JPH04198431A - Method for removing copper in steel iron - Google Patents

Method for removing copper in steel iron

Info

Publication number
JPH04198431A
JPH04198431A JP2331668A JP33166890A JPH04198431A JP H04198431 A JPH04198431 A JP H04198431A JP 2331668 A JP2331668 A JP 2331668A JP 33166890 A JP33166890 A JP 33166890A JP H04198431 A JPH04198431 A JP H04198431A
Authority
JP
Japan
Prior art keywords
copper
flux
molten
na2s
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2331668A
Other languages
Japanese (ja)
Inventor
Kazuo Ogahira
大河平 和男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2331668A priority Critical patent/JPH04198431A/en
Publication of JPH04198431A publication Critical patent/JPH04198431A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To efficiently remove copper from copper-contg. high carbon molten iron by bringing a copper-contg. scrap steel into contact with Na2S series flux, executing decoppering treatment to subject the copper-contg. flux to molten salt electrolysis and to reutilize the flux. CONSTITUTION:Copper-contg. high carbon steel scrap 1c melted by using the energy of a carbonaceous material is brought into contact with Na2S series flux by stirring and mixing in a reaction vessel 2a to remove away copper components in the molten iron into the flux as copper sulfide. The CuS-contg. Na2S series flux 2f is fed to a molten salt electrolytic cell 3a, and the decopperized high carbon molten iron 2g is fed to a steel making furnace or the like. In the molten salt electrolytic cell 3, metallic copper 3e precipitated in the cathode is formed into molten copper, is piled up on the cell bottom 3f and is recovered via an exhaust port 3g. The Na2S series flux 4a is separated and recovered via an exhaust port 3h and is recycled for the following decopperizing operation.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は近年増大しつつある鋼屑(スクラップ)の再生
利用する上で大きな問題になっているスクラップ中の銅
分の除去分離を可能にする鋼鉄中の銅の除去方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention makes it possible to remove and separate the copper content in scrap, which has become a major problem in the recycling of steel scrap, which has been increasing in recent years. This paper relates to a method for removing copper from steel.

[従来の技術] 近年増大しつつあるスクラップを再生利用する際に、こ
れらスクラップに随伴する銅、スズに代表されるトラン
プエレメントを効率的に除去することは、スクラップの
再生利用を容易にするとともに再生した鋼材の材料特性
を確保する上でも極めて重要な技術課題である。
[Prior Art] When recycling scrap, which has been increasing in recent years, it is important to efficiently remove the playing card elements represented by copper and tin that accompany these scraps, as well as to facilitate the recycling of scrap. This is an extremely important technical issue in ensuring the material properties of recycled steel.

さらにスクラップからの鋼の再生に際しては上記問題が
あるものの、鉄鉱石より還元−酸化精錬を経て鋼を製造
する一次エネルキーとして多くの炭化を使用する工程に
比較すると、主に再溶解のための極めて少いエネルキー
て鋼への再生が可能のため、C02による地球温暖化の
対応としてもスクラップからの鋼の再生に際して問題に
なる銅やスズを効率的に除去する技術があればスクラッ
プの利用上画期的な技術である。
Furthermore, although there are the above-mentioned problems when recycling steel from scrap, compared to the process that uses a lot of carbonization as the primary energy key to produce steel from iron ore through reduction-oxidation refining, it is mainly used for remelting. Since it is possible to recycle steel with less energy, it would be possible to improve the use of scrap if there was a technology to efficiently remove copper and tin, which are problems when recycling steel from scrap, as a countermeasure to global warming caused by CO2. This is a new technology.

このためC02の発生の抑制や増大するスクラップを効
率よく利用するためにこの分野の研究開発が盛んに行な
われているが以下に述べるごとき原理的発明が公知にな
っているが、実用の技術としては、■スクラップを物理
的に分解し有害な成分を人力や磁力選別等の方法て分離
後有害成分をほとんど含有しない原料に配合して製品の
材料特性上問題ない範囲内で使用しているのが現状であ
る。
For this reason, research and development in this field is actively being carried out in order to suppress the generation of CO2 and to efficiently utilize the increasing amount of scrap.Although the following principle inventions are publicly known, they are not practical technologies. ■ After physically disassembling scrap and separating harmful components by manual or magnetic separation methods, the scrap is blended into raw materials that contain almost no harmful components and used within the range that does not cause problems in terms of the material properties of the product. is the current situation.

例えばこのような方法では自動車のスクラップや飲料水
の缶等のメッキをほどこしたスクラップ等を大量に再生
利用することが出来ず問題であった。
For example, with this method, there is a problem in that it is not possible to recycle a large amount of scraps of automobiles, plated scraps of drinking water cans, etc.

