JP7427242B2 - Optically active azide ester and method for producing the same - Google Patents

Optically active azide ester and method for producing the same Download PDF

Info

Publication number
JP7427242B2
JP7427242B2 JP2020076939A JP2020076939A JP7427242B2 JP 7427242 B2 JP7427242 B2 JP 7427242B2 JP 2020076939 A JP2020076939 A JP 2020076939A JP 2020076939 A JP2020076939 A JP 2020076939A JP 7427242 B2 JP7427242 B2 JP 7427242B2
Authority
JP
Japan
Prior art keywords
optically active
group
azide
following formula
iodoester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020076939A
Other languages
Japanese (ja)
Other versions
JP2021172609A (en
Inventor
孝義 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2020076939A priority Critical patent/JP7427242B2/en
Publication of JP2021172609A publication Critical patent/JP2021172609A/en
Application granted granted Critical
Publication of JP7427242B2 publication Critical patent/JP7427242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、光学活性アジドエステルおよびその製造方法に関する。 The present invention relates to an optically active azide ester and a method for producing the same.

糖やアミノ酸を基本構成単位とする生体高分子は、人間の体内で高度な不斉空間を構築しているため、この生体分子を受容体とする医薬品も光学活性を有している必要がある。このような光学活性な物質を合成する方法は不斉合成法と呼ばれており、不斉合成法の中でも少量の不斉源から理論上無限の光学活性体を合成することが可能な触媒的不斉合成法は極めて重要なものとなっている。 Biopolymers whose basic constituent units are sugars and amino acids have a highly asymmetric structure in the human body, so pharmaceuticals that use these biomolecules as receptors must also have optical activity. . This method of synthesizing optically active substances is called asymmetric synthesis, and among the asymmetric synthesis methods, there is a catalytic method that can theoretically synthesize an infinite number of optically active substances from a small amount of chiral source. Asymmetric synthesis methods have become extremely important.

アジド基は、還元によりアミンへ、またアルキンとの反応でトリアゾールに容易に変換できることから、医薬品の合成に有用な官能基である。とくに、隣り合った炭素上にアジド基とエステル等の酸素官能基(カルボキシル基という)を有する分子からはアミノアルコールの供給に繋がり、アジドに結合した炭素が不斉炭素の場合にはこれら化合物を光学活性体として供給する技術が必要となる。しかしながら、隣り合った炭素上にアジド基とカルボキシル基を有する分子の不斉合成の例はない。尚、従来の技術として、アジドオレフィンの不斉ジヒドロキシル化による光学活性アジドアルコールの合成例が下記非特許文献1に記載されている。一方で、不斉ハロゲン化を経る光学活性アジドエステルならびにアミノエステルへの分子変換法の例が下記非特許文献2に記載されている。
また、今回の発明に繋がった成果として、本発明者は、先に光学活性3,3’-アミノイミノビナフトール配位子と酢酸亜鉛からなる亜鉛三核錯体を開発し、分子内反応である触媒的不斉ヨードラクトン化反応を特許文献1ならびに非特許文献3、4に報告している。
Azide groups are useful functional groups in the synthesis of pharmaceuticals because they can be easily converted to amines by reduction and to triazoles by reaction with alkynes. In particular, molecules with an azide group and an oxygen functional group (called a carboxyl group) such as an ester on adjacent carbons lead to the supply of amino alcohol, and when the carbon bonded to the azide is an asymmetric carbon, these compounds are A technology to supply it as an optically active substance is required. However, there is no example of asymmetric synthesis of a molecule having an azide group and a carboxyl group on adjacent carbon atoms. As a conventional technique, an example of synthesis of an optically active azide alcohol by asymmetric dihydroxylation of an azide olefin is described in Non-Patent Document 1 below. On the other hand, an example of a method for converting molecules into optically active azide esters and amino esters through asymmetric halogenation is described in Non-Patent Document 2 below.
In addition, as a result that led to the present invention, the present inventors previously developed a zinc trinuclear complex consisting of an optically active 3,3'-aminoiminobinaphthol ligand and zinc acetate, and catalyzed an intramolecular reaction. The asymmetric iodolactonization reaction has been reported in Patent Document 1 and Non-Patent Documents 3 and 4.

