JP6548214B2 - Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same - Google Patents

Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same Download PDF

Info

Publication number
JP6548214B2
JP6548214B2 JP2015081322A JP2015081322A JP6548214B2 JP 6548214 B2 JP6548214 B2 JP 6548214B2 JP 2015081322 A JP2015081322 A JP 2015081322A JP 2015081322 A JP2015081322 A JP 2015081322A JP 6548214 B2 JP6548214 B2 JP 6548214B2
Authority
JP
Japan
Prior art keywords
group
substituent
hydrogen
catalyst
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015081322A
Other languages
Japanese (ja)
Other versions
JP2016198736A (en
Inventor
孝義 荒井
孝義 荒井
旺嗣 渡辺
旺嗣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Original Assignee
Chiba University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC filed Critical Chiba University NUC
Priority to JP2015081322A priority Critical patent/JP6548214B2/en
Publication of JP2016198736A publication Critical patent/JP2016198736A/en
Application granted granted Critical
Publication of JP6548214B2 publication Critical patent/JP6548214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、アミノサリチルアルジミン配位子を金属に配位させた触媒及びこれを用いたヨード環化体の製造方法に関する。   The present invention relates to a catalyst in which an aminosalicylaldimine ligand is coordinated to a metal and a method for producing an iodocyclic compound using the same.

ヨード環化は、その生成物から様々な化学変換が可能であり、天然物等の複雑な化合物の合成に用いられる重要な反応である。特に、環化によって新規の第四級不斉炭素を構築できることから、触媒的不斉反応への展開が注目されている。近年になり、Jacobsen(非特許文献1)やJohnston(非特許文献2)、Gao(非特許文献3)らにより触媒的不斉ヨード環化が達成されている。   The iodocyclization is capable of various chemical transformations from its product and is an important reaction used for the synthesis of complex compounds such as natural products. In particular, development of a catalytic asymmetric reaction attracts attention because a novel quaternary asymmetric carbon can be constructed by cyclization. In recent years, catalytic asymmetric iodocyclization has been achieved by Jacobsen (Non-Patent Document 1), Johnston (Non-Patent Document 2), Gao (Non-Patent Document 3) and the like.

Dobish, M.C.: Johnston,J.N. J. Am. Chem. Soc. 2012, 134, 6068Dobish, M. C. Johnston, J. et al. N. J. Am. Chem. Soc. 2012, 134, 6068 Veitch, G.E.: Jacobsen, E.N. Angew. Chem. Int. Ed. 2010, 49, 7332Veitch, G. E. : Jacobsen, E. N. Angew. Chem. Int. Ed. 2010, 49, 7332 Ning, Z.: Jin, R.: Ding, J.: Gao, L. SYNLETT. 2009, 14, 2291Ning, Z. : Jin, R. : Ding, J. : Gao, L. SYNLETT. 2009, 14, 2291

しかしながら、上記文献に記載のいずれにおいても、反応に用いられる基質はカルボン酸化合物に限定され、他の基質を用いたヨード環化体を得る反応系の開発が望まれる。   However, in any of the documents described above, the substrate used for the reaction is limited to the carboxylic acid compound, and development of a reaction system for obtaining an iodo cyclized product using another substrate is desired.

そこで、本発明は、上記課題を鑑み、より広範な基質に対する不斉ヨード環化反応を提供することを目的とする。   Therefore, in view of the above problems, the present invention aims to provide an asymmetric iodocyclization reaction for a wider range of substrates.

本発明者らは、上記課題について鋭意検討を行ったところ、金属にアミノサリチルアルジミン配位子を配位させた触媒の存在下で、不飽和アミドとN−ヨードスクシンイミドを反応させることで、エナンチオ選択的にヨード環化体を得ることが出来る点を発見し、本発明を完成させるに至った。   The inventors of the present invention conducted intensive studies on the above-mentioned problems and found that the enantiomeric reaction is carried out by reacting unsaturated amide with N-iodosuccinimide in the presence of a catalyst in which an aminosalicylaldimine ligand is coordinated to a metal. It discovered that the iodo-cyclization thing could be obtained selectively, and came to complete this invention.

即ち、本発明の一手段に係る触媒は、下記式(1)で示される配位子に金属又は金属塩を配位させたものである。
That is, the catalyst according to one means of the present invention is a catalyst in which a metal or a metal salt is coordinated to a ligand represented by the following formula (1).

上記式(1)で示される配位子においてR、Rは、水素、アルキル基、フェニル基(置換基を有していてもよい。)又はナフチル基(置換基を有していてもよい。)であり、RとRは結合して環を形成していてもよい。RとRとは、同じであっても、異なっていてもよい。R、Rは、水素、フッ素、塩素、臭素、ヨウ素、ニトロ基、アルキル基、アルキニル基、アルコキシ基又はフェニル基(置換基を有していてもよい。)である。 In the ligand represented by the above formula (1), R 1 and R 2 each have hydrogen, an alkyl group, a phenyl group (which may have a substituent) or a naphthyl group (which has a substituent) R 1 and R 2 may combine to form a ring. R 1 and R 2 may be the same or different. R 3 and R 4 are hydrogen, fluorine, chlorine, bromine, iodine, a nitro group, an alkyl group, an alkynyl group, an alkoxy group or a phenyl group (which may have a substituent).