一方高炭素溶鉄よりの脱銅に対しNa2S系フラックス
により鉄中の銅成分なCu2Sとしてフラックス中に分
離除去する原理的技術知見か鉄と鋼74(1988)4
 P、640 、やCAMP−ISIJ VOU2(1
989)1239.148,12111等に報告されて
いるにすきない。
On the other hand, regarding the removal of copper from high carbon molten iron, there is a fundamental technical knowledge that uses Na2S-based flux to separate and remove Cu2S, which is a copper component in iron, in the flux. Tetsu-to-Hagane 74 (1988) 4
P, 640, and CAMP-ISIJ VOU2 (1
989) 1239.148, 12111, etc.

またスズの除去についてもスズメッキされた鋼材を硫黄
ガスと400℃〜500℃で数分間反応させた後冷却過
程でSnSとして剥離除去てきることCAMP−ISI
J voU3 (+990) 1183、また鋼中に0
.1%程の十分に高いSが含有されている時には、真空
処理工程又は吹酸精錬時にFeに対し優先的に蒸発除去
できること(CAMP−ISIJ voJ−3(199
0) 1184〜1185)等が見出されているが原理
的知見にとどまり実用化技術としては確立されていない
Regarding the removal of tin, tin-plated steel is reacted with sulfur gas at 400℃ to 500℃ for several minutes, and then peeled off as SnS during the cooling process.CAMP-ISI
J voU3 (+990) 1183, also 0 in steel
.. When a sufficiently high S content of about 1% is contained, it can be removed by evaporation preferentially over Fe during the vacuum treatment process or blown acid refining (CAMP-ISIJ voJ-3 (1999)).
0) 1184-1185), etc. have been discovered, but these are only theoretical findings and have not been established as practical techniques.

[発明が解決しようとする課題] φ 本発明は前述のような現状に鑑み、鋼鉄中の銅の除去を
効率よ〈実施する方法を提供するものである。
[Problems to be Solved by the Invention] φ In view of the above-mentioned current situation, the present invention provides a method for efficiently removing copper from steel.

つまりこれまで実施されていたスクラップを物理的に分
解し、銅部品を人力又は磁力選別等の方法で分離除去す
る方法はその適用か含銅部品をこれらの手段により分離
除去できるスクラップに限定されその応用性が狭いと同
時に生産性も問題かある。
In other words, the conventional method of physically disassembling scrap and separating and removing copper parts by manual or magnetic sorting methods is limited to scrap that can separate and remove copper-containing parts by these methods. Not only is the applicability limited, but productivity is also a problem.

したがって今後予想されているスクラップ多量発生時代
に対応する鋼鉄中の銅の除去技術としては十分な解決策
にはなり得ない。これに対して先に原理的発明として示
したNa2S系のフラックスによる銅の除去技術は、上
記物理的な分離法ては分離除去が難かしい銅成分も、ス
クラップを電気エネルギーや炭材の酸化エネルギーを用
いて、加炭溶融し1200〜1500℃の含銅高炭素溶
鉄として、Fe5−Na2Sを主成分としたフラックス
と接触反応させることによりCu2Sとしてフラックス
中に分離除去することにより、銅の除去技術としてはよ
り広い適用の可能性を提案するものである。しかしなが
らこの方法で例えは0.3%Cuの含銅高炭素溶鉄から
鋼材の広い用途を考え003%Cuまて脱銅する際には
Na2Sフラックスか溶鉄l−ン当り約450kgの膨
大なフラックスが必要になりフラックスの価格が高い上
、多量に発生するこれらフラックスを処理するには銅精
錬に相当する処理が考えられるが経済的に問題が大きい
Therefore, it cannot be a sufficient solution as a technology for removing copper from steel in response to the expected future generation of large amounts of scrap. On the other hand, the copper removal technology using Na2S-based flux, which was previously shown as a principle invention, removes copper components that are difficult to separate and remove using the physical separation methods mentioned above. The copper-containing high-carbon molten iron is carburized and melted at 1200-1500°C, and the copper-containing high-carbon molten iron undergoes a contact reaction with a flux containing Fe5-Na2S as the main component, and is separated and removed in the flux as Cu2S. This suggests the possibility of wider application. However, when using this method to decopper from 0.3% Cu copper-containing high carbon molten iron to 0.03% Cu for a wide range of steel applications, Na2S flux or a huge flux of approximately 450 kg per ton of molten iron is required. The price of the necessary flux is high, and in order to treat the large amount of flux generated, a process equivalent to copper refining can be considered, but it is economically problematic.

本発明はFed−Na2Sを主成分とするフラックスを
利用した含銅高炭素溶鉄から銅を効率よく除去する手段
を提供するものである。
The present invention provides a means for efficiently removing copper from copper-containing high carbon molten iron using a flux containing Fed-Na2S as a main component.

