JP2014101542A - Processing method of copper removal from molten pig iron - Google Patents
Processing method of copper removal from molten pig iron Download PDFInfo
- Publication number
- JP2014101542A JP2014101542A JP2012253808A JP2012253808A JP2014101542A JP 2014101542 A JP2014101542 A JP 2014101542A JP 2012253808 A JP2012253808 A JP 2012253808A JP 2012253808 A JP2012253808 A JP 2012253808A JP 2014101542 A JP2014101542 A JP 2014101542A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- hot metal
- sulfide
- flux
- copper removal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010949 copper Substances 0.000 title claims abstract description 221
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 216
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 214
- 229910000805 Pig iron Inorganic materials 0.000 title abstract description 8
- 238000003672 processing method Methods 0.000 title abstract 3
- 230000004907 flux Effects 0.000 claims abstract description 87
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 67
- 238000006243 chemical reaction Methods 0.000 claims abstract description 49
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000001301 oxygen Substances 0.000 claims abstract description 30
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 30
- 229910052751 metal Inorganic materials 0.000 claims description 144
- 239000002184 metal Substances 0.000 claims description 144
- 229910000831 Steel Inorganic materials 0.000 claims description 58
- 239000010959 steel Substances 0.000 claims description 58
- 239000002893 slag Substances 0.000 claims description 18
- 229910052783 alkali metal Inorganic materials 0.000 claims description 13
- 150000001875 compounds Chemical class 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 229910000796 S alloy Inorganic materials 0.000 claims description 10
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 claims description 9
- 102000005298 Iron-Sulfur Proteins Human genes 0.000 claims description 9
- 108010081409 Iron-Sulfur Proteins Proteins 0.000 claims description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 150000001340 alkali metals Chemical class 0.000 claims description 9
- 150000002927 oxygen compounds Chemical class 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010703 silicon Substances 0.000 claims description 9
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 8
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- 238000005255 carburizing Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 abstract description 22
- 239000003638 chemical reducing agent Substances 0.000 abstract description 7
- 230000002401 inhibitory effect Effects 0.000 abstract description 2
- 230000009545 invasion Effects 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 46
- 239000003795 chemical substances by application Substances 0.000 description 36
- 238000007670 refining Methods 0.000 description 34
- 229910052742 iron Inorganic materials 0.000 description 23
- 238000012360 testing method Methods 0.000 description 20
- 229910052717 sulfur Inorganic materials 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 18
- 239000011593 sulfur Substances 0.000 description 18
- 239000007789 gas Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 239000011734 sodium Substances 0.000 description 11
- 239000000571 coke Substances 0.000 description 10
- 150000004763 sulfides Chemical class 0.000 description 9
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 7
- 229910001882 dioxygen Inorganic materials 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 150000001339 alkali metal compounds Chemical class 0.000 description 6
- 230000003009 desulfurizing effect Effects 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 150000004820 halides Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000010907 mechanical stirring Methods 0.000 description 5
- 238000010926 purge Methods 0.000 description 5
- 239000003610 charcoal Substances 0.000 description 4
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 4
- 238000006477 desulfuration reaction Methods 0.000 description 4
- 230000023556 desulfurization Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 description 4
- 235000017550 sodium carbonate Nutrition 0.000 description 4
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 3
- 239000003830 anthracite Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- AQKDYYAZGHBAPR-UHFFFAOYSA-M copper;copper(1+);sulfanide Chemical compound [SH-].[Cu].[Cu+] AQKDYYAZGHBAPR-UHFFFAOYSA-M 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- 238000005486 sulfidation Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 229910052977 alkali metal sulfide Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000005997 Calcium carbide Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- VDQVEACBQKUUSU-UHFFFAOYSA-M disodium;sulfanide Chemical compound [Na+].[Na+].[SH-] VDQVEACBQKUUSU-UHFFFAOYSA-M 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- YQCIWBXEVYWRCW-UHFFFAOYSA-N methane;sulfane Chemical compound C.S YQCIWBXEVYWRCW-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
本発明は、溶銑中に含まれる銅を除去する方法に関し、詳しくは、鉄源として鋼屑(鉄系スクラップ)を使用して溶銑を製造し、この溶銑を用いて高級鋼を製造する場合に、鋼屑から溶銑に持ち来たされ、鉄鋼材料の品質を劣化させる銅を溶銑から除去する方法に関する。 The present invention relates to a method for removing copper contained in hot metal, and more specifically, when producing hot metal using steel scrap (iron scrap) as an iron source and producing high-grade steel using this hot metal. The present invention relates to a method for removing copper, which has been brought from steel scrap to hot metal and deteriorates the quality of steel materials, from hot metal.
製鋼過程で使用する鉄源は、鉄鉱石を高炉で還元して得られる溶銑が主体であるが、鉄鋼材料の加工工程で発生する鋼屑や、建築物及び機械製品などの老朽化に伴って発生する鋼屑も、かなりの量が使用されている。高炉での溶銑の製造には、鉄鉱石を還元し且つ溶融するための多大なエネルギーを要するのに対し、鋼屑は溶解熱のみを必要としており、製鋼過程で鋼屑を利用した場合には、鉄鉱石の還元熱分のエネルギー使用量を少なくすることができるという利点がある。従って、省エネルギーによる地球温暖化防止の観点からも、鋼屑利用の促進が望まれている。 The iron source used in the steelmaking process is mainly hot metal obtained by reducing iron ore in a blast furnace, but with the aging of steel scraps, buildings and machinery products generated in the processing process of steel materials A considerable amount of steel scrap is also used. The production of hot metal in the blast furnace requires a great deal of energy to reduce and melt iron ore, whereas steel scrap requires only heat of melting, and when steel scrap is used in the steelmaking process, There is an advantage that the amount of energy used for reducing heat of iron ore can be reduced. Therefore, from the viewpoint of preventing global warming by energy saving, it is desired to promote the use of steel scrap.
ところで、鋼屑を再生利用すると、これら鋼屑に随伴する銅及び錫に代表されるトランプエレメントが、鋼屑溶解の過程で不可避的に溶鉄中に混入する。トランプエレメントは鋼の性質を損なう成分であり、一定の濃度以下に保つ必要がある。そのため、高級鋼を製造するための鉄源としては、銅や錫を含む鋼屑(「低級鋼屑」という)の利用には限界があった。しかしながら、近年の鋼屑発生量の増加、並びに、CO2発生量削減のための鋼屑増使用の要請を勘案すると、低級鋼屑の再生利用を進めることが極めて重要な課題となっている。 By the way, when steel scraps are recycled, trump elements typified by copper and tin accompanying these steel scraps are inevitably mixed in the molten iron in the course of steel scrap melting. The trump element is a component that impairs the properties of steel and must be kept below a certain concentration. Therefore, as an iron source for producing high-grade steel, there is a limit to the use of steel scrap containing copper and tin (referred to as “lower steel scrap”). However, considering the recent increase in the amount of steel scrap and the demand for increased use of steel scrap to reduce the amount of CO 2 generated, it is extremely important to promote the recycling of lower steel scrap.
現在の低級鋼屑を使用するための実用化技術としては、鋼屑を物理的に分解して有害な部分を人力或いは磁力選別などの手法で分離し、有害な部分を取り除いたものを、有害成分をほとんど含有しない原料に配合し、鉄鋼材料の材料特性上問題の生じない範囲内で使用する方法が行われており、この方法以外に有効な方法は実施されていない。しかし、このような方法は、使用済み自動車などの鋼屑を大量に再生利用することは不可能であり、今後予想される鋼屑多量発生時代に対応する鋼屑中の銅の除去技術には成り得ない。 As a practical technology for using the current low-grade steel scrap, the steel scrap is physically decomposed and the harmful parts are separated by techniques such as human power or magnetic separation, and the harmful parts are removed. A method of blending in a raw material containing almost no components and using it within a range that does not cause a problem in the material properties of the steel material has been performed, and no effective method other than this method has been implemented. However, such a method cannot recycle and recycle a large amount of scrap steel from used automobiles, etc. It cannot be done.