また、本発明の他の一手段に係るヨード環化体を製造する方法は、下記式(1)で示される配位子に金属又は金属塩を配位させた触媒の存在下で、不飽和アミドとN−ヨードスクシンイミドを反応させることで下記式(2)で示されるヨード環化体を製造するものである。
ここでR、Rは、水素、アルキル基、フェニル基(置換基を有していてもよい。)又はナフチル基(置換基を有していてもよい。)であり、RとRは結合して環を形成していてもよい。RとRとは、同じであっても、異なっていてもよい。R、Rは、水素、フッ素、塩素、臭素、ヨウ素、ニトロ基、アルキル基、アルキニル基、アルコキシ基又はフェニル基(置換基を有していてもよい。)である。
Moreover, the method for producing an iodocyclic compound according to another means of the present invention is characterized in that the unsaturated compound is prepared in the presence of a catalyst in which a metal or a metal salt is coordinated to a ligand represented by the following formula (1). By reacting an amide with N-iodosuccinimide, an iodocyclic compound represented by the following formula (2) is produced.
Here, R 1 and R 2 each represent hydrogen, an alkyl group, a phenyl group (which may have a substituent) or a naphthyl group (which may have a substituent), and R 1 and R 2 may be combined to form a ring. R 1 and R 2 may be the same or different. R 3 and R 4 are hydrogen, fluorine, chlorine, bromine, iodine, a nitro group, an alkyl group, an alkynyl group, an alkoxy group or a phenyl group (which may have a substituent).

ここでR、水素、アルキル基、フェニル基(置換基を有していてもよい。)又はナフチル基(置換基を有していてもよい。)であり、Rは、水素、アルキル基、フェニル基(置換基を有していてもよい。)、カルボニル基、スルホニル基である。 Here, R 1 is hydrogen, an alkyl group, a phenyl group (which may have a substituent) or a naphthyl group (which may have a substituent), and R 2 is a hydrogen, an alkyl group , A phenyl group (which may have a substituent), a carbonyl group and a sulfonyl group.

以上、本発明により、新規な金属触媒を提供するとともに、これを用いて不斉ヨード環化反応及びそれにより得られるヨード環化体をエナンチオ選択的に提供することが可能となり、得られる光学活性なヨード環化体の拡大を行う事が出来る。また、本発明によると非常に高い収率を得ることもできる。   As described above, according to the present invention, it is possible to provide a novel metal catalyst, and to use this to make it possible to enantioselectively provide an asymmetric iodocyclization reaction and an iodocyclic compound obtained thereby, and to obtain an optical activity obtained It is possible to expand the iodine form of It is also possible to obtain very high yields according to the invention.

以下、本発明の実施形態について図面を参照しつつ説明する。ただし、本発明は多くの異なる様態で実施することが可能であり、以下に示す実施形態に限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention can be implemented in many different modes, and is not limited to the embodiments described below.

(実施形態1)
本実施形態に係る触媒は、下記化学式(1)で示される配位子を金属又は金属塩に配位させて得られる。
(Embodiment 1)
The catalyst according to the present embodiment is obtained by coordinating a ligand represented by the following chemical formula (1) to a metal or metal salt.

本実施形態に係る配位子において、R、Rは、ジアミンの置換基として種々のものを採用することができる。例えば水素、アルキル基、フェニル基(置換基を有していてもよい。)又はナフチル基(置換基を有していてもよい。)であることが望ましく、RとRは結合して環を形成していてもよい。RとRとは、同じであっても、異なっていてもよい。 In the ligand according to this embodiment, R 1 and R 2 may employ various ones as a substituent of diamine. For example, hydrogen, an alkyl group, a phenyl group (which may have a substituent) or a naphthyl group (which may have a substituent) is desirable, and R 1 and R 2 are bonded together. It may form a ring. R 1 and R 2 may be the same or different.

また、本実施形態に係る配位子において、RおよびRは、芳香環に導入できる置換基である限り限定されることはなく種々のものを採用することができる。例えば水素、フッ素、塩素、臭素、ヨウ素、ニトロ基、アルキル基、アルコキシ基又はフェニル基(置換基を有していてもよい。)を例示することができる。 In addition, in the ligand according to the present embodiment, R 3 and R 4 are not limited as long as they are substituents that can be introduced into the aromatic ring, and various ones can be adopted. For example, hydrogen, fluorine, chlorine, bromine, iodine, a nitro group, an alkyl group, an alkoxy group or a phenyl group (which may have a substituent) can be exemplified.

