JP2014104102A - 粉粒体殺菌装置 - Google Patents

粉粒体殺菌装置 Download PDF

Info

Publication number
JP2014104102A
JP2014104102A JP2012258450A JP2012258450A JP2014104102A JP 2014104102 A JP2014104102 A JP 2014104102A JP 2012258450 A JP2012258450 A JP 2012258450A JP 2012258450 A JP2012258450 A JP 2012258450A JP 2014104102 A JP2014104102 A JP 2014104102A
Authority
JP
Japan
Prior art keywords
nozzle
powder
pressure
zone
granular materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012258450A
Other languages
English (en)
Inventor
Tsutomu Takahashi
勉 高橋
Yotaro Fujimaki
陽太郎 藤巻
Yukihisa Tsubuki
幸久 津吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEISHIN ENTPR CO Ltd
Seishin Enterprise Co Ltd
Original Assignee
SEISHIN ENTPR CO Ltd
Seishin Enterprise Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEISHIN ENTPR CO Ltd, Seishin Enterprise Co Ltd filed Critical SEISHIN ENTPR CO Ltd
Priority to JP2012258450A priority Critical patent/JP2014104102A/ja
Publication of JP2014104102A publication Critical patent/JP2014104102A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】食品等の粉粒体を、高圧の過熱水蒸気を使用して連続的に殺菌処理する粉粒体殺菌装置を提供する。
【解決手段】粉粒体と過熱水蒸気を連続的に供給して加熱殺菌処理する殺菌ゾーン、前記粉粒体を過熱水蒸気から分離する固気分離ゾーン、前記粉粒体を冷却する冷却ゾーン、及び、前記粉粒体を製品として回収する製品回収ゾーンの4つの区画からなり、前記殺菌ゾーン入口には前記粉粒体を供給するための高圧ロータリーバルブが設けられており、前記殺菌ゾーンと前記固気分離ゾーンとの間には保圧用ノズルが設けられた粉粒体殺菌装置において、前記保圧用ノズルが、ノズル縮径部、ノズル直管部、及び、ノズル拡径部で構成され、該ノズル直管部において粉粒体が整流されて噴出することを特徴とする。
【選択図】図4