一方、溶鉄に混入した後の脱銅方法について、以下に述べる原理的発明が公知になっている。つまり、銅含有高炭素溶鉄と硫化物含有フラックスとを接触させ、溶鉄中の銅成分をCu2Sとして硫化物含有フラックス中に分離除去する原理的技術知見が、非特許文献1に報告されている。この技術は、銅の除去技術として、前述の物理的除去方法に比較して、より広い適用の可能性を提案するものである。 On the other hand, the principle invention described below is known about the copper removal method after mixing in molten iron. That is, Non-Patent Document 1 reports the principle technical knowledge of contacting copper-containing high carbon molten iron with sulfide-containing flux and separating and removing the copper component in the molten iron as Cu 2 S into the sulfide-containing flux. Yes. This technique proposes the possibility of wider application as a copper removal technique compared to the above-described physical removal method.
一般に、メタル中の成分をフラックス中に除去する精錬反応においては、フラックス中に除去された成分の濃度とメタル中の成分の濃度との比である分配比が、精錬反応の到達度の尺度となる。つまり、分配比が大きいほどフラックス中に除去される量が多くなる。非特許文献1には、銅の分配比自体や、フラックスが溶融して溶鉄上に形成されたNa2S系フラックス中のCu濃度が明らかにされていないが、非特許文献1に記載される諸元値に基づき、フラックスの歩留りを100%として反応系のマスバランスから算出した銅の分配比は4.6〜38の間で大きく変動している。開示されている処理後の溶銑中の成分(C、S、Cu)濃度に大きな違いはなく、また、非特許文献1は銅の分配比が変動する原因について言及していない。 Generally, in a refining reaction that removes the components in the metal into the flux, the distribution ratio, which is the ratio between the concentration of the component removed in the flux and the concentration of the component in the metal, is a measure of the attainment of the refining reaction. Become. That is, the larger the distribution ratio, the greater the amount removed in the flux. Non-Patent Document 1 does not disclose the copper distribution ratio itself or the Cu concentration in the Na 2 S-based flux formed on the molten iron by melting the flux, but is described in Non-Patent Document 1. Based on the specification values, the copper distribution ratio calculated from the mass balance of the reaction system with the flux yield being 100% varies greatly between 4.6 and 38. There is no significant difference in the concentrations of components (C, S, Cu) in the hot metal after the treatment that is disclosed, and Non-Patent Document 1 does not mention the cause of fluctuations in the copper distribution ratio.
即ち、硫化物含有フラックスによる脱銅処理方法を実用化技術として成立させるには、上記のような、銅の分配比が大きく変動する原因を明らかにし、銅の分配比が高くなる操業条件を維持させ、処理プロセスの安定化を図る必要がある。 In other words, in order to establish a copper removal treatment method using a sulfide-containing flux as a practical technology, the cause of the large fluctuation of the copper distribution ratio as described above is clarified, and the operating conditions for increasing the copper distribution ratio are maintained. It is necessary to stabilize the processing process.
また、上記の原理的技術知見に基づいて、低級鋼屑を鉄源とした、銅を含有する溶銑(以下、「銅含有溶銑」とも記す)の脱銅処理方法が幾つか提案されているが(例えば、特許文献1を参照)、銅の分配比が大きく変動する原因について、これらの特許文献においても、明らかにされていない。 Further, based on the above-described fundamental technical knowledge, several methods for removing copper from hot metal containing copper (hereinafter also referred to as “copper-containing hot metal”) using low steel scrap as an iron source have been proposed. (For example, refer to Patent Document 1) The reason why the distribution ratio of copper greatly fluctuates is not clarified in these Patent Documents.
本発明は上記事情に鑑みてなされたもので、その目的とするところは、低級鋼屑を主たる鉄源とする銅含有溶銑中の銅を硫化物含有フラックスによって除去するにあたり、銅の分配比を高く維持させ、安定して効率良く銅を除去することのできる、溶銑の脱銅処理方法を提供することである。 The present invention has been made in view of the above circumstances. The purpose of the present invention is to remove the copper in the copper-containing hot metal containing lower steel scrap as the main iron source by the sulfide-containing flux, and to determine the copper distribution ratio. The present invention is to provide a hot metal decoppering method which can be maintained at a high level and can stably and efficiently remove copper.
上記課題を解決するための本発明の要旨は以下のとおりである。
[1]反応容器内に収容された銅含有溶銑に硫化物含有フラックスを接触させ、銅含有溶銑中の銅を硫化物含有フラックス中に除去する溶銑の脱銅処理方法において、前記硫化物含有フラックス中の酸素濃度を20質量%以下に保持した状態で脱銅処理することを特徴とする、溶銑の脱銅処理方法。
[2]前記反応容器内への空気及び/または鉄鋼スラグの侵入を抑制するか、前記反応容器内に侵入した空気及び/または鉄鋼スラグを除去するか、または、前記反応容器内に侵入した空気及び/または鉄鋼スラグを還元して気体の酸素化合物を生成させ、生成させた酸素化合物を除去することを特徴とする、上記[1]に記載の溶銑の脱銅処理方法。
[3]前記硫化物含有フラックス中の酸素濃度を10質量%以下に調整することを特徴とする、上記[1]または上記[2]に記載の溶銑の脱銅処理方法。
[4]前記銅含有溶銑は、脱銅処理前時点での珪素濃度が0.05質量%以下であることを特徴とする、上記[1]ないし上記[3]の何れか1項に記載の溶銑の脱銅処理方法。
[5]前記銅含有溶銑は、脱銅処理前時点での温度が1200℃以上1500℃以下であることを特徴とする、上記[1]ないし上記[4]の何れか1項に記載の溶銑の脱銅処理方法。
[6]前記反応容器内に、少なくとも、鉄−硫黄合金と、アルカリ金属元素の化合物またはアルカリ土類金属元素の化合物とを添加し、前記硫化物含有フラックスを形成させることを特徴とする、上記[1]ないし上記[5]の何れか1項に記載の溶銑の脱銅処理方法。
[7]前記アルカリ金属元素の化合物は、Na2CO3及び/またはK2CO3であることを特徴とする、上記[6]に記載の溶銑の脱銅処理方法。
[8]前記銅含有溶銑は、銅含有鋼屑を加炭溶解して製造されたものであることを特徴とする、上記[1]ないし上記[7]の何れか1項に記載の溶銑の脱銅処理方法。
The gist of the present invention for solving the above problems is as follows.
[1] In the method for removing copper in hot metal, the sulfide-containing flux is obtained by bringing a sulfide-containing flux into contact with the copper-containing hot metal accommodated in the reaction vessel and removing copper in the copper-containing hot metal into the sulfide-containing flux. A copper removal treatment method for hot metal, characterized in that the copper removal treatment is carried out in a state where the oxygen concentration is maintained at 20% by mass or less.
[2] Air and / or steel slag entering the reaction vessel is suppressed, air and / or steel slag entering the reaction vessel is removed, or air entered the reaction vessel And / or iron slag is reduced to produce a gaseous oxygen compound, and the produced oxygen compound is removed.
[3] The method for removing copper from hot metal as described in [1] or [2] above, wherein the oxygen concentration in the sulfide-containing flux is adjusted to 10% by mass or less.
[4] The copper-containing hot metal according to any one of [1] to [3] above, wherein the silicon concentration before the copper removal treatment is 0.05% by mass or less. A method for removing copper from hot metal.
[5] The hot metal as set forth in any one of [1] to [4], wherein the temperature of the copper-containing hot metal before the copper removal treatment is 1200 ° C. or higher and 1500 ° C. or lower. Copper removal treatment method.
[6] In the reaction vessel, at least an iron-sulfur alloy and an alkali metal element compound or an alkaline earth metal element compound are added to form the sulfide-containing flux. [1] The method for removing copper from hot metal as described in any one of [5] above.
[7] The hot metal decoppering method according to [6], wherein the alkali metal element compound is Na 2 CO 3 and / or K 2 CO 3 .
[8] The hot metal as set forth in any one of [1] to [7], wherein the copper-containing hot metal is manufactured by carburizing and melting copper-containing steel scrap. Copper removal treatment method.
