JP2006509103A - Slag processing method - Google Patents

Slag processing method Download PDF

Info

Publication number
JP2006509103A
JP2006509103A JP2004556365A JP2004556365A JP2006509103A JP 2006509103 A JP2006509103 A JP 2006509103A JP 2004556365 A JP2004556365 A JP 2004556365A JP 2004556365 A JP2004556365 A JP 2004556365A JP 2006509103 A JP2006509103 A JP 2006509103A
Authority
JP
Japan
Prior art keywords
copper
slag
leaching
blast furnace
concentrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2004556365A
Other languages
Japanese (ja)
Inventor
ペッカ ハンニアラ、
コヨ、 イルッカ
サアリネン、 リスト
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Outokumpu Oyj
Original Assignee
Outokumpu Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Outokumpu Oyj filed Critical Outokumpu Oyj
Publication of JP2006509103A publication Critical patent/JP2006509103A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0054Slag, slime, speiss, or dross treating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/0047Smelting or converting flash smelting or converting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本発明は、製錬溶鉱炉などの懸濁溶鉱炉で、銅を回収するために、精鉱から直接的に加工される粗銅の産出中に形成されるスラグを処理する方法に関するものであり、スラグの少なくとも一部を、少なくとも一段階で浸出する。The present invention relates to a method for treating slag formed during the production of crude copper processed directly from concentrate to recover copper in a suspension blast furnace such as a smelting blast furnace. At least a portion is leached in at least one stage.

Description

詳細な説明Detailed description

本発明は、請求項1の前段に記載されている、粗銅の産出中に形成されるスラグの処理方法に関するものである。   The present invention relates to a method for treating slag formed during the production of crude copper, which is described in the preceding paragraph of claim 1.

製錬溶鉱炉などの懸濁反応炉で、一段階で直接的に硫化精鉱から粗銅を産出することは、特定の境界条件において経済的に賢明である。粗銅の直接産出において最も注意すべき問題の1つは、銅がスラグ状になり、大量のスラグが形成されることである。十分な銅の回収を確保するため、スラグに存在する銅を、スラグ除去工程に関連させて回収しなければならない。多量のスラグの他に、別の問題は、硫化精鉱の燃焼中に形成される大量の熱である。この場合、プロセス空気における濃縮酸素を減らす。このことは、プロセス空気に含まれた窒素の加熱で熱収支のバランスを保つことを意味している。しかしながら、これは大量のプロセスガスを産出するため、また一方で、大きな溶鉱炉の場所と、とりわけ大きなガス処理設備の原因となる。   In a suspension reactor such as a smelting blast furnace, it is economically advisable to produce crude copper from sulfide concentrate directly in one step at certain boundary conditions. One of the most notable issues in the direct production of crude copper is that copper becomes slag and a large amount of slag is formed. In order to ensure sufficient copper recovery, the copper present in the slag must be recovered in connection with the slag removal process. Besides the large amount of slag, another problem is the large amount of heat that is formed during the combustion of sulfide concentrate. In this case, the concentrated oxygen in the process air is reduced. This means that the heat balance is maintained by heating the nitrogen contained in the process air. However, this produces a large amount of process gas and, on the other hand, causes large blast furnace locations and especially large gas processing facilities.

精鉱の銅含有量が十分に高い場合、一般的に少なくとも37% Cuである場合は、ブリスターの産出は直接的に一段階で経済的に実行できる。精鉱の銅の含有量が高いと、精鉱の熱価は一般的に低くなる。銅の含有量が高いと、硫化鉄鉱物の占有率は低い。上述した精鉱の処理では、十分な高濃縮酸素を使用でき、その結果、ガスの量を抑えておくことが可能である。また銅の含有量がより低い精鉱は、その鉄含有量が低ければ粗銅の産出に適し、その際形成されるスラグの量は著しく大量ではない。   If the concentrate has a sufficiently high copper content, generally at least 37% Cu, the production of blisters can be carried out directly and economically in one step. When the copper content of the concentrate is high, the heat value of the concentrate is generally low. When the copper content is high, the occupation ratio of iron sulfide minerals is low. In the above-described concentrate treatment, sufficient highly concentrated oxygen can be used, and as a result, the amount of gas can be suppressed. Also, concentrates with lower copper content are suitable for the production of crude copper if their iron content is low, and the amount of slag formed at that time is not significantly large.

