JPH02153011A - Smelting reduction furnace - Google Patents

Smelting reduction furnace

Info

Publication number
JPH02153011A
JPH02153011A JP30518388A JP30518388A JPH02153011A JP H02153011 A JPH02153011 A JP H02153011A JP 30518388 A JP30518388 A JP 30518388A JP 30518388 A JP30518388 A JP 30518388A JP H02153011 A JPH02153011 A JP H02153011A
Authority
JP
Japan
Prior art keywords
furnace
lining
slag
smelting reduction
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30518388A
Other languages
Japanese (ja)
Other versions
JPH0611883B2 (en
Inventor
Kazuo Hamai
浜井 和男
Keisuke Asano
敬輔 浅野
Akio Ishii
章生 石井
Atsushi Nakao
淳 中尾
Hiroyuki Katayama
裕之 片山
Katsuhiko Sakamoto
阪本 克彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30518388A priority Critical patent/JPH0611883B2/en
Publication of JPH02153011A publication Critical patent/JPH02153011A/en
Publication of JPH0611883B2 publication Critical patent/JPH0611883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To make eroding speed of the whole lining in a furnace uniform by using carbon-bonding graphite-containing neutral brick below molten slag surface and ceramic-bonding basic brick above the molten slag surface in the lining structure of the smelting reduction furnace. CONSTITUTION:The iron ore is supplied into the smelting reduction furnace A together with reducing agent and slag making agent, and oxygen is blown into the furnace from a top blowing lance L and bottom blowing nozzles N, etc., and the smelting reduction is executed to the above iron ore to obtain pig iron. In the above smelting reduction furnace, the furnace wall part lining positioned below the molten slag S surface under operation is constituted of the carbon-bonding graphite-containing neutral brick 2. On the other hand, the furnace wall lining above the molten slag S surface is constituted of the ceramic-bonding basic brick 1. The above carbon-bonding graphite-containing neutral brick 2 is desirable to be composition containing 75-90wt.% Al2O3, 7-22% C, 1-5% Al or Si and if necessary, further containing 5-15% SiC. By this method, the eroding speed of the whole furnace lining is uniformized and the service life of the furnace lining is extended and the furnace lining cost is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 回転炉を用いて鉄鉱石を溶融還元して銑鉄を製造する溶
融還元炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a smelting reduction furnace for producing pig iron by melting and reducing iron ore using a rotary furnace.

[従来の技術] 近年、鉄鉱石を例えば転炉型の回転炉によって溶融還元
する技術が開発されている。
[Prior Art] In recent years, a technology has been developed for melting and reducing iron ore using, for example, a converter-type rotary furnace.

その製造プロセスとしては例えば予め種湯を装入し、炉
内に鉄鉱石を還元剤であるコークス、無煙炭、造滓剤で
ある石炭等と共に装入し、酸素を吹き込んで還元を行う
ものが一般的に知られている。
The manufacturing process generally involves charging seed water in advance, charging iron ore into a furnace together with coke as a reducing agent, anthracite, coal as a slag forming agent, etc., and then blowing oxygen to reduce the iron ore. is known for.

このプロセスは既に周知の通り上底吹きによる転炉製鋼
法がベースとなっており、溶融還元炉の内張り耐火物と
しては従来の転炉で使用実績の良好なMg0−C,Mg
O−Ca0−C%MgO−MgCO3、CaC03−C
等のカーボンボンドの黒鉛含有塩基性耐火物が多く使用
されている。これらの耐火物は、比較的広い範囲の塩基
度(CaO/5iOz)のスラグに対する耐食性に優れ
、スラグ中に、MgOを富化することによって、ざらに
溶損量を小さくすることができる。又、耐熱衝撃性に優
れ、転炉では高耐用性を示している。しかし、溶融還元
炉用の耐火物としては適性充分なものとは言いがたい。
As is already well known, this process is based on the top-bottom blowing converter steelmaking method, and the lining refractories of the smelting reduction furnace are Mg0-C and Mg, which have a good track record of being used in conventional converters.
O-Ca0-C%MgO-MgCO3, CaC03-C
Carbon-bonded graphite-containing basic refractories such as these are often used. These refractories have excellent corrosion resistance against slag with a relatively wide range of basicity (CaO/5iOz), and by enriching MgO in the slag, the amount of erosion loss can be roughly reduced. In addition, it has excellent thermal shock resistance and exhibits high durability in converters. However, it is difficult to say that it is sufficiently suitable as a refractory for a smelting reduction furnace.