Ott, A. A.; Goshey, C. S.; Topczewski, J. J. J. Am. Chem. Soc. 2017, 139, 7737-7740.Ott, A. A.; Goshey, C. S.; Topczewski, J. J. J. Am. Chem. Soc. 2017, 139, 7737-7740. Shibatomi, K.; Soga, Y.; Narayama, A.; Fujisawa, I.; Iwasa, S. J. Am. Chem. Soc. 2012, 134, 9836-9839.Shibatomi, K.; Soga, Y.; Narayama, A.; Fujisawa, I.; Iwasa, S. J. Am. Chem. Soc. 2012, 134, 9836-9839. Arai, T.; Sugiyama, N.; Masu, H.; Kado, S.; Yabe, S.; Yamanaka, M. Chem. Comm. 2014, 42, 8287-8290.Arai, T.; Sugiyama, N.; Masu, H.; Kado, S.; Yabe, S.; Yamanaka, M. Chem. Comm. 2014, 42, 8287-8290. Arai, T.; Horigane, K.; Watanabe, O.; Kakino, J.; Sugiyama, N.; Makino, H. Kamei, Y.; Yabe, S. Yamanaka, M. iScience, 12, 280-292Arai, T.; Horigane, K.; Watanabe, O.; Kakino, J.; Sugiyama, N.; Makino, H. Kamei, Y.; Yabe, S. Yamanaka, M. iScience, 12, 280-292

特開2015-38052号公報Japanese Patent Application Publication No. 2015-38052

本発明では、アジドエステルを不斉合成するにあたり、安価で入手容易なα-メチルスチレンなどの安価な試薬を原材料に設定し、分子間の触媒的不斉ヨードエステル化と、それに続くアジ化物イオンとの反応を行う。中間体のヨードエステルを高収率、高立体選択的に得る反応条件を確立する必要がある。更に、光学純度を損なうことなくアジドエステルへ変換するための反応条件を確立する必要がある。 In the present invention, in the asymmetric synthesis of azide esters, inexpensive reagents such as inexpensive and easily available α-methylstyrene are used as raw materials, and intermolecular catalytic asymmetric iodoesterification and subsequent azide ion Perform a reaction with. It is necessary to establish reaction conditions to obtain the intermediate iodoester in high yield and with high stereoselectivity. Furthermore, it is necessary to establish reaction conditions for conversion to an azide ester without compromising optical purity.

そこで、本発明は、上記課題を鑑み、スチレン化合物の触媒的不斉ヨードエステル化と続くアジ化物イオンとの反応を行い、新規な光学活性アジドエステル及びその製造方法を提供することを目的とする。 Therefore, in view of the above problems, the present invention aims to provide a novel optically active azide ester and a method for producing the same by performing catalytic asymmetric iodoesterification of a styrene compound and subsequent reaction with an azide ion. .

本発明者らは、上記課題について鋭意検討を行なっていたところ、3,3’-アミノイミノビナフトール配位子と亜鉛カルボキシレートからなる亜鉛二核錯体触媒の存在下、スチレン化合物とカルボン酸を反応させることで、光学活性ヨードエステルが得られることを見いだした。更に、得られた光学活性ヨードエステルに対しアジ化ナトリウムを作用させることで、光学純度を損なうことなく新規光学活性アジドエステルが得られる点を発見し、本発明を完成させるに至った。 The present inventors have been conducting intensive studies on the above-mentioned problem, and found that a styrene compound and a carboxylic acid are reacted in the presence of a zinc dinuclear complex catalyst consisting of a 3,3'-aminoiminobinaphthol ligand and a zinc carboxylate. It was discovered that an optically active iodoester can be obtained by doing this. Furthermore, the inventors discovered that a novel optically active azide ester can be obtained without impairing optical purity by allowing sodium azide to act on the obtained optically active iodoester, thereby completing the present invention.