フィンランド特許出願第982818号によると、精鉱に加えて、冷やして粉末にした銅マットも用いた溶鉱炉で粗銅を産出する方法が公知である。そして、産出される粗銅の量に応じて、従来の方法による場合よりも少ない量のスラグが形成される。またスラグの銅の損失も減少する。形成されたスラグをさらに、一段階か、より好ましくは二段階のスラグ除去処理で処理する。二段階のスラグ除去方法は、2つの電気炉を含むか、または1つの電気炉およびスラグ濃縮設備を含んでいる。電気炉の中では、コークスによりスラグが還元され、その結果、スラグ相に結合した貴金属が還元されてスラグ層の下で別の銅相として分離する。スラグ濃縮設備でスラグを処理する場合は、スラグ濃縮物を溶鉱炉へ戻すことが可能である。粗銅は、陽極炉で純化される。   According to Finnish patent application No. 982818, a method of producing crude copper in a blast furnace using not only concentrate but also cooled and powdered copper mat is known. Then, depending on the amount of crude copper produced, a smaller amount of slag is formed than in the conventional method. Also, slag copper loss is reduced. The formed slag is further processed by a one-stage, more preferably two-stage slag removal process. The two-stage slag removal method includes two electric furnaces or one electric furnace and slag concentration equipment. In the electric furnace, slag is reduced by coke, and as a result, the noble metal bonded to the slag phase is reduced and separated as another copper phase under the slag layer. When processing slag with a slag concentration facility, it is possible to return the slag concentrate to the blast furnace. Crude copper is purified in an anode furnace.

スラグを電気炉において一段階で処理してスラグ中の銅の量が経済的に重要でないようにする場合は、ブリスターにおける鉄の含有量はまだ高く、しばしば転換炉でブリスター分離処理が必要となる。1つの方法は、電気炉前処理であり、形成された粗銅が大量ブリスターと共に陽極炉で処理される。しかし、未だたくさんの銅がスラグに残り、経済的な理由のために銅を濃縮技術手段により回収しなければならない。   If the slag is processed in one step in an electric furnace so that the amount of copper in the slag is not economically important, the iron content in the blister is still high and often requires a blister separation process in the converter . One method is an electric furnace pretreatment where the formed crude copper is treated in an anode furnace with a large amount of blisters. However, a lot of copper still remains in the slag, and for economic reasons copper must be recovered by means of concentration technology.

本発明は、精鉱から直接的に粗銅を産出するときに形成されるスラグの新しい処理方法を提示することを目的とする。詳細には、本発明は、総合的に節約を尊重し、より効果的かつより有利な方法で、粗銅の産出中にスラグ状となった銅の回収を実現することを目的とする。   An object of this invention is to show the new processing method of the slag formed when producing | generating crude copper directly from concentrate. In particular, the present invention aims to achieve the recovery of slag-like copper during the production of crude copper in a more effective and more advantageous manner, comprehensively respecting savings.

本発明は、請求項1の特徴段に記載の事項を特徴とする。本発明の他の実施例はその他の請求項の記載事項を特徴とする。   The present invention is characterized by the matters described in the characterizing stage of claim 1. Other embodiments of the invention are characterized by what is stated in the other claims.

本発明による方法には多くの利点がある。本発明の方法によれば、精鉱から直接的に産出される粗銅の産出中に形成されるスラグに含まれている銅を効果的に回収する。本発明の方法によれば、銅の回収が簡単になり、さらに、不純物の管理をより改善することが可能になる。湿式製錬スラグに含まれた銅の回収によって、電気炉還元と比べて、エネルギーの消費量が少なくなる。さらに、乾式精錬回収と比べて、ガスと塵の放出が少なくなる。   The method according to the invention has many advantages. According to the method of the present invention, copper contained in slag formed during the production of crude copper directly produced from concentrate is effectively recovered. According to the method of the present invention, copper recovery can be simplified, and impurity management can be further improved. The recovery of copper contained in the hydrometallurgical slag reduces energy consumption compared to electric furnace reduction. In addition, gas and dust emissions are reduced compared to dry smelting recovery.