〔発明が解決しようとする課題] 前述した通り、カーボンボンドの黒鉛含有塩基性耐火物
は、比較的塩基度が高<Mg0k化操業が可能な転炉に
おいて格段に優れた特性を発揮するものの溶融還元炉で
は次の問題がある。
[Problems to be Solved by the Invention] As mentioned above, carbon bonded graphite-containing basic refractories exhibit extremely excellent properties in converters that have a relatively high basicity and can be operated at <Mg0k. Reduction furnaces have the following problems.

鉄鉱石の還元について詳述すると鉄鉱石は、種湯面上に
おいてコークス、無煙炭、造滓剤と混合層を形成し、上
吹き酸素によるコークス、無煙炭の燃焼熱によフて予熱
溶融し、この溶融鉄鉱石は、さらに混合層中のコークス
によってFe2O3+3Cc32 [Fe]+3(:O
の反応によって還元する。発生COは、上吹き酸素との
反応によって、2CO+023 H:(hの発熱反応が
炉口炉で起こる。
To explain the reduction of iron ore in detail, iron ore forms a mixed layer with coke, anthracite coal, and slag-forming agent on the surface of the seed metal, and is preheated and melted by the combustion heat of the coke and anthracite coal caused by top-blown oxygen. The molten iron ore is further converted to Fe2O3+3Cc32[Fe]+3(:O
It is reduced by the reaction of The generated CO reacts with top-blown oxygen, resulting in an exothermic reaction of 2CO+023H:(h) in the furnace.

従って、スラグ浴面上部では、高温且つ酸化雰囲気とな
る。
Therefore, the upper part of the slag bath surface has a high temperature and an oxidizing atmosphere.

スラグ浴のスラグ組成は還元速度を高める為に、スラグ
塩基度(CaO/510z) 1.0〜1.3に調整さ
れ、Al2O3、MgO濃度は鉄鉱石、炭材の品種によ
り若干具なるが、それぞれ20%、5%前後である。
The slag composition of the slag bath is adjusted to a slag basicity (CaO/510z) of 1.0 to 1.3 in order to increase the reduction rate, and the Al2O3 and MgO concentrations vary slightly depending on the type of iron ore and carbonaceous material. They are around 20% and 5%, respectively.

この条件下で、従来のMg0−C等のカーボンボンドの
黒鉛含有塩基性耐火物を内張すした場合、スラグ浴及び
スラグ浴面下部の内張り煉瓦は、低塩基度の高AlxO
s低MgOスラグに接触する。
Under these conditions, when lining with a conventional carbon bonded graphite-containing basic refractory such as Mg0-C, the slag bath and the lining bricks below the slag bath surface are made of high AlxO with low basicity.
s Contact with low MgO slag.

一般に、MgOを主成分とする塩基性煉瓦は低塩基度ス
ラグに対して、モンティセライト(CaO・MgO・S
iOx)等の低融点鉱物を生成し、浸食される。
In general, basic bricks containing MgO as a main component are more resistant to low basicity slag than monticerite (CaO/MgO/S).
It produces low melting point minerals such as iOx) and is eroded.