[課題を解決するための手段] 本発明は含銅スクラップを加炭溶融し、含銅高炭素溶鉄
とした後、1200〜1500℃でNa2Sを主成分と
する溶融フラックスと接触反応させ、溶鉄中の銅成分を
硫化銅としてNa2S系フラックス中に分離除去する方
法において、Na2S−Cu2S系溶融フラックスを分
離し、系外に導き出す工程と、この溶融フラックスを溶
融塩電解することによりCu2Sの銅成分を陰極部に金
属銅として分離後、銅の硫化物含有量が低減したNa2
Sを主成分とするフラックスを分離回収し、含銅高炭素
溶鉄からの脱銅処理に再使用することを特徴とする鋼中
の銅の除去方法にある。
[Means for Solving the Problems] The present invention involves carburizing and melting copper-containing scrap to obtain copper-containing high-carbon molten iron, and then contacting it with a molten flux containing Na2S as a main component at 1,200 to 1,500°C to form a molten iron. In this method, the copper component of Cu2S is separated and removed as copper sulfide in the Na2S-based flux, which includes the step of separating the Na2S-Cu2S-based molten flux and leading it out of the system, and the step of electrolyzing the molten flux to remove the copper component of Cu2S. Na2 with reduced copper sulfide content after separation as metallic copper in the cathode part
A method for removing copper from steel, characterized in that a flux containing S as a main component is separated and recovered and reused for copper removal treatment from copper-containing high carbon molten iron.

また。溶融フラックスの溶融塩電解時に陽極部で発生す
る硫黄ガスを予め予熱したSnメッキ鋼材と400〜5
00℃の温度で接触反応させた後にSnSとしてSn成
分の剥離除去を併せ実施することにある。
Also. The sulfur gas generated at the anode part during molten salt electrolysis of molten flux is preheated with Sn-plated steel material and 400-5
After the contact reaction is carried out at a temperature of 00° C., the Sn component is peeled off and removed as SnS.

発明者は物理的分離法では容易には分離てきないスクラ
ップに含有される銅分を効率よく分離除去する技術の開
発により、少いエネルギー消費で多量に発生することが
予測されているスクラップから効率的に広い用途に供し
得る鋼を再生するべく種々の検討を重ねてきた。
By developing a technology that efficiently separates and removes copper contained in scrap, which cannot be easily separated using physical separation methods, the inventor has developed a technology that efficiently separates and removes copper contained in scrap, which cannot be easily separated using physical separation methods. Various studies have been conducted to regenerate steel that can be used in a wide variety of applications.

しかるに先に示したごとく、含銅炭素鉄系の溶鉄とNa
2S系フラックス間での銅の分装置平衡を利用し、溶鉄
からの銅の分離除去が可能とする基礎知見かもたらされ
ていた。本発明者はこの原理を効率的に応用するべく種
々検討を重ね所期の目標を達成したものである。
However, as shown above, copper-containing carbon-iron molten iron and Na
Fundamental knowledge has been obtained that makes it possible to separate and remove copper from molten iron by utilizing the copper fractional equilibrium between 2S-based fluxes. The inventor of the present invention has made various studies to efficiently apply this principle and has achieved the desired goal.

すなわちその技術構成は例えば次の6エ程よりなり、こ
の白木発明はNa2S系フラックスを溶融塩電解するこ
とによりフラックス中のCu2Sより銅成分を金属銅と
して分離回収するとともにCu2Sの含有量の低減した
Na2S系フラックスを再使用することにより、Na2
S系フラックスの実質原単位を大巾に低減すること、そ
の溶融加熱のために必要な熱エネルギーをも大巾に節減
することを可能にしたことにある。技術の構成の一例を
次に示す。
In other words, its technical configuration consists of the following six steps, for example, and this Shiraki invention separates and recovers the copper component from the Cu2S in the flux as metallic copper by electrolyzing the Na2S-based flux with molten salt, and reduces the content of Cu2S. By reusing Na2S-based flux, Na2
This is because it has become possible to significantly reduce the actual unit consumption of S-based flux and to greatly reduce the thermal energy required for melting and heating it. An example of the technology configuration is shown below.