次に、添付図面を参照して、本発明をさらに詳細に説明する。   The present invention will now be described in more detail with reference to the accompanying drawings.

図1は、銅を回収するために、製錬溶鉱炉などの懸濁溶鉱炉で産出される粗銅の産出中に形成されるスラグ、すなわちブリスタースラグの本発明による処理手続を示す。この場合、スラグの少なくとも一部は、少なくとも一段階で浸出される。銅精鉱、溶剤および酸素濃縮空気が、例えば製錬溶鉱炉などの懸濁溶鉱炉の溶解工程1に注入される。乾燥した精鉱粒子が、高温の懸濁液の中で酸素濃縮空気と迅速に反応する。この反応中に放出されたエネルギーはこの処理で利用される。一部の硫黄が酸化されて二酸化硫黄となり、鉄が酸化されて酸化鉄となり、こうして溶剤でスラグが形成される。この反応生成物が懸濁溶鉱炉の底に溜り、2つの別々の溶解相、すなわち、粗銅とブリスタースラグを形成する。この処理で形成されたガスは、公知の手法で処理するためにさらに送られる。懸濁溶鉱炉で形成された粗銅は陽極炉処理工程2へと送られ、そこで公知の手法で精製され、陽極銅へ注がれる。   FIG. 1 shows the processing procedure according to the present invention of slag formed during the production of crude copper produced in a suspension blast furnace such as a smelting blast furnace to recover copper, ie blister slag. In this case, at least a part of the slag is leached in at least one stage. Copper concentrate, solvent and oxygen-enriched air are injected into the melting step 1 of a suspension blast furnace such as a smelting blast furnace. Dry concentrate particles react rapidly with oxygen enriched air in a hot suspension. The energy released during this reaction is used in this process. Part of the sulfur is oxidized to sulfur dioxide, iron is oxidized to iron oxide, and slag is formed with the solvent. This reaction product accumulates at the bottom of the suspension blast furnace and forms two separate dissolved phases, namely crude copper and blister slag. The gas formed in this process is further sent for processing in a known manner. The crude copper formed in the suspension blast furnace is sent to the anodic furnace treatment step 2, where it is refined by a known method and poured into the anodic copper.

溶解工程1で形成されたブリスタースラグは、備えられた循環路、例えば樋を通って懸濁溶鉱炉から引き出され、ブリスタースラグに含まれている銅を回収するための処理へとさらに送られる。最初に、ブリスタースラグは、造粒研磨工程3へと運ばれる。粒状にされたブリスタースラグは、表面の反応性を高めるために、例えば湿式研磨で、規定の粒度になるまですりつぶされる。浸出工程4では、ブリスタースラグに含まれる金属を浸出する。以下に示す実施例では、浸出工程4を硫酸を用いた酸化状況で行ない、その結果、硫化銅を形成する。硫酸を加える量は、1キロのスラグに対して500〜900グラムが好ましい。浸出は、アンモニア性溶液、塩化物溶液、またはバクテリア浸出でも行なうことができる。浸出段階の後、硫酸化金属を含んでいる溶液から、銅が銅沈殿工程5で分離される。沈澱段階では、硫酸化金属を含んでいる溶液から、例えば水酸化物沈殿または硫化物沈殿によって銅が沈殿する。水酸化物沈殿では、銅は石灰石によって沈殿し、形成された銅沈殿物は溶解工程1へ戻される。硫化物沈殿では、銅は硫化水素によって沈殿し、形成された銅沈殿物は溶解工程1へ戻される。銅はまた、液―液抽出、および電気分解で陰極銅により回収することができる。   The blister slag formed in the melting step 1 is withdrawn from the suspension blast furnace through a provided circulation path, for example, a dredger, and further sent to a process for recovering copper contained in the blister slag. First, the blister slag is transferred to the granulation polishing step 3. The granulated blister slag is ground to a specified particle size, for example by wet polishing, in order to increase the surface reactivity. In the leaching step 4, the metal contained in the blister slag is leached. In the examples shown below, the leaching step 4 is performed in an oxidizing situation using sulfuric acid, resulting in the formation of copper sulfide. The amount of sulfuric acid added is preferably 500 to 900 grams per kilogram of slag. Leaching can also be done with ammoniacal solutions, chloride solutions, or bacterial leaching. After the leaching step, copper is separated in a copper precipitation step 5 from the solution containing the metal sulfate. In the precipitation stage, copper is precipitated from the solution containing the sulfated metal, for example by hydroxide precipitation or sulfide precipitation. In the hydroxide precipitation, copper is precipitated by limestone, and the formed copper precipitate is returned to the dissolution step 1. In the sulfide precipitation, copper is precipitated by hydrogen sulfide, and the formed copper precipitate is returned to the dissolving step 1. Copper can also be recovered with cathodic copper by liquid-liquid extraction and electrolysis.