なお、煉瓦中のMgOのスラグ中への溶解量はCab−
5in2−八!205−Mg0の4成分のMgO飽和溶
解濃度に支配される。すなわち、塩基度([:aO/5
LO21を一定とした場合AlzOs濃度の増加と共に
、MgO溶解濃度は増加し煉瓦中MgOの溶出を増加さ
せる。スラグ中へのMgO溶出濃度を低減させる為には
、ドロマイト等のMgO源をスラグ中へ富化することに
よって溶出量を抑制させる方法もあるが、スラグを水砕
して利用する場合にはMgO量の増加は好ましくない(
MgOの水和反応は、CaQの水和反応に比し、′極め
て反応速度が小さく、施工後数年してコンクリート構造
物が破壊する可能性が高く、MgOが厳しく制約されて
いる。従って、高MgOのスラグ発生は、資源活用上問
題となる。) 現行の製銑法である高炉法では、生成するスラグは、主
として路盤材とセメント原料とじて有効に利用されてい
る。
In addition, the amount of MgO dissolved in the slag in the brick is Cab-
5in2-8! It is controlled by the MgO saturation dissolved concentration of the four components 205-Mg0. That is, basicity ([:aO/5
When LO21 is kept constant, as the AlzOs concentration increases, the dissolved MgO concentration increases and the elution of MgO in the brick increases. In order to reduce the concentration of MgO eluted into slag, there is a method of suppressing the amount of eluted MgO by enriching the slag with MgO sources such as dolomite. Increase in amount is not desirable (
The hydration reaction of MgO has an extremely low reaction rate compared to the hydration reaction of CaQ, and there is a high possibility that the concrete structure will break several years after construction, so MgO is severely restricted. Therefore, the generation of high MgO slag poses a problem in terms of resource utilization. ) In the current ironmaking method, the blast furnace method, the slag produced is effectively used mainly as roadbed material and cement raw material.

溶融還元法は製銑法として高炉代替を目指すものであり
、生成するスラグが多量のMgO分を含有していると次
の2つの問題を生ずる。
The smelting reduction method aims to replace the blast furnace as an ironmaking method, and if the produced slag contains a large amount of MgO, the following two problems will occur.

(イ) MgO飽和量近くまで含有していると、消化の
傾向を有するため路盤材としては好ましくない。
(a) If the MgO content is close to the saturation level, it is undesirable as a roadbed material because it tends to be digested.

(ロ) MgOを7%以上含有していると、セメント用
原料としては不適になる。従って、生成スラグを現行高
炉法のルートの中で有効利用するためには、スラグのM
gO含有量を高めることはできない。従って、このよう
な理由でスラグ中へのMgOの富化操業が不可能な状況
下では、従来の転炉で高耐用を示しているMg076%
、C1フ%のMg0−C煉瓦を内張すした場合において
は煉瓦中のMgOの溶出が浸食を律速する。
(b) If it contains 7% or more of MgO, it becomes unsuitable as a raw material for cement. Therefore, in order to effectively utilize the generated slag in the route of the current blast furnace method, it is necessary to
It is not possible to increase the gO content. Therefore, in situations where enrichment of MgO in slag is not possible due to these reasons, Mg076%, which has shown high durability in conventional converters, cannot be used.
In the case where the inner lining is made of Mg0-C bricks with a C1% content, the elution of MgO in the bricks determines the rate of erosion.

高炉操業下では、当該部位の溶損速度は0.04++m
/吹酸時間(++in)であり溶損量は1ヒート4.8
01111 と大とく、内張り層厚を 600mmとし
た場合、 120ヒートで炉止めとなり溶損速度は従来
転炉の場合のo、otmm/吹酸時間(ffIin)に
比し約4倍大きい値となる。
Under blast furnace operation, the erosion rate of this part is 0.04++m
/ acid blowing time (++in) and the amount of erosion is 4.8 per heat.
01111, and when the lining layer thickness is 600 mm, the furnace stops after 120 heats, and the erosion rate is approximately 4 times larger than the o, otmm/oxygen blowing time (ffIin) in the case of a conventional converter. .

一方、スラグ浴面上部では前記した還元生成ガスである
CO2及び上部吹込み02ガスにより高温酸化雰囲気と
なり、MgO−[:煉瓦の稼動面では黒鉛の優先的酸化
が著しく強度低下を生じ、溶損速度は0.2mm/吹酸
時間(min)と大きくなる。
On the other hand, at the upper part of the slag bath surface, a high-temperature oxidizing atmosphere is created by the above-mentioned reduction product gas CO2 and 02 gas blown into the upper part, and on the operating surface of the MgO-[: brick, preferential oxidation of graphite causes a significant decrease in strength, leading to erosion. The speed becomes as high as 0.2 mm/acid blowing time (min).

この対策として八又、St等の金属を添加し、これらを
優先酸化させることにより、耐酸化性の向上が試みられ
たが抜本的な改善に至らなかった。
As a countermeasure to this problem, attempts have been made to improve the oxidation resistance by adding metals such as octamata, St, etc. and oxidizing them preferentially, but no drastic improvement has been achieved.

本発明は、鉄鉱石の溶融還元に適性の高いライニング構
造を有する溶融還元炉を提供するためになされたもので
ある。
The present invention has been made in order to provide a smelting reduction furnace having a lining structure highly suitable for smelting and reducing iron ore.

[課題を解決するための手段] 本発明は、炉内へ鉄鉱石を還元剤および造滓剤と共に、
提供しこの炉内に酸素を吹き込むことによって鉄鉱石を
溶融還元し、銑鉄を製造する溶融還元炉において操業状
態でスラグ浴面下に位置する炉壁、炉低部の内張りをカ
ーボンボンドの黒鉛含有中性煉瓦で構成し、操業状態で
スラグ浴面より上部に位置する側壁部の内張りを融点の
高いセラミックボンドの塩基性煉瓦で構成したことを特
徴とする溶融還元炉である。
[Means for Solving the Problems] The present invention provides iron ore into a furnace together with a reducing agent and a slag-forming agent,
In a smelting reduction furnace that produces pig iron by smelting and reducing iron ore by blowing oxygen into the furnace, the lining of the furnace wall and bottom of the furnace located below the slag bath surface is covered with carbon bonded graphite. This smelting reduction furnace is constructed of neutral bricks, and the lining of the side wall located above the slag bath surface during operation is constructed of ceramic bonded basic bricks with a high melting point.

本発明者らは、先ずスラグ浴面より上部の高温酸化掌囲
気用耐火物について炉内条件の解明実験等を行い、その
結果従来のカーボンボンド黒鉛含有塩基性耐火物より、
セラミックボンドの酸化物系耐火物が高耐用を示すこと
を確認した。具体的にはAJ!20s−5lo2系耐火
物では当該部位の高温下で軟化するため酸化に対しては
、安定であるが耐食性は低い。
The present inventors first conducted experiments to elucidate the in-furnace conditions for high-temperature oxidized gas refractories above the slag bath surface, and found that
It was confirmed that ceramic bonded oxide refractories exhibit high durability. Specifically AJ! 20s-5lo2 refractories soften at high temperatures in the relevant parts, so they are stable against oxidation but have low corrosion resistance.

Mg0−Grt03. MgO−MgO・AJhOs等
のダイレクトボンドのセラミックボンドを形成する塩基
性耐火物が高耐用を示した。固定型の溶融還元炉におい
てはスラグ浴面より上部は、溶融スラグや溶融金属に常
時浸されることはなく、スプラッシュ等が煉瓦表面に付
着するのみで煉瓦内の気孔を通って、スラグあるいは溶
融金属が浸透することはないので、稼動面側に緻密な変
質層を形成することはなく、セラミックボンド塩基性耐
火物の欠点である構造スポールの発生は殆どない。
Mg0-Grt03. Basic refractories that form direct bond ceramic bonds, such as MgO-MgO.AJhOs, have shown high durability. In a fixed type smelting reduction furnace, the area above the slag bath surface is not constantly immersed in molten slag or molten metal, and splashes, etc. only adhere to the surface of the bricks, passing through the pores in the bricks and melting the slag or molten metal. Since the metal does not penetrate, there is no formation of a dense altered layer on the working surface side, and there is almost no structural spalling, which is a drawback of ceramic bonded basic refractories.

一方、熱衝撃による損傷に対しては、操業−操業間の温
度変動を極力小さくする為に保熱を強化することによっ
て対処可能であり、カーボンボンドの黒鉛含有塩基性煉
瓦で発生したような黒鉛の酸化による組織劣化はなく、
スラグ浴面上部で高耐用を示す。
On the other hand, damage caused by thermal shock can be dealt with by strengthening heat retention to minimize temperature fluctuations between operations. There is no tissue deterioration due to oxidation of
Shows high durability above the slag bath surface.