即ち、光学活性ヨードエステルを製造する方法は、下記式(1)で示される3,3’-アミノイミノビナフトール配位子に対応する亜鉛カルボン酸塩を作用させて得られる亜鉛の二核錯体触媒の存在下で、スチレン化合物とカルボン酸を反応させて下記式(2)で示される光学活性ヨードエステルを不斉合成し、得られたヨードエステルとアジ化ナトリウムを反応させるものである。 That is, the method for producing an optically active iodoester uses a zinc dinuclear complex catalyst obtained by reacting a zinc carboxylate corresponding to a 3,3'-aminoiminobinaphthol ligand represented by the following formula (1). In the presence of , a styrene compound and a carboxylic acid are reacted to asymmetrically synthesize an optically active iodoester represented by the following formula (2), and the obtained iodoester is reacted with sodium azide.

Figure 0007427242000001
Figure 0007427242000001

Figure 0007427242000002
Figure 0007427242000002

なお、この結果、下記式(3)で示される光学活性アジドエステルを得ることができる。 Note that as a result, an optically active azide ester represented by the following formula (3) can be obtained.

Figure 0007427242000003
Figure 0007427242000003

なお上記式中、R、R3は水素原子、アルキル基、アリール基、ハロゲン原子、アルコキシ基、又はカルボニル基、R2は水素原子、又はアルキル基である。 In the above formula, R 1 and R 3 are a hydrogen atom, an alkyl group, an aryl group, a halogen atom, an alkoxy group, or a carbonyl group, and R 2 is a hydrogen atom or an alkyl group.

以上、本発明により、光学活性ヨードエステルならびに光学活性アジドエステル及びその製造方法を提供することができる。光学活性アジドエステルからは、医薬の合成に有用な新規光学活性アミノアルコールを供給できるようになるほか、アジド官能基とアルキン分子の環化反応によりトリアゾール化合物を得る反応により、異種の生物活性化合物を連結したハイブリッド医薬の創製や、蛍光試薬と生物活性化合物の連結による医薬の可視化が可能になる。 As described above, the present invention can provide an optically active iodoester, an optically active azide ester, and a method for producing the same. Optically active azide esters can be used to supply new optically active amino alcohols that are useful for pharmaceutical synthesis, as well as to produce different biologically active compounds through the cyclization reaction between the azide functional group and alkyne molecules to obtain triazole compounds. It becomes possible to create linked hybrid drugs and to visualize drugs by linking fluorescent reagents and biologically active compounds.

以下、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は多くの異なる様態で実施することが可能であり、以下に示す実施形態に限定されるものではない。 Embodiments of the present invention will be described below with reference to the drawings. However, the invention can be implemented in many different ways and is not limited to the embodiments shown below.

(実施形態1)
本実施形態に係る光学活性ヨードエステルは、下記式(1)で示される3,3’-アミノイミノビナフトール配位子と亜鉛カルボキシレートからなる亜鉛二核錯体触媒の存在下で、スチレン化合物とカルボン酸を反応させることによって製造できる。尚、本配位子は、[特許文献1]ならびに[非特許文献3]記載の手法で合成できる。
(Embodiment 1)
The optically active iodoester according to the present embodiment is produced by combining a styrene compound and carbon dioxide in the presence of a zinc dinuclear complex catalyst consisting of a 3,3'-aminoiminobinaphthol ligand and zinc carboxylate represented by the following formula (1). It can be produced by reacting acids. In addition, this ligand can be synthesized by the method described in [Patent Document 1] and [Non-Patent Document 3].

Figure 0007427242000004
Figure 0007427242000004

具体的には、本実施形態に係る触媒の存在下で、下記式(4)で示される反応のように、スチレン化合物とカルボン酸を反応させてヨードエステルを合成することができる。 Specifically, in the presence of the catalyst according to the present embodiment, an iodoester can be synthesized by reacting a styrene compound and a carboxylic acid as in the reaction represented by the following formula (4).

Figure 0007427242000005
Figure 0007427242000005

上記反応は、非極性溶媒中、特にジクロロメタン中において行なうことが好ましい。 The above reaction is preferably carried out in a non-polar solvent, especially in dichloromethane.

上記反応は、マイナス78度において行なうことが好ましい。ここで、上記式(4)に示す反応の最適化条件は、下記表1にまとめる実験によって得られた。 The above reaction is preferably carried out at minus 78 degrees. Here, the optimization conditions for the reaction shown in the above formula (4) were obtained through experiments summarized in Table 1 below.