配位子を配位させる金属としては、配位させることができる限りにおいてこれに限定されるわけではないが、例えば銅、ニッケル、亜鉛、コバルト、ルテニウム、ロジウム又は鉄を例示することができる。また配位子を金属に配位させる方法としては、周知の方法を採用することができ、限定されるわけではないが、金属塩と配位子を混合することで配位させることができる。金属塩としては、限定されるわけではないが、金属が銅である場合、Cu(OAc)、Cu(OTf)、CuCl等を用いることができる。 As a metal which coordinates a ligand, it is not necessarily limited to this as long as it can coordinate, for example, copper, nickel, zinc, cobalt, ruthenium, rhodium or iron can be illustrated. Moreover, as a method of coordinating a ligand to a metal, a known method can be adopted, and it is possible to coordinate by mixing a metal salt and a ligand, without limitation. The metal salt is not limited, but when the metal is copper, Cu (OAc) 2 , Cu (OTf) 2 , CuCl 2 or the like can be used.

さらに、本実施形態に係る触媒は、不飽和アミドを用いた不斉ヨード環化反応を行なうために用いることができる。具体的には、本実施形態に係る触媒の存在下で、下記式(3)で示される反応のように、不飽和アミドとN−ヨードスクシンイミドを反応させてヨード環化体をエナンチオ選択的に合成することができる。
Furthermore, the catalyst according to this embodiment can be used to carry out an asymmetric iodocyclization reaction using an unsaturated amide. Specifically, in the presence of the catalyst according to the present embodiment, as in the reaction represented by the following formula (3), the unsaturated amide and N-iodosuccinimide are reacted to make the iodocyclic compound enantioselectively It can be synthesized.

ここでR、水素、アルキル基、フェニル基(置換基を有していてもよい。)又はナフチル基(置換基を有していてもよい。)であり、Rは、水素、アルキル基、フェニル基(置換基を有していてもよい。)、カルボニル基、スルホニル基である。 Here, R 1 is hydrogen, an alkyl group, a phenyl group (which may have a substituent) or a naphthyl group (which may have a substituent), and R 2 is a hydrogen, an alkyl group , A phenyl group (which may have a substituent), a carbonyl group and a sulfonyl group.

(触媒の製造) (Production of catalyst)

まず、下記式(4)で示されるジアミンに対し、1,3ジメチル−5−アセチル−バルビツール酸(DAB)を作用させることで、下記式(5)で示されるモノDAB化ジアミンを得ることができる。
First, to obtain a mono-DAB-modified diamine represented by the following formula (5) by causing 1,3 dimethyl-5-acetyl-barbituric acid (DAB) to act on a diamine represented by the following formula (4) Can.

次に、(5)で示されるモノDAB化ジアミンに対し、ジイソプロピルエチルアミン(DIPEA)存在の下、置換基Rを有する1、2−ビスブロモメチルベンゼンを反応させることで、下記式(6)で示されるDAB基と第三級アミン部位を導入したジアミンを得ることができる。
Next, a mono-DAB-modified diamine represented by (5) is reacted with 1,2-bisbromomethylbenzene having a substituent R 3 in the presence of diisopropylethylamine (DIPEA) to give the following formula (6) The diamine which introduce | transduced the DAB group and tertiary amine site | part which are shown can be obtained.

次に、(6)で示されるジアミンに対し、2−アミノエタノール存在の下、DAB基を外すことで、下記式(7)に示される第三級アミン部位を持つジアミンを得ることができる。
Next, a diamine having a tertiary amine moiety represented by the following formula (7) can be obtained by removing the DAB group in the presence of 2-aminoethanol with respect to the diamine represented by (6).

そして、下記式(7)で示されるジアミンに対し、無水硫酸ナトリウム存在下、サリチルアルデヒドを作用させることで、上記式(1)に示される配位子を得ることが出来る。   And the ligand shown by the said Formula (1) can be obtained by making a salicylaldehyde act on diamine shown by following formula (7) in anhydrous sodium sulfate presence.

さらに、上記式(1)で示される配位子に対し、金属または金属塩を作用させることで触媒を得ることが出来る。   Furthermore, a catalyst can be obtained by causing a metal or a metal salt to act on the ligand represented by the above formula (1).

以上、本実施形態により、ハロ環化反応において広範な基質にて高い不斉収率を与える触媒及びそれによる光学活性なヨード環化体を提供することが出来る。   As described above, this embodiment can provide a catalyst that gives high asymmetric yield over a wide range of substrates in halocyclization reaction, and an optically active iodocyclization product thereby.

以下、上記実施形態の触媒について実際に作成し、その効果について確認を行った。以下説明する。   Hereinafter, the catalyst of the above embodiment was actually prepared, and the effect was confirmed. It will be described below.