又、スラグ浴下部の低塩基度、高^12’s低MgOス
ラグに浸される部位の耐火物については当該スラグに対
してMgOよりも拡散速度の小さいAQ20s骨材をベ
ースとし、スラグ浸潤を防止し、耐熱衝撃性が向上する
黒鉛を含有させ、さらに、A2、Stの単独あるいは2
f!を含有させ、黒鉛の酸化防止を図ったカーボンボン
ドの黒鉛含有中性煉瓦を通用すれば骨材の溶出が大幅に
緩和され高耐用を示すことを確認した。なお、Al2O
5よりも融点は低いが、当該部位の溶度はせいぜい15
00℃程度であるため、骨材の軟化による悪影響はない
In addition, the refractories in the parts of the lower part of the slag bath that are immersed in the low basicity, high^12's, low MgO slag are based on AQ20s aggregate, which has a lower diffusion rate than MgO to the slag, to prevent slag infiltration. It contains graphite that prevents heat shock and improves thermal shock resistance, and further contains A2, St alone or two
f! It was confirmed that if carbon-bonded graphite-containing neutral bricks were used to prevent the oxidation of graphite, the elution of aggregate would be significantly alleviated and high durability would be achieved. In addition, Al2O
Although the melting point is lower than that of 5, the solubility of the relevant part is at most 15.
Since the temperature is around 00°C, there is no adverse effect due to softening of the aggregate.

それ故、本発明の溶融還元炉においては、スラグ浴面よ
り下部の内張りを構成する煉瓦とスラグ浴面より、上部
の内張りを構成する煉瓦を異なる性質の煉瓦としてそれ
ぞれの煉瓦適性を充分にいかしたものである。
Therefore, in the smelting reduction furnace of the present invention, the bricks constituting the lining below the slag bath surface and the bricks constituting the lining above the slag bath surface are made of bricks with different properties, so that the suitability of each brick can be fully maximized. This is what I did.

このカーボンボンドの黒鉛含有の中性耐火物としては、
Afi、o、−c系、へ1zOs−3iC−C系が好適
であり、AR20s−C系の場合は重量%”t’ALO
s75%〜90%、C7〜22%含有し、さらにA2、
Sl、等を黒鉛の酸化抑制剤として1〜5%含有させた
場合耐スラグ桂、耐酸化性、耐熱衝撃性、確保の上で好
適であり又、^ff1zOs−5iC−C系の場合は、
重量%で八u2o3 フ5〜90%、C5〜20%、S
iC5〜15%を含有し、ざらにA4、St、等金属を
黒鉛酸化抑制剤として1〜5%含有させたものが耐スラ
グ性、耐酸化性、耐熱衝撃性確保の上で好適である。
The graphite-containing neutral refractories of this carbon bond include:
Afi, o, -c system, 1zOs-3iC-C system is suitable, and in the case of AR20s-C system, weight% "t'ALO
Contains s75% to 90%, C7 to 22%, and further A2,
When 1 to 5% of Sl, etc. is contained as an oxidation inhibitor of graphite, it is suitable for ensuring slag resistance, oxidation resistance, and thermal shock resistance.
Weight%: 8u2o3 5-90%, C5-20%, S
A material containing 5 to 15% of iC and 1 to 5% of a metal such as A4, St, etc. as a graphite oxidation inhibitor is suitable for ensuring slag resistance, oxidation resistance, and thermal shock resistance.

なお、この場合のSlCは、操業状態下においてガラス
化して、煉瓦表面を被覆して、特に黒鉛の酸化を抑制し
、耐スポール性を向上する作用をする。
Note that the SlC in this case vitrifies under operating conditions and coats the brick surface, particularly suppressing oxidation of graphite and improving spalling resistance.

又、Al2O3、sic、 c等は特にスラグとの反応
を抑制する上で純度96%以上のものを用いることが好
ましい、又、3文源として、経済性の面からMg−An
、Ca1−Al1等^交合金を用いる場合は、8g%C
aが2%程度含有するが、1g%Caはマイナスの要素
が多いので、極力2%以下にすることが好ましい。
In addition, it is preferable to use Al2O3, SIC, C, etc. with a purity of 96% or higher in order to suppress the reaction with slag.
, when using Ca1-Al1 equilateral alloy, 8g%C
The content of a is about 2%, but since 1g% Ca has many negative elements, it is preferable to keep it to 2% or less as much as possible.