Figure 0007427242000006
Figure 0007427242000006

ここにおいて限定されるわけではないがR、R3は水素原子、アルキル基、アリール基、ハロゲン原子、アルコキシ基、又はカルボニル基、R2は水素原子、又はアルキル基を用いることができる。 Although not limited here, R 1 and R 3 can be a hydrogen atom, an alkyl group, an aryl group, a halogen atom, an alkoxy group, or a carbonyl group, and R 2 can be a hydrogen atom or an alkyl group.

ここで、限定されるわけではないが、アリール基の例として、フェニル基、1-ナフチル基、2-ナフチルなどを挙げることができ、アルキル基の例として、メチル基、エチル基などを挙げることができ、カルボニル基の例として、アセチル基、ベンゾイル基などを挙げることができる。 Here, examples of the aryl group include, but are not limited to, phenyl group, 1-naphthyl group, 2-naphthyl group, and examples of the alkyl group include methyl group, ethyl group, etc. Examples of the carbonyl group include an acetyl group and a benzoyl group.

なお、上記反応において、用いるカルボン酸の量は、スチレンを1モルとした場合、1.1モル以上1.9モル以下の範囲にあることが好ましく、より好ましくは1.1モル以上1.6モル以下の範囲内である。 In addition, in the above reaction, the amount of carboxylic acid used is preferably in the range of 1.1 mol or more and 1.9 mol or less, more preferably 1.1 mol or more and 1.6 mol or less, when styrene is 1 mol. It is within the range of mol or less.

この結果、本実施形態に係る方法によると、下記式(2)で示すヨードエステルを高い収率、立体選択性で得ることができる。 As a result, according to the method according to the present embodiment, the iodoester represented by the following formula (2) can be obtained with high yield and stereoselectivity.

光学活性アジドエステルは、上記式(2)で示されるヨードエステルに対し、アジ化ナトリウムを反応させることによって製造できる。 The optically active azide ester can be produced by reacting the iodoester represented by the above formula (2) with sodium azide.

具体的には、下記式(5)で示される反応のように、アジ化ナトリウムを反応させて光学活性アジドエステルを合成することができる。 Specifically, an optically active azide ester can be synthesized by reacting sodium azide as in the reaction shown by the following formula (5).

Figure 0007427242000007
Figure 0007427242000007

上記反応は、非プロトン性極性溶媒中、特にジメチルホルムアミド中において行なうことが好ましい。 The above reaction is preferably carried out in an aprotic polar solvent, particularly in dimethylformamide.

上記反応は、80度において行なうことが好ましい。 The above reaction is preferably carried out at 80 degrees.

ここにおいて限定されるわけではないがR、R3は水素原子、アルキル基、アリール基、ハロゲン原子、アルコキシ基、又はカルボニル基、R2は水素原子、又はアルキル基を用いることができる。 Although not limited here, R 1 and R 3 can be a hydrogen atom, an alkyl group, an aryl group, a halogen atom, an alkoxy group, or a carbonyl group, and R 2 can be a hydrogen atom or an alkyl group.

ここで、限定されるわけではないが、アリール基の例として、フェニル基、1-ナフチル基、2-ナフチルなどを挙げることができ、アルキル基の例として、メチル基、エチル基などを挙げることができ、カルボニル基の例として、アセチル基、ベンゾイル基などを挙げることができる。特に、R3は電子供与性置換基であるアルコキシ基を好適に用いることができる。 Here, examples of the aryl group include, but are not limited to, phenyl group, 1-naphthyl group, 2-naphthyl group, and examples of the alkyl group include methyl group, ethyl group, etc. Examples of the carbonyl group include an acetyl group and a benzoyl group. In particular, an alkoxy group, which is an electron-donating substituent, can be suitably used for R 3 .

なお、上記反応において、用いるアジ化ナトリウムの量は、ヨードエステルを1モルとした場合、1.0モル以上5.0モル以下の範囲にあることが好ましく、より好ましくは2.0モル以上4.0モル以下の範囲内である。 In the above reaction, the amount of sodium azide used is preferably in the range of 1.0 mol or more and 5.0 mol or less, more preferably 2.0 mol or more and 4.0 mol or less, based on 1 mol of iodoester. It is within the range of .0 mole or less.