本発明を実証するために、耐酸性の2リットルの蓋付きの反応炉で、硫酸を用いて溶液実験を行なった。反応炉には、4つのバッフル板と、1つの還流冷却器と、1つのかくはん器とを整備した。また反応炉には、連続pH計測器、温度調整器、およびかくはん器の回転翼の下でかくはんされる酸素も接続した。熱板を加熱に使用した。   In order to demonstrate the present invention, a solution experiment was conducted using sulfuric acid in an acid resistant 2 liter reactor with a lid. The reactor was equipped with four baffle plates, one reflux condenser and one agitator. Also connected to the reactor was a continuous pH meter, temperature controller, and oxygen stirred under the agitator rotor. A hot plate was used for heating.

実験のまず初めに、スラグ(200g = グラム)を水の中に浸出した。このときの水量は、1リットルより少し少なかった。実験全体で、水および加えられる硫酸の合計値は、ちょうど1リットルであった。溶液の温度は90oCであった。実験中に加えられた硫酸(H2SO4)の量は、806g/1000gスラグであった。 At the beginning of the experiment, slag (200 g = gram) was leached into the water. The amount of water at this time was a little less than 1 liter. Throughout the experiment, the total value of water and sulfuric acid added was just 1 liter. The temperature of the solution was 90 ° C. The amount of sulfuric acid (H 2 SO 4 ) added during the experiment was 806 g / 1000 g slag.

実験全体で浸出時間は6時間であり、この実験中、機械によるかくはん(約770 r/min = 回転/分)、および酸素(0.50 l/min = リットル/分)を加えた。   The leaching time was 6 hours throughout the experiment, during which time mechanical agitation (about 770 r / min = rev / min) and oxygen (0.50 l / min = liter / min) were added.

強硫酸(95重量%の含有量)を徐々に加え、それと同時に温度を90oCに調整した。反応時間の測定は、すべての酸が供給された時に開始した。懸濁液サンプルを、実験開始から0、2、4、および6時間が経過した時にそれぞれ採取した。サンプルのろ過液と沈殿物の中に、分解された銅(Cu)と鉄(Fe)が存在した。 Strong sulfuric acid (content of 95% by weight) was gradually added while the temperature was adjusted to 90 ° C. The reaction time measurement was started when all the acid was fed. Suspension samples were taken at 0, 2, 4, and 6 hours, respectively, after the start of the experiment. Decomposed copper (Cu) and iron (Fe) were present in the sample filtrate and precipitate.