本発明によれば、銅含有溶銑中の銅を硫化物として硫化物含有フラックス中に除去する際に、硫化物含有フラックス中の酸素濃度を20質量%以下の低位に調整するので、銅の分配比が高く、銅の硫化反応が有利に進む条件となり、安定的に効率良く溶銑を脱銅処理することが実現される。その結果、従来、高級鋼用の鉄源として使用困難であった、銅を多量に含む鋼屑の高級鋼への適用が可能となり、低級鋼屑の利用促進、並びに、省エネルギーなどの工業上有益な効果がもたらされる。 According to the present invention, when the copper in the copper-containing hot metal is removed as a sulfide in the sulfide-containing flux, the oxygen concentration in the sulfide-containing flux is adjusted to a low level of 20% by mass or less. The ratio is high and the copper sulfidation reaction proceeds favorably, and it is possible to stably and efficiently remove copper from the hot metal. As a result, steel scrap containing a large amount of copper, which has been difficult to use as an iron source for high-grade steel, can be applied to high-grade steel, and it is industrially beneficial to promote the use of low-grade steel scrap and save energy. Effect.
以下、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described.
本発明者らは、銅含有溶銑と硫化物含有フラックスとを接触させ、溶銑中の銅を硫化銅(Cu2S)として硫化物含有フラックス中に除去するにあたり、銅含有溶銑中の銅を効率的に硫化物含有フラックスに移行させることについて、鋭意調査・研究を行った。その結果、銅含有溶銑からの脱銅反応には、硫化物含有フラックス中の酸素濃度を低位に制御することが重要であることを突き止めた。尚、硫化物含有フラックスは、アルカリ金属元素の硫化物やアルカリ土類金属元素の硫化物などの硫化物の添加、或いは、アルカリ金属元素やアルカリ土類金属元素の単体金属や化合物と硫黄源との添加によって形成されるものである。本発明では、硫化物含有フラックスを形成するためのこれらの材料を「脱銅用精錬剤」と称す。また、本発明では、1種または2種以上の脱銅用精錬剤を溶銑に添加して形成される硫黄を含有するフラックスを「硫化物含有フラックス」と称す。 The present inventors contact the copper-containing hot metal and the sulfide-containing flux, and remove the copper in the hot metal as copper sulfide (Cu 2 S) into the sulfide-containing flux. In order to shift to a flux containing sulfide, we conducted extensive research and research. As a result, it was found that it is important to control the oxygen concentration in the sulfide-containing flux to a low level for the copper removal reaction from the copper-containing hot metal. It should be noted that the sulfide-containing flux is the addition of sulfides such as sulfides of alkali metal elements and sulfides of alkaline earth metal elements, or simple metals and compounds of alkali metal elements and alkaline earth metal elements and sulfur sources. It is formed by the addition of In the present invention, these materials for forming the sulfide-containing flux are referred to as “decopper refining agents”. In the present invention, a flux containing sulfur formed by adding one or two or more types of copper removal refining agents to the hot metal is referred to as a “sulfide-containing flux”.
硫化物含有フラックスを用いて銅含有溶銑中の銅を硫化銅として除去する反応において、生成した硫化銅が硫化物含有フラックス中に安定して存在することのできる条件が、脱銅反応率を高位にするための必須条件である。硫化物含有フラックス中に酸素が存在すると、必然的に硫化物含有フラックス中の硫黄濃度が低下し、硫化物として生成した硫化銅が硫化物含有フラックス中で安定した状態で存在しにくくなる。つまり、硫化物含有フラックス中の酸素濃度を低位にすることが、硫化による脱銅反応の促進の鍵となる。 In the reaction of removing copper in the copper-containing hot metal as copper sulfide using a sulfide-containing flux, the conditions under which the produced copper sulfide can be stably present in the sulfide-containing flux increase the copper removal reaction rate. It is an indispensable condition. If oxygen is present in the sulfide-containing flux, the sulfur concentration in the sulfide-containing flux is inevitably lowered, and copper sulfide produced as sulfide is less likely to be present in a stable state in the sulfide-containing flux. That is, lowering the oxygen concentration in the sulfide-containing flux is the key to promoting the copper removal reaction due to sulfidation.
硫化物含有フラックス中の酸素濃度の上限は、硫化物含有フラックスの成分にも依存するが、硫化物含有フラックス−メタル間での銅の分配比を、効率的な脱銅反応の起こる値(概ね10)以上に確保しようとするならば、20質量%以下であることが必要である。更に好ましくは10質量%以下である。本発明において、硫化物含有フラックス中の酸素濃度とは、Na2O、CaO、MgO、Al2O3、SiO2などの酸化物が硫化物含有フラックス中に含有される場合、これらの酸化物中の酸素分の酸素濃度であり、例えば、SiO2が10質量%含有されるときの酸素濃度は5.3質量%(=10×(16×2)/[28+(16×2)])となる。硫化物含有フラックス中の酸素濃度は、炭素坩堝に入れた試料を不活性ガス気流中で高温に加熱して発生したCOガスをCO2に酸化し、赤外線吸収法によって定量する加熱融解−赤外線吸収法により、定量分析できる。 Although the upper limit of the oxygen concentration in the sulfide-containing flux depends on the components of the sulfide-containing flux, the copper distribution ratio between the sulfide-containing flux and the metal is a value at which an efficient copper removal reaction occurs (approximately 10) If it is going to ensure more than, it is necessary to be 20 mass% or less. More preferably, it is 10 mass% or less. In the present invention, the oxygen concentration in the sulfide-containing flux refers to oxides such as Na 2 O, CaO, MgO, Al 2 O 3 , and SiO 2 that are contained in the sulfide-containing flux. For example, the oxygen concentration when SiO 2 is contained by 10 mass% is 5.3 mass% (= 10 × (16 × 2) / [28+ (16 × 2)] ) The oxygen concentration in the sulfide-containing flux is determined by the heat melting-infrared absorption method, in which the CO gas generated by heating a sample in a carbon crucible to high temperature in an inert gas stream is oxidized to CO 2 and quantified by the infrared absorption method. It can be quantitatively analyzed by the method.
反応容器内に存在する硫化物含有フラックス中の酸素濃度を低位(20質量%以下)にするための手段としては、反応容器内への酸素源の侵入を抑制する方法や、反応容器内に侵入した酸素源を除去する方法、反応容器内に侵入した酸素源を還元剤で還元して気体の酸素化合物を生成させ、この気体の酸素化合物を除去する方法が有効である。反応容器内へ侵入する酸素源としては、大気中の酸素ガス、反応容器の耐火物中の酸化物、及び、前工程の残留鉄鋼スラグなどから混入する酸化物(酸化珪素、酸化アルミニウムなど)が挙げられる。ここで、前工程から残留する鉄鋼スラグとは、鋼屑を溶解して銅含有溶銑を溶製する工程で発生するスラグ、銅含有溶銑を脱珪処理する際に発生するスラグ、銅含有溶銑に高炉で製造された溶銑(「高炉溶銑」という)を混合する場合に高炉溶銑によって持ち込まれるスラグである。 Means for reducing the oxygen concentration in the sulfide-containing flux present in the reaction vessel to a low level (20% by mass or less) include a method for suppressing the intrusion of the oxygen source into the reaction vessel, and the entry into the reaction vessel. A method of removing the oxygen source and a method of reducing the oxygen source that has entered the reaction vessel with a reducing agent to generate a gaseous oxygen compound and removing the gaseous oxygen compound are effective. Oxygen sources that enter the reaction vessel include oxygen gas in the atmosphere, oxides in the refractory of the reaction vessel, and oxides (silicon oxide, aluminum oxide, etc.) mixed from residual steel slag in the previous process. Can be mentioned. Here, the steel slag remaining from the previous process is the slag generated in the process of melting the steel scrap and melting the copper-containing hot metal, the slag generated when the copper-containing hot metal is desiliconized, and the copper-containing hot metal This is a slag that is brought in by the blast furnace hot metal when mixing the hot metal produced in the blast furnace (referred to as “blast furnace hot metal”).