1) スクラップの分類と銅部品との分解分離2) 転
炉等を利用した炭材の酸化熱又は電気エネルギーを利用
したスクラップの加炭溶解による含銅高炭素溶鉄溶製 3)  Na2S系フラックスと含銅高炭素溶鉄との接
触反応による銅成分の分配平衡を利用した溶鉄よりの銅
の分離 4)  Cu2Sを含有するNa2S系フラックスの溶
鉄よりの分離とその溶融電解による銅成分の金属銅とし
ての分離 5)  Cu2S含有量の低減したNa2S系フラック
スのリサイクルと新しいNa2S系フラックスの一部補
充による含銅高炭素溶鉄からの脱銅処理6) 溶融塩電
解槽の陽極部で発生する高温硫黄ガスを400〜500
℃でSnメッキスクラップと反応させSnを除去するこ
とにより、高温硫黄ガスの有効利用を可能にする。
1) Classification of scrap and decomposition separation from copper parts 2) Production of copper-containing high-carbon molten iron by oxidation heat of carbonaceous material using a converter or carburization melting of scrap using electric energy 3) With Na2S-based flux Separation of copper from molten iron using distribution equilibrium of copper components due to contact reaction with copper-containing high carbon molten iron 4) Separation of Na2S-based flux containing Cu2S from molten iron and conversion of the copper component as metallic copper by electrolysis of the melt. Separation 5) Recycling of Na2S-based flux with reduced Cu2S content and partial replenishment of new Na2S-based flux to remove copper from copper-containing high-carbon molten iron 6) Removal of high-temperature sulfur gas generated at the anode part of the molten salt electrolyzer 400-500
By reacting with Sn plating scrap at ℃ to remove Sn, it is possible to effectively utilize high-temperature sulfur gas.

発明の詳細をプロセスの概略図を参考に以下に示す。Details of the invention are shown below with reference to a schematic diagram of the process.

第1図の1−a、1−bに示すごとき手段て炭材の酸化
エネルギー又は電気エネルギーを用いる公知の手段で溶
製した含銅高炭素鋼beを、大気との接触を回避できる
例えば有蓋の反応容器2−a内でNa2S系フラックス
と攪拌混合接触させ脱銅操作を実施する。この際120
0〜1500℃の反応温度の保持のため電気加熱装置2
−bを備えるとともに大気と接触をたつための蓋2−C
1攪拌混合の促進のためのガス吹込みプラグ2−d、排
気集塵機との連結2−eを備えるのが望ましい。
Copper-containing high carbon steel be melted by known means using oxidation energy or electric energy of carbonaceous materials as shown in 1-a and 1-b in Fig. The decopper removal operation is carried out by stirring and mixing contact with Na2S-based flux in the reaction vessel 2-a. At this time 120
Electric heating device 2 to maintain the reaction temperature from 0 to 1500°C
-b and a lid 2-C for contacting the atmosphere.
1. It is desirable to include a gas blowing plug 2-d for promoting stirring and mixing, and a connection 2-e with an exhaust dust collector.

脱銅処理後金CuS 、 NazS系フラシフラックス
2溶融塩電解槽3−aへ、脱銅高炭素溶鉄2−gは例え
ば製鋼炉へ供給し鋼に精錬する。この操作より溶鉄中の
硫黄含有量が増大するので不活性ガスプラグ2−dより
ガスを吹込むと溶鉄中にスズが含有する際にはSnS蒸
気又はSn蒸気としてスズの低減も可能である。溶融塩
電解槽は例えば第1図の3−aに示したごとく低電圧高
電流密度の直流電源3−bを有し例えば黒鉛電極により
構成した陰極3−cと陽極3−dを有する。電解の温度
は1200℃前後と高いため陰極に析出する金属銅3−
eは溶融銅として糟底3−fに滞積するので溶融塩電解
操作後、溶融銅は排出口3−g 、Na2S系スラグは
排出口3−hを介して夫々分離回収できる。回収したN
a2S系フラックス4−aは次の脱銅操作のためにリサ
イクル5する。図中3−iはNa2S系溶融塩浴を攪拌
混合し均一化を促進するためのガス吹込み装置である。
After the decoppering treatment, the gold CuS, NazS-based flash flux 2 is supplied to the molten salt electrolytic bath 3-a, and the decoppered high carbon molten iron 2-g is supplied to, for example, a steelmaking furnace to be refined into steel. This operation increases the sulfur content in the molten iron, so by blowing gas from the inert gas plug 2-d, if tin is contained in the molten iron, it is possible to reduce the tin by converting it into SnS vapor or Sn vapor. The molten salt electrolytic cell has a low voltage, high current density DC power supply 3-b as shown in 3-a of FIG. 1, and has a cathode 3-c and an anode 3-d formed of graphite electrodes, for example. Because the temperature of electrolysis is high, around 1200℃, metallic copper deposits on the cathode.
Since molten copper accumulates in the bottom 3-f of the molten copper, after the molten salt electrolysis operation, the molten copper can be separated and recovered through the outlet 3-g and the Na2S slag can be recovered through the outlet 3-h. Collected N
The a2S flux 4-a is recycled 5 for the next copper removal operation. In the figure, 3-i is a gas blowing device for stirring and mixing the Na2S-based molten salt bath to promote uniformity.