この結果、本実施形態に係る方法によると、下記式(3)で示すアジドエステルを、光学純度を損なうことなく高い収率で得ることができる。 As a result, according to the method according to the present embodiment, the azide ester represented by the following formula (3) can be obtained in high yield without impairing optical purity.

Figure 0007427242000008
Figure 0007427242000008

以下、上記実施形態に係る触媒を用い、実際に光学活性アジドエステルを製造した。以下、具体的に説明する。 Hereinafter, an optically active azide ester was actually produced using the catalyst according to the above embodiment. This will be explained in detail below.

(実施例1)
下記式(6)に示す本実施例は、次のように行った。即ち、(R,S,S)3,3’-ビスアミノイミノビナフトール(0.05 mmol)とパラメトキシ安息香酸亜鉛塩(0.010 mmol)を無水ジクロロメタン(4.0 ml)中で室温下1時間攪拌したのち、パラメトキシ安息香酸(0.11 mmol)とα-メチルスチレン(0.1 mmol)を加えた。同反応容器を-78 °Cに冷却し、30分保冷後、N-ヨード-1,8-ナフタレンイミド (NIN)(0.11 mmol) とヨウ素(0.02 mmol)を加え反応を開始した。-78 °Cにて27時間反応させた後、反応液に飽和亜硫酸ナトリウム水溶液を加え反応を停止し、室温に戻した後、ジクロロメタンにより分液抽出を行った。有機相をボウ硝乾燥させた後、濃縮、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=20/1~10/1)により精製することにより目的とするヨードエステル体を99%化学収率で得た。
(Example 1)
The present example shown in formula (6) below was carried out as follows. That is, (R,S,S)3,3'-bisaminoiminobinaphthol (0.05 mmol) and paramethoxybenzoic acid zinc salt (0.010 mmol) were mixed in anhydrous dichloromethane (4.0 ml) at room temperature for 1 hour. After stirring for an hour, paramethoxybenzoic acid (0.11 mmol) and α-methylstyrene (0.1 mmol) were added. The reaction vessel was cooled to -78 °C and kept cold for 30 minutes, then N-iodo-1,8-naphthaleneimide (NIN) (0.11 mmol) and iodine (0.02 mmol) were added to start the reaction. . After reacting at -78 °C for 27 hours, a saturated aqueous sodium sulfite solution was added to the reaction solution to stop the reaction, and after returning to room temperature, liquid separation and extraction were performed with dichloromethane. After drying the organic phase, the desired iodoester was obtained in 99% chemical yield by concentrating and purifying the residue by silica gel column chromatography (hexane/ethyl acetate = 20/1 to 10/1). Obtained.

Figure 0007427242000009
Figure 0007427242000009

1H NMR (500 MHz, CDCl3) δ8.07-8.01 (m, 2H), 7.51-7.44 (m, 2H), 7.29-7.24 (m, 2H), 6.99-6.94 (m, 2H), 3.87 (s, 3H), 3.85 (d, J=11.0 Hz, 1H), 3.74 (d, J=10.5 Hz, 1H), 2.09 (s, 3H) 1 H NMR (500 MHz, CDCl 3 ) δ8.07-8.01 (m, 2H), 7.51-7.44 (m, 2H), 7.29-7.24 (m, 2H), 6.99-6.94 (m, 2H), 3.87 ( s, 3H), 3.85 (d, J=11.0 Hz, 1H), 3.74 (d, J=10.5 Hz, 1H), 2.09 (s, 3H)

13C NMR (125 MHz, CDCl3) δ164.6, 163.7, 141.1, 132.0, 131.8, 126.7, 123.0, 122.0, 113.9, 80.4, 55.6, 25.8, 17.5 13 C NMR (125 MHz, CDCl 3 ) δ164.6, 163.7, 141.1, 132.0, 131.8, 126.7, 123.0, 122.0, 113.9, 80.4, 55.6, 25.8, 17.5

HRMS calcd for C17H16O3BrINa (M+Na)+: 496.9220, found: m/z 496.9212 HRMS calcd for C 17 H 16 O 3 BrINa (M+Na) + : 496.9220, found: m/z 496.9212