大気中の酸素ガスの混入を抑制する手段としては、反応容器内にアルゴンガスや窒素ガスなどの不活性ガスを連続的に供給し、大気を追い出すかまたは大気を希釈し、酸素ガス濃度を低下させればよい。或いは、炭化水素ガスやコークス炉ガスなどの還元性ガスを還元剤として反応容器内に供給し、酸素ガスを還元してもよい。還元性ガス以外に石炭、樹脂などの固体炭素源を還元剤として投入し、酸素ガスを還元してもよい。還元により生成したCO、CO2、H2Oなどの気体の酸素化合物は反応容器内から排出され、或いは反応容器内に導入した不活性ガスや還元性ガス或いはその分解ガスによって希釈されるとともに、反応容器内から排出される。 As a means to suppress the mixing of oxygen gas in the atmosphere, an inert gas such as argon gas or nitrogen gas is continuously supplied into the reaction vessel to drive out the atmosphere or dilute the atmosphere to lower the oxygen gas concentration. You can do it. Alternatively, reducing gas such as hydrocarbon gas or coke oven gas may be supplied into the reaction vessel as a reducing agent to reduce the oxygen gas. In addition to the reducing gas, a solid carbon source such as coal or resin may be used as a reducing agent to reduce the oxygen gas. Gaseous oxygen compounds such as CO, CO 2 and H 2 O produced by the reduction are discharged from the reaction vessel or diluted with an inert gas, a reducing gas or a decomposition gas introduced into the reaction vessel, It is discharged from the reaction vessel.
容器耐火物からの酸化物の混入を抑制する手段としては、耐食性の優れた耐火物を用いるとともに、反応温度を低位にする、反応時間を短くする、撹拌条件を弱くする、などの対策を採り得るが、脱銅反応自体を阻害しないような観点で選択することが重要である。また、炭素や炭化物、硼化物などを含有する酸化物の含有量の少ない耐火物を処理容器の内張り耐火物とすることも有効である。 As a means to suppress the mixing of oxides from the container refractory, measures such as using a refractory with excellent corrosion resistance, lowering the reaction temperature, shortening the reaction time, weakening the stirring conditions, etc. However, it is important to select from the viewpoint of not inhibiting the copper removal reaction itself. It is also effective to use a refractory with a low content of oxides containing carbon, carbides, borides, etc. as the lining refractory of the processing vessel.
前工程の残留鉄鋼スラグからの酸化物混入を抑制するためには、脱銅処理を行う前に充分に前工程の残留鉄鋼スラグを除去するなどの対策を採ることが一般的である。硫化物含有フラックス中に混入した前工程の鉄鋼スラグ中の酸化物成分のうちFeO、MnOなどの一部の成分は、炭素などの還元剤によって還元することも可能であり、生成したCOなどの気体の酸素化合物は反応容器内から排出され、或いは反応容器内に導入した不活性ガスや還元性ガス或いはその分解ガスによって希釈されるとともに、反応容器内から排出される。 In order to suppress oxide contamination from the residual steel slag in the previous process, it is common to take measures such as sufficiently removing the residual steel slag in the previous process before performing the copper removal treatment. Among the oxide components in the steel slag of the previous process mixed in the sulfide-containing flux, some components such as FeO and MnO can be reduced by a reducing agent such as carbon, and the produced CO and the like The gaseous oxygen compound is discharged from the reaction vessel, or diluted with an inert gas, a reducing gas or a decomposition gas thereof introduced into the reaction vessel, and discharged from the reaction vessel.
これに加えて、脱銅処理対象の銅含有溶銑は珪素濃度の低いものであることが望ましい。これは、脱銅処理中に溶銑中の珪素は反応容器内に侵入した酸素源或いは酸素化合物によって容易に酸化されることから、生成した酸化珪素が硫化物含有フラックスに移行して硫化物含有フラックス中の酸素濃度が上昇するのを避けるためである。更に、積極的には、脱銅処理の事前に銅含有溶銑の脱珪処理を行って、銅含有溶銑の珪素濃度を充分に下げておくことが望ましい。この場合、銅含有溶銑中の珪素濃度を、0.20質量%以下、望ましくは0.10質量%以下、より望ましくは0.05質量%以下とすることである。 In addition to this, it is desirable that the copper-containing hot metal to be decopperized has a low silicon concentration. This is because, during the copper removal treatment, the silicon in the hot metal is easily oxidized by the oxygen source or oxygen compound that has entered the reaction vessel, so that the generated silicon oxide moves to the sulfide-containing flux and the sulfide-containing flux. This is to avoid an increase in the oxygen concentration inside. Furthermore, it is desirable that the silicon concentration of the copper-containing hot metal is sufficiently lowered by desiliconizing the copper-containing hot metal prior to the copper removal treatment. In this case, the silicon concentration in the copper-containing hot metal is 0.20 mass% or less, desirably 0.10 mass% or less, and more desirably 0.05 mass% or less.
本発明において、脱銅処理前時点での銅含有溶銑の温度は、1200℃以上1500℃以下、望ましくは1250℃以上1400℃以下であることが好ましい。溶銑温度が1200℃未満では、低温に起因する脱銅用精錬剤及び溶銑自体の固化・凝固が懸念される。特に、その後の工程や転炉脱炭工程での温度保証を考慮すると、1250℃以上とすることが望ましい。一方、1500℃以上では、高温による硫化物含有フラックス中成分の蒸発が無視できない。つまり、硫化物含有フラックス中成分の蒸発を抑えて効率的に脱銅反応を行うには、溶銑温度は低いほど好ましく、従って、効率的な脱銅反応のためには、溶銑温度を1400℃以下とすることが望ましい。 In the present invention, the temperature of the copper-containing hot metal before the copper removal treatment is preferably 1200 ° C. or higher and 1500 ° C. or lower, desirably 1250 ° C. or higher and 1400 ° C. or lower. If the hot metal temperature is less than 1200 ° C., there is a concern that the refining agent for copper removal and the hot metal itself solidify and solidify due to the low temperature. In particular, considering the temperature guarantee in the subsequent process and converter decarburization process, it is desirable to set the temperature to 1250 ° C. or higher. On the other hand, at 1500 ° C. or higher, evaporation of components in the sulfide-containing flux due to high temperature cannot be ignored. That is, in order to suppress the evaporation of the components in the sulfide-containing flux and efficiently perform the copper removal reaction, the hot metal temperature is preferably as low as possible. Therefore, for efficient copper removal reaction, the hot metal temperature is 1400 ° C. or lower. Is desirable.
脱銅処理前の銅含有溶銑中の炭素濃度は2質量%以上が好ましい。溶銑中の銅が硫化銅(Cu2S)となる反応は、熱力学的に溶銑中の炭素濃度が高いほど進行しやすいことが知られている。脱銅処理前の溶銑中の炭素濃度が2質量%未満では、硫化銅の生成反応が充分に起こらないことに加え、溶銑の液相線温度が上昇し、溶銑の容器壁への付着などが問題となる。また、脱銅処理前の銅含有溶銑中の銅濃度は0.1質量%以上1.0質量%以下であることが好ましい。脱銅処理前の溶銑中の銅濃度が1.0質量%を超えると、銅の除去に必要な脱銅用精錬剤の量が過大となり、実用上の負荷が大きい。一方、脱銅処理前の溶銑中の銅濃度が0.1質量%未満の場合には、脱銅処理を施さなくても、例えば、銅含有量の低い溶銑で希釈するなどして対処可能である。 The carbon concentration in the copper-containing hot metal before the copper removal treatment is preferably 2% by mass or more. It is known that the reaction in which the copper in the hot metal becomes copper sulfide (Cu 2 S) proceeds more thermodynamically as the carbon concentration in the hot metal becomes higher. If the carbon concentration in the hot metal before the copper removal treatment is less than 2% by mass, the formation reaction of copper sulfide does not occur sufficiently, the liquidus temperature of the hot metal rises, and the hot metal adheres to the vessel wall. It becomes a problem. Moreover, it is preferable that the copper density | concentration in the copper containing hot metal before a copper removal process is 0.1 to 1.0 mass%. When the copper concentration in the hot metal before the copper removal treatment exceeds 1.0% by mass, the amount of the copper removal refining agent necessary for removing copper is excessive, and the practical load is large. On the other hand, when the copper concentration in the hot metal before the copper removal treatment is less than 0.1% by mass, it can be dealt with by, for example, diluting with a hot metal having a low copper content without performing the copper removal treatment. is there.