Description

本発明は、食品等の粉粒体を、高圧の過熱水蒸気を使用して連続的に殺菌処理する粉粒体殺菌装置に関する。ここで、食品等の粉粒体には、食品原料のみならず、健康食品、医薬品、化粧品原料、飼料、肥料などが含まれる。また、食品等の粉粒体の加熱殺菌処理には、食品等の加熱処理一般まで含めるものとし、食品等の変質などを目的とした加熱処理を含めて加熱殺菌処理とする。
粉粒体殺菌装置としては、特許文献1〜3にみられるように、30年ほど前から過熱水蒸気殺菌装置が実用的に開発されてきた。これらは、気流式殺菌装置と呼ばれ、気流管中を流れる過熱水蒸気に粉粒体食品等を投入し、移送中に瞬間殺菌する連続処理装置である。過熱水蒸気は、熱風に比して熱容量が大きく、殺菌効果が大であるばかりでなく、飽和水蒸気と同じように温度の低い物質に接すると凝縮する性質がある。このため、常温の食品等の粉粒体の水分含有量を適切に保ちながら、変質しないようにして高温で殺菌する場合には、過熱水蒸気殺菌装置は極めて好都合な殺菌装置である。
食品等の粉粒体を、高圧の過熱水蒸気を使用して連続的に殺菌処理する定置洗浄可能な粉粒体殺菌装置については、特許文献4において知られている。定置洗浄(CIP, Cleaning In Place)とは、機器や部品を分解することなく、設備・装置の構成の中に洗浄機能を組み込んで行う洗浄方法である。この粉粒体殺菌装置では、粉粒体と過熱水蒸気を連続的に供給して加熱殺菌処理する殺菌ゾーン、粉粒体を過熱水蒸気から分離する固気分離ゾーン、粉粒体を冷却する冷却ゾーン、及び、粉粒体を製品として回収する製品回収ゾーンの4つの区画からなり、前記殺菌ゾーンと前記固気分離ゾーンとの間には両ゾーンの差圧を調整するためのノズルが設けられている。
この粉粒体殺菌装置では、殺菌ゾーンと固気分離ゾーンとの間に設けられたノズル以降の配管に、被殺菌粉粒体の圧着が生じて閉塞する場合があった。なお、「圧着」という用語を、単に付着しているだけでなく、圧密されて硬い層状に付着成長し、容易に取り除くことができない付着状態を指す用語として、以下使用する。
圧着の原因としては、ノズル以降の配管での過熱水蒸気の急激な断熱膨張により、結露が生じ、ノズルの縮流部(スロート)から拡大接続する部分で、流体が剥離し、配管壁付近でよどみが発生して付着しやすい状態になっていることなどが考えられる。さらに、固気分離ゾーンのサイクロンヘッド入口部にも圧着が生じることがあった。
特公昭63−50984号公報 特開昭57−153654号公報 特公平5−53号公報 特開2011−78493号公報 特開2012−30930号公報
本発明は、上記問題に鑑み、前記4つの区画からなる粉粒体殺菌装置において、殺菌ゾーンと固気分離ゾーン間に殺菌ゾーンの圧力を保つためのノズルを設置し、ノズル通過後の蒸気の断熱膨張により製品温度を下げて、材料(食品)の香りの低下、変色等の品質低下を防ぐとともに、当該ノズルに縮流直管部を設けることで、直管内で整流後緩やかに断熱膨張させて蒸気の結露を防ぎ、水分による配管への付着を抑制することができる粉粒体殺菌装置を提供するものである。
上記課題を解決するために、請求項1の発明は、粉粒体と過熱水蒸気を連続的に供給して加熱殺菌処理する殺菌ゾーン、前記粉粒体を過熱水蒸気から分離する固気分離ゾーン、前記粉粒体を冷却する冷却ゾーン、及び、前記粉粒体を製品として回収する製品回収ゾーンの4つの区画からなり、前記殺菌ゾーン入口には前記粉粒体を供給するための高圧ロータリーバルブが設けられており、前記殺菌ゾーンと前記固気分離ゾーンとの間には保圧用ノズルが設けられた粉粒体殺菌装置において、前記保圧用ノズルが、ノズル縮径部、ノズル直管部、及び、ノズル拡径部で構成され、該ノズル直管部において粉粒体が整流されて噴出することを特徴とする粉粒体殺菌装置である。
請求項2の発明は、請求項1の発明において、前記ノズル直管部の中心軸長さが、9mmから200mmの範囲であることを特徴とする。
請求項3の発明は、請求項1又は2の発明において、前記ノズル拡径部がテーパ面で構成され、テーパ面のテーパ角が7°から15°の範囲であり、前記ノズル拡径部の中心軸長さが、100mmから400mmの範囲であることを特徴とする。
請求項4の発明は、請求項1から3のいずれか1項記載の発明において、前記固気分離ゾーンには、少なくとも1つのサイクロンが含まれ、前記ノズル拡径部出口と該サイクロン入口までの離間距離が、200mmから3000mmの範囲であることを特徴とする。
殺菌ゾーンと固気分離ゾーンとの間に設けられたノズル以降の配管に、被殺菌粉粒体の圧着が発生することなく、殺菌ゾーンでの加熱時間をコントロールし、また、ノズル通過後の蒸気の断熱膨張により製品温度を下げて、製品の熱劣化を防ぐことができる。
本発明の一実施形態の殺菌装置を示す概略説明図である。 本発明の一実施形態に使用される高圧ロータリーバルブの一例の正面図である。 (a)は、図2の高圧ロータリーバルブの側面図であり、(b)は、図2の断面図である。 (a)は、殺菌ゾーンと固気分離ゾーン間の従来技術のノズル断面図であり、(b)は、本発明の一実施形態に使用される保圧用ノズルの正面断面図である。 従来技術と本発明の一実施形態との比較実験データである。 本発明の一実施形態に使用される保圧用ノズルの説明図である。 本発明の一実施形態に使用される低圧ロータリーバルブの断面図である。 図7の低圧ロータリーバルブの側面図である。
以下、図面を参照して、本発明の一実施形態を説明する。各実施態様について、同一構成の部分には、同一の符号を付してその説明を省略する。
本発明の一実施形態の粉粒体殺菌装置においても、特許文献4の従来技術と同様に、粉粒体と過熱水蒸気を連続的に供給して加熱殺菌処理する殺菌ゾーン、粉粒体を過熱水蒸気から分離する固気分離ゾーン、粉粒体を冷却する冷却ゾーン、及び、粉粒体を製品として回収する製品回収ゾーンの4つの区画からなっている。本発明の特徴の1つは、殺菌ゾーンと固気分離ゾーンとの間の保圧用ノズルに、次の観点からの課題と特徴を有する点で、従来技術とは異なっている。