[実施例] 以下に本発明の実施例を第1図に基づいて説明する。[Example] Embodiments of the present invention will be described below with reference to FIG.

この実施例における溶融還元炉は、17Qton/ch
の炉容を有する転炉型溶融還元炉である。
The melting reduction furnace in this example has a capacity of 17 Qton/ch.
This is a converter-type smelting reduction furnace with a furnace capacity of .

第1図においてAは溶融還元炉で、炉内は溶融金属浴M
と、鉄鉱石、コークス、スラグ、混合浴域S、さらに上
部の雰囲気域已に大別される。
In Figure 1, A is a smelting reduction furnace, and inside the furnace is a molten metal bath M.
It is roughly divided into the iron ore, coke, slag, mixed bath area S, and the upper atmosphere area.

この上部の雰囲気域Bの炉壁部にセラミックボンド塩基
性煉瓦であるMgO−Cr2O*のダイレクトボンド煉
瓦1を内張すし、その他にはN20s−9iC−Cのカ
ーボンボンド黒鉛含有中性煉瓦2を内張すした。なお、
図中りは上吹ランスNは下吹ノズルである。
The furnace wall in the upper atmosphere zone B is lined with MgO-Cr2O* direct bond bricks 1, which are ceramic bond basic bricks, and carbon bond graphite-containing neutral bricks 2 of N20s-9iC-C are lined in the other parts. Uchihari Sushita. In addition,
In the figure, the top blow lance N is a bottom blow nozzle.

ここで、用いたそれぞれの煉瓦の組成的特性を実験室的
にテストした結果を従来のMg0−C系のものと併せて
表−1に示す。
Here, the results of laboratory tests on the compositional characteristics of each of the bricks used are shown in Table 1, together with the conventional Mg0-C type bricks.

表−1 ※■CaO/5iOz= 1.0、^JhOs−20%
、MgO−5%のスラグ中に1600℃x511r浸漬
しt8損度を算出した。
Table-1 *■CaO/5iOz= 1.0, ^JhOs-20%
, the t8 loss was calculated by immersing it in MgO-5% slag at 1600°C x 511r.

※■1B00℃xlllr大気雰囲気下で酸化テストし
脱炭層厚みを算出。
*■1B00℃xllllr oxidation test under atmospheric atmosphere to calculate the decarburized layer thickness.

特徴的なことは塩基度1.0.  AlzOs 20%
、Mg05%の溶融還元相当スラグに対する浸食性は、
A120s−C−^i、o3−slc−c > MgO
−Cr2O5ダイレクトボンド> Mg0−Cの順であ
り、^2.O5系の場合当該スラグ中への溶出速度が小
さく、高温酸化霊囲気下では黒鉛含有煉瓦の酸化損耗が
著しいことである。
The characteristic feature is basicity of 1.0. AlzOs 20%
, the erosiveness of slag equivalent to smelting reduction of 05% Mg is as follows:
A120s-C-^i, o3-slc-c > MgO
-Cr2O5 direct bond>Mg0-C, ^2. In the case of O5-based materials, the elution rate into the slag is low, and the oxidation loss of graphite-containing bricks is significant under high-temperature oxidizing atmosphere.

前述した炉容170ton/chの転炉型の溶融還元炉
で約2時間要して1チヤージの溶融還元反応が完了した
時の溶損速度を従来のライニング構造と比較して表−2
に示す、従来に比較し、スラグ浴面より上部の炉壁溶損
速度は1/16に又、スラグ浴面より下部は1/2.4
に低減出来、大幅なライニング寿命の向上により炉材原
単位の大幅な低減と共に、生産性を向上し、製造コスト
の大巾低減ができる。
Table 2 compares the erosion rate when one charge of smelting-reduction reaction is completed in about 2 hours in the aforementioned converter-type smelting-reduction furnace with a furnace capacity of 170 ton/ch compared to that of a conventional lining structure.
Compared to the conventional method, the corrosion rate of the furnace wall above the slag bath surface is 1/16, and that below the slag bath surface is 1/2.4.
This greatly improves the lining life, which significantly reduces the unit consumption of furnace materials, improves productivity, and significantly reduces manufacturing costs.