更に、脱銅処理前の銅含有溶銑の硫黄濃度としては、0.01質量%以上が好ましく、0.05質量%以上が更に好ましい。脱銅処理前の溶銑の硫黄濃度が0.01質量%未満では、脱銅用精錬剤から溶銑中への硫黄の溶解量が過大となり、脱銅用精錬剤の利用効率が低くなり経済的でない。溶銑の硫黄濃度の上限は特に規定する必要はないが、余りに高濃度であると、脱銅処理の後工程である脱硫処理で支障を来すので、0.5質量%以下とすることが望ましい。 Furthermore, the sulfur concentration of the copper-containing hot metal before the copper removal treatment is preferably 0.01% by mass or more, and more preferably 0.05% by mass or more. If the concentration of sulfur in the hot metal before the copper removal treatment is less than 0.01% by mass, the amount of sulfur dissolved in the hot metal from the copper removal refining agent becomes excessive, and the use efficiency of the copper removal refining agent becomes low and it is not economical. . The upper limit of the hot metal sulfur concentration does not need to be specified, but if it is too high, the desulfurization treatment, which is a subsequent step of the copper removal treatment, will be hindered. .
脱銅用の硫化物含有フラックスを構成する硫化物としては、アルカリ金属元素の硫化物、アルカリ土類金属元素の硫化物、遷移金属元素の硫化物、アルミニウムの硫化物などが利用できる。硫化物含有フラックスを形成するには、上記の硫化物自身を出発原料として使用してもよく、また、上記元素の単体金属や化合物(酸化物、水酸化物、炭酸塩、硫酸塩、ハロゲン化物など)と硫黄源とを添加し、硫化物含有フラックスを形成させてもよい。これらのなかでも、アルカリ金属元素の硫化物及びアルカリ土類金属元素の硫化物が脱銅には好適である。アルカリ金属元素としては、リチウム、ナトリウム、カリウム、アルカリ土類金属元素としては、マグネシウム、カルシウム、ストロンチウム、バリウムなどが挙げられる。 Examples of the sulfide constituting the sulfide-containing flux for copper removal include sulfides of alkali metal elements, sulfides of alkaline earth metal elements, sulfides of transition metal elements, and sulfides of aluminum. In order to form a sulfide-containing flux, the sulfide itself may be used as a starting material, or a simple metal or compound of the above element (oxide, hydroxide, carbonate, sulfate, halide) Etc.) and a sulfur source may be added to form a sulfide-containing flux. Of these, sulfides of alkali metal elements and sulfides of alkaline earth metal elements are suitable for copper removal. Examples of the alkali metal element include lithium, sodium, potassium, and examples of the alkaline earth metal element include magnesium, calcium, strontium, and barium.
反応性及び経済性の観点から、Na2CO3(ソーダ灰)及び/またはK2CO3を主成分とする材料或いは両者の混合物と、鉄−硫黄合金(フェロサルファー:FeS)とを使用することが特に好ましい。この場合、例えば添加したNa2CO3は、鉄−硫黄合金及び溶銑中の炭素などと反応してNa2Sを形成し、溶銑中の銅は、Na2SとFeSとを主成分とする硫化物含有フラックスにCu2Sとして吸収される。効率的な脱銅反応のためには、硫化物含有フラックス中にNa2Sが、モル分率比で0.2以上存在することが好ましい。尚、脱銅処理終了後の硫化物含有フラックスは、銅を含有することから、「脱銅フラックス」ともいう。 From the viewpoint of reactivity and economy, a material mainly composed of Na 2 CO 3 (soda ash) and / or K 2 CO 3 or a mixture of both and an iron-sulfur alloy (ferrosulfur: FeS) are used. It is particularly preferred. In this case, for example, Na 2 CO 3 was added, the iron - reacts like a carbon sulfur alloy and molten pig iron to form Na 2 S, copper in the hot metal, as a main component and Na 2 S and FeS It is absorbed as Cu 2 S in the sulfide-containing flux. For efficient copper removal reaction, it is preferable that Na 2 S is present in the sulfide-containing flux in a molar fraction ratio of 0.2 or more. The sulfide-containing flux after the copper removal treatment is also referred to as “copper removal flux” because it contains copper.
本発明者らは、アルカリ金属の化合物と鉄−硫黄合金とを予め混合してから溶銑に添加することで、より一層の脱銅効率の向上が望めることを確認しており、ハロゲン化物を除いて、アルカリ金属の化合物と鉄−硫黄合金との2つを予め混合しても構わない。また、脱銅用精錬剤のうちの鉄−硫黄合金のみを先に溶銑に添加し、溶銑中の硫黄濃度を高めた後に、アルカリ金属元素及び/またはアルカリ土類金属元素のハロゲン化物及びアルカリ金属の化合物を、それぞれ単体で或いは混合して溶銑に添加することでも、十分に効率の良い脱銅処理を得ることができる。 The present inventors have confirmed that a further improvement in copper removal efficiency can be expected by adding an alkali metal compound and an iron-sulfur alloy in advance to the hot metal, and removing halides. Then, two of an alkali metal compound and an iron-sulfur alloy may be mixed in advance. Also, after adding only the iron-sulfur alloy of the copper removal refining agent to the hot metal and increasing the sulfur concentration in the hot metal, the halide and alkali metal of alkali metal element and / or alkaline earth metal element A sufficiently efficient decoppering treatment can also be obtained by adding these compounds alone or mixed and added to the hot metal.
ハロゲン化物はフッ素(F)、塩素(Cl)、ヨウ素(I)、臭素(Br)などのハロゲン元素を含む化合物であるが、ハロゲン化物を使用すると、添加されるハロゲン化物とアルカリ金属の化合物中のアルカリとでアルカリ金属のハロゲン化物が形成され、これによりアルカリ金属の蒸気圧が低下し、アルカリ金属化合物の蒸発ロスが減少し、効率良く溶銑を脱銅処理することが実現される。 Halide is a compound containing a halogen element such as fluorine (F), chlorine (Cl), iodine (I), bromine (Br), etc., but when a halide is used, a halide and an alkali metal compound are added. Alkali metal halide is formed with this alkali, whereby the vapor pressure of the alkali metal is lowered, the evaporation loss of the alkali metal compound is reduced, and the hot metal can be efficiently removed with copper.
この脱銅用精錬剤による脱銅は、銅の分配比(処理後の脱銅フラックス中のCu濃度と処理後の溶銑中のCu濃度との比)の低いプロセスであるため、脱銅を十分に進行させるには、脱銅用精錬剤の添加によって反応容器内に形成される硫化物含有フラックス側の物質移動を促進させる必要がある。このためには、硫化物含有フラックス層も撹拌することが重要である。特に、本発明では溶銑段階で脱銅処理しており、溶銑の温度域(1200〜1500℃)は溶鋼の温度域(1550〜1700℃)に比較して低温であり、硫化物含有フラックスの流動性も低く、硫化物含有フラックスの撹拌が重要である。 The copper removal by this copper removal refining agent is a process with a low copper distribution ratio (the ratio of the Cu concentration in the copper removal flux after the treatment and the Cu concentration in the hot metal after the treatment). Therefore, it is necessary to promote the mass transfer on the sulfide-containing flux side formed in the reaction vessel by the addition of the decopper refining agent. For this purpose, it is important to stir the sulfide-containing flux layer. In particular, in the present invention, the copper removal treatment is performed in the hot metal stage, and the temperature range of the hot metal (1200 to 1500 ° C.) is lower than the temperature range of the molten steel (1550 to 1700 ° C.), and the flow of the sulfide-containing flux The agitation of the sulfide-containing flux is important.