(1)殺菌ゾーンと固気分離ゾーンとの間の保圧用ノズル30(図1、図4(b))を設置することにより、殺菌ゾーンでの加熱時間を、加熱管2の長さ設定を変更してコントロールし、製品の熱劣化を防ぐことができる。殺菌ゾーンと固気分離ゾーンとの間の保圧用ノズルがない場合には、殺菌ゾーンにサイクロン4が含まれることになって、加熱管2よりもサイクロン4での滞留時間が長くなり、しかも、サイクロンは滞留時間をコントロールすることは困難であることから、殺菌ゾーンでの加熱時間をコントロールすることができない。さらに、保圧用ノズル30以降では、断熱膨張によりガス(蒸気)の温度が低下するのに伴い被殺菌粉粒体の温度も低下する効果が得られる。したがって、保圧用ノズルの設置より、殺菌ゾーンおよび固気分離ゾーンでの過剰な温度上昇を避けることができ、被殺菌粉粒体(食品など)の香りの低下、変色等の品質低下を招くことがない。このような特徴は、これまでの試行研究の過程で分かってきたことであって特許文献4の出願時には想定し得ない効果である。
(2)殺菌ゾーンと固気分離ゾーンとの間の保圧用ノズル30に工夫を施すことにより、殺菌ゾーンと固気分離ゾーンとの間に設けられたノズル以降の配管に、被殺菌粉粒体の圧着が生じないようにした。ノズル以降の配管での過熱水蒸気の断熱膨張により、全体としては結露が生じない条件(状態)であるにも関わらず、局所的に結露が生じ、配管壁付近でよどみが発生して付着しやすい状態になっていることから、本実施形態では、これを解決すべく、保圧用ノズルに縮流直管部を設け、直管内で整流後緩やかに断熱膨張させて蒸気の局所的結露を防ぎ、水分による配管への付着を抑制するようにした。
これに対して、保圧用ノズルを設置せずに固気分離ゾーンのサイクロン排気部で流路を絞り、殺菌ゾーンの圧を保持する場合が考えられる。この場合には、当然サイクロンにも高圧がかかることになる。この方式では、固気分離ゾーンまで過熱水蒸気の状態変化(断熱膨張による温度降下及び比体積の増加)がほぼなく、結露による被殺菌粉粒体の圧着が起こりにくい。しかしながら、既に述べたように、やはりサイクロンでの滞留時間が大幅に長くなり、被殺菌粉粒体(食品など)の品質低下を招くことになり不都合である。
また、サイクロンまで高圧をかけた場合、蒸気の比体積が小さいために、高圧をかけない場合に比べ、被殺菌粉粒体に伴って排出される蒸気重量が多くなる。このため、冷却ゾーンでの結露しやすい状態となる。結露を防ぐためには、冷却ゾーンの上流でもう一度固気分離し、随伴蒸気量を減らす必要があり、固気分離ゾーンに複数段のサイクロンの設置が不可欠になってしまう。これに対して、本実施形態の保圧用ノズル30を用いれば、固気分離ゾーンに少なくとも1段サイクロンを設置すれば良い。
以下、本発明の一実施形態について詳しく説明する。図1は、本発明の一実施形態の殺菌装置を示す概略説明図である。原料としての粉粒体は、ホッパーから供給装置を経て、原料投入用のシュートを有する投入装置1から、高圧ロータリーバルブ100(詳細は後述する)のポケットに投入され、第1ライン11を経て、電気ヒータにより加熱する加熱管2に移送される。なお、この加熱は電気ヒータに限るものではなく、二重管で高温流体により加熱しても良い。
過熱水蒸気導入ライン20は、例えば、ボイラで発生した飽和水蒸気を、スーパーヒータ(図示せず)で一定の圧力の下で過熱して、過熱水蒸気を供給するラインである。過熱水蒸気導入ライン20は、高圧ロータリーバルブ100の原料出口付近において、ライン21で連通し、さらに、第1ライン11とライン22で連通している。第1ライン11は気流管を構成し、加熱管2を通過して第2ライン12に接続する。この間に、気流管中を流れる過熱水蒸気に粉粒体が投入されて移送中に殺菌がなされることになる。
過熱水蒸気導入ライン20の過熱水蒸気の状態の一例としては、スーパーヒータの出口で、圧力は0.1〜1.0MPa程度で、好ましくは、0.2〜0.3MPaである。温度は、150〜300℃程度で、好ましくは170〜220℃である。
殺菌ゾーンの入口は、粉粒体を供給するための高圧ロータリーバルブ100が設けられており、第2ライン12の終端に、殺菌ゾーンの圧力を高圧に保ち、後工程に結露による被殺菌粉粒体の圧着を生じないようにする圧力制御手段としての保圧用ノズル30(詳細は後述する)が設けられている。そして、保圧用ノズル30の手前までが殺菌ゾーンである。
保圧用ノズル30を通過した原料(粉粒体)は、第3ライン13に移送され、固気分離ゾーンに入る。固気分離ゾーンでは、殺菌済みの原料を製品として回収するため、過熱水蒸気から分離する。第3ライン13はサイクロン(第1サイクロン)4に連結し、出口には低圧ロータリーバルブ200が設けられている。低圧ロータリーバルブ200の送出口にはエジェクタ5が設けられていて、過熱水蒸気の凝縮を防止するため、ブロアから熱風がライン50により送り込まれている。ライン50にはフィルターがもうけられて、汚染防止が配慮されていなければならない。サイクロン4は、主に原料を過熱水蒸気から分離する機能を有している。
次に、第4ライン14を通過した原料は、第5ライン15の冷却ゾーンを通過し、製品回収ゾーンに移送される。なお、より分離度を上げるために、固気分離ゾーンにおいて、必要に応じて第2サイクロン及びエジェクタを通過するようにしても良い。また、冷却ゾーンである第5ライン15は、二重管により冷却水で冷却する。なお、冷却は、二重管による場合以外の任意の方法で行うことも可能であり、二重管を省略しても良い。第5ライン15出口で製品回収ゾーンに移送された後、サイクロン8、バルブ9を経て、製品として回収される。
ライン21は、定置洗浄用蒸気が投入される(後述するように、殺菌移送用の過熱水蒸気の投入もなされる)。ライン60は、投入装置1のシュートに投入される洗浄ラインである。
以上の殺菌ラインは、実施形態としての一例であって、対象とする原料に応じて、様々な変形がなされる。加熱管2を省略したり、固気分離ゾーンにおけるサイクロンの段数は、1段で実施可能であるが、1段のみならず2段以上の複数段であっても良い。洗浄用に流す流体としては、洗浄部位、ゾーンの対象に応じて、過熱水蒸気、高圧水蒸気、高圧空気、高温熱水、市水、それらの混合気、混合相を適宜用いればよい。付着性の原料の場合、蒸気と、酸又はアルカリの薬剤を水に添加して洗浄するとよい。洗浄には、装置の殺菌が含まれる。
次に、粉粒体殺菌装置において、高圧ロータリーバルブ100、保圧用ノズル30、低圧ロータリーバルブ200について説明するが、高圧ロータリーバルブ100、低圧ロータリーバルブ200についてはこれに限定されるものではない。
(高圧ロータリーバルブ)