IR (neat) 1710, 1604, 1285, 1252, 1156, 1097, 1078, 1026, 1007, 767 cm-1 IR (neat) 1710, 1604, 1285, 1252, 1156, 1097, 1078, 1026, 1007, 767 cm -1

[<]D 23.4= -1.5 (c= 1.0, CHCl3, 85% ee) [<] D 23.4 = -1.5 (c= 1.0, CHCl 3 , 85% ee)

得られたヨードエステル体の光学純度は、ダイセル社製Chiralpack AD-3カラムを用いた高速液体クロマトグラフィーにより決定し、その光学純度は85% eeであった(展開溶媒:ヘキサン/2-プロパノール=70/30、流速:1.0 mL/min、検出波長:254 nm、保持時間:12.4分、9.1分)。 The optical purity of the obtained iodoester was determined by high performance liquid chromatography using a Daicel Chiralpack AD-3 column, and the optical purity was 85% ee (developing solvent: hexane/2-propanol = 70/30, flow rate: 1.0 mL/min, detection wavelength: 254 nm, retention time: 12.4 minutes, 9.1 minutes).

(実施例2)
下記式(7)に示す本実施例は、次のように行った。即ち、上記式(6)の実施例によって得られたヨードエステル体(0.12 mmol, 82% ee)をジメチルホルムアミド(DMF)(0.4 ml)に溶解し、アジ化ナトリウム(0.36 mmol)を0°Cで加えた。この反応液を80°Cに加熱、16時間攪拌した。反応液を再び0°Cに冷却し、水により希釈後、ジエチルエーテルで分液抽出を行った。有機相をボウ硝乾燥させた後、濃縮、残渣をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=8/1)により精製することにより、目的とするアジドエステル体を71%化学収率で得た。
(Example 2)
The present example shown in formula (7) below was carried out as follows. That is, the iodoester compound (0.12 mmol, 82% ee) obtained by the example of formula (6) above was dissolved in dimethylformamide (DMF) (0.4 ml), and sodium azide (0.36 mmol) was heated at 0 °C. I added it. This reaction solution was heated to 80°C and stirred for 16 hours. The reaction solution was cooled to 0°C again, diluted with water, and then subjected to liquid separation and extraction with diethyl ether. The organic phase was dried over sulfur salt, concentrated, and the residue was purified by silica gel column chromatography (hexane/ethyl acetate = 8/1) to obtain the desired azide ester in a chemical yield of 71%.

Figure 0007427242000010
Figure 0007427242000010

1H NMR (400 MHz, CDCl3) δ 7.98-7.94 (m, 2H), 7.56-7.51 (m, 2H), 7.39-7.35 (m, 2H), 6.95-6.89 (m, 2H), 4.51 (d, J=12.0 Hz, 1H), 4.42 (d, J=11.6 Hz, 1H), 3.86 (s, 3H), 1.76 (s, 3H) 1 H NMR (400 MHz, CDCl 3 ) δ 7.98-7.94 (m, 2H), 7.56-7.51 (m, 2H), 7.39-7.35 (m, 2H), 6.95-6.89 (m, 2H), 4.51 (d , J=12.0 Hz, 1H), 4.42 (d, J=11.6 Hz, 1H), 3.86 (s, 3H), 1.76 (s, 3H)

13C NMR (100 MHz, CDCl3) δ165.8, 163.8, 139.6, 132.0, 127.8, 122.4, 121.8, 113.9, 70.5, 65.3, 55.6, 22.7 13 C NMR (100 MHz, CDCl 3 ) δ165.8, 163.8, 139.6, 132.0, 127.8, 122.4, 121.8, 113.9, 70.5, 65.3, 55.6, 22.7

HRMS calcd for C17H16O3N3BrNa (M+Na)+: 412.0267, found: m/z 412.0264 HRMS calcd for C 17 H 16 O 3 N 3 BrNa (M+Na) + : 412.0267, found: m/z 412.0264

[<]D 25.6= +12.7 (c= 1.0, CHCl3, 84% ee) [<] D 25.6 = +12.7 (c= 1.0, CHCl 3 , 84% ee)

IR (neat) 2108, 1713, 1604, 1165, 1092, 1027, 1007, 845, 821, 766 cm-1 IR (neat) 2108, 1713, 1604, 1165, 1092, 1027, 1007, 845, 821, 766 cm -1