最初に浸出させたスラグは、32.5% Cuと23.9% Feを含んでいた。これら分析結果とそれを基にして得た浸出の収率は、下記の表で表される。

Figure 2006509103
The first leached slag contained 32.5% Cu and 23.9% Fe. The results of these analyzes and the yield of leaching obtained based on them are shown in the following table.
Figure 2006509103

最終的な沈殿物の重さは77.4g、また銅含有量は3.1%であり、このことは溶液中の銅の合計収率が96.3%であったことを意味している。   The final precipitate weighed 77.4 g and the copper content was 3.1%, which means that the total yield of copper in solution was 96.3%.

この実験を、類似したスラグ条件、すなわち、徐冷しないで、溶解状態から水によって直接粒状にしたスラグに対して繰り返し、得られた産出物は、対応する組成を有する微細化した粒状物であった。類似した条件で得られた銅の合計収率は95.8%であり、解析の精度を考慮すれば、この値は徐冷スラグと同位である。   This experiment was repeated for similar slag conditions, i.e. slag that was granulated with water directly from the dissolved state without slow cooling, and the resulting product was a refined granulate with the corresponding composition. It was. The total yield of copper obtained under similar conditions is 95.8%, and considering the accuracy of the analysis, this value is equivalent to that of annealed slag.

溶液から、酸度の調整によって銅が選択的に沈殿して、第1段階で鉄が沈殿し、第2段階で銅が沈殿するようにした。こうして所望しない鉄を銅から分離することができた。   From the solution, copper was selectively precipitated by adjusting the acidity so that iron was precipitated in the first stage and copper was precipitated in the second stage. Thus, undesired iron could be separated from copper.

本発明の様々な実施例は、上述の事例に限定されるものではなく、特許請求の範囲内で変化させてよいことは当業者にとって明らかである。   It will be apparent to those skilled in the art that the various embodiments of the present invention are not limited to the above examples but may vary within the scope of the claims.

図1は、本発明による処理過程を示す図である。FIG. 1 is a diagram showing a process according to the present invention.

Claims (10)

製錬溶鉱炉などの懸濁溶鉱炉で、銅を回収するために、精鉱から直接的に加工される粗銅の産出中に形成されるスラグの処理方法において、該スラグの少なくとも一部を、少なくとも一段階で浸出することを特徴とするスラグの処理方法。   In a method for treating slag formed during the production of crude copper processed directly from concentrate to recover copper in a suspension blast furnace such as a smelting blast furnace, at least a portion of the slag is at least one part. A slag treatment method characterized by leaching in stages. 請求項1に記載の方法において、浸出の前に前記スラグを粒状にし、磨り潰すことを特徴とする方法。   2. The method of claim 1, wherein the slag is granulated and ground prior to leaching. 請求項1または2に記載の方法において、前記浸出を、硫酸を用いて行なうことを特徴とする方法。   3. The method according to claim 1 or 2, wherein the leaching is performed using sulfuric acid. 請求項1または2に記載の方法において、前記浸出を、アンモニア性溶液を用いて行なうことを特徴とする方法。   3. A method according to claim 1 or 2, wherein the leaching is performed using an ammoniacal solution. 請求項1または2に記載の方法において、前記浸出を、塩化物溶液を用いて行なうことを特徴とする方法。   3. The method according to claim 1 or 2, wherein the leaching is performed using a chloride solution. 請求項1または2に記載の方法において、前記浸出を、バクテリア溶液を用いて行なうことを特徴とする方法。   3. The method according to claim 1 or 2, wherein the leaching is performed using a bacterial solution. 請求項1ないし6のいずれかに記載の方法において、浸出後、前記銅を水酸化物沈殿によって回収することを特徴とするスラグを処理する方法。   The method according to any one of claims 1 to 6, wherein after leaching, the copper is recovered by hydroxide precipitation. 請求項1ないし6のいずれかに記載の方法において、浸出後、前記銅を硫化物沈殿によって回収することを特徴とするスラグを処理する方法。   The method according to any one of claims 1 to 6, wherein after leaching, the copper is recovered by sulfide precipitation. 請求項1ないし6のいずれかに記載の方法において、浸出後、前記銅を、液―液抽出、および電気分解で陰極銅により回収することを特徴とする方法。   7. The method according to claim 1, wherein after leaching, the copper is recovered by cathodic copper by liquid-liquid extraction and electrolysis. 請求項7または8に記載の方法において、前記沈殿で形成される銅スラグを、前記懸濁溶鉱炉へ戻すことを特徴とする方法。   9. A method according to claim 7 or 8, wherein the copper slag formed by the precipitation is returned to the suspension blast furnace.
JP2004556365A 2002-12-05 2003-11-24 Slag processing method Abandoned JP2006509103A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20022150A FI115638B (en) 2002-12-05 2002-12-05 Procedure for treating slag
PCT/FI2003/000898 WO2004050925A1 (en) 2002-12-05 2003-11-24 Method for treating slag

Publications (1)

Publication Number Publication Date
JP2006509103A true JP2006509103A (en) 2006-03-16

Family

ID=8565039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004556365A Abandoned JP2006509103A (en) 2002-12-05 2003-11-24 Slag processing method

Country Status (14)

Country Link
US (1) US20060037435A1 (en)
EP (1) EP1579017A1 (en)
JP (1) JP2006509103A (en)
KR (1) KR20050085402A (en)
CN (1) CN1720342A (en)
AR (1) AR042301A1 (en)
AU (1) AU2003283455A1 (en)
BR (1) BR0317061A (en)
EA (1) EA200500756A1 (en)
FI (1) FI115638B (en)
MX (1) MXPA05005997A (en)
PE (1) PE20040630A1 (en)
PL (1) PL376932A1 (en)
WO (1) WO2004050925A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221216A (en) * 2012-04-16 2013-10-28 Yanggu Xiangguang Copper Co Ltd Method for directly producing blister copper from copper concentrate
JP2014205133A (en) * 2013-04-12 2014-10-30 サム サム カンパニー, リミテッドSAM SAM Co., Ltd. Slag treatment method for extraction of silica and magnesia
JP2016160110A (en) * 2015-02-27 2016-09-05 独立行政法人国立高等専門学校機構 Processing method for copper slag

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI116686B (en) 2003-07-17 2006-01-31 Outokumpu Oy Method for melting copper ligands
EP2053137A1 (en) * 2007-10-19 2009-04-29 Paul Wurth S.A. Recovery of waste containing copper and other valuable metals
FI120157B (en) * 2007-12-17 2009-07-15 Outotec Oyj A process for refining copper concentrate
KR101389430B1 (en) * 2012-08-23 2014-04-25 엘에스니꼬동제련 주식회사 The recovery method of valuble metals included in converter slag at copper smelter
RU2614293C2 (en) * 2015-06-04 2017-03-24 Общество с ограниченной ответственностью "Институт Гипроникель" Method of low-autogenous raw material processing in flash smelting furnaces

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2693405A (en) * 1952-06-20 1954-11-02 Sherritt Gordon Mines Ltd Method of separating copper values from and ammoniacal solution
US3224873A (en) * 1963-02-25 1965-12-21 Gen Mills Inc Liquid-liquid recovery of copper values using alpha-hydroxy oximes
US3632308A (en) * 1969-12-05 1972-01-04 Universal Oil Prod Co Recovery of copper values from slag
US3928551A (en) * 1970-07-27 1975-12-23 American Cyanamid Co Leaching polyelectrolyte fluidized solids
FR2200200A1 (en) * 1972-09-25 1974-04-19 Albright & Wilson Recovery of zinc and copper from scrap - by lixiviation with aq ammonium bicarbonate and pptn as basic carbonates
US4034063A (en) * 1974-03-22 1977-07-05 Industrial Resources, Inc. Process for control of SOx emissions from copper smelter operations
US4152142A (en) * 1977-02-28 1979-05-01 Kennecott Copper Corporation Recovery of copper values from iron-containing ore materials as mined and smelted
US4484730A (en) * 1982-09-30 1984-11-27 Iso "Metalurgkomplekt" Device for leaching copper from slags
NO156724C (en) * 1983-07-08 1987-11-11 Elkem As PROCEDURE FOR EXPLOITING THE COPPER CONTENT IN SULPHIDIC ORE AND CONCENTRATES.
US5616168A (en) * 1994-02-28 1997-04-01 Kennecott Utah Copper Corporation Hydrometallurgical processing of impurity streams generated during the pyrometallurgy of copper
CA2395995C (en) * 2000-01-04 2010-05-25 Outokumpu Oyj Method for the production of blister copper in suspension reactor
CA2363969C (en) * 2001-11-26 2009-01-13 Walter Curlook Process for the recovery of residual metal values from smelter waste slags, and from converter slags
FI114808B (en) * 2002-05-03 2004-12-31 Outokumpu Oy Process for the processing of precious metal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221216A (en) * 2012-04-16 2013-10-28 Yanggu Xiangguang Copper Co Ltd Method for directly producing blister copper from copper concentrate
US8771396B2 (en) 2012-04-16 2014-07-08 Xiangguang Copper Co., Ltd. Method for producing blister copper directly from copper concentrate
JP2014205133A (en) * 2013-04-12 2014-10-30 サム サム カンパニー, リミテッドSAM SAM Co., Ltd. Slag treatment method for extraction of silica and magnesia
JP2016160110A (en) * 2015-02-27 2016-09-05 独立行政法人国立高等専門学校機構 Processing method for copper slag