(実施例)
本実施例では、下記式(1−1)で示される配位子を金属塩に配位させた触媒を作成し、その触媒をハロ環化反応に用いた。
(Example)
In this example, a catalyst in which a ligand represented by the following formula (1-1) was coordinated to a metal salt was prepared, and the catalyst was used for a halocyclization reaction.

(触媒の合成)
まず、下記反応式(8)に従い、下記式(7−1)の合成をおこなった。
(Catalyst synthesis)
First, synthesis of the following formula (7-1) was performed according to the following reaction formula (8).

まず、(1R、2R)−1、2−diphenylethane−1、2−diamine(1.06g、5.0mmol)と1、3−dimethyl−5−acetyl−barbituric acid(DAB)(991mg、5mmol)を無水THF溶液(15ml)に溶かし、アルゴン雰囲気下、20℃で48時間攪拌し、減圧濃縮する。得られた残渣をシリカゲルクロマトグラフィー(展開溶媒1:1 n−ヘキサン/酢酸エチル)により精製し、白色固体状のモノDAB化されたジアミンを98%の収率で得た。   First, (1R, 2R) -1, 2-diphenylethane-1, 2-diamine (1.06 g, 5.0 mmol) and 1,3-dimethyl-5-acetyl-barbituric acid (DAB) (991 mg, 5 mmol) It is dissolved in anhydrous THF solution (15 ml), stirred at 20 ° C. for 48 hours under argon atmosphere and concentrated under reduced pressure. The resulting residue was purified by silica gel chromatography (developing solvent 1: 1 n-hexane / ethyl acetate) to obtain a white solid mono-DAB-ized diamine in 98% yield.

次に、上記で得たモノDAB化されたジアミン(98mg、0.25mmol)を無水DMF(3ml)に溶かし、diisopropylethylamine(DIPEA)(94μl、0.55mmol)とo−xylylenedibromide(72.6mg、0.275mmol)を加え、アルゴン雰囲気下、40℃で48時間攪拌し、蒸留水(10ml)を加えた後、酢酸エチル、飽和食塩水の順に抽出する。有機層を芒硝により乾燥し、減圧濃縮する。得られた残渣をシリカゲルクロマトグラフィー(展開溶媒3:1 n−ヘキサン/酢酸エチル)により精製し、黄色固体状のDAB基と第三級アミン部位を導入したジアミンを81%の収率で得た。   Next, the mono-DAB-formed diamine obtained above (98 mg, 0.25 mmol) is dissolved in anhydrous DMF (3 ml), diisopropylethylamine (DIPEA) (94 μl, 0.55 mmol) and o-xylenedibromide (72.6 mg, 0) .275 mmol) are added and stirred at 40.degree. C. for 48 hours under an argon atmosphere, distilled water (10 ml) is added, and then ethyl acetate and saturated brine are sequentially extracted. The organic layer is dried over sodium sulfate and concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography (developing solvent 3: 1 n-hexane / ethyl acetate) to obtain a diamine in which 81% yield was introduced as a yellow solid DAB group and tertiary amine moiety. .

次に、上記で得たDAB基と第三級アミン部位を導入したジアミン(196mg、0.396mmol)と2−aminoethanol(238μl、3.96mmol)を無水エタノール(3ml)に溶解し、アルゴン雰囲気下、50℃で24時間攪拌し、減圧濃縮する。得られた残渣をシリカゲルクロマトグラフィー(展開溶媒1:1 n−ヘキサン/酢酸エチル)により精製し、上記式(12)に示される黄色オイル状の第三級アミン部位を持つジアミンを99%の収率で得た。   Next, the diamine (196 mg, 0.396 mmol) introduced with the DAB group and the tertiary amine moiety obtained above and 2-aminoethanol (238 μl, 3.96 mmol) are dissolved in absolute ethanol (3 ml), and the atmosphere is under argon. Stir at 50 ° C. for 24 h and concentrate under reduced pressure. The resulting residue is purified by silica gel chromatography (developing solvent 1: 1 n-hexane / ethyl acetate) to obtain 99% of diamine having a tertiary amine moiety in the form of a yellow oil represented by the above formula (12). Obtained at a rate.