電解槽内はAr等の不活性ガス雰囲気とする。電解操作
時に陽極3−dで発生する高温の硫黄ガスをたとえばダ
クト6−aに設りた誘引ファン6−bで予熱したスクラ
ップと400〜500℃の温度で反応させる。例えばロ
ータリーキルン状の反応槽6−a内で反応させ、槽内の
断気性を保持すべく例えは后等の不活性ガスで内部を置
換できるようにした二段槽からなる切り出しホッパー6
−81硫化処理した後のスクラップ小片を冷却するとと
もにSnSを分離するための例えば篩状の分離器6−f
でSnSを分離し6−g Sn分をほとんど除去したス
クラップ6−hは脱銅用の高炭素溶鉄の溶解炉1−a、
1−bに装入するか又は製鋼炉へ原料として供給する。
The inside of the electrolytic cell is made to have an inert gas atmosphere such as Ar. High-temperature sulfur gas generated at the anode 3-d during electrolysis is reacted with scrap preheated by an induction fan 6-b installed in the duct 6-a at a temperature of 400 to 500°C. For example, a cutting hopper 6 consisting of a two-stage tank in which the reaction is carried out in a rotary kiln-shaped reaction tank 6-a, and the inside can be replaced with an inert gas afterward to maintain air insulation inside the tank.
-81 For example, a sieve-shaped separator 6-f for cooling scrap pieces after sulfurization treatment and separating SnS
Scrap 6-h, from which SnS was separated in 6-g and most of the Sn content removed, was placed in a high-carbon molten iron melting furnace 1-a for decoppering.
1-b or supplied as a raw material to a steelmaking furnace.

このような基本技術構成により、物理的選別法では分離
不可能なスクラップ中に包含される銅成分の除去を、N
a2S系フラックスの原単位をリサイクルを可能にする
ことにより数分1の圧倒的に少い量で可能にした。
With this basic technology configuration, it is possible to remove copper components contained in scrap that cannot be separated by physical sorting methods.
By making it possible to recycle the basic unit of a2S flux, we have made it possible to reduce the amount by a fraction of the amount.

本発明はこの他にもフラックスの溶解のためのエネルギ
ーや、多量に発生ずるNa2S系スラグをリサイクルし
ないで例えば銅のマック製造等の従来工程の原料として
使用する際に多量に発生する亜硫酸ガス等の大気汚染物
質の発生を回避する等極めて工業的に意義が大きい。
The present invention also requires energy for melting flux, and sulfur dioxide gas, which is generated in large quantities when Na2S slag, which is generated in large quantities, is used as a raw material in conventional processes such as copper mac manufacturing without being recycled. This is of great industrial significance as it avoids the generation of air pollutants.

本発明の原理は以下のごとき方法により一層の効率の向
上か可能である。すなわち含銅高炭素溶鉄の溶製後、脱
銅反応槽に移す際溶鉄溶製炉をホトムタップ方式に改め
る等により、断気状態で含銅高炭素溶鉄と、溶融塩電解
により銅成分を除去低減した溶融状態のNa2S系フラ
ックスを脱銅反応槽に同時に注ぎ込むことを可能にする
ことにより瞬時に脱銅処理を終えることも可能である。
The principle of the present invention allows for further improvement of efficiency by the following method. In other words, after melting copper-containing high-carbon molten iron and transferring it to the decoppering reaction tank, by changing the molten iron smelting furnace to a photomap method, etc., the copper-containing high-carbon molten iron is removed in an aerated state and the copper component is removed and reduced by molten salt electrolysis. By simultaneously pouring the molten Na2S-based flux into the copper removal reaction tank, it is possible to finish the copper removal process instantly.

さらに化学工業の基本知識により、含銅高炭素溶鉄と高
温のNa2S系リサイクルスラグの反応において、電磁
ポンプ等を用いることにより向流反応操作を実施するこ
とにより脱銅の反応効率を上げ全体の効率を向上するこ
とも可能である。
Furthermore, based on basic knowledge of the chemical industry, in the reaction between copper-containing high-carbon molten iron and high-temperature Na2S-based recycled slag, electromagnetic pumps, etc. are used to carry out a countercurrent reaction operation, thereby increasing the reaction efficiency of copper removal and increasing the overall efficiency. It is also possible to improve

次に、実施例により詳細を示す。Next, details will be shown with examples.