表−2 AlxOz−G煉瓦の実施例については詳述しなかった
が、表−1におけるA1203−5IC−Cと同等の溶
損速度が得られる。なお、Al、O,−C1八交20.
−5iC−Cに添加する。 kQ、 St等金属は煉瓦
中のCと例えばA2の場合、Affi4Csを生成し、
黒鉛の酸化抑制と共に、黒鉛マトリックス部の強度発現
に有効となる。
Table 2 Although the examples of AlxOz-G bricks were not described in detail, the same erosion rate as A1203-5IC-C in Table 1 can be obtained. In addition, Al, O, -C1 octagonal 20.
-5iC-C. For example, in the case of A2, metals such as kQ and St form Affi4Cs with C in bricks,
It is effective in suppressing the oxidation of graphite and developing strength in the graphite matrix portion.

なお本発明では操業〜操業間の炉口部からの放熱による
内張り煉瓦の急冷に伴うスポールを防止するために従来
のMg0−C系煉瓦で内張すした場合より保熱を強化し
て操業した。
In addition, in the present invention, in order to prevent spalling due to rapid cooling of the lining bricks due to heat radiation from the furnace mouth between operations, heat retention was strengthened compared to the conventional case where the lining was made of Mg0-C bricks. .

[発明の効果コ 本発明の溶融還元炉においては内張リライニング構造を
スラグ浴面より上部の高温酸化雰囲気部にセラミックボ
ンド塩基性耐火物を内張すし、それ以外の部分にカーボ
ンボンドの黒鉛含有中性煉瓦を内張すすることによって
、炉全体の内張りの損速度が均一となり、大幅な炉寿命
延長炉材コストの低減が図れる。
[Effects of the invention] In the smelting reduction furnace of the present invention, the lining relining structure is such that the high temperature oxidizing atmosphere part above the slag bath surface is lined with ceramic bond basic refractory, and the other parts are lined with carbon bond graphite. By lining the furnace with neutral bricks, the loss rate of the lining of the entire furnace becomes uniform, and the life of the furnace can be significantly extended and the cost of furnace materials can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の溶融還元炉の一実施例を示す縦断面
説明図である。 1・・・セラミックボンド塩基性煉瓦、2・・・カーボ
ンボンド黒鉛含有中性煉瓦、B・・・雰囲気域、   
  し・・・上吹ランス、M・・・溶融金属浴、   
N・・・底吹ノズル、S・・・鉄鉱石、コークス、無煙
炭、スラグ管のスラグ浴。 代理人   谷  山  輝  雄 他4名
FIG. 1 is an explanatory longitudinal cross-sectional view showing one embodiment of the melting reduction furnace of the present invention. 1... Ceramic bond basic brick, 2... Carbon bond graphite-containing neutral brick, B... Atmosphere region,
S... Top blowing lance, M... Molten metal bath,
N...bottom blowing nozzle, S...slag bath for iron ore, coke, anthracite, and slag pipes. Agent Teruo Taniyama and 4 others

Claims (1)