図2は、本発明の一実施形態に使用される高圧ロータリーバルブの正面図である。図3(a)は、図2の高圧ロータリーバルブの側面図であり、(b)は、図2の断面図である。図2のロータ106の線A−Aの左側断面図は、図3(b)の線B−Bに関する断面図である。高圧のロータリーバルブ100について、以下に説明する。これに限定されることなく、特許文献5、特開昭52−62858号公報、特開平10−211103号公報などに示されるような高圧ロータリーバルブであっても良い。
高圧ロータリーバルブ100は、原料入口102と原料出口103を有する本体と、2つの側壁104とから構成された高圧バルブケーシング101、該高圧バルブケーシング101内に収納されて回転自在に片持ち軸支された、ロータブレード107で仕切られた複数のポケット130を有するロータ106、及び、前記高圧バルブケーシング101の内周面と前記ロータブレード間のシール機構140、121、108を具備し、前記複数のポケット130は、それぞれ、前記ロータブレード107、2つのサイドウォール113(サイドウォール113にはサイドシール板114、110が取り付けられている)、及び、ポケット底面により形成され、一方の側壁104に接する側のサイドウォール113(含むサイドシール板110)には、それぞれ、前記ポケット底面に接した位置に開口112が設けられており、前記複数のポケット130の全てにおいて、前記原料出口103に前記ポケット130の1つが連通する期間に、前記一方の側壁に設けられた高圧蒸気口105と、前記ポケット130の1つに設けられた前記開口112とが連通するように構成されたものである。さらに、上記高圧ロータリーバルブ100において、前記一方の側壁104がロータ106の軸方向に移動調整可能となっていても良い。
原料としての粉粒体は、投入装置1から原料入口102に投入されて、ロータ106のポケット130に収納される。ポケット130は、ロータシャフト150を中心に回転して、原料は原料出口103において下方に排出され、第1ライン11に移送される。
高圧バルブケーシング101には、上方に原料入口102、下方に原料出口103、側方に残圧抜き口160(図3参照)が設けられている。ロータブレード107によりポケット130は仕切られており、一方の側壁104に接する側のサイドウォール113、サイドシール板110には、それぞれ、ポケット底面に接した位置に開口112が設けられている。
図2の原料出口103付近のロータ下部を示す図は、図3(b)の線B−Bの断面が表示されているので、ややわかりにくい図となっているが、1つのポケット130が原料出口103に来ると、側壁104に設けられた高圧蒸気口105と、サイドウォール113、サイドシール板110を貫通する開口112とが、側壁104に設けられた連通路111を介して連通するようになっている。開口112はポケット底面に接した位置に設けられているので、ポケット内面をくまなく洗浄することができる。開口112の反対側のサイドウォール113は傾斜しており、原料出口に向けて高圧蒸気が噴射されるようになっている。ロータが回転するにつれ、各ポケット130が洗浄されてゆく。この際に、上方の原料入口102から水を流せば洗浄上さらに良い。なお、高圧蒸気口105の設置位置は、特許文献5のように、高圧バルブケーシング101の本体において、原料出口103の前方に設置しても良い。
側壁104に設けられた高圧蒸気口105は、洗浄のためばかりでなく、ポケット内に入った付着性の材料や軽量なふわふわした材料の場合などには、高圧蒸気を、通常運転中に開口112からポケット底面に向けて噴射すると、原料が良く排出されて原料移送上有利である。従来のポケットは底が極めて浅く、これに対して、本発明に使用される高圧ロータリーバルブでは、開口112から高圧蒸気を噴射することから、ポケットの深さを深くしても原料排出上の問題が発生しなくなっている。これにより、ポケットの容積効率を上昇させ、移送効率を高くすることができる。したがって、ロータを低速回転とすることが可能となり、シール材の摩耗を低減でき、シール材の交換周期をのばすことができる。
高圧ロータリーバルブにおける、高圧バルブケーシング101の内周面とロータブレード107間のシール機構について説明する。これは、基本的には特開昭52−62858号公報と同じものであるが、片持ち支持にした点とサイドシール板が磨耗しても調整できるようにした点で大きく異なっている。ロータ106の軸心部は中空になっており、そこに円錐面を有し端部にねじ141が切られ、図2上の右端面には正方形の穴が形成されたテーパ体140が挿入されている。図2の右側の側壁104の中心は孔が存在して、そこから正方形の端面を有する調整シャフトで、テーパ体140をロータ軸方向に移動可能とすることができる。調整が終了すればメクラキャップで常時は閉じられている。
ロータシャフト150は、図2での右端部にフランジ部142が設けられており、ロータ106と一体に回転することができるようになっている。左側の側壁104にはロータシャフト150との間をシールするように、グランドパッキン116、パッキン押さえ117が設けられている。
図2上で左方向に、テーパ体140がねじ141で移動すれば、ロータブレード107に貫通して設けられたピン121が、パッキン108を高圧バルブケーシング101の内周面にせり出して押圧してシールを行うようになっている。
ロータ106は、図2に示されるように、軸受け118、119により片持ち支持されている。ロータシャフト150の左側端部143は伝動装置に連結できるようになっている。チェーン伝動の場合にはスプロケット、歯車伝動の場合にはギアーがキー結合している。このようにロータ106を片持ちで支持しているので、右側の側壁には、高圧蒸気口105や、調整シャフトでテーパ体140をロータ軸方向に移動可能するための孔を設けることができる。
さらに、サイドシール板114、110が磨耗した場合には、右側の側壁104をねじ120で締め付け調整することで、磨耗に対応してシールを適切に保つことができる。サイドシール板114、110は円盤状にしても良い。すなわち、高圧ロータリーバルブ100において、ロータ106に取り付けられたサイドシール板が磨耗により厚みが減少したときに、高圧バルブケーシング101の一方のサイドの側壁をロータ軸方向に閉めることできるようにすると良い。このように、ロータ106に取り付けられたサイドシール板と側壁の間隙を限りなくゼロとすることにより、高圧蒸気のリークを防止し、シール性能を上げることができる。
サイドシール板は、グラス入りテフロン(登録商標)、PEEK、セラミック、金属などを用いることができる。なお、側壁104に設けた連通路111の代わりに、サイドシール板110にL字形状の連通路111を設けて、高圧蒸気口105と開口112とを連通させても良い。
(保圧用ノズル)
次に、本発明の特徴の1つである保圧用ノズル30について説明する。
図4(a)は、殺菌ゾーンと固気分離ゾーン間の従来技術のノズルであり、(b)は、本発明の一実施形態に使用される保圧用ノズルの正面図である。図5は、従来技術(図4(a)の場合)と本実施形態との比較実験データである。図6は、本発明の一実施形態に使用される保圧用ノズルの作動説明図である。
図4(a)のノズルでは、ノズルスロート部の長さが短い。一方、本実施形態の保圧用ノズル30のノズルスロート部は、細長いノズル直管部30−2となっている。本実施形態の保圧用ノズル30は、図4(b)に示すように、ノズル縮径テーパ部30−1、ノズル直管部30−2、ノズル拡径テーパ部30−3で構成されている。ノズル縮径テーパ部30−1、ノズル拡径テーパ部30−3は必ずしもテーパ面で構成されていなくても良く、ノズル縮径部、ノズル拡径部としてテーパ面に近似する曲面であっても良い。32A〜50A(JIS呼称)程度の配管の場合を例示とすれば、ノズル直管部30−2の長さL2は、好ましくは、20〜200mm程度は必要となる。図5に示すように、下限サイドは、9mm程度からでも本発明の効果は認められる。上限サイドは、長くなると被殺菌粉粒体による閉塞の可能性が高まるとともに、装置レイアウト上の問題生じる。さらに、同一蒸気流量の場合、殺菌ゾーンの圧力が高くなりすぎるという問題がある。これらの数値は、32A〜50A(JIS呼称)程度の配管以外の場合には、ノズル直管部の径や配管径に比例して増減させると良い。ノズル拡径テーパ部30−3のテーパ角αは、7〜15°程度にすると圧着が減少する。テーパ角αが7°より小さくなると、テーパ部長さが長くなりすぎて、装置レイアウト及びノズル製作上の問題が生じる。テーパ角αが15°より大きくなると、テーパ部での流体の剥離とこれに伴うよどみにより、圧着が生じやすい状態となる。
ノズル拡径テーパ部30−3の長さL3は、凡そ100〜400mm程度にすると良い。ノズル拡径部テーパ長さは、ノズル直管部の径と配管径に応じて決まり、配管径32Aのとき、テーパ角が7〜15°であれば、長さが凡そ140〜300mmとなる。ノズル縮径テーパ部30−1については、粉粒体の直管部への流入が阻害されないように滑らかに縮径する形状になっていれば、長さについては適宜設定されれば良い。そして、ノズル直管部30−2を設けたことにより、殺菌ゾーンと固気分離ゾーンとの間に設けられたノズル以降の配管に、被殺菌粉粒体の圧着が生じないことが、図5に示す実験によっても確認されている。
ノズル直管部30−2の作用効果は、次のように原理的にも確認することができる。すなわち、ノズル直管部30−2を設けることで、直管内から緩やかに断熱膨張させることが可能となり、蒸気の結露を防ぎ水分による配管への付着を抑制するとともに、ノズル直管部で流体(蒸気)及び粉粒体が整流され、絞られた流れで、ノズル直管部から吹出し、配管壁との衝突が起きにくい状態となる。これに対して、この直管部が短いと粉粒体の一部が乱れた状態で噴出し、壁面に衝突し、圧着が発生すると考えられる。
この現象を、図6を用いて模式的に示すと、直管部分が短い場合には、粒子は慣性のために、すぐには、まっすぐな流れになりにくい。一方蒸気の膨張で流速は、入口よりかなり(数倍程度)速くなっており、衝突により圧着しやすい。これに対して、ノズル直管部30−2が長い場合、直管部で流体(蒸気)及び粉粒体が整流され、粒子の動きは比較的安定した直進流れとなって噴出し、配管壁との衝突が起きにくいものと考えられる。
以上述べたように、本実施形態では、保圧用ノズル30にノズル直管部30−2を設け、保圧用ノズル30で緩やかに断熱膨張させるので、蒸気の結露を防ぎ、水分による配管への付着を抑制することができる。
本発明の保圧用ノズル30を使用した場合は、特に保圧用ノズルとサイクロン間の距離が余りにも近いと、サイクロンヘッド部(入口部)に圧着が発生することがある。保圧用ノズル30とサイクロン4の距離が近いと、ノズル直管部30−2の直径からあまり広がらずに直進し、サイクロンヘッド部の内壁に衝突するためと推察することができる。このため、保圧用ノズル30とサイクロン4の入口(サイクロンヘッド入口フランジ端面位置)までの離間距離をある一定距離離すことで、サイクロンヘッドへの圧着を回避することが可能となる。この一定以上の距離とは、少なくとも200mm以上であることが好ましい。200mmより短い場合、被殺菌粉粒体は慣性により直進し、サイクロンヘッド部(入口)に衝突しやすくなる。この離間距離は、200〜1000mm程度必要であるが、上限は、輸送できる距離や装置レイアウトにより制限され、通常は3000mm以内となる。
本実施形態の保圧用ノズル30の場合に、定置洗浄できるようにするためには、保圧用ノズル30にバイパス回路を設置すると良い。このようにすれば、保圧用ノズル30による絞り流路と、洗浄用の開放流路とを開閉バルブを用いて切り替え可能にすることができる。また、上述した保圧用ノズル30については、粉粒体装置用のノズルとして単体としても発明を構成するものである。すなわち、保圧用ノズルが、ノズル縮径部、ノズル直管部、及び、ノズル拡径部の順に構成され、該ノズル直管部において粉粒体が整流されて噴出することを特徴とする、粉粒体装置用保圧用ノズルとして、発明を構成し、本実施形態と同様な効果を得ることができる。
(低圧ロータリーバルブ)
図7は、本発明の一実施形態に使用される低圧ロータリーバルブの断面図である。図8は、低圧ロータリーバルブの側面図である。なお、図7は、図8の線C−Cに関する断面図である。なお、低圧ロータリーバルブ200の代わりにダブルダンパーを使用しても良い。ダブルダンパーとは、配管入口と出口にバタフライバルブを設け、交互に開閉することで、上流の密閉を保つようにした構成である。
低圧ロータリーバルブ200は、送入口202と送出口203を有する本体、側壁205、及び、スライドカバー206とから構成された低圧バルブケーシング201、並びに、該低圧バルブケーシング201内に収納されて回転自在に軸支された、複数のポケットを有するロータ210を具備し、前記スライドカバー206は、前記低圧バルブケーシング201の内周面を前記ロータの軸方向にスライド可能であって、前記スライドカバー206が前記ロータから軸方向に離間することにより、洗浄時に限ってバイパス流路240が形成される構造を有するものである。これにより、送入口202に連通するポケット、図7に示したバイパス流路240、及び、送出口203に連通するポケットが、連続した流路を形成する(図7において、紙面を平面としてみて、その平面に対して上下方向の各ポケットの左側サイドが、バイパス流路240に連通する)。
この低圧ロータリーバルブ200において、低圧バルブケーシング201の内周面とスライドカバー206との間にはシールが設けられている。
低圧ロータリーバルブ200の送入口202は、サイクロン(第1サイクロン)4の出口に連結しており、送出口203は第4ライン14、又は、第5ライン15に連結している。低圧バルブケーシング201は、送入口202と送出口203を有する本体、側壁205、及び、スライドカバー206とから構成されている。ロータ210は、低圧バルブケーシング201に収納されて回転自在に軸支されて、電動モータに駆動される減速機の駆動軸231により駆動される。低圧バルブケーシング201にモータを直結して、モータ直結型とすると小型化が図れる。ロータ210には、複数のロータブレード211が装着されている。各ポケットには、サイドウォールは設けられていない。
ロータ210の図7上の左端部にはブッシュ212が嵌め込まれており、スライドカバー206にねじ込まれた軸207を支持している。スライドカバー206は、低圧ロータリーバルブを特徴付ける構成であり、低圧バルブケーシング201の内周面を、ロータ210の軸方向にスライド可能であって、スライドカバー206がロータ210から軸方向に離間することにより、洗浄時に限ってバイパス流路240が形成される。低圧バルブケーシング201の内周面とスライドカバー206との間にはOリングなどでシールされていなければならない。
本実施形態では、スライドカバー206がロータ210から軸方向に離間することにより、洗浄時に限ってバイパス流路240を形成したが、これに限るものではない。バイパス流路のその他の実施形態としては、一部のロータブレードが、ロータに対して周方向に回転して、ロータに固定された残りのロータブレードとの間に位相差を生じさせて、周方向にジグザクのバイパス通路を形成させても良い。その他様々な実施形態が考えられる。
また、固気分離ゾーンにおけるサイクロンの段数は、1段で実施可能であるが、2段であっても良く、特許文献4と同様に第1サイクロン4及びエジェクタ5の下流に、第2サイクロンおよびエジェクタを固気分離ゾーン内の第4ライン14に設置しても良い。
低圧バルブケーシング201の図7上の左端部には、ハンドル固定ステー220が固定されている。ハンドル214を回転させると、スライドカバー206を移動させることができる。217は無給油ワッシャ、215は、スライドカバー206を位置決め固定するための締め付け体である。ガイド211は、ガイド板219を固定したスライドカバー206が、回転せずにスライドできるようにするガイドである。スライドカバー206はねじの代わりに流体圧シリンダで移動させても良い。
以上説明したように、本実施形態によれば、原料と高圧の過熱水蒸気を殺菌ゾーンに連続的に供給し、ここで加熱殺菌処理し、殺菌処理後の製品を固気分離ゾーンにて過熱水蒸気から分離し、冷却したのち、製品を回収する。そして、殺菌ゾーンと固気分離ゾーンとの間に設けられたノズル以降の配管に、被殺菌粉粒体の圧着が発生することなく、殺菌ゾーンでの加熱時間をコントロールし、また、ノズル通過後の蒸気の断熱膨張により製品温度を下げて、製品の熱劣化を防ぐことができる。
また、本実施形態においても従来技術と同様に、殺菌ゾーン、固気分離ゾーン、冷却ゾーン、製品回収ゾーンにおいて、すべてのゾーン又は一部のゾーンで定置洗浄(CIP: Cleaning in Place)を行うことができる。すなわち、洗浄時に殺菌ゾーンに水と飽和水蒸気などを連続的に供給することで、殺菌ゾーンから製品回収ゾーンを洗浄することができる。付着性の原料の場合には、蒸気と、酸又はアルカリの薬剤を水に添加して洗浄するとよく、これらを循環させるためのラインを全体又は一部に設けてもよい。サイクロンの洗浄においても、本発明の一実施形態の洗浄方法は有効である。サイクロンの排出部に接続した低圧ロータリーバルブを停止すると、上流には水蒸気と温水の混合体が溜まり、サイクロンを洗浄することができる。スライドカバーを移動して、バイパス流路を開放させてドレインに排出した後、再度蒸気や市水などで一気に洗浄することができる。
本発明の一実施形態の洗浄、装置殺菌の手順の一例としては、次のような手順で行うと良い。(1)スーパーヒータをOFFにして、飽和水蒸気とする。(2)ライン50のブロワーをOFFにする。(3)ライン60の洗浄水を投入する。(4)適当な洗浄時間が経過後、保圧用ノズル30をバイパス回路に切替える。(5)低圧ロータリーバルブ200のバイパス流路を開ける。(6)さらに、適当な洗浄時間が経過後、サイクロン4の低圧ロータリーバルブ200の回転を止めバイパス流路を閉じ、サイクロン付随の配管(固気分離時に気体が排気される配管等)を洗浄する。(7)保圧用ノズル30に切り替え、サイクロン4の低圧ロータリーバルブのバイパス流路を再度開ける。(8)すべての低圧ロータリーバルブのバイパス流路が開いている状態で、ロータを回転させ、洗浄水を止めた上で飽和水蒸気により装置の殺菌を行う。(9)適当な殺菌時間が経過後、保圧用ノズル30をバイパス回路に切り替え、さらに、飽和水蒸気により装置の殺菌を行う。(10)適当な殺菌時間経過後、飽和水蒸気を止め、ライン50のブロアを稼働させ、装置の乾燥を行う。装置部品の耐熱・耐圧性に問題がない場合には、装置殺菌時に過熱水蒸気を用いることができる。
本発明は、例示を目的として選択された特定の実施態様を参照して記述されているが、当業者にとっては本発明の基礎概念とその開示範囲から逸脱せずに、数多くのモディフィケーションがなしうることが明らかであろう。
1 投入装置
2 加熱管
4 サイクロン
5 エジェクタ
8 サイクロン
9 ロータリーバルブ
11〜15 第1〜5ライン
30 保圧用ノズル
20 過熱水蒸気導入ライン
100 高圧ロータリーバルブ
200 低圧ロータリーバルブ