銅含有溶銑及びこの溶銑上に存在する硫化物含有フラックスを同時に攪拌する方法として、反応容器内の銅含有溶銑に浸漬させたインジェクションランスまたは反応容器の底部に設置した羽口から、攪拌用ガスを吹き込んで硫化物含有フラックスと銅含有溶銑とを攪拌する方法も採り得るが、本発明においては、良好な攪拌が得られることから、機械攪拌式精錬装置を用いて脱銅処理を行うことが好ましい。機械攪拌式精錬装置としては、インペラ(「攪拌羽根」ともいう)を使用した撹拌が代表的である。つまり、取鍋状の反応容器内に収容された銅含有溶銑にインペラを浸漬させ、このインペラを、軸心を回転軸として回転させ、銅含有溶銑と、この溶銑上に添加された脱銅用精錬剤とを強制的に攪拌する方法である。機械攪拌式精錬装置では、溶銑上に投入された脱銅用精錬剤が溶銑内に充分に巻き込まれ、溶銑と脱銅用精錬剤との撹拌、つまり、溶銑と硫化物含有フラックスとの攪拌が充分に行われる。 As a method of simultaneously stirring the copper-containing hot metal and the sulfide-containing flux present on the hot metal, stirring gas is supplied from an injection lance immersed in the copper-containing hot metal in the reaction vessel or a tuyere installed at the bottom of the reaction vessel. A method of stirring the sulfide-containing flux and the copper-containing hot metal by blowing can also be employed, but in the present invention, it is preferable to perform a copper removal treatment using a mechanical stirring type refining apparatus because good stirring is obtained. . As a mechanical stirring type refining apparatus, stirring using an impeller (also referred to as “stirring blade”) is typical. In other words, the impeller is immersed in a copper-containing hot metal contained in a ladle-shaped reaction vessel, and this impeller is rotated about its axis as a rotating shaft to remove the copper-containing hot metal and the copper removal added on the hot metal. This is a method of forcibly stirring the refining agent. In the mechanical stirring type refining device, the copper removal refining agent charged in the hot metal is sufficiently entrained in the hot metal, and the hot metal and the copper removal refining agent are stirred, that is, the hot metal and the sulfide-containing flux are stirred. Well done.
また、溶銑に浸漬させたインジェクションランスから搬送用ガスとともに粉体状の脱銅用精錬剤を溶銑中に吹き込み添加する方法、所謂フラックス吹き込み法も好ましい処理方法である。この場合、溶銑中に吹き込まれた粉体状の脱銅用精錬剤は溶銑と直接接触し、しかも、新たな未反応の脱銅用精錬剤が連続的に溶銑と接触するので、フラックス側の物質移動を促進させた場合と同等の効果が発現し、溶銑と脱銅用精錬剤との反応が促進される。また、搬送用ガスは攪拌用ガスとしても機能するので、機械攪拌式精錬装置ほどの攪拌強度はないものの、溶銑と溶銑上の硫化物含有フラックスとの攪拌が行われる。 Further, a method in which a powdered copper refining agent is blown into the molten iron from the injection lance immersed in the molten iron and so-called flux blowing is also a preferable treatment method. In this case, the powdery copper removal refining agent blown into the hot metal is in direct contact with the hot metal, and new unreacted copper removal refining agent is continuously in contact with the hot metal, so that the flux side refining agent is in contact with the hot metal. The effect equivalent to the case where mass transfer is promoted is exhibited, and the reaction between the hot metal and the copper refining agent is promoted. Further, since the carrier gas also functions as a stirring gas, although the stirring strength is not as high as that of a mechanical stirring type refining device, the hot metal and the sulfide-containing flux on the hot metal are stirred.
脱銅処理後、脱銅用精錬剤の添加により形成された脱銅フラックスを系外に除去する。 After the copper removal treatment, the copper removal flux formed by the addition of the copper removal refining agent is removed from the system.
銅を含有する鋼屑(以下、「銅含有鋼屑」という)を鉄源として使用する場合、銅含有鋼屑を加炭溶解して炭素を含有する溶銑を製造すると、銅含有鋼屑中の銅はほぼ全量が溶銑中に溶解する。銅含有鋼屑を加炭溶解して溶銑を製造する工程としては、電気炉を用いた方法、転炉を用いた方法、竪型炉を用いた方法などがあるが、特に、内部に炭材ベッドを形成した竪型炉を用いた方法が好ましい。 When steel scrap containing copper (hereinafter referred to as “copper-containing steel scrap”) is used as an iron source, when the copper-containing steel scrap is carburized and melted to produce hot metal containing carbon, Almost all copper is dissolved in the hot metal. As a process for producing hot metal by carburizing and dissolving copper-containing steel scrap, there are a method using an electric furnace, a method using a converter, a method using a vertical furnace, etc. A method using a vertical furnace in which a bed is formed is preferable.
ここで、内部に炭材ベッドを形成した竪型炉とは、竪型炉の上部から銅含有鋼屑及びコークス、更には必要に応じて造滓剤を装入し、竪型炉の下部に設けた羽口から、空気、酸素富化空気、酸素ガス、熱風などを送風してコークスを燃焼させ、コークスの燃焼熱によって銅含有鋼屑及び造滓剤を溶解し、炉底部の出湯口から溶銑及び溶融スラグを取り出す装置である。この場合、炉底から羽口の上方の或る高さ位置までの範囲にはコークスだけを詰め、これを燃焼してコークスの上部に装入した銅含有鋼屑を溶解している。炉底に詰めるコークスを「炭材ベッド」と呼び、この炭材ベッドは燃焼して消耗するので、これを補いながら溶解を継続するために、炉体の上部からコークスを装入する。銅含有鋼屑が溶解して生成される溶融鉄は、コークスの間隙を流下し、コークスにより加炭されて銅含有溶銑が生成される。この内部に炭材ベッドを形成した竪型炉は、電気炉などに比較してエネルギー効率が高いことが知られている。 Here, the vertical furnace with a charcoal bed formed in the inside is a steel containing copper scrap and coke from the upper part of the vertical furnace, and if necessary, charging agent is added to the lower part of the vertical furnace. Air, oxygen-enriched air, oxygen gas, hot air, etc. are blown from the tuyere provided to burn the coke, and the copper-containing steel scraps and slagging agent are melted by the combustion heat of the coke, and from the outlet at the bottom of the furnace It is an apparatus for taking out hot metal and molten slag. In this case, only the coke is packed in the range from the furnace bottom to a certain height position above the tuyere, and this is burned to dissolve the copper-containing steel scrap charged in the upper part of the coke. The coke that fills the bottom of the furnace is called a “charcoal bed”, and the charcoal bed burns and wears out. To compensate for this, the coke is charged from the top of the furnace body. The molten iron produced by melting the copper-containing steel scraps flows down the coke gap and is carburized by the coke to produce a copper-containing hot metal. It is known that a vertical furnace having a charcoal bed formed therein has higher energy efficiency than an electric furnace or the like.
このような、内部に炭材ベッドを形成した竪型炉を用いて溶銑を製造する場合、高炉で製造された高炉溶銑に比較して溶銑中の硫黄濃度は一般的に高くなる。この硫黄濃度の高い状態を利用して、脱銅用精錬剤による脱銅を有利に進めることができる。溶銑中の硫黄濃度が高いことにより、脱銅用精錬剤から溶銑中への硫黄の移動が少なくて済み、脱銅用精錬剤の利用効率を高めることができる。 When hot metal is produced using such a vertical furnace having a carbon material bed formed therein, the sulfur concentration in the hot metal is generally higher than that in a blast furnace hot metal produced in a blast furnace. Taking advantage of this high sulfur concentration, copper removal with a copper removal refining agent can be advantageously promoted. Since the sulfur concentration in the hot metal is high, there is little movement of sulfur from the decopper refining agent into the hot metal, and the utilization efficiency of the decopper refining agent can be increased.
脱銅処理に伴い、脱銅用精錬剤中の硫黄が不可避的に溶銑中に移行することから、溶銑中の硫黄濃度が上昇する。従って、脱銅処理を行った後、溶銑中の硫黄を除去する処理を行う。この脱硫処理は、公知の機械攪拌式精錬装置による方法、ランスからの粉体吹き込みによる方法、転炉を使用する方法などの何れであってもよい。脱硫剤としては、CaOを主成分とする脱硫剤、カルシウム・カーバイドを主成分とする脱硫剤、ソーダ灰を主成分とする脱硫剤、金属Mgを主成分とする脱硫剤など種々の脱硫剤を使用することができる。 Along with the copper removal treatment, sulfur in the copper removal refining agent inevitably moves into the hot metal, so that the sulfur concentration in the hot metal increases. Therefore, after performing a copper removal treatment, a treatment for removing sulfur in the hot metal is performed. This desulfurization treatment may be any of a method using a known mechanical stirring type refining device, a method by blowing powder from a lance, a method using a converter, and the like. As the desulfurizing agent, there are various desulfurizing agents such as a desulfurizing agent mainly composed of CaO, a desulfurizing agent mainly composed of calcium carbide, a desulfurizing agent mainly composed of soda ash, and a desulfurizing agent mainly composed of metallic Mg. Can be used.