【特許請求の範囲】 1 炉内へ鉄鉱石を還元剤および造滓剤と共に供給し、
この炉内に酸素を吹き込むことによって鉄鉱石を溶融還
元して銑鉄を製造する溶融還元炉において、操業状態で
スラグ溶面下に位置する炉壁部内張りをカーボンボンド
の黒鉛含有中性煉瓦で構成し、操業状態でスラグ浴面よ
り上部に位置する炉壁内張りをセラミックボンドの塩基
性煉瓦で構成したことを特徴とする溶融還元炉 2 操業状態でスラグ浴面下に位置する炉壁部内張りを
重量%でAl_2O_3が75〜90%、C=7〜22
%範囲内の化学成分を含有し、さらにAl、Si1種又
は2種を1〜5%含有しているカーボンボンドの黒鉛含
有中性煉瓦で形成したことを特徴とする請求項1記載の
溶融還元炉 3 操業状態下でスラグ浴面下に位置する炉壁部内張り
を重量%でAl_2O_3が75〜90%、C=7〜2
2%、SiCが5〜15%範囲内の化学成分を有し、さ
らに、Al、Siの1種又は2種を1〜5%含有してい
るカーボンボンドの黒鉛含有中性煉瓦で形成したことを
特徴とする請求項1記載の溶融還元炉
[Claims] 1. Supplying iron ore together with a reducing agent and a slag-forming agent into a furnace,
In this smelting reduction furnace, which produces pig iron by melting and reducing iron ore by blowing oxygen into the furnace, the lining of the furnace wall, which is located below the molten slag surface during operation, is made of carbon-bonded graphite-containing neutral bricks. A smelting reduction furnace 2 characterized in that the lining of the furnace wall located above the slag bath surface in the operating state is composed of ceramic bonded basic bricks. Al_2O_3 is 75-90% by weight, C=7-22
%, and further contains 1 to 5% of one or two types of Al and Si, and is made of a carbon bond graphite-containing neutral brick. Furnace 3 Under operating conditions, the lining of the furnace wall located below the slag bath surface is 75 to 90% by weight of Al_2O_3 and C=7 to 2.
2%, SiC in the range of 5 to 15%, and a carbon bond graphite-containing neutral brick containing 1 to 5% of one or both of Al and Si. The melting reduction furnace according to claim 1, characterized in that
JP30518388A 1988-12-02 1988-12-02 Smelting reduction furnace Expired - Fee Related JPH0611883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30518388A JPH0611883B2 (en) 1988-12-02 1988-12-02 Smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30518388A JPH0611883B2 (en) 1988-12-02 1988-12-02 Smelting reduction furnace

Publications (2)

Publication Number Publication Date
JPH02153011A true JPH02153011A (en) 1990-06-12
JPH0611883B2 JPH0611883B2 (en) 1994-02-16

Family

ID=17942055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30518388A Expired - Fee Related JPH0611883B2 (en) 1988-12-02 1988-12-02 Smelting reduction furnace

Country Status (1)

Country Link
JP (1) JPH0611883B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501431A (en) * 1994-05-28 1996-03-26 Abb K.K. Melting furnace for residues from waste incineration plants

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501431A (en) * 1994-05-28 1996-03-26 Abb K.K. Melting furnace for residues from waste incineration plants

Also Published As

Publication number Publication date
JPH0611883B2 (en) 1994-02-16

Similar Documents

Publication Publication Date Title
JP4507429B2 (en) Melting method of low phosphorus cake
JP3854482B2 (en) Hot metal pretreatment method and refining method
JPH02153011A (en) Smelting reduction furnace
JP3726778B2 (en) Hot metal holding container
JP4422318B2 (en) Hot metal dephosphorization method with little refractory damage
JP4329724B2 (en) Converter scrap increase method
JPWO2009028416A1 (en) Iron bath smelting reduction furnace
JP2716173B2 (en) Smelting reduction furnace
JP3106870B2 (en) A smelting method that suppresses erosion of refractories
JP2704904B2 (en) Converter floor coating method
RU2805114C1 (en) Steel melting method in electric arc furnace
RU2771889C1 (en) Method for smelting steel from scrap metal in electric arc furnace
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
JP3947288B2 (en) Desulfurization method of molten iron
JPH0244887B2 (en)
RU2771888C1 (en) Method for smelting steel from scrap metal in electric arc furnace
JP2783894B2 (en) Iron bath smelting reduction method
JPH10183219A (en) Slag coating method
US499248A (en) Basic lining
JP2000345226A (en) Method for dephosphorizing molten iron
JP3771635B2 (en) Converter refining method
KR100840264B1 (en) Magnesia-carbon coating material for the iron making vessel
JPH0564684B2 (en)
Biswas et al. Iron-and Steel-Making Process
JP2706112B2 (en) Smelting reduction steelmaking method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees