JP4329724B2 - Converter scrap increase method - Google Patents

Converter scrap increase method Download PDF

Info

Publication number
JP4329724B2
JP4329724B2 JP2005137710A JP2005137710A JP4329724B2 JP 4329724 B2 JP4329724 B2 JP 4329724B2 JP 2005137710 A JP2005137710 A JP 2005137710A JP 2005137710 A JP2005137710 A JP 2005137710A JP 4329724 B2 JP4329724 B2 JP 4329724B2
Authority
JP
Japan
Prior art keywords
scrap
amount
converter
heat
feo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005137710A
Other languages
Japanese (ja)
Other versions
JP2006316292A (en
Inventor
亨 松尾
稔 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Industries Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005137710A priority Critical patent/JP4329724B2/en
Publication of JP2006316292A publication Critical patent/JP2006316292A/en
Application granted granted Critical
Publication of JP4329724B2 publication Critical patent/JP4329724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、転炉吹錬時に炉内の溶銑に配合するスクラップ量の増加を可能とする転炉スクラップ増配方法に関する。   The present invention relates to a converter scrap increasing method that enables an increase in the amount of scrap to be blended with hot metal in a furnace during converter blowing.

通常、転炉で溶銑の吹錬を行うに際し、熱的に余裕がある場合、炉内の溶銑にスクラップを配合する。これは、すでに金属鉄であるスクラップは還元する必要がなく、鉄鉱石のような酸化鉄に比べ、少ないエネルギーで溶鋼にできるからである。言い換えると、高炉で製造される溶銑量以上の溶鋼を溶製でき、溶鋼の生産量を増大できるからである。   Usually, when hot metal is blown in a converter, if there is a thermal margin, scrap is added to the hot metal in the furnace. This is because scrap that is already metallic iron does not need to be reduced, and can be made into molten steel with less energy than iron oxide such as iron ore. In other words, it is because the molten steel more than the amount of hot metal manufactured with a blast furnace can be smelted, and the production amount of molten steel can be increased.

特に、鉄の需要が旺盛な場合等においては、増産益が期待され、鉄歩留まりが多少悪くても、また造滓剤の消費量が多くても、溶銑へのスクラップ配合量を増加することが望ましい場合がある。   In particular, when there is a strong demand for iron, etc., an increase in production is expected, and even if the iron yield is somewhat low and the consumption of the ironmaking agent is large, the amount of scrap blended into the hot metal may increase. It may be desirable.

最近コスト面、品質面で有利であることから、溶銑脱Pが採用される場合が多いが、脱P銑には、熱源である[Si]が殆ど無くなっており、[C]濃度も0.5質量%程度低下していて、熱余裕がないため、スクラップの配合可能量が殆どないという問題があった。このため、溶鋼の増産が必要な場合、一時的に操業方法を変更して、溶銑脱Pを実施せず、転炉で脱Pと脱Cを同時に行うという以前の転炉吹錬に戻すこともあった。   Recently, hot metal removal P is often adopted because it is advantageous in terms of cost and quality. However, [Si], which is a heat source, has almost disappeared, and [C] concentration is also 0. There is a problem that there is almost no blendable amount of scrap because there is no heat margin because it is reduced by about 5% by mass. For this reason, when it is necessary to increase the production of molten steel, the operation method is temporarily changed to return to the previous converter blowing without demolition P and without demolition P and de-C at the converter. There was also.

しかしながら、高炉で得られる溶銑のみでは賄いきれないほど鉄の需要が多い場合、このような操業方法の変更をせず、前述のように溶銑脱Pを実施して転炉では脱Cのみを行うと共に、スクラップ配合量を増やすことが望ましい。   However, when there is so much demand for iron that the hot metal obtained in the blast furnace alone cannot be covered, the operating method is not changed, and the hot metal desorption P is performed as described above, and only the decarbonization is performed in the converter. At the same time, it is desirable to increase the amount of scrap.

転炉でスクラップを増配する方法としては、転炉吹錬時に脱C反応により発生したCOガスを炉内で二次燃焼させ(2CO+O2→2CO2)、この燃焼による発熱を溶鋼に着熱させてスクラップ配合量をさらに多くする方法が一部実施されており、例えば、非特許文献1には、前記二次燃焼に用いる酸素吹き込みランスのジェット角度がスクラップ配合比に及ぼす影響、二次燃焼の着熱効果等についての詳細な報告がなされている。 As a method of increasing the amount of scrap in the converter, the CO gas generated by the de-C reaction at the time of converter blowing is subjected to secondary combustion in the furnace (2CO + O 2 → 2CO 2 ), and the heat generated by this combustion is applied to the molten steel. For example, Non-Patent Document 1 describes the influence of the jet angle of the oxygen blowing lance used for the secondary combustion on the scrap mixing ratio, and the secondary combustion. Detailed reports have been made on the effect of heat.

しかしながら、二次燃焼法では、転炉を構成する耐火物の損耗が激しいという問題があり、このため二次燃焼率を例えば10%以下または5%以下に抑えているのが現状である。従って、この方法でスクラップ配合量を高くするには限界がある。   However, in the secondary combustion method, there is a problem that the refractories constituting the converter are severely worn. For this reason, the secondary combustion rate is currently suppressed to, for example, 10% or less or 5% or less. Therefore, there is a limit to increasing the amount of scrap by this method.

また、フェロシリコン(Fe−Si)、金属Alあるいはカーボン等の熱源を溶銑に添加し、酸素を吹精してこれら熱源と反応させ、その酸化反応熱(以下、単に「酸化熱」ともいう)を利用してスクラップ溶解量を増加させる方法も知られている。   Also, a heat source such as ferrosilicon (Fe—Si), metal Al or carbon is added to the hot metal, oxygen is blown and reacted with these heat sources, and the heat of oxidation reaction (hereinafter also simply referred to as “oxidation heat”). There is also known a method of increasing the amount of scrap melt using the above.

表1に、これら熱源の単位質量当たりの酸化熱(すなわち、発熱量)およびそれら熱源の酸化に要する酸素の単位質量当たりに換算した酸化熱を示す。   Table 1 shows the heat of oxidation per unit mass of these heat sources (that is, the calorific value) and the heat of oxidation converted per unit mass of oxygen required for oxidation of these heat sources.