この脱硫処理に先立ち、脱銅処理時、脱銅用精錬剤によって形成された脱銅フラックスを反応容器から除去することが必要である。脱銅フラックスを除去しないまま、脱硫処理すると、脱銅フラックス中の硫化銅(Cu2S)が分解して溶銑に戻り、溶銑中の銅濃度が上昇する虞があるからである。脱銅フラックスの除去作業は、公知のスラグ掻き出し機(「スラグドラッガー」ともいう)を用いた方法、スラグ吸引機による方法、溶銑収容容器を傾けて容器内の脱銅フラックスを排出する方法などの何れでもよく、各製鉄所の保有する設備状況に適したものを選択すればよい。 Prior to the desulfurization treatment, it is necessary to remove the decoppering flux formed by the decopper refining agent from the reaction vessel during the decopperization treatment. If the desulfurization treatment is performed without removing the copper removal flux, the copper sulfide (Cu 2 S) in the copper removal flux is decomposed and returned to the hot metal, which may increase the copper concentration in the hot metal. The removal work of the copper removal flux includes a method using a known slag scraper (also referred to as “slag dragger”), a method using a slag suction machine, a method of discharging the copper removal flux in the container by tilting the hot metal container, etc. Any may be sufficient, and what is necessary is just to select the thing suitable for the equipment condition which each steelworks holds.
尚、銅含有鋼屑を加炭溶解して製造した製鋼用溶銑に、必要に応じて高炉溶銑を混合して銅濃度を希釈し、その後、混合した溶銑に含まれる銅を、脱銅用精錬剤を用いて除去するようにしてもよい。 In addition, the steel concentration for steelmaking manufactured by carburizing and melting copper-containing steel scrap is mixed with blast furnace hot metal as necessary to dilute the copper concentration, and then the copper contained in the mixed hot metal is refined for copper removal. You may make it remove using an agent.
以上説明したように、本発明によれば、銅含有溶銑中の銅を硫化物として硫化物含有フラックス中に除去する際に、硫化物含有フラックス中の酸素濃度を20質量%以下の低位に調整するので、銅の分配比が高く、銅の硫化反応が有利に進む条件となり、安定的に効率良く溶銑を脱銅処理することが実現される。その結果、従来、高級鋼用の鉄源として使用困難であった、銅を多量に含む鋼屑の高級鋼への適用が可能となり、低級鋼屑の利用促進、並びに、省エネルギーなどの工業上有益な効果がもたらされる。 As described above, according to the present invention, when copper in the copper-containing hot metal is removed as sulfide in the sulfide-containing flux, the oxygen concentration in the sulfide-containing flux is adjusted to a low level of 20% by mass or less. As a result, the copper distribution ratio is high, and the copper sulfidation reaction is advantageously advanced, and it is possible to stably and efficiently remove copper from the hot metal. As a result, steel scrap containing a large amount of copper, which has been difficult to use as an iron source for high-grade steel, can be applied to high-grade steel, and it is industrially beneficial to promote the use of low-grade steel scrap and save energy. Effect.
高周波誘導溶解炉を用いて、黒鉛ルツボ中で、銅を0.3質量%、珪素を0.03〜0.31質量%含有する炭素飽和溶銑10kgを溶製した。この溶銑に、アルカリ金属元素の化合物として、硫化ナトリウム(Na2S)、ソーダ灰(Na2CO3)、水酸化ナトリウム(NaOH)の何れか1種と、鉄−硫黄合金(フェロサルファー、硫黄含有量:48質量%)とを脱銅用精錬剤として添加し、溶銑に脱銅処理を施す試験を実施した(試験番号11〜16)。その際に、アルカリ金属元素の化合物と鉄−硫黄合金とは同時ではあるが混合しないで別々に添加した。黒鉛ルツボの上方は密閉せず、黒鉛ルツボの上方に設置した排気フードで排気を行ったが、ルツボ内への大気の巻き込みを抑制するために、パージ用窒素ガスを黒鉛ルツボ内に連続的に供給した。この場合の黒鉛ルツボ内の雰囲気中の酸素ガス濃度は5体積%未満であった。 Using a high frequency induction melting furnace, 10 kg of carbon saturated hot metal containing 0.3% by mass of copper and 0.03 to 0.31% by mass of silicon was melted in a graphite crucible. In this molten iron, as an alkali metal element compound, any one of sodium sulfide (Na 2 S), soda ash (Na 2 CO 3 ) and sodium hydroxide (NaOH) and an iron-sulfur alloy (ferrosulfur, sulfur Content: 48% by mass) was added as a refining agent for copper removal, and the hot metal was subjected to a copper removal treatment (test numbers 11 to 16). At that time, the alkali metal compound and the iron-sulfur alloy were added separately without mixing. The upper part of the graphite crucible was not sealed, but was exhausted with an exhaust hood installed above the graphite crucible. In order to suppress air entrainment in the crucible, nitrogen gas for purging was continuously introduced into the graphite crucible. Supplied. In this case, the oxygen gas concentration in the atmosphere in the graphite crucible was less than 5% by volume.
また、比較のために、パージ用窒素ガスを供給しない試験(試験番号17)、つまり大気中での試験も実施した。 For comparison, a test in which no purge nitrogen gas was supplied (test number 17), that is, a test in the atmosphere was also performed.
何れの試験も、試験中の溶銑温度が1300±20℃になるように高周波出力を制御した。溶銑と生成した硫化物含有フラックスとの撹拌は、溶銑中に浸漬させた黒鉛製インペラを回転させて行った。試験時の諸元を表1に示す。 In any test, the high frequency output was controlled so that the hot metal temperature during the test was 1300 ± 20 ° C. Agitation of the hot metal and the generated sulfide-containing flux was performed by rotating a graphite impeller immersed in the hot metal. Table 1 shows the specifications during the test.
表2に、試験結果を示す。銅の分配比は、下記の(1)式で算出した。
銅の分配比=(脱銅フラックス中銅濃度(質量%))/(溶銑中銅濃度(質量%)) …(1)
ここで、(1)式おける脱銅フラックス中銅濃度及び溶銑中銅濃度は、何れも脱銅処理後の値を用いた。
Table 2 shows the test results. The copper distribution ratio was calculated by the following equation (1).
Copper distribution ratio = (copper concentration in copper removal flux (% by mass)) / (copper concentration in hot metal (% by mass)) (1)
Here, as the copper concentration in the copper removal flux and the copper concentration in the hot metal in the formula (1), values after the copper removal treatment were used.
表2に示すように、試験番号11〜15では、処理後の脱銅フラックス中酸素濃度が20質量%以下となり、銅の分配比は何れも10以上であった。一方、溶銑中の珪素濃度が0.31質量%と高い試験番号16では、処理後の脱銅フラックス中酸素濃度が20質量%を超え、銅の分配比が10未満であった。また、パージ用窒素ガスを供給しなかった試験番号17でも、処理後の脱銅フラックス中酸素濃度が20質量%を超え、銅の分配比は7.0であった。 As shown in Table 2, in test numbers 11 to 15, the oxygen concentration in the copper removal flux after the treatment was 20% by mass or less, and the copper distribution ratio was 10 or more. On the other hand, in test number 16 where the silicon concentration in the hot metal was as high as 0.31% by mass, the oxygen concentration in the copper removal flux after the treatment exceeded 20% by mass, and the copper distribution ratio was less than 10. Also in test number 17 in which the purge nitrogen gas was not supplied, the oxygen concentration in the copper removal flux after the treatment exceeded 20 mass%, and the copper distribution ratio was 7.0.
これらの結果から、本発明を適用することで、銅の高い分配比が得られ、銅含有溶銑から銅濃度の低い溶銑を効率的に製造可能なことが確認できた。 From these results, it was confirmed that by applying the present invention, a high copper distribution ratio was obtained, and it was possible to efficiently produce hot metal having a low copper concentration from copper-containing hot metal.
高周波誘導溶解炉を用いて、黒鉛ルツボ中で、銅を0.3質量%、珪素を0.10質量%含有する炭素飽和溶銑10kgを溶製した。この溶銑に、アルカリ金属元素の化合物としてのソーダ灰(Na2CO3)と、鉄−硫黄合金(フェロサルファー、硫黄含有量:48質量%)とを脱銅用精錬剤として添加し、溶銑に脱銅処理を施す試験を実施した(試験番号21、22)。 Using a high frequency induction melting furnace, 10 kg of carbon saturated hot metal containing 0.3% by mass of copper and 0.10% by mass of silicon was melted in a graphite crucible. To this hot metal, soda ash (Na 2 CO 3 ) as an alkali metal compound and an iron-sulfur alloy (ferrosulfur, sulfur content: 48 mass%) are added as a refining agent for copper removal. The test which performs a copper removal process was implemented (test numbers 21 and 22).
脱銅用精錬剤の添加、試験中の溶銑温度の制御、溶銑と硫化物含有フラックスとの撹拌は、実施例1と同様に行った。試験番号21では、脱銅用精錬剤に加えて還元剤として無煙炭を30g添加した。試験番号22では、パージ用窒素ガスを供給する代わりに、還元性ガスであるプロパンガスをルツボ内に供給した。試験時の諸元を表3に示す。 The addition of the copper refining agent, the control of the hot metal temperature during the test, and the stirring of the hot metal and the sulfide-containing flux were carried out in the same manner as in Example 1. In test number 21, 30 g of anthracite was added as a reducing agent in addition to the refining agent for copper removal. In test number 22, instead of supplying the purge nitrogen gas, propane gas, which is a reducing gas, was supplied into the crucible. Table 3 shows the specifications during the test.
表4に、試験結果を示す。 Table 4 shows the test results.
表4に示すように、無煙炭を添加した試験番号21では、処理後の脱銅フラックス中酸素濃度がより一層低位となり、銅の分配比は15以上となった。また、パージ用窒素ガスの代わりにプロパンガスを供給した試験番号22でも、処理後の脱銅フラックス中酸素濃度は低位となり、銅の分配比は15以上であった。これは、無煙炭及びプロパンガスが還元剤として有効に機能したことによる。 As shown in Table 4, in test number 21 to which anthracite was added, the oxygen concentration in the copper removal flux after the treatment was further lowered, and the copper distribution ratio was 15 or more. Also in test number 22 in which propane gas was supplied instead of purge nitrogen gas, the oxygen concentration in the copper removal flux after the treatment was low, and the copper distribution ratio was 15 or more. This is because anthracite and propane gas functioned effectively as a reducing agent.
これらの結果から、本発明を適用することで、銅の高い分配比が得られ、銅含有溶銑から銅濃度の低い溶銑を効率的に製造可能なことが確認できた。 From these results, it was confirmed that by applying the present invention, a high copper distribution ratio was obtained, and it was possible to efficiently produce hot metal having a low copper concentration from copper-containing hot metal.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012253808A JP6065538B2 (en) | 2012-11-20 | 2012-11-20 | Hot copper decoppering method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012253808A JP6065538B2 (en) | 2012-11-20 | 2012-11-20 | Hot copper decoppering method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014101542A true JP2014101542A (en) | 2014-06-05 |
JP6065538B2 JP6065538B2 (en) | 2017-01-25 |
Family
ID=51024310
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012253808A Active JP6065538B2 (en) | 2012-11-20 | 2012-11-20 | Hot copper decoppering method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6065538B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115652024A (en) * | 2022-12-08 | 2023-01-31 | 北京科技大学 | Method for efficiently removing Cu in electric furnace steelmaking process of recycled steel raw material |
CN116287549A (en) * | 2023-03-21 | 2023-06-23 | 武汉科技大学 | Method for simultaneously removing residual elements of tin and antimony by vacuum treatment of low-carbon low-sulfur steel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3445737A1 (en) | 2016-04-20 | 2019-02-27 | Dow Silicones Corporation | Lithium alkylsiliconate composition, coating, and method of making same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04198431A (en) * | 1990-11-29 | 1992-07-17 | Nippon Steel Corp | Method for removing copper in steel iron |
JP2010111908A (en) * | 2008-11-06 | 2010-05-20 | Jfe Steel Corp | Method of removing copper in molten iron |
JP2010133002A (en) * | 2008-03-05 | 2010-06-17 | Jfe Steel Corp | Method for removing copper contained in steel scraps |
JP2010163650A (en) * | 2009-01-15 | 2010-07-29 | Jfe Steel Corp | Method for removing copper in molten pig iron |
-
2012
- 2012-11-20 JP JP2012253808A patent/JP6065538B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04198431A (en) * | 1990-11-29 | 1992-07-17 | Nippon Steel Corp | Method for removing copper in steel iron |
JP2010133002A (en) * | 2008-03-05 | 2010-06-17 | Jfe Steel Corp | Method for removing copper contained in steel scraps |
JP2010111908A (en) * | 2008-11-06 | 2010-05-20 | Jfe Steel Corp | Method of removing copper in molten iron |
JP2010163650A (en) * | 2009-01-15 | 2010-07-29 | Jfe Steel Corp | Method for removing copper in molten pig iron |
Non-Patent Citations (1)
Title |
---|
JPN6013016814; 白川博一他: '溶融フラックスによる溶銑の脱銅' 鉄と鋼 vol.72, No.12, 198609, S961 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115652024A (en) * | 2022-12-08 | 2023-01-31 | 北京科技大学 | Method for efficiently removing Cu in electric furnace steelmaking process of recycled steel raw material |
CN116287549A (en) * | 2023-03-21 | 2023-06-23 | 武汉科技大学 | Method for simultaneously removing residual elements of tin and antimony by vacuum treatment of low-carbon low-sulfur steel |
Also Published As
Publication number | Publication date |
---|---|
JP6065538B2 (en) | 2017-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522320B1 (en) | Steelmaking slag reduction treatment method | |
KR101276921B1 (en) | Method for removing copper in steel scraps | |
JP5408369B2 (en) | Hot metal pretreatment method | |
JP2016191128A (en) | Copper smelting slag treatment method | |
JP2010265485A (en) | Method for operating arc-furnace | |
JP6065538B2 (en) | Hot copper decoppering method | |
JP5707668B2 (en) | Hot copper decoppering method | |
JP5408379B2 (en) | Hot metal pretreatment method | |
JP2010163652A (en) | Method for removing copper and sulfur from molten iron | |
JP5581760B2 (en) | Method for removing copper in steel scrap and method for producing molten steel using steel scrap as an iron source | |
JP5884186B2 (en) | Desulfurization slag regeneration method and desulfurization slag recycling method | |
KR102517013B1 (en) | Carbonized ash and carbonized method using the same | |
JP4329724B2 (en) | Converter scrap increase method | |
JP5326591B2 (en) | Hot metal manufacturing method using steel scrap as iron source | |
JP5581759B2 (en) | Method for removing copper in steel scrap | |
JP3233304B2 (en) | Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore | |
US4131451A (en) | Method for removing zinc from zinc-containing slags | |
JP5365207B2 (en) | Method for producing molten steel using steel scrap as iron source | |
JP5962826B2 (en) | Method for treating slag containing Cr | |
JP5453794B2 (en) | Hot metal dephosphorization method | |
JP3806282B2 (en) | Method of melting iron-containing cold material | |
JPH03277710A (en) | Iron-making method with smelting reduction | |
JP2013124417A (en) | METHOD FOR TREATING Cr-CONTAINING SLAG | |
JPS6015683B2 (en) | Method for dephosphorizing metals or alloys | |
TW201702388A (en) | A method for recovering a metal alloy from an al-containing waste catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160627 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160705 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160825 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160913 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6065538 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |