.90 (dd, 1H), 7.27-7.47 (m, 10H, aromatic); 13 C NMR (100 MHz, CDCl 3 ) δ 18.5, 27.8, 60.6 , 64.6, 91.1, 126.2, 126.6, 128.1, 128.2, 128.7, 129.2, 138.8, 141.2, 151.4, 163.1, 166 , 174.1; FT / IR 3015, 1702, 1634, 1611, 1569, 1468, 1380, 1349, 1216, 744 cm −1 ; m / z = 393 ([M + H] + )

次に、アルゴン雰囲気下、N−DAB保護ジアミン(2−1)(98mg, 0.25mmol)を無水DMF(3ml)に溶解し、ジイソプロピルエチルアミン(94μl, 0.55mmol)、o−キシリレンジブロミド(72.6mg, 0.275mmol)を順次加えた。40℃にて48時間攪拌し、蒸留水を加えて反応停止後、酢酸エチルを用いて抽出した。得られた有機層を芒硝乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n−ヘキサン/ 酢酸エチル=3:1)により精製することで100mg(81%)の目的化合物(2−2)を黄色液体として得た。
22の機器データ:H NMR (400 MHz, CDCl3) δ2.53(s, 3H), 3.29(s, 3H), 3.33(s, 3H), 3.87−3.90(d, 2H, J= 10.6 Hz),4.06−4.09(d, 2H, J=10.6 Hz) , 4.28−4.30(d, 1H), 5.24−5.27(t, 1H), 7.11−7.29(m, 14H, aromatic); m/z = 495 ([M+H]+
Next, N-DAB protected diamine (2-1) (98 mg, 0.25 mmol) was dissolved in anhydrous DMF (3 ml) under argon atmosphere, diisopropylethylamine (94 μl, 0.55 mmol), o-xylylene dibromide ( 72.6 mg, 0.275 mmol) was added sequentially. The mixture was stirred at 40 ° C for 48 hours, distilled water was added to stop the reaction, and the mixture was extracted with ethyl acetate. The obtained organic layer was dried with sodium sulfate and concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (developing solvent: n-hexane / ethyl acetate = 3: 1) to obtain 100 mg (81%) of the objective. Compound (2-2) was obtained as a yellow liquid.
Instrument data of 22: 1 H NMR (400 MHz, CDCl 3) δ 2.53 (s, 3H), 3.29 (s, 3H), 3.33 (s, 3H), 3.87-3.90 (d , 2H, J = 10.6 Hz), 4.06-4.09 (d, 2H, J = 10.6 Hz), 4.28-4.30 (d, 1H), 5.24-5. 27 (t, 1H), 7.11-7.29 (m, 14H, aromatic); m / z = 495 ([M + H] + )

次に、アルゴン雰囲気下、N−DAB ジアルキル体(2−2)(196mg, 0.396mmol)を無水エタノール(3mlに溶解し、2‐アミノエタノール(238μl, 3.96mmol)を加え、50℃で24時間攪拌した。反応液を減圧濃縮し 、得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n−ヘキサン/ 酢酸エチル=1:1)により精製することで124mg(>99%)の目的化合物(2−3)を黄色液体として得た。
(2−3)の機器データ:H NMR (400 MHz, CDCl3) δ2.10(s,broad, 2H),
4.00−4.08(m,5H),4.55−4.57(d, 1H, J=8.3 Hz), 7.07−7.25(m, 14H, aromatic); m/z = 315 ([M+H]+
Next, under an argon atmosphere, N-DAB dialkyl (2-2) (196 mg, 0.396 mmol) was dissolved in absolute ethanol (3 ml, 2-aminoethanol (238 μl, 3.96 mmol) was added, and the mixture was stirred at 50 ° C. The reaction mixture was concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (developing solvent: n-hexane / ethyl acetate = 1: 1) to give 124 mg (> 99%) of the target compound. (2-3) was obtained as a yellow liquid.
Instrument data of (2-3): 1 H NMR (400 MHz, CDCl 3) δ2.10 (s, broadcast, 2H),
4.00-4.08 (m, 5H), 4.55-4.57 (d, 1H, J = 8.3 Hz), 7.07-7.25 (m, 14H, aromatic); m / z = 315 ([M + H] + )

次に、アルゴン雰囲気下、N−ジアルキル体(2−3)(81mg, 0.258mmol)を無水塩化メチレン(2ml)に溶解し、これにトリエチルアミン(47.6μl, 0.567mmol)および(S)−2,2’−dibromomethyl−1,1’−binaphthalene(125mg,0.283 mmol)を順次加えた。室温にて24時間攪拌し反応させた後、蒸留水を加えて反応停止後、酢酸エチルを用いて抽出した。得られた有機層を芒硝乾燥後、減圧濃縮し、得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒:n−ヘキサン/ 酢酸エチル=5:1)により精製することで147mg(96%)の上記式(2)を淡黄白色固形物質として得た。
2の機器データ:H NMR (400 MHz, CDCl3) δ3.29−3.32(d, 2H, J=12.1 Hz), 3.81−3.84(d, 2H, J=11.6 Hz), 4.03−4.06(d, 2H, J=11.6 Hz), 4.17−4.20(d, 2H, J= 12.1 Hz),4.25−4.26(d, 1H, J=4.9 Hz) , 4.44−4.45(d, 2H, J=4.8 Hz), 7.01−7.48(m, 22H, aromatic), 7.86−7.88(d, 2H, J=8.2 Hz, aromatic), 7.92−7.94(d, 2H, J=8.0 Hz, aromatic);HRMS(FAB+) calcd for C44H37N2(M+H)593.2957 found 593.2952
Next, N-dialkyl compound (2-3) (81 mg, 0.258 mmol) was dissolved in anhydrous methylene chloride (2 ml) under an argon atmosphere, and triethylamine (47.6 μl, 0.567 mmol) and (S) were dissolved therein. -2,2'-dibromomethyl-1,1'-binaphthalene (125 mg, 0.283 mmol) was sequentially added. The reaction was stirred for 24 hours at room temperature, and distilled water was added to stop the reaction, followed by extraction with ethyl acetate. The obtained organic layer was dried with sodium sulfate and concentrated under reduced pressure, and the obtained residue was purified by silica gel column chromatography (developing solvent: n-hexane / ethyl acetate = 5: 1) to give 147 mg (96%) of the above. Formula (2) was obtained as a pale yellowish white solid material.
2 instrument data: 1 H NMR (400 MHz, CDCl 3) δ 3.29-3.32 (d, 2H, J = 12.1 Hz), 3.81-3.84 (d, 2H, J = 1.11. 6 Hz), 4.03-4.06 (d, 2H, J = 11.6 Hz), 4.17-4.20 (d, 2H, J = 12.1 Hz), 4.25-4. 26 (d, 1H, J = 4.9 Hz), 4.44-4.45 (d, 2H, J = 4.8 Hz), 7.01-7.48 (m, 22H, aromatic), 7 86-7.88 (d, 2H, J = 8.2 Hz, aromatic), 7.92-7.94 (d, 2H, J = 8.0 Hz, aromatic); HRMS (FAB +) calcd for C44H37N2 (M + H) 593.2957 found 593.2952

次に、この得られた配位子を用い、これに酢酸銅(II)一水和物を配位させることで触媒として不斉Henry反応を行った。   Next, an asymmetric Henry reaction was performed as a catalyst by coordinating copper (II) acetate monohydrate to the obtained ligand.

銅錯体の調製は、アルゴン雰囲気下、酢酸銅(II)一水和物(3.0mg, 0.015mmol)と非対称光学活性ジアミン配位子(4)(8.9mg, 0.015mmol)を無水塩化メチレン1mlに溶解し、室温にて一晩攪拌した。これにより、緑青色の目的錯体が形成された。 The copper complex was prepared by anhydrous copper (II) acetate monohydrate (3.0 mg, 0.015 mmol) and an asymmetric optically active diamine ligand (4) (8.9 mg, 0.015 mmol) under an argon atmosphere. Dissolved in 1 ml of methylene chloride and stirred overnight at room temperature. As a result, a green-blue target complex was formed.

不斉Henry反応は、アルゴン雰囲気下、銅錯体を無水1−プロパノール0.6mlに溶解し、ニトロメタン(162μl, 3mmol)と3−フェニルプロピオンアルデヒド(40μl, 0.3mmol)を加えた。室温で48時間攪拌後、減圧濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒:n−ヘキサン/ 酢酸エチル=5:1)により精製することで58mg(99%)の目的化合物を得た。得られたニトロアルドール生成物の光学純度は>99.5%であった。(分析条件:DAICEL CHIRALCEL OD−H, flow rate=0.8ml/min, hexane:2−propanol=87:13)
なお、上記の反応を下記に示しておく。
(比較例)
なお、先の非特許文献1に記載されている下記配位子(7)を用いて同じく2−ニトロベンズアルデヒドに対する不斉Henry反応を行ったところ、化学収率99%で目的物を得ることができたが、生成物の光学純度は90%eeであった。(非特許文献2に報告。)
In the asymmetric Henry reaction, the copper complex was dissolved in 0.6 ml of anhydrous 1-propanol under an argon atmosphere, and nitromethane (162 μl, 3 mmol) and 3-phenylpropionaldehyde (40 μl, 0.3 mmol) were added. After stirring at room temperature for 48 hours, the mixture was concentrated under reduced pressure and purified by silica gel column chromatography (developing solvent: n-hexane / ethyl acetate = 5: 1) to obtain 58 mg (99%) of the target compound. The optical purity of the resulting nitroaldol product was> 99.5%. (Analysis conditions: DAICEL CHIRALCEL OD-H, flow rate = 0.8 ml / min, hexane: 2-propanol = 87: 13)
The above reaction is shown below.
(Comparative example)
In addition, when the asymmetric Henry reaction with respect to 2-nitrobenzaldehyde was similarly performed using the following ligand (7) described in the previous nonpatent literature 1, the target object was obtained with a chemical yield of 99%. However, the optical purity of the product was 90% ee. (Reported in Non-Patent Document 2)

以上、本実施例により本発明の効果の確認を行うことができた。   As mentioned above, the effect of this invention was able to be confirmed by the present Example.

以上のとおり本発明は、収率の高い触媒及びそれに用いられる配位子として産業上利用可能性がある。   As described above, the present invention has industrial applicability as a catalyst with a high yield and a ligand used therein.

Claims (2)

下記式(2)で示される配位子。
A ligand represented by the following formula (2).
下記式(2)で示される配位子が金属に配位してなる触媒。
A catalyst in which a ligand represented by the following formula (2) is coordinated to a metal .
JP2006217728A 2006-08-10 2006-08-10 Diamine ligand and catalyst using the same Active JP4654444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217728A JP4654444B2 (en) 2006-08-10 2006-08-10 Diamine ligand and catalyst using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217728A JP4654444B2 (en) 2006-08-10 2006-08-10 Diamine ligand and catalyst using the same

Publications (2)

Publication Number Publication Date
JP2008037838A JP2008037838A (en) 2008-02-21
JP4654444B2 true JP4654444B2 (en) 2011-03-23

Family

ID=39173272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217728A Active JP4654444B2 (en) 2006-08-10 2006-08-10 Diamine ligand and catalyst using the same

Country Status (1)

Country Link
JP (1) JP4654444B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2439595B1 (en) * 2009-12-17 2014-11-13 Universidad De Valladolid Procedure for the enantioselective addition of organozinic compounds to compounds derived from acetophenones
JP6548214B2 (en) * 2015-04-12 2019-07-24 国立大学法人千葉大学 Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515875A (en) * 1997-09-09 2001-09-25 フイルメニツヒ ソシエテ アノニム Enantioselective reduction of ketones with silane agents / metal compounds / chiral ligand systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001515875A (en) * 1997-09-09 2001-09-25 フイルメニツヒ ソシエテ アノニム Enantioselective reduction of ketones with silane agents / metal compounds / chiral ligand systems

Also Published As

Publication number Publication date
JP2008037838A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
JP5131818B2 (en) Imidazoline ligand and catalyst using the same
JP6548214B2 (en) Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same
JP4654444B2 (en) Diamine ligand and catalyst using the same
CN111925356B (en) Synthesis method and application of chiral quinoline-imidazoline ligand
JPH0920762A (en) Chiral manganese/triazanonane complexes and their production
JP4747298B2 (en) Bisimidazoline ligand and catalyst using the same
CN113004248B (en) Method for synthesizing carbazole compound by catalyzing hydrocarbon amination reaction with cobalt
CN112574041B (en) Synthesis method of chiral beta hydroxyl 1,3-dicarbonyl compound
CN113754604B (en) Nitrogen-containing chiral ligand and application thereof in asymmetric oxidation reaction of thioether
JP5574320B2 (en) Process for producing bisimidazolidine ligand and catalyst using the same.
JP5471069B2 (en) Tetrahydropyridine derivative and method for producing the same
CN105130873A (en) 3-difluoroalkyl substituted amino oxindole derivative and synthesis method thereof
JP5569938B2 (en) Pyrrolidine derivative and method for producing the same
JP6085884B2 (en) Bisaminoimine ligand having binaphthol skeleton and catalyst
JP2013142071A (en) Pyrrolidinyl-spirooxindole derivative and method for producing the same
KR100897610B1 (en) Process for the preparation of n-phosphorylamidine using cu catalyst
CN109734667A (en) A kind of polysubstituted imidazolium compounds and its synthetic method and application
JP4517155B2 (en) Bisimidazoline ligand and catalyst using the same
JP7427242B2 (en) Optically active azide ester and method for producing the same
KR101006737B1 (en) Process for the preparation of 2-sulfonyliminoindoline using Cu catalyst
JP6906227B2 (en) Halogen bond donor / organic base complex compound and acid base complex catalyst
JP6625013B2 (en) Bisphosphimino ligand having a binaphthol skeleton and catalyst using the same
JP6188066B2 (en) Optically active asymmetric bisindole compound and method for producing the same
JP5866709B2 (en) Bisimidazolidine pincer complex, bisimidazolidine pincer complex, and methods for producing them
CN117820139A (en) Preparation method of 2-tertiary butyl amino benzaldehyde derivative

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150