(7−1)の機器データ:
H NMR(400MHz、CDCl)δ2.10(br−s、2H), 4.00−4.09(m,5H), 4.55(d,J=8.3Hz,1H), 7.07−7.24(m,14H,aromatic);
13C NMR(100MHz,CDCl)δ16.5, 55.1, 56.0, 56.8, 63.2, 73.0, 122.2, 126.5, 126.8, 127.1, 127.7, 127.8, 127.9, 129.8, 136.1, 139.7, 142.9;
FT/IR(solid)3374, 3230, 3057, 3027, 2935, 2890, 2792, 1600, 1490, 1452, 1359, 1322, 1218, 1180, 1078, 1027, 873, 744, 700, 626cm−1
[α]=+25.7°(c=0.74,CHCl);
HRMS(FAB+)calcd for C2223 (M+H)315.1861: found 315.1870.
Device data of (7-1):
1 H NMR (400 MHz, CDCl 3 ) δ 2.10 (br-s, 2 H), 4.00-4.09 (m, 5 H), 4.55 (d, J = 8.3 Hz, 1 H), 7. 07-7.24 (m, 14 H, aromatic);
13 C NMR (100 MHz, CDCl 3 ) δ 16.5, 55.1, 56.0, 56.8, 63.2, 73.0, 122.2, 126.5, 126.8, 127.1, 127 .7, 127.8, 127.9, 129.8, 136.1, 139.7, 142.9;
FT / IR (solid) 3374, 3230, 3057, 3035, 2935, 2890, 2792, 1600, 1490, 1452, 1359, 1322, 1218, 1180, 1078, 1027, 873, 744, 700, 626 cm- 1 ;
[Α] D = + 25.7 ° (c = 0.74, CHCl 3 );
HRMS (FAB +) calcd for C 22 H 23 N 2 (M + + H) 315.1861: found 315.1870.

次に、下記式(9)に従い、上記で得たジアミン(7−1)(518.8mg)と3,5−ジブロモサリチルアルデヒド(419.9mg)をジクロロメタン(10mL)に溶解し、無水硫酸ナトリウム(9.0mg)を加え、アルゴン雰囲気下、室温で12時間攪拌し減圧濃縮する。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒4:1 n−ヘキサン/酢酸エチル)により精製し、上記式(1−1)に示される2,4−dibromo−6−((E)−(((1R,2R)−2−(isoindolin−2−yl)−1,2−diphenylethyl)imino)methyl)phenol(860.6mg)を99%の収率で得た。   Next, the diamine (7-1) (518.8 mg) and 3,5-dibromosalicylic aldehyde (419.9 mg) obtained above are dissolved in dichloromethane (10 mL) according to the following formula (9), and anhydrous sodium sulfate Add (9.0 mg), stir at room temperature under argon atmosphere for 12 hours, and concentrate under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solvent 4: 1 n-hexane / ethyl acetate) to give 2,4-dibromo-6-((E)-((E) represented by the above formula (1-1)) ((1R, 2R) -2- (isoindolin-2-yl) -1,2-diphenylethyl) imino) methyl) phenol (860.6 mg) was obtained in a yield of 99%.

(1−1)の機器データ:
H NMR(400MHz,CDCl)δ3.98(d,J=11.00Hz,2H), 4.07(d,J=11.00Hz,2H), 4.30(d,J=7.02Hz,1H), 4.97(d,J=7.02Hz,1H), 7.09−7.19(m,14H), 7.29(s,1H), 7.69(s,1H), 8.31(s,1H)
13C NMR(100MHz,CDCl)δ163.1, 158.2, 139.2, 139.2, 137.8, 137.0, 133.0, 129.5, 128.2, 127.9, 127.9, 127.5, 127.5, 126.7, 122.2, 120.1, 112.3, 109.4, 76.2, 74.6, 57.5;
FT/IR(solid)3352, 3031, 2787, 1631, 1451, 1168,1049, 747, 705cm−1
[α]=+53.16°(c=0.1,CHCl);
HRMS(FAB+) calcd for C2923BrO (M−H): 573.0183, found 573.0180.
Device data of (1-1):
1 H NMR (400 MHz, CDCl 3 ) δ 3.98 (d, J = 11.00 Hz, 2 H), 4.07 (d, J = 11.00 Hz, 2 H), 4.30 (d, J = 7.02 Hz , 1H), 4.97 (d, J = 7.02 Hz, 1 H), 7.09-7. 19 (m, 14 H), 7. 29 (s, 1 H), 7. 69 (s, 1 H), 8.31 (s, 1 H)
13 C NMR (100 MHz, CDCl 3 ) δ 163.1, 158.2, 139.2, 139.2, 137.0, 133.0, 123.0, 129.5, 128.2, 127.9, 127 .9, 127.5, 127.5, 126.7, 122.2, 120.1, 112.3, 109.4, 76.2, 74.6, 57.5;
FT / IR (solid) 3352, 3031, 2787, 1631, 1451, 1168, 1049, 747, 705 cm- 1
[Α] D = + 53.16 ° (c = 0.1, CHCl 3 );
HRMS (FAB +) calcd for C 29 H 23 Br 2 N 2 O (M-H) -: 573.0183, found 573.0180.

次に、この得られた配位子(1−1)を6.3mg用い、これに塩化メチレン中酢酸銅(II)一水和物2.0mgを配位させることで錯体を得た。 Next, using 6.3 mg of this obtained ligand (1-1), a complex was obtained by coordinating 2.0 mg of copper acetate (II) monohydrate in methylene chloride thereto.