Also Published As

Publication number Publication date
EP1579017A1 (en) 2005-09-28
PE20040630A1 (en) 2004-11-11
FI20022150A (en) 2004-06-06
KR20050085402A (en) 2005-08-29
AU2003283455A1 (en) 2004-06-23
BR0317061A (en) 2005-10-25
FI20022150A0 (en) 2002-12-05
MXPA05005997A (en) 2005-08-18
PL376932A1 (en) 2006-01-09
EA200500756A1 (en) 2005-12-29
FI115638B (en) 2005-06-15
US20060037435A1 (en) 2006-02-23
CN1720342A (en) 2006-01-11
WO2004050925A1 (en) 2004-06-17
AR042301A1 (en) 2005-06-15

Similar Documents

Publication Publication Date Title
RU2741429C1 (en) Method and system for complete reprocessing of copper-nickel sulphide ore
EP1966401B1 (en) Method for recovering rare metals in a zinc leaching process
CN101903543B (en) Method for refining copper concentrate
US6835230B2 (en) Method for leaching zinc concentrate
US4036636A (en) Pyrometallurgical process for smelting nickel and nickel-copper concentrates including slag treatment
US3857700A (en) Pyrometallurgical recovery of copper values from converter slags
US3903241A (en) Hydrometallurgical recovery of nickel values from laterites
CN111519026B (en) Method for leaching secondary coated gold hematite
EP0052595B1 (en) A method for separating and recovering nickel and copper from complex materials
JP2013209732A (en) Method for recovering nickel
WO2020107122A1 (en) Process for the recovery of value metals from zinc-bearing ores, concentrates, intermediates and wastes
JP2006509103A (en) Slag processing method
Yagmurlu et al. Combined saf smelting and hydrometallurgical treatment of bauxite residue for enhanced valuable metal recovery
JP2008208441A (en) Solvent extraction method for chloride aqueous solution
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
US3615361A (en) Fire refining of copper
WO2019138316A1 (en) Process for the recovery of copper and cobalt from a material sample
EP0272060A2 (en) Hydrometallurgical recovery of metals and elemental sulphur from metallic sulphides
CN1162650A (en) Method for smelting sodium sulfate from refined complex antimony ore
US3640703A (en) Cyclic integrated copper process
RU2171856C1 (en) Method of processing of copper sulfide concentrates containing nickel, cobalt and iron
JPS6035415B2 (en) Separation method for copper and arsenic
JP5181684B2 (en) Solvent extraction method for aqueous chloride solution
KR930006088B1 (en) Hydrometallurgical recovery of metals and elemental sulphur from metallic sulphides
CN114058878A (en) Method for effectively reducing tin content in copper slag in smelting process of tin-containing material

Legal Events

Date Code Title Description
A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070125