[実 施 例] 上底吹転炉により炭材の酸化エネルギーを利用してスク
ラップを加炭溶融し炭素飽和の含銅高炭素溶鉄を10t
on溶製した。この時の溶鉄の組成は銅約03%含有し
炭素飽和で約1450℃の温度であった。これを脱銅反
応槽へ移しこれに予め溶融したFeS  (約20%)
 −Na2S(約80%)を主成分とするNa2S系の
1200℃以上のフラックスを約4 、5 ton添加
して、蓋をして内部をArで不活性雰囲気にした時槽底
より計カスを吹込み脱#l処理を実施した結果を表−1
に示す。Na2S系フラックスをリサイクルしない従来
法は1回処理と2回処理を実施した。脱銅処理後金Cu
2Sを含有するNa2S系フラックスを黒鉛でライニン
グした反応相内で黒鉛電極を直流低電圧大電流電源に接
続して溶融塩電解を実施した。このフラックスはフラッ
クス中の銅含有量を低減し、2回に分りて脱銅処理を実
施した。
[Example] 10 tons of carbon-saturated copper-containing high-carbon molten iron is produced by carburizing and melting scrap using the oxidation energy of carbonaceous materials in a top-bottom blowing converter.
On-melting was carried out. The composition of the molten iron at this time was about 0.3% copper, saturated with carbon, and a temperature of about 1450°C. This was transferred to a copper-removal reaction tank and pre-melted FeS (approximately 20%)
-Approximately 4 to 5 tons of Na2S-based flux at 1200°C or higher containing Na2S (approximately 80%) as the main component was added, the lid was closed, and the interior was made into an inert atmosphere with Ar, and a total amount of scum was removed from the bottom of the tank. Table 1 shows the results of the blowing de#l treatment.
Shown below. The conventional method that does not recycle Na2S-based flux involves one-time treatment and two-time treatment. Gold Cu after copper removal treatment
Molten salt electrolysis was carried out by connecting a graphite electrode to a DC low-voltage, high-current power source in a reaction phase in which a Na2S-based flux containing 2S was lined with graphite. This flux was used to reduce the copper content in the flux, and the copper removal treatment was carried out in two parts.

この結果従来法ては溶鉄中の銅を0.3%から003%
に低減するのに1回処理で450kg/l・鉄から24
0に呂/l・鉄のNa2S系フラックスか必要であった
が本発明によると1回に170kg/l・鉄のスラグを
用い2回処理すれば新たに補給すべきNa2S系スラグ
は50kg/l・鉄以下と非常に少い量てNa2S系フ
ラックスのリサイクル使用が可能であつ1ま た。なお溶融塩電解処理は2回の脱銅処理分を合せて実
行した。
As a result, the conventional method reduces the amount of copper in molten iron from 0.3% to 0.03%.
450 kg/l in one treatment to reduce iron to 24
A Na2S-based flux of 0.0 kg/l of iron was required, but according to the present invention, if 170 kg/l of iron slag is used at one time and the treatment is carried out twice, the amount of Na2S-based slag that needs to be replenished is 50 kg/l.・It is possible to recycle Na2S-based flux in a very small amount, less than iron. The molten salt electrolytic treatment was performed in combination with two decopper removal treatments.

以上示すごとく本発明は従来技術での脱銅処理で必要た
ったNa2S系フラックス量を450kg〜240kg
/l−鉄から50 kg/l・鉄以下と大巾に減少する
ことが可能になった。またこの操作により平均約2.5
kg/l・鉄の銅分か回収できた。
As shown above, the present invention reduces the amount of Na2S-based flux required in conventional technology for copper removal treatment to 450 kg to 240 kg.
It has become possible to drastically reduce the amount of iron from 50 kg/l-iron to less than 50 kg/l-iron. Also, by this operation, the average
kg/l/copper content of iron was recovered.

表 1 脱銅処理の操業結標 * 340−50−290kg/を以上はリサイクル使
用実施例2 実施例1の発明で溶融塩電解時に陽極で発生する高温硫
黄ガスを誂引ファンで誘導し450℃以上の温度てSn
メッキ材のスクラップと約10分間接触反応させた後こ
れを冷却し振動篩を通過させることによりSnSを剥離
分離させた。
Table 1 Operational results of copper removal treatment* 340-50-290 kg/or more is recycled Example 2 In the invention of Example 1, the high temperature sulfur gas generated at the anode during molten salt electrolysis is guided by a draft fan and heated to 450°C. At temperatures above Sn
After contacting and reacting with the scrap of the plating material for about 10 minutes, this was cooled and passed through a vibrating sieve to peel off and separate the SnS.

その後のuく分へのSnの残留率は20%未満てあり十
分な脱スズ操作が可能てあった。
After that, the residual rate of Sn in the u fraction was less than 20%, and a sufficient detining operation was possible.

[発明の効果] 以上のごとく本発明はスクラップ中の物理的選別では分
離の難かしい銅を効率よく分離できる方式であり、同時
に処理中に発生する高温硫黄ガスてスズメッキスクラッ
プよりの脱スズも可能になる工業的に極めて意義深い発
明である。
[Effects of the invention] As described above, the present invention is a method that can efficiently separate copper, which is difficult to separate by physical sorting from scrap, and at the same time, it is also possible to remove tin from tin-plated scrap using high-temperature sulfur gas generated during processing. This is an extremely significant industrially significant invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を応用したプロセスフローの一例を示す
図である。 1−a、1−b  含銅高炭素鋼溶製手段bC:含銅高
炭素鋼 2−a  : Na2S系フラックスとの反応容器2−
b  ・電気加熱装置 2−c −蓋 2−d:ガス吹込みプラグ 2−e ・排気集塵機との連結 2−f  : Na2S系フラックス 3−a:電解処理装置 3−b、電源 3−c  陰極 3−d:陽極 3−e:金属銅 3−f:槽底 3−g:溶融銅排出口 3−hニスラグ排出口 3−1:ガス吹込装置 4−a1回収Na2S系フラックス 4−b=回収銅 5 : Na2S系フラックスリサイクル6−a:ダク
ト 6−b、語用ファン 6−c:予熱器 6−d:反応相 6−e:ポツパー 6−f8分離器 6−81分1111sns 6−h ・スクラップ 他4名
FIG. 1 is a diagram showing an example of a process flow to which the present invention is applied. 1-a, 1-b Copper-containing high carbon steel melting means bC: Copper-containing high carbon steel 2-a: Reaction vessel with Na2S-based flux 2-
b - Electric heating device 2-c - Lid 2-d: Gas blowing plug 2-e - Connection with exhaust dust collector 2-f: Na2S-based flux 3-a: Electrolytic treatment device 3-b, power supply 3-c Cathode 3-d: Anode 3-e: Metallic copper 3-f: Tank bottom 3-g: Molten copper outlet 3-h Nislag outlet 3-1: Gas blowing device 4-a1 recovery Na2S-based flux 4-b = recovery Copper 5: Na2S-based flux recycling 6-a: duct 6-b, term fan 6-c: preheater 6-d: reaction phase 6-e: popper 6-f8 separator 6-81 min 1111 sns 6-h ・Scrap and 4 others

Claims (1)

【特許請求の範囲】 1 含銅スクラップを加炭溶融し、含銅高炭素溶鉄とし
た後、1200〜1500℃でNa_2Sを主成分とす
る溶融フラックスと接触反応させ、溶鉄中の銅成分を硫
化銅としてNa_2S系フラックス中に分離除去する方
法において、Na_2S−Cu_2S系溶融フラックス
を分離し系外に導き出す工程とこの溶融フラックスを溶
融塩電解することによりCu_2Sの銅成分を陰極部に
金属銅として分離後銅の硫化物量が低減したNa_2S
を主成分とするフラックスを分離回収し、含銅高炭素溶
鉄からの脱銅処理に再使用することを特徴とする鋼鉄中
の銅の除去方法。 2 溶融フラックスの溶融塩電解時に陽極部で発生する
硫黄ガスを予熱したSnメッキ鋼材と400〜500℃
の温度で接触反応させた後、SnSとしてSn成分の剥
離除去を併せ実施することを特徴とする鋼鉄中の銅の除
去方法。
[Claims] 1. After carburizing and melting copper-containing scrap to make copper-containing high-carbon molten iron, the copper component in the molten iron is sulfurized by contact reaction with a molten flux whose main component is Na_2S at 1200 to 1500°C. In the method of separating and removing copper in Na_2S-based flux, the process involves separating the Na_2S-Cu_2S-based molten flux and leading it out of the system, and electrolyzing this molten flux with molten salt to separate the copper component of Cu_2S into the cathode part as metallic copper. Na_2S with reduced amount of sulfide in copper
A method for removing copper from steel, characterized by separating and recovering a flux whose main component is , and reusing it for decoppering treatment from copper-containing high-carbon molten iron. 2. Sulfur gas generated at the anode part during molten salt electrolysis of molten flux is heated to a preheated Sn-plated steel material and 400 to 500°C.
1. A method for removing copper from steel, which comprises carrying out a contact reaction at a temperature of 100 mL, followed by stripping and removing the Sn component as SnS.
JP2331668A 1990-11-29 1990-11-29 Method for removing copper in steel iron Pending JPH04198431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2331668A JPH04198431A (en) 1990-11-29 1990-11-29 Method for removing copper in steel iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2331668A JPH04198431A (en) 1990-11-29 1990-11-29 Method for removing copper in steel iron

Publications (1)

Publication Number Publication Date
JPH04198431A true JPH04198431A (en) 1992-07-17

Family

ID=18246248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2331668A Pending JPH04198431A (en) 1990-11-29 1990-11-29 Method for removing copper in steel iron

Country Status (1)

Country Link
JP (1) JPH04198431A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009110627A1 (en) 2008-03-05 2009-09-11 Jfeスチール株式会社 Process for removal of copper contained in steel scraps
JP2010111908A (en) * 2008-11-06 2010-05-20 Jfe Steel Corp Method of removing copper in molten iron
JP2010163652A (en) * 2009-01-15 2010-07-29 Jfe Steel Corp Method for removing copper and sulfur from molten iron
JP2010163653A (en) * 2009-01-15 2010-07-29 Jfe Steel Corp Method for producing molten iron using iron scrap as iron-source
JP2010163651A (en) * 2009-01-15 2010-07-29 Jfe Steel Corp Method for producing molten steel while using iron scrap as iron source
JP2010163650A (en) * 2009-01-15 2010-07-29 Jfe Steel Corp Method for removing copper in molten pig iron
JP2011084811A (en) * 2009-09-15 2011-04-28 Jfe Steel Corp Method for producing molten pig iron
JP2011144446A (en) * 2009-12-18 2011-07-28 Jfe Steel Corp Method for treating copper-removed slag
JP2011241467A (en) * 2010-05-21 2011-12-01 Jfe Steel Corp Method for treating copper-removed slag
JP2014101542A (en) * 2012-11-20 2014-06-05 Jfe Steel Corp Processing method of copper removal from molten pig iron
WO2014104437A1 (en) * 2012-12-26 2014-07-03 주식회사 포스코 Apparatus and method for processing molten iron
CN110106531A (en) * 2019-06-14 2019-08-09 安徽工业大学 A kind of molten-salt electrolysis copper sulfide synchronizes the method for preparing metallic copper and sulphur

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110000340A1 (en) * 2008-03-05 2011-01-06 Jfe Steel Corporation Method for removing copper in steel scraps
TWI409338B (en) * 2008-03-05 2013-09-21 Jfe Steel Corp Removal of copper from steel scrap
WO2009110627A1 (en) 2008-03-05 2009-09-11 Jfeスチール株式会社 Process for removal of copper contained in steel scraps
JP2010111908A (en) * 2008-11-06 2010-05-20 Jfe Steel Corp Method of removing copper in molten iron
JP2010163653A (en) * 2009-01-15 2010-07-29 Jfe Steel Corp Method for producing molten iron using iron scrap as iron-source
JP2010163650A (en) * 2009-01-15 2010-07-29 Jfe Steel Corp Method for removing copper in molten pig iron
JP2010163651A (en) * 2009-01-15 2010-07-29 Jfe Steel Corp Method for producing molten steel while using iron scrap as iron source
JP2010163652A (en) * 2009-01-15 2010-07-29 Jfe Steel Corp Method for removing copper and sulfur from molten iron
JP2011084811A (en) * 2009-09-15 2011-04-28 Jfe Steel Corp Method for producing molten pig iron
JP2011144446A (en) * 2009-12-18 2011-07-28 Jfe Steel Corp Method for treating copper-removed slag
JP2011241467A (en) * 2010-05-21 2011-12-01 Jfe Steel Corp Method for treating copper-removed slag
JP2014101542A (en) * 2012-11-20 2014-06-05 Jfe Steel Corp Processing method of copper removal from molten pig iron
WO2014104437A1 (en) * 2012-12-26 2014-07-03 주식회사 포스코 Apparatus and method for processing molten iron
CN110106531A (en) * 2019-06-14 2019-08-09 安徽工业大学 A kind of molten-salt electrolysis copper sulfide synchronizes the method for preparing metallic copper and sulphur
CN110106531B (en) * 2019-06-14 2021-12-07 安徽工业大学 Method for synchronously preparing metal copper and sulfur by electrolyzing copper sulfide through molten salt

Similar Documents

Publication Publication Date Title
JPH04198431A (en) Method for removing copper in steel iron
CN106893864A (en) A kind of method that arsenic is reclaimed in the mud from black copper
CA2199788C (en) Method of purifying copper electrolytic solution
EA029428B1 (en) METHOD AND APPARATUS FOR RECOVERING PLATINUM GROUP METALS (PGMs) AND FERROCHROME FROM PGM BEARING CHROMITE ORE
EP0052595B1 (en) A method for separating and recovering nickel and copper from complex materials
WO2018228075A1 (en) Method and system for short-process copper smelting
CN112359227B (en) Method for extracting cobalt from pyrometallurgical nickel smelting process
US800984A (en) Process of purifying metals.
NO146995B (en) PROCEDURE FOR MELTING RECOVERY OF LEAD AND SOIL FROM BLUE SOIL REMAINS.
US1892999A (en) Process for recovering sulphur
US1489361A (en) Production of iron and steel
JP2006509103A (en) Slag processing method
JPH02182842A (en) Method for separating and recovering tin from iron scrap
US3660026A (en) Method of removing iron and cobalt from a partially refined nickel matte
US503429A (en) Peooebb of pboduoing ciloeine and ptieifting lead
JP2002534602A (en) Aluminum production by carbon heating using aluminum scrap as coolant.
US1634497A (en) Metallurgical process
US3028233A (en) Recovery of manganese from metallurgical slags, dusts, and ores
US1569137A (en) Refining of copper-nickel matte
AU2018264670B2 (en) A process for reducing the content of oxygen in metallic copper
US3552948A (en) Reduction of metal sulfides
US1785247A (en) Recovery of metallic elements and alloys
JPS6035415B2 (en) Separation method for copper and arsenic
US833722A (en) Recovery of metals.
US1553197A (en) Method of separating nickel and copper from copper-nickel mattes or materials