不斉ヨード環化反応は、5-phenyl-N-tosylhex-5-enamide34.3mgとN-iodosuccinimide24.7mgとを上記錯体触媒の存在下、−78℃、18時間にて行った。この結果、下記に示すヨード環化体(2−1)を46.0mg得ることができ、収率は98%(93%ee)であった。
The asymmetric iodocyclization reaction was carried out at -78 ° C for 18 hours in the presence of the complex catalyst described above and 34.3 mg of 5-phenyl-N-tosylhex-5-amide and 24.7 mg of N-iodosuccinamide. As a result, 46.0 mg of iodo-cyclized compound (2-1) shown below could be obtained, and the yield was 98% (93% ee).

(2−1)の機器データ
H NMR(400 MHz,CDCl) δ7.94(d,J=7.76Hz,2H), 7.38−7.27(m,7H), 3.50(s,2H), 2.47−2.33(m,4H), 2.42 (s,3H), 1.80(m,1H), 1.59(m,1H);
13C NMR(100MHz,CDCl) δ168.8, 143.4, 138.7, 129.3, 129.1, 128.7, 127.7 (2C), 125.1, 87.5, 31.5, 28.3, 21.5, 16.1, 15.3;
FT/IR(solid)3023, 2960, 1600, 1318, 1157, 758 cm−1
[α]=+47.88°(c=0.1,CHCl,93% ee);
HRMS(FAB+)calcd for C1920INONaS (M+Na): 492.0101, found 492.0095.
Device data of (2-1)
1 H NMR (400 MHz, CDCl 3 ) δ 7.94 (d, J = 7.76 Hz, 2 H), 7.38-7.27 (m, 7 H), 3.50 (s, 2 H), 2.47 -2.33 (m, 4 H), 2.42 (s, 3 H), 1. 80 (m, 1 H), 1. 59 (m, 1 H);
13 C NMR (100 MHz, CDCl 3 ) δ 168.8, 143.4, 138.7, 129.3, 129.1, 128.7, 127.7 (2C), 125.1, 87.5, 31. 5, 28.3, 21.5, 16.1, 15.3;
FT / IR (solid) 3023, 2960, 1600, 1318, 1157, 758 cm −1 ;
[Α] D = + 47.88 ° (c = 0.1, CHCl 3 , 93% ee);
HRMS (FAB +) calcd for C 19 H 20 INO 3 NaS (M + Na) + : 492.0101, found 492.0095.

5−(p−tolyl)−N−tosylhex−5−enamideを基質に用いて行った場合、下記化合物(2−2)を48.3mg得ることができ、収率は99%(94%ee)であった。
When 5- (p-tolyl) -N-tosylhex-5-amide is used as a substrate, 48.3 mg of the following compound (2-2) can be obtained, and the yield is 99% (94% ee) Met.

(2−2)の機器データ
H NMR(400MHz,CDCl) δ7.94(d,J=7.56Hz,2H), 7.30 (d,J=8.48Hz,2H), 7.15(m,4H), 3.47(s,2H), 2.50−2.29(m,4H), 2.43(s,3H), 2.34(s,3H), 1.80−1.78(m,1H), 1.60−1.50(m,1H);
13C NMR(100MHz,CDCl) δ169.0, 143.3, 138.7, 138.6, 135.7, 129.7, 129.3, 127.6, 125.0, 87.5, 31.3, 28.2, 21.5, 21.0, 16.3, 15.3;
FT/IR(solid) 1601, 1319, 1158, 819cm−1
[α] = +58.55° (c=0.1, CHCl, 94% ee);
HRMS(FAB+) calcd for C2023INOS (M+H) 484.0438: found 484.0427.
Device data of (2-2)
1 H NMR (400 MHz, CDCl 3 ) δ 7.94 (d, J = 7.56 Hz, 2 H), 7.30 (d, J = 8.48 Hz, 2 H), 7. 15 (m, 4 H), 3. 47 (s, 2 H), 2.50-2.29 (m, 4 H), 2.43 (s, 3 H), 2. 34 (s, 3 H), 1.80-1. 78 (m, 1 H) , 1.60-1.50 (m, 1 H);
13 C NMR (100 MHz, CDCl 3 ) δ 169.0, 143.3, 138.7, 138.6, 135.7, 129.7, 129.3, 127.6, 125.0, 87.5, 31 .3, 28.2, 21.5, 21.0, 16.3, 15.3;
FT / IR (solid) 1601, 1319, 1158, 819 cm −1
[Α] D = + 58.55 ° (c = 0.1, CHCl 3 , 94% ee);
HRMS (FAB +) calcd for C 20 H 23 INO 3 S (M + H) + 484.0438: found 484.0427.