得られたエステル体の光学純度は、ダイセル社製Chiralpack AD-3カラムを用いた高速液体クロマトグラフィーにより決定し、その光学純度は82% eeであった(展開溶媒:ヘキサン/2-プロパノール=70/30、流速:1.0 mL/min、検出波長:254 nm、保持時間:6.6分、7.3分)。 The optical purity of the obtained ester was determined by high performance liquid chromatography using a Daicel Chiralpack AD-3 column, and the optical purity was 82% ee (developing solvent: hexane/2-propanol = 70% ee). /30, flow rate: 1.0 mL/min, detection wavelength: 254 nm, retention time: 6.6 minutes, 7.3 minutes).

以上の通り、本実施例によると、光学活性ジヒドロキノキサリノニル-スピロオキシインドール誘導体が高い収率と光学純度で合成できることを確認した。尚、上記式(7)に記載の光学活性アジドエステルを与える反応機構は、下記式(8)で示される。 As described above, according to this example, it was confirmed that an optically active dihydroquinoxalinonyl-spirooxindole derivative could be synthesized with high yield and optical purity. Incidentally, the reaction mechanism for producing the optically active azide ester described in the above formula (7) is shown by the following formula (8).

Figure 0007427242000011
Figure 0007427242000011

本発明は、過去に報告例のない光学活性アジドエステルを高い光学純度で供給できる。医薬・農薬の開発と生産に有用であり、産業上の利用可能性がある。 The present invention can supply an optically active azide ester with high optical purity, which has never been reported before. It is useful for the development and production of pharmaceuticals and agrochemicals, and has potential for industrial use.

Claims (2)

下記式(1)で示される配位子と亜鉛塩からなる触媒を用いてスチレン化合物、カルボン酸及びヨウ素カチオン供給源を反応させ下記式(2)で示される光学活性ヨードエステルを製造し、得られた光学活性ヨードエステルにアジ化物イオンを反応させ、光学活性アジドエステル下記式(3)を製造する一連の方法。(ここでR、Rは水素原子、アルキル基、アリール基、ハロゲン原子、アルコキシ基、又はカルボニル基、Rは水素原子、又はアルキル基である。)
Figure 0007427242000012
Figure 0007427242000013
Figure 0007427242000014
An optically active iodoester represented by the following formula (2) is produced by reacting a styrene compound, a carboxylic acid, and an iodine cation source using a catalyst consisting of a ligand represented by the following formula (1) and a zinc salt. A series of methods for producing an optically active azide ester of the following formula (3) by reacting the obtained optically active iodoester with an azide ion. (Here, R 1 and R 3 are a hydrogen atom, an alkyl group, an aryl group, a halogen atom, an alkoxy group, or a carbonyl group, and R 2 is a hydrogen atom or an alkyl group.)
Figure 0007427242000012
Figure 0007427242000013
Figure 0007427242000014
下記式(3)で示される光学活性アジドエステル誘導体。(ここでR、Rは水素原子、アルキル基、アリール基、ハロゲン原子、アルコキシ基、又はカルボニル基、Rは水素原子、又はアルキル基である。)
Figure 0007427242000015
An optically active azide ester derivative represented by the following formula (3). (Here, R 1 and R 3 are a hydrogen atom, an alkyl group, an aryl group, a halogen atom, an alkoxy group, or a carbonyl group, and R 2 is a hydrogen atom or an alkyl group.)
Figure 0007427242000015
JP2020076939A 2020-04-23 2020-04-23 Optically active azide ester and method for producing the same Active JP7427242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020076939A JP7427242B2 (en) 2020-04-23 2020-04-23 Optically active azide ester and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020076939A JP7427242B2 (en) 2020-04-23 2020-04-23 Optically active azide ester and method for producing the same

Publications (2)

Publication Number Publication Date
JP2021172609A JP2021172609A (en) 2021-11-01
JP7427242B2 true JP7427242B2 (en) 2024-02-05

Family

ID=78279574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020076939A Active JP7427242B2 (en) 2020-04-23 2020-04-23 Optically active azide ester and method for producing the same

Country Status (1)

Country Link
JP (1) JP7427242B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038052A (en) 2013-08-19 2015-02-26 国立大学法人 千葉大学 Bisaminoimine ligand and catalyst having binaphthol skeleton
JP2016198736A (en) 2015-04-12 2016-12-01 国立大学法人 千葉大学 Catalyst having amino-salicylaldimine ligand coordinated to metal and method for producing iodine cyclized product using the same
WO2016202894A1 (en) 2015-06-17 2016-12-22 Universitaet Des Saarlandes Method of converting alcohol to halide
JP2017206485A (en) 2016-05-21 2017-11-24 国立大学法人 千葉大学 Optically active 1,3-diamine derivative and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038052A (en) 2013-08-19 2015-02-26 国立大学法人 千葉大学 Bisaminoimine ligand and catalyst having binaphthol skeleton
JP2016198736A (en) 2015-04-12 2016-12-01 国立大学法人 千葉大学 Catalyst having amino-salicylaldimine ligand coordinated to metal and method for producing iodine cyclized product using the same
WO2016202894A1 (en) 2015-06-17 2016-12-22 Universitaet Des Saarlandes Method of converting alcohol to halide
JP2017206485A (en) 2016-05-21 2017-11-24 国立大学法人 千葉大学 Optically active 1,3-diamine derivative and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Angew. Chem. Int. Ed.,2020年05月,59,Pages 12680-12683

Also Published As

Publication number Publication date
JP2021172609A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
KR101961897B1 (en) Preparation method of sacylitol
WO2007105729A1 (en) Process for production of cyclopropylamide compound
JP7427242B2 (en) Optically active azide ester and method for producing the same
CA2980071A1 (en) Method for preparation of (4s)-4-[4-cyano-2-(methylsulfonyl)phenyl]-3,6-dimethyl-2-oxo-1-[3-(trifluoromethyl)phenyl]-1,2,3,4-tetrahydro pyrimidine-5-carbonitrile
CN111718372A (en) Axial chiral phosphine-alkene ligand and preparation method and application thereof
JP4747298B2 (en) Bisimidazoline ligand and catalyst using the same
CN113004181B (en) Method for preparing thioester compound by carbonylation
JP6676146B2 (en) Novel production method of chromanol derivative
JP2006519786A (en) Chemical methods for making intermediates to obtain N-formylhydroxylamine compounds
WO2019069828A1 (en) Optically active 2,3-bisphosphinopyrazine derivative, method for producing same, transition metal complex, and method for producing organic boron compound
JP5350767B2 (en) Novel phosphine borane compound and method for producing the same, and method for producing hydrogen-phosphine borane compound
JP5622019B2 (en) Asymmetric organic molecular catalyst having amino alcohol derivative salt structure and method for producing optically active compound using said asymmetric organic molecular catalyst
CN111269153B (en) Synthetic method of alpha, alpha-difluoro-beta-carbonyl sulfone compound
CN114989063A (en) Synthesis method of beta-halopyrrole compound
JP4654444B2 (en) Diamine ligand and catalyst using the same
CN114573512B (en) Method for synthesizing C2-difluoro alkyl benzimidazole derivative
RU2785963C1 (en) Method for producing a condensed tricyclic compound and a corresponding intermediate
CN109810056B (en) S-alkyl-S-quinolyl-N-sulfonyl nitrogen sulfur ylide compound and preparation and application thereof
JP7244905B2 (en) Organocatalysts for highly stereoselective asymmetric aldol reactions and their applications
JP6635639B1 (en) 2,3-bisphosphinopyrazine derivative, method for producing the same, transition metal complex, asymmetric catalyst, and method for producing organoboron compound
JP2013142071A (en) Pyrrolidinyl-spirooxindole derivative and method for producing the same
CN113929598A (en) Synthesis method of (S) -2-tert-butyloxycarbonylamino-3- (4, 4-difluorocyclohexyl) propionic acid
JP4825969B2 (en) Method for producing tertiary alcohol
CN106278968B (en) A kind of method for synthesizing sulfo-amino acid derivative
CN116410218A (en) Synthesis method of monofluoro alkenyl silicon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240117

R150 Certificate of patent or registration of utility model

Ref document number: 7427242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150