Figure 0004329724
Figure 0004329724

表1に示すように、フェロシリコン、金属Alは酸化時の発熱量が大きく、使い易い熱源であるが、いずれも製造に際し多量の電力を必要とするため高価で、溶鋼の製造コストが上昇するという問題がある。また、フェロシリコンや金属Alを使用する場合、生成するSiO2あるいはAl23を中和するのに、さらにCaOが大量に必要になる。すなわち、フェロシリコン1kgに対してCaOが約5kg必要であり、Al1kgに対しては約4kgのCaOが必要で、これも考慮に入れると、さらにコスト高になる。 As shown in Table 1, ferrosilicon and metal Al have a large calorific value during oxidation and are easy-to-use heat sources, but both are expensive because they require a large amount of power for production, and the production cost of molten steel increases. There is a problem. Further, when ferrosilicon or metal Al is used, a large amount of CaO is required to neutralize the generated SiO 2 or Al 2 O 3 . That is, about 5 kg of CaO is required for 1 kg of ferrosilicon, and about 4 kg of CaO is required for 1 kg of Al. If this is taken into consideration, the cost is further increased.

カーボンとしては、コークス、無煙炭が使用される場合が多く、これらは熱源として比較的使用し易い。しかし、単位質量当たりの発熱量がフェロシリコンや金属Alに比べると少ない。また、吹精酸素量が一定という条件下では単位時間に燃焼できるカーボン量に制約があるので、カーボンを多量に添加しようとすれば転炉吹錬時間の大幅な延長が必要となり、その結果、転炉の生産性が逆に低下するという問題が生じる。すなわちカーボンの多量添加により1チャージ当たりのスクラップ配合量は増やせるが、溶鋼の生産量の増大には結びつかないという問題が生じる。   As carbon, coke and anthracite are often used, and these are relatively easy to use as a heat source. However, the calorific value per unit mass is smaller than that of ferrosilicon or metal Al. In addition, there is a limit to the amount of carbon that can be burned per unit time under the condition that the amount of blown oxygen is constant, so if a large amount of carbon is to be added, the converter blowing time must be significantly extended. On the contrary, there arises a problem that the productivity of the converter decreases. That is, although the amount of scrap blended per charge can be increased by adding a large amount of carbon, there is a problem that it does not lead to an increase in the production amount of molten steel.

さらに、コークス、無煙炭を用いる場合、これらに含有されているSにより、溶鋼のSピックアップが生じる。このため特に低S鋼を溶製する場合、転炉吹錬後に二次精錬で脱硫することが必要となり、コスト高になるという欠点もある。   Furthermore, when coke and anthracite are used, the S pick-up of molten steel occurs due to the S contained therein. For this reason, especially when low-S steel is melted, it is necessary to desulfurize by secondary refining after converter blowing, and there is a disadvantage that the cost is increased.

カーボンとしては、これらの他に石炭を使うことも考えられるが、石炭の場合、約30%の揮発分があり、溶鋼に添加するとこの揮発分の分解反応に伴う吸熱により溶銑が冷却されるので、熱源としてはあまり機能しない。   In addition to these, it is possible to use coal as carbon, but in the case of coal, there is about 30% volatile matter, and when added to molten steel, the hot metal is cooled by the endotherm associated with the decomposition reaction of this volatile matter. It does not function as a heat source.

このような問題に対処するため、特許文献1には、転炉内にコークス等の炭材を投入し、上吹き酸素と反応させて二次燃焼率を60%以上に高める方法が開示され、また、特許文献2には、さらにスラグ攪拌指標を導入してこれを適正に調整し、溶融スラグ層内で発生した炭材の燃焼熱を有効に鉄浴に着熱させる等の方策を講じて炭材燃焼を最大限に利用するスクラップ溶解方法が提案されている。   In order to cope with such a problem, Patent Document 1 discloses a method in which a carbon material such as coke is introduced into a converter and reacted with top-blown oxygen to increase the secondary combustion rate to 60% or more. Further, Patent Document 2 further takes measures such as introducing a slag agitation index and adjusting it appropriately to effectively heat the combustion heat of the carbonaceous material generated in the molten slag layer to the iron bath. Scrap melting methods that make maximum use of charcoal combustion have been proposed.

しかし、これらの方法では二次燃焼率を高めるために炉内スラグ量を100kg/t以上とし、その中に炭材を巻き込ませなければならない。これは炉内容積に占めるフォーミングスラグの存在比率を高くすることを意味しており、スクラップおよび溶鉄の存在量を高めることが困難であるため、スクラップの溶解能率は低下せざるを得ないという問題がある。   However, in these methods, in order to increase the secondary combustion rate, the amount of slag in the furnace must be 100 kg / t or more, and the carbon material must be entrained therein. This means that the abundance ratio of forming slag in the furnace volume is increased, and it is difficult to increase the abundance of scrap and molten iron, so the melting efficiency of scrap must be reduced. There is.

一方、安価な熱源としては、表1に示すFe(すなわち、転炉内の溶鉄)そのものが考えられる。特に、Feと反応する酸素の1kg当たりに換算した発熱量は、フェロシリコンのそれに近く、吹き込む酸素を効率よく利用することが可能である。しかしながら、鉄を酸化する場合、従来のように溶銑中の[C]濃度を酸素の吹精により低下させる方法(C吹き下げ法)では、スラグ中の(FeO)濃度が35質量%以上の高濃度となり、耐火物の溶損が激しくなるという問題がある。   On the other hand, as an inexpensive heat source, Fe shown in Table 1 (that is, molten iron in the converter) itself can be considered. In particular, the calorific value converted to 1 kg of oxygen that reacts with Fe is close to that of ferrosilicon, and the blown oxygen can be used efficiently. However, when iron is oxidized, in the conventional method of reducing the [C] concentration in the hot metal by oxygen blowing (C blowing down method), the (FeO) concentration in the slag is as high as 35% by mass or more. There is a problem that the concentration of the refractory material is severely melted.

特開平8−260022号公報JP-A-8-260022 特開平10−265820号公報JP-A-10-265820 「鉄と鋼」第71年(1985)第15号 1787〜1794頁"Iron and Steel" 71st (1985) No. 15, pp. 1787-1794

本発明はこのような状況に鑑みなされたもので、その目的は、脱P溶銑を転炉で吹錬する際、吹錬時間をあまり延長することなく、大掛かりな設備も必要なく、これまでのフェロシリコン、金属Al等の高価な熱源も使用しないで、スクラップ配合量を増大させること(すなわち、スクラップの増配合)を可能とする方法を提供することにある。   The present invention has been made in view of such a situation. The purpose of the present invention is to blow off de-P molten iron in a converter without greatly extending the blowing time and without requiring large facilities. An object of the present invention is to provide a method capable of increasing the amount of scrap mixing (that is, increasing the amount of scrap) without using an expensive heat source such as ferrosilicon or metal Al.

本発明者らは、転炉でスクラップを増配するための熱源について種々検討を加えた。その結果、Fe(転炉内の溶鉄)の酸化熱を利用するのが最も安価で、かつ効果的であることが判明した。   The present inventors have made various studies on a heat source for increasing the amount of scrap in a converter. As a result, it has been found that using the oxidation heat of Fe (molten iron in the converter) is the cheapest and most effective.

このFeの酸化熱を利用するに際し、従来の脱P溶銑の転炉吹錬時における造滓剤使用量を維持したままで酸素を吹精して溶鉄を多量に酸化させると、スラグ中の酸化鉄分(FeOが主体)が増加し、(FeO)濃度が高くなって転炉耐火物が溶損し易くなる。そのため、従来はFeを熱源とする溶銑の加熱方法は採用されることはなかった。   When utilizing this oxidation heat of Fe, if the amount of molten iron is oxidized by blowing oxygen while maintaining the amount of iron-forming agent used in the conventional furnace defoaming of de-P molten iron, oxidation in the slag The iron content (mainly FeO) increases, the (FeO) concentration increases, and the converter refractory is liable to melt. Therefore, conventionally, a hot metal heating method using Fe as a heat source has not been adopted.

しかしながら、炉内の溶銑にスクラップを配合すると共に、その配合量に見合った造滓剤を添加することによってFeをFeOに酸化する時の生成熱(酸化反応熱)と、この生成したFeOが造滓剤と反応してスラグになる時の造滓熱を利用してスクラップを溶解すると同時に、生成するFeOが造滓剤で希釈されることになるので、耐火物の目立った溶損を防止することが可能であることを見いだした。   However, by adding scrap to the molten iron in the furnace and adding a slagging agent that matches the blending amount, the heat generated when oxidizing Fe to FeO (oxidation reaction heat) and the generated FeO are produced. The scraping heat generated when it reacts with the glaze is used to melt the scrap, and at the same time, the generated FeO is diluted with the glaze making agent, thus preventing the refractory from being noticeably melted. I found that it was possible.

また、この方法によれば、高価なフェロシリコン、金属Al等を用いず、吹錬時間をあまり延長することなく、また、特別な設備を必要とすることもないので、スクラップの増配合を安価に実施することができる。   In addition, according to this method, expensive ferrosilicon, metal Al, etc. are not used, the blowing time is not extended so much, and special equipment is not required, so scrap addition is inexpensive. Can be implemented.

本発明はこのような知見に基づきなされたもので、その要旨は、下記(2)に記載の転炉スクラップ増配方法にある。また、本発明の参考例としての発明は、下記(1)に記載の転炉スクラップ増配方法である。
The present invention has been made on the basis of such knowledge, and the gist thereof is the converter scrap increasing method described in (2) below . The invention as a reference example of the present invention is a converter scrap increasing method described in (1) below.

(1)転炉を用いて脱P溶銑の精錬を実施するに際し、スクラップを配合すると共に、その配合量に応じて造滓剤を添加し、生成するスラグ中の(FeO)の濃度が耐火物の溶損を促進しない範囲で溶鉄を酸化し、その酸化熱でスクラップを溶解する転炉スクラップ増配方法。   (1) When carrying out refining of de-P hot metal using a converter, scrape is added, and a fossilizing agent is added according to the amount of the additive, and the concentration of (FeO) in the slag produced is refractory. A converter scrap increase method in which molten iron is oxidized within a range that does not promote melting damage, and scrap is melted by the oxidation heat.

(2)転炉を用いて脱P溶銑の精錬を実施するに際し、スクラップを3質量%以上配合すると共に、その配合量に応じて造滓剤を、下記(i)式を満足するように添加し、生成するスラグ中の(FeO)の濃度が35%未満という耐火物の溶損を促進しない範囲で溶鉄を酸化し、その酸化熱でスクラップを溶解する転炉スクラップ増配方法。
(2) When refining de-P hot metal using a converter, scrape is blended in an amount of 3% by mass or more, and a slagging agent is added so as to satisfy the following formula (i) according to the blending amount. In addition, the converter scrap increasing method in which molten iron is oxidized within a range that does not promote melting damage of the refractory with a concentration of (FeO) in the generated slag of less than 35%, and the scrap is melted by the oxidation heat .

(4.5×S)<Z<(6.6×S+12) ・・・(i)
ただし、Z:造滓剤添加量(kg/t)
S:スクラップ配合量(%)
なお、前記の「造滓剤添加量Z」は、溶銑1t当たりの添加量(kg)であり、「スクラップ配合量(%)」とは、転炉内の溶銑に対するスクラップの質量比を百分率で表したものである。
(4.5 × S) <Z <(6.6 × S + 12) (i)
However, Z: addition amount of a faux former (kg / t)
S: Scrap content (%)
Note that the “addition amount Z of the iron making agent” is an addition amount (kg) per 1 ton of hot metal, and the “scrap compounding amount (%)” is a mass ratio of scrap to the hot metal in the converter in percentage. It is a representation.

前記(1)または(2)に記載の転炉スクラップ増配方法において、造滓剤として生石灰、ドロマイト、酸化マグネシウム、珪石およびアルミナ含有物質のうちの1種または2種以上を使用するのが一般的であり、かつ望ましい。   In the converter scrap increasing method according to the above (1) or (2), it is common to use one or more of quicklime, dolomite, magnesium oxide, silica and alumina-containing substances as a koji-forming agent. And desirable.

本発明の転炉スクラップ増配方法によれば、転炉での吹錬時に、転炉内の溶鉄(Fe)の酸化熱を利用し、吹錬時間もあまり長くならず、耐火物の目立った溶損もなく、安価にスクラップ配合量を増大させることが可能である。   According to the converter scrap augmentation method of the present invention, the oxidation heat of the molten iron (Fe) in the converter is used at the time of blowing in the converter, the blowing time is not so long, and the refractory is noticeable. It is possible to increase the amount of scrap blending at low cost without any loss.

以下に、前記(1)に記載の本発明の参考例としての発明および前記(2)に記載の本発明の転炉スクラップ増配方法を具体的に説明する。なお、溶銑、溶鋼またはスラグ中の元素の「%」は「質量%」を意味する。
The invention as a reference example of the present invention described in (1) and the converter scrap increasing method of the present invention described in (2) will be specifically described below. In addition, "%" of the element in hot metal, molten steel, or slag means "mass%".

前記(1)に記載の本発明の転炉スクラップ増配方法は、転炉を用いて脱P溶銑の精錬を実施するに際し、スクラップを配合すると共に、その配合量に応じて造滓剤を添加し、生成するスラグ中の(FeO)の濃度が耐火物の溶損を促進しない範囲で溶鉄を酸化し、その酸化熱でスクラップを溶解する方法である。   In the converter scrap increasing method according to the present invention described in (1) above, when refining de-P molten iron using a converter, scrap is added and a faux additive is added in accordance with the amount of addition. In this method, molten iron is oxidized within a range in which the concentration of (FeO) in the slag to be generated does not promote refractory erosion, and scrap is melted by the oxidation heat.

前記(1)に記載のスクラップ増配方法における特長は、Feの酸化熱を利用してスクラップの溶解に必要な熱を補償するところにあり、そのために、スクラップの配合量に応じて造滓剤を添加する。   The feature of the scrap increasing method described in the above (1) is that the heat necessary for melting the scrap is compensated by utilizing the oxidation heat of Fe. Added.

具体的には、転炉吹錬時に、目標とする配合量のスクラップを溶銑に配合すると共に、その配合量に応じて造滓剤を添加し、酸素を吹き込んで溶鉄(Fe)と反応させ、FeOが生成するときの生成熱〔3767×103J/kg−FeO(900kcal/kg−FeO)〕、つまりFeの酸化反応熱を利用して、スクラップの添加により温度が低下した溶銑を加熱するのである。このとき、生成したFeOが前記スクラップの配合量に応じて添加した造滓剤と反応してスラグになる時の造滓熱〔586×103J/kg−slag(140kcal/kg−slag)〕も利用することができる。 Specifically, at the time of the converter blowing, the scrap of the target blending amount is blended into the hot metal, and a slagging agent is added according to the blending amount, and oxygen is blown to react with the molten iron (Fe). Heat generated when FeO is generated [3767 × 10 3 J / kg-FeO (900 kcal / kg-FeO)], that is, heat of oxidation reaction of Fe is used to heat the hot metal whose temperature has been lowered by the addition of scrap. It is. At this time, the heat of formation when the generated FeO reacts with the forming agent added according to the blending amount of the scrap to become slag [586 × 10 3 J / kg-slag (140 kcal / kg-slag)] Can also be used.

したがって、前記の溶銑加熱能力は、FeOの生成熱と、この生成したFeOが造滓剤と反応し溶融スラグとなるときに発生する造滓熱との和から、常温の造滓剤が溶鋼温度まで上昇するのに必要な熱(換言すれば、造滓剤の冷却能力)を差し引いた熱量として求められる。   Therefore, the hot metal heating capacity is calculated based on the sum of the heat of formation of FeO and the heat of heat generated when the generated FeO reacts with the iron making agent to form molten slag. It is calculated as the amount of heat after subtracting the heat required to increase the temperature (in other words, the cooling capacity of the slagging agent).

前記(1)に記載のスクラップ増配方法では、スクラップを配合すると共に、その配合量に応じて造滓剤を添加する。   In the scrap increasing method described in the above (1), scraps are blended and a slagging agent is added according to the blending amount.

造滓剤を添加するのは、通常行われている溶銑の転炉吹錬時における造滓剤使用量を維持したままでC吹き下げを行い、引き続き、溶鉄を多量に酸化させた場合、スラグ中の(FeO)濃度が増加して転炉の耐火物が溶損し易くなるので、生成するFeOを造滓剤で希釈して(FeO)濃度を下げるためである。   The iron additive is added to the slag when the blowdown of C is performed while maintaining the amount of iron additive used at the time of the furnace blowing of hot metal, and the molten iron is subsequently oxidized in large quantities. This is because the (FeO) concentration in the converter increases and the refractory in the converter is easily melted, so that the generated FeO is diluted with a fossilizer to lower the (FeO) concentration.

スクラップの配合量に応じて添加する造滓剤の量は、前述のように、Feの酸化熱と造滓熱の和から造滓剤の冷却能を差し引くことにより求められる熱量と、スクラップが溶鉄になる際に必要な熱量との熱収支から決定される。   As described above, the amount of the iron making agent added according to the amount of scrap is determined by subtracting the cooling ability of the iron making agent from the sum of the oxidation heat of iron and the heat of iron making, and the scrap is molten iron. It is determined from the heat balance with the amount of heat required to become.

さらに、(1)に記載のスクラップ増配方法では、生成するスラグ中の(FeO)の濃度が耐火物の溶損を促進しない範囲で溶鉄を酸化し、その酸化熱でスクラップを溶解する。   Furthermore, in the scrap increasing method described in (1), the molten iron is oxidized within a range in which the concentration of (FeO) in the slag to be generated does not promote the refractory melting loss, and the scrap is melted by the oxidation heat.

前記の「耐火物の溶損を促進しない範囲」とは、従来の吹錬時に比べて転炉耐火物の溶損の程度が大きく変わらない範囲を意味する。すなわち、溶鉄の酸化(酸素の吹き込み)により生成するFeOは造滓剤と反応して溶融スラグとなりスラグの(FeO)濃度を上昇させるが、この上昇の程度を耐火物の目立った溶損が生じない範囲にとどめるように酸素の吹き込みを行うのである。   The above-mentioned “range that does not promote the refractory melting loss” means a range in which the degree of melting loss of the converter refractory does not greatly change compared to the conventional blowing. In other words, FeO produced by the oxidation of molten iron (oxygen blowing) reacts with the iron making agent to form molten slag and raises the (FeO) concentration of the slag. Oxygen is blown in such a way as to keep it within a certain range.

溶鉄の酸化を耐火物の溶損を促進しない範囲にとどめるためには、例えば、スラグ中の(FeO)濃度を、スクラップを配合しないか、配合しても極僅かの配合にとどめる通常吹錬時の(FeO)濃度と同じ濃度以下にすればよい。この(FeO)濃度は、転炉耐火物の溶損の程度をどの程度まで容認するかにより決まるが、例えば、スラグ中のT.Fe(全Fe)濃度で27%未満(FeOに換算して34.7%未満)とすれば、耐火物の激しい溶損を抑えることができる。さらに、(FeO)濃度を27%以下とすれば、目立った溶損を防止できるので望ましい。   In order to keep the oxidation of the molten iron within the range that does not promote the refractory erosion, for example, the (FeO) concentration in the slag is not blended with scrap, or at the time of normal blowing that keeps blending very little even if blended The concentration may be equal to or lower than the (FeO) concentration. This (FeO) concentration is determined by how much the degree of melting loss of the converter refractory is tolerated. If the Fe (total Fe) concentration is less than 27% (less than 34.7% in terms of FeO), it is possible to suppress severe melting of the refractory. Furthermore, if the (FeO) concentration is set to 27% or less, it is desirable because remarkable melting damage can be prevented.

そして、前記溶鉄の酸化により生じる熱、さらには、生成したFeOの造滓熱を、スクラップの配合により温度が低下した溶銑の加熱に利用する。   Then, the heat generated by the oxidation of the molten iron and the heat of forming the generated FeO are utilized for heating the hot metal whose temperature has been lowered by the mixing of scrap.

この(1)に記載の転炉スクラップ増配方法は、転炉を用いて脱P溶銑を対象として精錬する際に適用する。前述したように、脱P銑には、熱源である[Si]が殆ど含まれておらず、[C]濃度も0.5質量%程度低下していて、そのままでは、熱余裕がないためスクラップを配合することができないが、この脱P溶銑の吹錬に本発明の転炉スクラップ増配方法を適用することにより、コスト面、品質面で有利な溶銑脱Pを実施しつつ、溶銑へのスクラップの配合量を増加させることができる。   The converter scrap increasing method described in (1) is applied when refining for de-P hot metal using a converter. As described above, the P-free soot hardly contains [Si] as a heat source, and the [C] concentration is also reduced by about 0.5% by mass. However, by applying the converter scrap distribution method of the present invention to the blowing of the dephosphorized hot metal, it is possible to carry out the hot metal dehumidifying P which is advantageous in terms of cost and quality, and to scrap the hot metal. The compounding amount of can be increased.

このように、転炉を用いて脱P溶銑の精錬を実施するに際し、スクラップの配合量に応じて造滓剤を添加し、生成するスラグ中の(FeO)濃度が、耐火物の溶損を促進しない範囲内にとどまるように吹錬する操業を行うことによって、溶銑へのスクラップ配合量を増大させることが可能となり、また、吹錬時間もあまり長くならず、安価にスクラップ配合量を増大させることができる。   Thus, when carrying out the refining of the de-P hot metal using the converter, the ironmaking agent is added according to the blending amount of the scrap, and the (FeO) concentration in the slag to be generated can cause the refractory to melt. It is possible to increase the amount of scrap blended into the hot metal by performing the operation of blowing so as to stay within the range not promoted, and the scrap blending amount is increased at a low cost because the blowing time is not so long. be able to.

前記(2)に記載の本発明の転炉スクラップ増配方法は、転炉を用いて脱P溶銑の精錬を実施するに際し、スクラップを3質量%以上配合すると共に、その配合量に応じて造滓剤を、下記(i)式を満足するように添加し、生成するスラグ中の(FeO)の濃度が35%未満という耐火物の溶損を促進しない範囲で溶鉄を酸化し、その酸化熱でスクラップを溶解する方法である。なお、(i)式において、Zは造滓剤添加量(kg/t)であり、Sはスクラップ配合量(%)である。
In the converter scrap increasing method according to the present invention described in (2) above , when refining de-P hot metal using a converter, 3% by mass or more of scrap is blended, and depending on the blending amount, The agent is added so as to satisfy the following formula (i) , and the molten iron is oxidized within a range that does not promote the refractory melting loss in which the concentration of (FeO) in the slag to be generated is less than 35%. This is a method for melting scrap . In the formula (i), Z is an additive amount (kg / t), and S is a scrap blending amount (%).

(4.5×S)<Z<(6.6×S+12) ・・・(i)
一般に、溶銑に酸素を吹き込む転炉吹錬の場合、脱C速度が低下した後に、溶鉄(Fe)が酸化され始める。この時、スラグが少ないと、脱Cの進行と共にスラグ中の(FeO)濃度が急激に高まり、転炉耐火物の溶損が起こり易いスラグとなる。その一方で、生成するFeOの絶対量は少ないので、Feの酸化による発熱量が少ないだけではなく、生成したFeOと造滓剤との反応による滓化熱も少なくなり、スクラップの溶解に必要な熱が得られない。
(4.5 × S) <Z <(6.6 × S + 12) (i)
In general, in the case of converter blowing that blows oxygen into the hot metal, the molten iron (Fe) begins to be oxidized after the de-C rate decreases. At this time, if there is little slag, the (FeO) density | concentration in slag will increase rapidly with progress of de-C, and it will become slag in which the refractory of a converter refractory is easy to occur. On the other hand, since the absolute amount of FeO produced is small, not only the calorific value due to the oxidation of Fe is small, but also the heat of hatching caused by the reaction between the produced FeO and the slagging agent is reduced, which is necessary for scrap melting. I can't get heat.

また、造滓剤の添加量が多く、スラグが多くなるに伴い、脱Cの進行速度が遅くなり、Feの酸化が十分に進行すると共に、生成したFeOとスラグとの滓化反応も進行する。そのため、発熱量が大きく、スクラップの溶解に必要な熱が得られるので、[C]濃度の極端な低下が少なくなり、所望の(FeO)レベルで吹錬を的中させやすくなる。   In addition, as the amount of the additive is increased and the amount of slag increases, the progress of de-C is slowed, the oxidation of Fe sufficiently proceeds, and the hatching reaction between the generated FeO and slag also proceeds. . Therefore, the calorific value is large, and the heat necessary for melting the scrap can be obtained, so that the extreme decrease in the [C] concentration is reduced, and it becomes easy to hit the blow at the desired (FeO) level.

スクラップの配合量とそのために必要な造滓剤の量は、前述のように、Feの酸化熱と造滓熱の和から造滓剤の冷却能を差し引くことにより求められる熱量と、スクラップが溶鉄になる際に必要な熱量との熱収支から決定される。しかし、造滓剤の添加量が少なく、Feの酸化によりスラグ中の(FeO)濃度が高くなり、(全Fe)濃度が例えば27%を超えると転炉耐火物の溶損が目立ち始めるので、これを超えないことが望ましい。一方、造滓剤の添加量が多すぎてスラグ中の(全Fe)濃度が18%以下になると、加熱効率が悪く、スクラップの溶解ができなくなる場合も生じる。   As mentioned above, the amount of scrap blended and the amount of iron making agent required are the amount of heat required by subtracting the cooling ability of the iron making agent from the sum of the oxidation heat of iron and the heat of iron making, and the scrap is molten iron It is determined from the heat balance with the amount of heat required to become. However, since the addition amount of the faux-forming agent is small, the (FeO) concentration in the slag becomes high due to the oxidation of Fe, and if the (total Fe) concentration exceeds 27%, for example, the melting loss of the converter refractory starts to stand out. It is desirable not to exceed this. On the other hand, if the addition amount of the slagging agent is too large and the (total Fe) concentration in the slag is 18% or less, the heating efficiency may be poor and scrap may not be melted.

(2)に記載の転炉スクラップ増配方法における(i)式は、これらの点を考慮すると共に、転炉の熱的状況等を勘案して決定した望ましい条件を数式で表したものである。   Formula (i) in the converter scrap increasing method described in (2) expresses desirable conditions determined by taking into account these points and taking into consideration the thermal conditions of the converter.

また、図1は、(i)式により定まる造滓剤添加量およびスクラップ配合量の適正範囲を示す図である。   Further, FIG. 1 is a diagram showing an appropriate range of the amount of addition of scraping agent and the amount of scrap blending determined by the equation (i).

図1において、直線「Z=6.6×S+12」よりも下方で、直線「Z=4.5×S」よりも上方の斜線を施した領域(ただし、前記両直線を含まない)が前記(i)式を満たす範囲で、この領域では前述の熱収支に基づいてスクラップ配合量を増大させることができる。   In FIG. 1, the hatched area below the straight line “Z = 6.6 × S + 12” and above the straight line “Z = 4.5 × S” (however, the two straight lines are not included). As long as the equation (i) is satisfied, the scrap blending amount can be increased in this region based on the heat balance described above.

直線「Z=4.5×S」またはそれよりも下方の領域は、造滓剤の添加量が少なく、スラグ中の(FeO)濃度が高い領域で、転炉耐火物の溶損が促進される。また、直線「Z=6.6×S+12」またはそれよりも上方の領域では、得られる発熱量の割には造滓剤の添加量が多く、熱量が足りないため目標のスクラップ溶解ができなくなる。   The straight line “Z = 4.5 × S” or a region below the straight line is a region where the additive amount of the slagging agent is small and the (FeO) concentration in the slag is high, and the melting damage of the converter refractory is promoted. The In addition, in the straight line “Z = 6.6 × S + 12” or in an area above the straight line, the amount of calorific agent added is large for the amount of heat generated, and the target scrap cannot be melted due to insufficient heat. .

スクラップ配合量は特に限定しないが、3%以上とするのが望ましい。3%未満であると、スラグ量が少なくなってスピッティングやヒュームロスが多くなり、鉄歩留まりが悪くなるからである。なお、図1では、スクラップ配合量が3%以上の領域に斜線を施している。   The scrap blending amount is not particularly limited, but is desirably 3% or more. If it is less than 3%, the amount of slag decreases, spitting and fume loss increase, and the iron yield deteriorates. In addition, in FIG. 1, the area | region whose scrap compounding amount is 3% or more is shaded.

このように、(2)に記載のスクラップ増配方法では、脱P溶銑の精錬を実施するに際し、前記(i)式の規定によって造滓剤の添加量を数値により適正化でき、溶銑へのスクラップ配合量の増大をより効果的に行うことができる。   As described above, in the scrap increasing method described in (2), when carrying out the refining of de-P hot metal, it is possible to optimize the addition amount of the slagging agent numerically according to the above-mentioned formula (i). The increase in the amount can be more effectively performed.

前記(1)に記載の本発明の参考例としての発明または前記(2)に記載の本発明の転炉スクラップ増配方法において、添加する造滓剤は特別なものである必要はなく、生石灰、ドロマイト、酸化マグネシウム(MgO)、珪石およびアルミナ(Al23)含有物質のうちの1種または2種以上を使用するのが一般的である。これらの造滓剤は、優れた性能に加え、入手のし易さ、取り扱い性、安全性、その他種々の面で望ましい。なお、アルミナ含有物質としては、アルミナの他、ボーキサイトなどの天然鉱物を用いることができ、スラグを改質して行う清浄鋼溶製用取鍋精錬後の取鍋スラグを用いることもできる。
In the invention as a reference example of the present invention described in the above (1) or the converter scrap increasing method of the present invention described in the above (2), the added slagging agent does not need to be special, quick lime, It is common to use one or more of dolomite, magnesium oxide (MgO), silica and alumina (Al 2 O 3 ) containing materials. These glazing agents are desirable not only for excellent performance but also for easy availability, handling, safety, and other various aspects. In addition to alumina, natural minerals such as bauxite can be used as the alumina-containing substance, and ladle slag after refining a ladle for clean steel melting performed by modifying slag can also be used.

通常は、生石灰と珪石を基本とし、溶製しようとする鋼種や、操業条件等を勘案してその混合比率(塩基度)を適宜調整したものであればよい。しかしながら、耐火物の溶損の軽減を重視する場合等においては、ドロマイトあるいは酸化マグネシウム(MgO)を使用することも可能である。特に、MgOは炉体レンガと同じ成分であり、望ましい造滓剤である。   Usually, it is only necessary to adjust the mixing ratio (basicity) as appropriate based on quick lime and silica and considering the steel type to be melted and the operating conditions. However, dolomite or magnesium oxide (MgO) can be used when importance is attached to the reduction of the refractory melting loss. In particular, MgO is the same component as the furnace body brick, and is a desirable faux-making agent.

一方で、造滓剤は、スラグになること、すなわち滓化し易いことが重要である。滓化が悪いと、脱Cが進行しやすく、[C]濃度の低下が速くなると共に、着熱しにくいため、発生した熱が無駄になるからで、滓化し易くするためにはアルミナおよびこれを含むものが有効である。   On the other hand, it is important that the slagging agent becomes slag, that is, easily hatches. If hatching is poor, de-C is easy to proceed, the decrease in [C] concentration is accelerated, and heat generation is difficult, so the generated heat is wasted. To facilitate hatching, alumina and this are used. What is included is effective.

なお、脱C炉で発生したスラグは、場合によっては若干P等を含んでいるが、CaO、MgO、FeO等の有用な成分を含むものであり、高炉へリサイクルすることが可能である。   The slag generated in the de-C furnace contains some P or the like in some cases, but contains useful components such as CaO, MgO and FeO, and can be recycled to the blast furnace.

容量2tの上下両吹き転炉を用い、表2に示す化学組成の脱P溶銑にスクラップを配合して精錬する試験を行い、本発明の効果について調査した。   Using an up-and-down double-blowing converter with a capacity of 2 t, a test was conducted in which scrap was mixed and refined with de-P hot metal having the chemical composition shown in Table 2 to investigate the effect of the present invention.

Figure 0004329724
Figure 0004329724

(比較例1)
前記の転炉にスクラップを配合率が3%(30kg/t)になるように装入した後、前記脱P溶銑を注銑し、生石灰6kg/tと珪石2kgを添加し、3孔ラバールノズルを有するランスを用いて送酸速度2.7Nm3/minで吹錬を行った。途中、フレームダウンしたが溶鋼温度が1650℃に上がるまで吹錬を続けた。
(Comparative Example 1)
After the scrap was charged into the converter so that the mixing ratio was 3% (30 kg / t), the dephosphorized hot metal was poured, 6 kg / t of quicklime and 2 kg of silica were added, and a three-hole rubber nozzle was installed. Blowing was performed using an lance having a feed rate of 2.7 Nm 3 / min. On the way, the flame went down, but the blowing was continued until the molten steel temperature rose to 1650 ° C.

この時点での溶鋼の[C]濃度は0.025%であり、スラグ中の(FeO)濃度は40%と高く、スラグラインでの耐火物溶損が大きかった。そのため、造滓剤の添加量を変えずに、これ以上のスクラップの配合はできなかった。   At this time, the [C] concentration of the molten steel was 0.025%, the (FeO) concentration in the slag was as high as 40%, and the refractory erosion in the slag line was large. For this reason, it was impossible to mix more scraps without changing the addition amount of the koji-making agent.

この比較例1で用いたスクラップの配合量(3%)から前記(i)式により必要な造滓剤添加量Zを求めると13.5〜31.8kg/tとなるが、実際の造滓剤添加量は生石灰と珪石を合わせて8kg/tであり、(i)式の規定から外れている。   The required amount of addition of the slagging agent Z according to the formula (i) from the amount (3%) of scrap used in Comparative Example 1 is 13.5 to 31.8 kg / t. The added amount of the agent is 8 kg / t for quicklime and silica, which is out of the definition of the formula (i).

(実施例1)
前記転炉にスクラップを配合率が7%(70kg/t)になるように装入した後、前記脱P溶銑を注銑し、生石灰34kg/tと珪石8.5kgを添加し、3孔ラバールノズルを有するランスを用いて送酸速度2.7Nm3/minで吹錬を行った。
Example 1
After charging scrap into the converter so that the blending ratio is 7% (70 kg / t), the de-P molten iron is poured, 34 kg / t of quicklime and 8.5 kg of silica are added, and a three-hole rubber nozzle Blowing was performed using a lance with a feed rate of 2.7 Nm 3 / min.

途中、酸素センサー(OXP)にて吹錬を制御し、[C]濃度0.05%で吹錬を終了した。その時の溶鋼温度は1675℃、スラグ中の(FeO)濃度は29%であり、耐火物の溶損は従来の転炉吹錬時と変わらず、問題なかった。   In the middle, blowing was controlled with an oxygen sensor (OXP), and the blowing was terminated at a [C] concentration of 0.05%. The molten steel temperature at that time was 1675 ° C., the (FeO) concentration in the slag was 29%, and the refractory melt loss was the same as in the conventional converter blowing, and there was no problem.

実施例1で用いたスクラップ配合量および造滓剤添加量は、前記(i)式の条件を満足している。   The amount of scrap blending and the amount of addition of the faux agent used in Example 1 satisfy the condition of the above-mentioned formula (i).

(実施例2)
前記転炉にスクラップを配合率が8%(80kg/t)になるように装入した後、脱P溶銑を装入し、生石灰25kg/t、ドロマイト4kg/t、MgO4kg/tおよび珪石11kg/tを添加し、3孔ラバールノズルを有するランスを用いて送酸速度2.7Nm3/minで吹錬を行った。
(Example 2)
After the scrap was charged into the converter so that the blending ratio was 8% (80 kg / t), dephosphorized hot metal was charged, quick lime 25 kg / t, dolomite 4 kg / t, MgO 4 kg / t and silica 11 kg / t. t was added, and blowing was performed using a lance having a three-hole Laval nozzle at an acid feed rate of 2.7 Nm 3 / min.

途中、OXPにより溶鋼の[C]濃度を確認し、[C]濃度が0.07%になった時点で吹錬を終了した。この時の鋼浴温度は1660℃であり、スラグ中の(FeO)濃度は30%であり、耐火物の溶損は従来の吹錬時と変わらず、問題なかった。   In the middle, the [C] concentration of the molten steel was confirmed by OXP, and the blowing was terminated when the [C] concentration reached 0.07%. At this time, the temperature of the steel bath was 1660 ° C., the (FeO) concentration in the slag was 30%, and the refractory melt was not different from that during conventional blowing, and there was no problem.

実施例2で用いたスクラップ配合量および造滓剤添加量は、前記(i)式の条件を満足している。   The amount of scrap blending and the amount of addition of the faux agent used in Example 2 satisfy the condition of the above formula (i).