5−cyclohexyl−N−tosylhex−5−enamideを基質に用いて反応を行った場合、下記化合物(2−3)を47.5mg得ることができ、収率は99%(91%ee)であった。
When the reaction is carried out using 5-cyclohexyl-N-tosylhex-5-amide as a substrate, 47.5 mg of the following compound (2-3) can be obtained, and the yield is 99% (91% ee) The

(2−3)の機器データ
H NMR(400MHz,CDCl) δ7.85(d,J=8.38Hz,2H), 7.28 (d,J=8.38Hz,2H), 3.45(m,2H), 2.57−2.45(m,2H), 2.41(s,3H), 1.98−1.50(m,10H), 1.28−0.98(m,5H);
13C NMR(100MHz,CDCl) δ169.4, 143.0, 138.9, 129.1, 127.3, 88.6, 45.8, 29.2, 27.3, 26.5, 26.2, 26.1, 26.1, 25.8, 21.5, 16.0, 12.5;
FT/IR(solid) 2927, 1584, 1361, 1159, 808, 576cm−1
[α]=−30.81°(c=0.1,CHCl,91%ee);
HRMS(FAB+) calcd for C1927INOS (M+H) 476.0751: found 476.0737.
Device data of (2-3)
1 H NMR (400 MHz, CDCl 3 ) δ 7.85 (d, J = 8.38 Hz, 2 H), 7.28 (d, J = 8.38 Hz, 2 H), 3.45 (m, 2 H), 57-2.45 (m, 2H), 2.41 (s, 3H), 1.98-1.50 (m, 10H), 1.28-0.98 (m, 5H);
13 C NMR (100 MHz, CDCl 3 ) δ 169.4, 143.0, 138.9, 129.1, 127.3, 88.6, 45.8, 29.2, 27.3, 26.5, 26 .2, 26.1, 26.1, 25.8, 21.5, 16.0, 12.5;
FT / IR (solid) 2927, 1584, 1361, 1159, 808, 576 cm −1 ;
[Α] D = -30.81 ° (c = 0.1, CHCl 3 , 91% ee);
HRMS (FAB +) calcd for C 19 H 27 INO 3 S (M + H) + 476.0751: found 476.0737.

以上本実施例により、本発明に係る触媒の有用性を確認することができ、広範なヨード環化体を高い光学純度で合成することが出来ることを確認した。 As described above, the utility of the catalyst according to the present invention can be confirmed by this example, and it has been confirmed that a wide range of iodo-cyclized compounds can be synthesized with high optical purity.

本発明は、ヨード環化体を非常に高い光学純度で供給できることから、医薬・農薬の開発と生産に有用であり、産業上の利用可能性がある。

The present invention is useful for the development and production of medicines and agrochemicals and has industrial applicability because it can supply iodocyclized products with very high optical purity.

Claims (2)

下記式(1)で示される配位子を塩に配位させてなる錯体触媒であって、不飽和アミドを用いた不斉ヨード環化反応を行なうために用いる触媒。

ここでR、Rは、水素、アルキル基、フェニル基(置換基を有していてもよい。)又はナフチル基(置換基を有していてもよい。)であり、RとRは結合して環を形成していてもよい。RとRとは、同じであっても、異なっていてもよい。R、Rは、水素、フッ素、塩素、臭素、ヨウ素、ニトロ基、アルキル基、アルキニル基、アルコキシ基又はフェニル基(置換基を有していてもよい。)である。
A complex catalyst formed by coordinating a ligand represented by the following formula (1) to a copper salt , which is used to carry out an asymmetric iodocyclization reaction using an unsaturated amide.

Here, R 1 and R 2 each represent hydrogen, an alkyl group, a phenyl group (which may have a substituent) or a naphthyl group (which may have a substituent), and R 1 and R 2 may be combined to form a ring. R 1 and R 2 may be the same or different. R 3 and R 4 are hydrogen, fluorine, chlorine, bromine, iodine, a nitro group, an alkyl group, an alkynyl group, an alkoxy group or a phenyl group (which may have a substituent).
下記式(1)で示される配位子を塩に配位させてなる錯体触媒の存在下で、不飽和アミドとN−ヨードスクシンイミドを反応させることで下記式(2)で示されるヨード環化体を製造する方法。

ここでR、Rは、水素、アルキル基、フェニル基(置換基を有していてもよい。)又はナフチル基(置換基を有していてもよい。)であり、RとRは結合して環を形成していてもよい。RとRとは、同じであっても、異なっていてもよい。R、Rは、水素、フッ素、塩素、臭素、ヨウ素、ニトロ基、アルキル基、アルキニル基、アルコキシ基又はフェニル基(置換基を有していてもよい。)である。

ここでR、水素、アルキル基、フェニル基(置換基を有していてもよい。)又はナフチル基(置換基を有していてもよい。)であり、Rは、水素、アルキル基、フェニル基(置換基を有していてもよい。)、カルボニル基、スルホニル基である。
An iodo ring represented by the following formula (2) by reacting an unsaturated amide with N-iodosuccinimide in the presence of a complex catalyst formed by coordinating a ligand represented by the following formula (1) to a copper salt Method of producing

Here, R 1 and R 2 each represent hydrogen, an alkyl group, a phenyl group (which may have a substituent) or a naphthyl group (which may have a substituent), and R 1 and R 2 may be combined to form a ring. R 1 and R 2 may be the same or different. R 3 and R 4 are hydrogen, fluorine, chlorine, bromine, iodine, a nitro group, an alkyl group, an alkynyl group, an alkoxy group or a phenyl group (which may have a substituent).

Here, R 1 is hydrogen, an alkyl group, a phenyl group (which may have a substituent) or a naphthyl group (which may have a substituent), and R 2 is a hydrogen, an alkyl group , A phenyl group (which may have a substituent), a carbonyl group and a sulfonyl group.
JP2015081322A 2015-04-12 2015-04-12 Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same Active JP6548214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015081322A JP6548214B2 (en) 2015-04-12 2015-04-12 Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015081322A JP6548214B2 (en) 2015-04-12 2015-04-12 Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same

Publications (2)

Publication Number Publication Date
JP2016198736A JP2016198736A (en) 2016-12-01
JP6548214B2 true JP6548214B2 (en) 2019-07-24

Family

ID=57422097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015081322A Active JP6548214B2 (en) 2015-04-12 2015-04-12 Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same

Country Status (1)

Country Link
JP (1) JP6548214B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6498502B2 (en) * 2015-04-15 2019-04-10 国立大学法人千葉大学 Process for producing 8-oxa-6-azabicyclo [3,2,1] octane derivative
GB201811895D0 (en) 2018-07-20 2018-09-05 Johnson Matthey Fuel Cells Ltd Nanoparticles and preparation Method
JP7427242B2 (en) 2020-04-23 2024-02-05 国立大学法人千葉大学 Optically active azide ester and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654444B2 (en) * 2006-08-10 2011-03-23 国立大学法人 千葉大学 Diamine ligand and catalyst using the same
JP2009013067A (en) * 2007-06-29 2009-01-22 Chiba Univ Sulfonyl-diamine ligand and catalyst using the same
CN102936301B (en) * 2012-11-07 2015-04-22 复旦大学 Tridentate Schiff base titanium-based olefin polymerization catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP2016198736A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6548214B2 (en) Catalyst having an aminosalicylaldimine ligand coordinated to metal and method for producing iodocyclic compound using the same
CN105801575A (en) Synthetic method of imidazo[1,2-a]pyridine
CN111925356B (en) Synthesis method and application of chiral quinoline-imidazoline ligand
CN110204474B (en) Method for synthesizing tetra-substituted NH-pyrrole compound
JP5784336B2 (en) Compound, method for producing the same, and method for producing oseltamivir phosphate
KR100718166B1 (en) Process for the preparation of N-sulfonylamidine by Cu-catalyzed three component coupling
JP6028606B2 (en) Method for producing amine compound
CN105646288B (en) A kind of preparation method of carbamate derivatives
JP4654444B2 (en) Diamine ligand and catalyst using the same
CN110028448B (en) Preparation method of 3-hydroxy-2,3-dihydroisoquinoline-1, 4-diketone compound
CN105481865B (en) A kind of preparation method of pyrimido [1,6-a] indole Hete rocyclic derivatives
CN106083690A (en) A kind of preparation method of polysubstituted 3 methylene indolones
EP1908747B1 (en) Process for producing optically active 2-hydroxybutyric ester
JP6085884B2 (en) Bisaminoimine ligand having binaphthol skeleton and catalyst
CN104478799B (en) The preparation method of 1,4-diallyl isoquinolin
CN108774248B (en) Method for preparing thiazoloquinazolinone derivative
CN105130873A (en) 3-difluoroalkyl substituted amino oxindole derivative and synthesis method thereof
JP5471069B2 (en) Tetrahydropyridine derivative and method for producing the same
JP2013142071A (en) Pyrrolidinyl-spirooxindole derivative and method for producing the same
JP4701196B2 (en) Silicon Lewis acid catalyst and reaction method using silicon Lewis acid catalyst
CN109734667A (en) A kind of polysubstituted imidazolium compounds and its synthetic method and application
CN113754604B (en) Nitrogen-containing chiral ligand and application thereof in asymmetric oxidation reaction of thioether
CN104151161B (en) A kind of 2-(2-allyl group) preparation method of amylene-4-acid methyl esters
CN113754605B (en) Nitrogen-containing ligand, and preparation method and application thereof
CN110903231B (en) 2-cyanopyrrole compounds and synthesis method thereof

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20170913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190619

R150 Certificate of patent or registration of utility model

Ref document number: 6548214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250