Claims (4)

  1. 粉粒体と過熱水蒸気を連続的に供給して加熱殺菌処理する殺菌ゾーン、前記粉粒体を過熱水蒸気から分離する固気分離ゾーン、前記粉粒体を冷却する冷却ゾーン、及び、前記粉粒体を製品として回収する製品回収ゾーンの4つの区画からなり、前記殺菌ゾーン入口には前記粉粒体を供給するための高圧ロータリーバルブが設けられており、前記殺菌ゾーンと前記固気分離ゾーンとの間には保圧用ノズルが設けられた粉粒体殺菌装置において、
    前記保圧用ノズルが、ノズル縮径部、ノズル直管部、及び、ノズル拡径部で構成され、該ノズル直管部において粉粒体が整流されて噴出することを特徴とする粉粒体殺菌装置。
  2. 前記ノズル直管部の中心軸長さが、9mmから200mmの範囲であることを特徴とする請求項1に記載の粉粒体殺菌装置。
  3. 前記ノズル拡径部がテーパ面で構成され、テーパ面のテーパ角が7°から15°の範囲であり、前記ノズル拡径部の中心軸長さが、100mmから400mmの範囲であることを特徴とする請求項1又は2に記載の粉粒体殺菌装置。
  4. 前記固気分離ゾーンには、少なくとも1つのサイクロンが含まれ、前記ノズル拡径部出口と該サイクロン入口までの離間距離が、200mmから3000mmの範囲であることを特徴とする請求項1から3のいずれか1項に記載の粉粒体殺菌装置。
JP2012258450A 2012-11-27 2012-11-27 粉粒体殺菌装置 Pending JP2014104102A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012258450A JP2014104102A (ja) 2012-11-27 2012-11-27 粉粒体殺菌装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012258450A JP2014104102A (ja) 2012-11-27 2012-11-27 粉粒体殺菌装置

Publications (1)

Publication Number Publication Date
JP2014104102A true JP2014104102A (ja) 2014-06-09

Family

ID=51026102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012258450A Pending JP2014104102A (ja) 2012-11-27 2012-11-27 粉粒体殺菌装置

Country Status (1)

Country Link
JP (1) JP2014104102A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101901609B1 (ko) 2018-05-24 2018-09-27 윤태영 과열증기를 이용한 이동식 멸균장치
JP2022016939A (ja) * 2020-07-13 2022-01-25 電気興業株式会社 過熱蒸気反応装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115827A (ja) * 1985-11-15 1987-05-27 Canon Inc 微粒子流の流れ制御装置
JPH0553B2 (ja) * 1985-02-28 1993-01-05 Kikkoman Corp
JP2000024091A (ja) * 1998-07-07 2000-01-25 S & B Foods Inc 粉粒体殺菌装置
WO2009145198A1 (ja) * 2008-05-26 2009-12-03 株式会社フジワラテクノアート 粉粒体の殺菌方法及びそれを用いた殺菌装置
JP2011078493A (ja) * 2009-10-05 2011-04-21 Seishin Enterprise Co Ltd 定置洗浄可能な粉粒体殺菌装置
JP5737720B2 (ja) * 2009-10-20 2015-06-17 フロイント産業株式会社 スプレーガン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0553B2 (ja) * 1985-02-28 1993-01-05 Kikkoman Corp
JPS62115827A (ja) * 1985-11-15 1987-05-27 Canon Inc 微粒子流の流れ制御装置
JP2000024091A (ja) * 1998-07-07 2000-01-25 S & B Foods Inc 粉粒体殺菌装置
WO2009145198A1 (ja) * 2008-05-26 2009-12-03 株式会社フジワラテクノアート 粉粒体の殺菌方法及びそれを用いた殺菌装置
JP2011078493A (ja) * 2009-10-05 2011-04-21 Seishin Enterprise Co Ltd 定置洗浄可能な粉粒体殺菌装置
JP5737720B2 (ja) * 2009-10-20 2015-06-17 フロイント産業株式会社 スプレーガン

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101901609B1 (ko) 2018-05-24 2018-09-27 윤태영 과열증기를 이용한 이동식 멸균장치
JP2022016939A (ja) * 2020-07-13 2022-01-25 電気興業株式会社 過熱蒸気反応装置
JP7063948B2 (ja) 2020-07-13 2022-05-17 電気興業株式会社 過熱蒸気反応装置

Similar Documents

Publication Publication Date Title
WO2015101279A1 (zh) 循环流化床设备
CN110538693A (zh) 一种用于中药材加工的芸洁磨
CA2784199C (en) Tubular reactor for thermal treatment of biomass
JP2011078493A (ja) 定置洗浄可能な粉粒体殺菌装置
SE449656B (sv) Forfaringssett och anordning for kontinuerlig torkning och/eller granulering av massgods
CN102018967B (zh) 粉粒体原料灭菌装置以及灭菌方法
SE449789B (sv) Anordning for torkning och granulering av vatt, pastaformigt och/eller smeltbart material
CN106267253A (zh) 对药品食品粉末瞬时定量灭菌的系统
WO2023109523A1 (zh) 一种粉体连续式蒸汽压差灭菌系统及灭菌方法
CN103816686B (zh) 真空带式液体连续干燥机
JP2014104102A (ja) 粉粒体殺菌装置
JP2012030930A (ja) 高圧ロータリーバルブ
CN100594970C (zh) 用于处理粒状材料的设备
KR101853450B1 (ko) 회전형 건조장치
US848484A (en) Apparatus for extracting by-products from wood.
CN107232474A (zh) 一种巴氏杀菌装置
CN206923625U (zh) 一种巴氏杀菌装置
JP3054409B1 (ja) 鶏用マッシュ飼料の熱処理設備
JP5972136B2 (ja) 循環式蒸気殺菌システム
JP2012047373A (ja) 横型連続伝導伝熱式乾燥機
CN220834143U (zh) 一种植物提取物的干燥设备
CN111940056A (zh) 一种中药材超细粉的制备方法及其加工的产品
SU1726037A1 (ru) Установка дл производства тонкодисперсных порошкообразных материалов
JP6215509B2 (ja) 粉体処理装置の残留物排出方法、及び粉体処理装置の残留物排出システム
JPWO2005097212A1 (ja) 殺菌装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170228