(実施例3)
前記転炉にスクラップを配合率が10%(100kg/t)になるように装入した後、脱P溶銑を注銑し、生石灰45kg/t、アルミナ(Al23)5kg/tおよび珪石10kg/tを添加し、3孔ラバールノズルのランスを用いて送酸速度2.7Nm3/minで吹錬を行った。
(Example 3)
After the scrap was charged into the converter so that the blending ratio was 10% (100 kg / t), de-P hot metal was poured into it, quick lime 45 kg / t, alumina (Al 2 O 3 ) 5 kg / t, and silica 10 kg / t was added, and blowing was performed at a feed rate of 2.7 Nm 3 / min using a lance with a three-hole rubber nozzle.

途中、OXPにより溶鋼の[C]濃度を確認し、[C]濃度が0.07%になった時点で吹錬を終了した。この時の鋼浴温度は1650℃であり、スラグ中の(FeO)濃度は25%であり、耐火の溶損は従来の吹錬時と変わらなかった。   In the middle, the [C] concentration of the molten steel was confirmed by OXP, and the blowing was terminated when the [C] concentration reached 0.07%. The steel bath temperature at this time was 1650 ° C., the (FeO) concentration in the slag was 25%, and the refractory erosion loss was not different from that during conventional blowing.

実施例3で用いたスクラップ配合量および造滓剤添加量は、前記(i)式の条件を満足している。   The amount of scrap blending and the amount of addition of the faux-forming agent used in Example 3 satisfy the condition of the above formula (i).

本発明の転炉スクラップ増配方法によれば、脱P溶銑を転炉で吹錬する際にスクラップ配合量を増大させることが可能である。このスクラップ増配方法は転炉内の溶鉄(Fe)の酸化熱を利用する方法で、吹錬時間もあまり長くならず、耐火物の目立った溶損もなく、安価に実施できるので、スクラップ増配合が困難な脱P溶銑の転炉での吹錬に好適に利用することができる。   According to the converter scrap increasing method of the present invention, it is possible to increase the amount of scrap blending when blown de-P hot metal in the converter. This scrap increase method uses the heat of oxidation of the molten iron (Fe) in the converter, and the blowing time is not so long, and there is no noticeable refractory loss of refractories, so it can be carried out at a low cost. Therefore, it can be suitably used for blowing in a P-type hot metal converter that is difficult to remove.

造滓剤添加量およびスクラップ配合量の適正範囲を示す図である。It is a figure which shows the appropriate range of a faux-forming agent addition amount and a scrap compounding amount.

Claims (2)

転炉を用いて脱P溶銑の精錬を実施するに際し、
スクラップを3質量%以上配合すると共に、その配合量に応じて造滓剤を、下記(i)式を満足するように添加し、
生成するスラグ中の(FeO)の濃度が35%未満という耐火物の溶損を促進しない範囲で溶鉄を酸化し、その酸化反応熱でスクラップを溶解することを特徴とする転炉スクラップ増配方法。
(4.5×S)<Z<(6.6×S+12) ・・・(i)
ただし、Z:造滓剤添加量(kg/t)
S:スクラップ配合量(%)
When carrying out refining of de-P hot metal using a converter,
While adding 3% by mass or more of scrap, a faux additive is added according to the amount of the scrap so as to satisfy the following formula (i) ,
A converter scrap increasing method characterized in that molten iron is oxidized within a range in which the melting loss of a refractory is less than 35% in the concentration of (FeO) in the slag to be generated, and the scrap is melted by the oxidation reaction heat.
(4.5 × S) <Z <(6.6 × S + 12) (i)
However, Z: addition amount of a faux former (kg / t)
S: Scrap content (%)
造滓剤として生石灰、ドロマイト、酸化マグネシウム、珪石およびアルミナ含有物質のうちの1種または2種以上を使用することを特徴とする請求項1に記載の転炉スクラップ増配方法。 2. The converter scrap increasing method according to claim 1, wherein one or more of quicklime, dolomite, magnesium oxide, silica, and alumina-containing material are used as a koji-forming agent.
JP2005137710A 2005-05-10 2005-05-10 Converter scrap increase method Active JP4329724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005137710A JP4329724B2 (en) 2005-05-10 2005-05-10 Converter scrap increase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005137710A JP4329724B2 (en) 2005-05-10 2005-05-10 Converter scrap increase method

Publications (2)

Publication Number Publication Date
JP2006316292A JP2006316292A (en) 2006-11-24
JP4329724B2 true JP4329724B2 (en) 2009-09-09

Family

ID=37537223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005137710A Active JP4329724B2 (en) 2005-05-10 2005-05-10 Converter scrap increase method

Country Status (1)

Country Link
JP (1) JP4329724B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240068061A1 (en) * 2021-01-26 2024-02-29 Jfe Steel Corporation Converter steelmaking method
CN114959160A (en) * 2022-05-16 2022-08-30 北京科技大学 Converter steelmaking method and device for dynamically adjusting scrap steel loading based on molten iron conditions

Also Published As

Publication number Publication date
JP2006316292A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
CN104039987B (en) Steel slag reduction method
JP5418733B2 (en) Hot metal refining method
JP5408369B2 (en) Hot metal pretreatment method
JP5954551B2 (en) Converter steelmaking
CN102925617B (en) Slag adjusting agent for slag-splashing converter protection of vanadium extracting converter
CN102912072B (en) Low-cost slag regulating agent for vanadium-extracting converter splash protection
JP5408379B2 (en) Hot metal pretreatment method
JP2007177295A (en) Method for producing molten iron
JP4329724B2 (en) Converter scrap increase method
JP6065538B2 (en) Hot copper decoppering method
JP6361885B2 (en) Hot metal refining method
JP3854482B2 (en) Hot metal pretreatment method and refining method
JP4779585B2 (en) Solid fuel for vertical scrap melting furnace and operating method of vertical scrap melting furnace
US20210404047A1 (en) Carburizer and carburization method using the same
JP5625238B2 (en) Method for refining molten iron
JP4639943B2 (en) Hot metal desulfurization method
WO2021177021A1 (en) Method for producing low-carbon ferromanganese
JP2006336077A (en) Method for repairing refractory in converter
JP5453794B2 (en) Hot metal dephosphorization method
JP4923662B2 (en) Method for adjusting fluidity of slag in storage furnace
JP2716173B2 (en) Smelting reduction furnace
RU2201970C2 (en) Method of making steel in high-power electric arc furnaces
JP2018016853A (en) Method for melting iron-containing material
JPH02153011A (en) Smelting reduction furnace
JPH0564684B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R150 Certificate of patent or registration of utility model

Ref document number: 4329724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350