JPH0611883B2 - Smelting reduction furnace - Google Patents

Smelting reduction furnace

Info

Publication number
JPH0611883B2
JPH0611883B2 JP30518388A JP30518388A JPH0611883B2 JP H0611883 B2 JPH0611883 B2 JP H0611883B2 JP 30518388 A JP30518388 A JP 30518388A JP 30518388 A JP30518388 A JP 30518388A JP H0611883 B2 JPH0611883 B2 JP H0611883B2
Authority
JP
Japan
Prior art keywords
furnace
slag
smelting reduction
mgo
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30518388A
Other languages
Japanese (ja)
Other versions
JPH02153011A (en
Inventor
和男 浜井
敬輔 浅野
章生 石井
淳 中尾
裕之 片山
克彦 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30518388A priority Critical patent/JPH0611883B2/en
Publication of JPH02153011A publication Critical patent/JPH02153011A/en
Publication of JPH0611883B2 publication Critical patent/JPH0611883B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 回転炉を用いて鉄鉱石を溶融還元して銑鉄を製造する溶
融還元炉に関するものである。
The present invention relates to a smelting reduction furnace for producing pig iron by smelting reduction of iron ore using a rotary furnace.

[従来の技術] 近年、鉄鉱石を例えば転炉型の回転炉によって溶融還元
する技術が開発されている。
[Prior Art] In recent years, a technology for smelting and reducing iron ore by, for example, a converter-type rotary furnace has been developed.

その製造プロセスとしては例えば予め種湯を装入し、炉
内に鉄鉱石を還元剤であるコークス、無煙炭、造滓剤で
ある石炭等と共に装入し、酸素を吹き込んで還元を行う
ものが一般的に知られている。
As the manufacturing process, for example, a method in which seed hot water is charged in advance and iron ore is charged in a furnace together with coke which is a reducing agent, anthracite, coal which is a slag-forming agent, and oxygen is blown to perform reduction is generally used. Known to be.

このプロセスは既に周知の通り上底吹きによる転炉製鋼
法がベースとなっており、溶融還元炉の内張り耐火物と
しては従来の転炉で使用実績の良好なMg0-C、Mg0-CaO-
C、MgO-MgCO3、CaCO3-C等のカーボンボンドの黒鉛含有
塩基性耐火物が多く使用されている。これらの耐火物
は、比較的広い範囲の塩基度(CaO/SiO2)のスラグに対
する耐食性に優れ、スラグ中に、MgOを富化することに
よって、さらに溶損量を小さくすることができる。又、
耐熱衝撃性に優れ、転炉では高耐用性を示している。し
かし、溶融還元炉用の耐火物としては適性充分なものと
は言いがたい。
As already known, this process is based on the converter steelmaking method by blowing from the top and bottom, and as the refractory lining for the smelting reduction furnace, Mg0-C and Mg0-CaO-, which have a good track record of use in conventional converters, are used.
Carbon-bonded graphite-containing basic refractories such as C, MgO-MgCO 3 and CaCO 3 -C are often used. These refractories have excellent corrosion resistance against slag having a relatively wide range of basicity (CaO / SiO 2 ), and the amount of erosion loss can be further reduced by enriching MgO in the slag. or,
It has excellent thermal shock resistance and high durability in converters. However, it is hard to say that it is sufficiently suitable as a refractory material for a smelting reduction furnace.

[発明が解決しようとする課題] 前述した通り、カーボンボンドの黒鉛含有塩基性耐火物
は、比較的塩基度が高くMgO富化操業が可能な転炉にお
いては格段に優れた特性を発揮するものの溶融還元炉で
は次の問題がある。
[Problems to be Solved by the Invention] As described above, the carbon-bonded graphite-containing basic refractory material exhibits significantly excellent characteristics in a converter having a relatively high basicity and capable of MgO-rich operation. The smelting reduction furnace has the following problems.

鉄鉱石の還元について詳述すると鉄鉱石は、種湯面上に
おいてコークス、無煙炭、造滓剤と混合層を形成し、上
吹き酸素によるコークス、無煙炭の燃焼熱によって予熱
溶融し、この溶融鉄鉱石は、さらに混合層中のコークス
によってFe2O3+3C2[Fe]+3COの反応によって還元す
る。発生COは、上吹き酸素との反応によって、2CO+O2
2CO2の発熱反応が炉口炉で起こる。従って、スラグ浴面
上部では、高温且つ酸化雰囲気となる。
To describe the reduction of iron ore in detail, iron ore forms a mixed layer with coke, anthracite, and a slag-forming agent on the surface of the seed melt, and is preheated and melted by the combustion heat of coke and anthracite by top-blown oxygen. Is further reduced by the reaction of Fe 2 O 3 + 3C2 [Fe] + 3CO by the coke in the mixed layer. The generated CO is 2CO + O2 due to the reaction with top-blown oxygen.
An exothermic reaction of 2CO 2 occurs in the furnace mouth furnace. Therefore, the upper part of the slag bath surface has a high temperature and an oxidizing atmosphere.

スラグ浴のスラグ組成は還元速度を高める為に、スラグ
塩基度(CaO/SiO2)1.0〜1.3に調整され、Al2O3、MgO濃度
は鉄鉱石、炭材の品種により若干異なるが、それぞれ2
0%、5%前後である。
The slag composition of the slag bath is adjusted to slag basicity (CaO / SiO 2 ) 1.0 to 1.3 to increase the reduction rate, and Al 2 O 3 and MgO concentrations differ slightly depending on the iron ore and carbonaceous materials, Two
It is around 0% and 5%.

この条件下で、従来のMgO-C等のカーボンボンドの黒鉛
含有塩基性耐火物を内張りした場合、スラグ浴及びスラ
グ浴面下部の内張り煉瓦は、低塩基度の高Al2O3低MgOス
ラグに接触する。
Under these conditions, when lining a conventional carbon-bonded graphite-containing basic refractory such as MgO-C, the slag bath and the lining brick at the bottom of the slag bath surface have low basicity, high Al 2 O 3 and low MgO slag. To contact.

一般に、MgOを主成分とする塩基性煉瓦は低塩基度スラ
グに対して、モンティセライト(CaO・MgO・SiO2)等の低融
点鉱物を生成し、浸食される。
In general, basic bricks containing MgO as a main component produce low-melting minerals such as Monticellite (CaO / MgO / SiO 2 ) and erode low basicity slag.

なお、煉瓦中のMgOのスラグ中への溶解量はCaO−SiO2
Al2O3−MgOの4成分のMgO飽和溶解濃度に支配される。
すなわち、塩基度(CaO/SiO2)を一定とした場合Al2O3
度の増加と共に、MgO溶解濃度は増加し煉瓦中MgOの溶出
を増加させる。スラグ中へのMgO溶出濃度を低減させる
為には、ドロマイト等のMgO源をスラグ中へ富化するこ
とによって溶出量を抑制させる方法もあるが、スラグを
水砕して利用する場合にはMgO量の増加は好ましくない
(MgOの水和反応は、CaOの水和反応に比し、極めて反応
速度が小さく、施工後数年してコンクリート構造物が破
壊する可能性が高く、MgOが厳しく制約されている。従
って、高MgOのスラグ発生は、資源活用上問題とな
る。) 現行の製銑法である高炉法では、生成するスラグは、主
として路盤材とセメント原料として有効に利用されてい
る。
Incidentally, amount of dissolution into the slag MgO in brick CaO-SiO 2 -
It is governed by the MgO saturated solution concentration of the four components of Al 2 O 3 -MgO.
That is, when the basicity (CaO / SiO 2 ) is kept constant, the dissolved concentration of MgO increases and the elution of MgO in bricks increases as the Al 2 O 3 concentration increases. In order to reduce the MgO elution concentration in the slag, there is also a method of suppressing the elution amount by enriching the MgO source such as dolomite into the slag, but when the slag is granulated and used, MgO is used. Increasing the amount is not desirable (MgO hydration reaction has a very low reaction rate compared to CaO hydration reaction, the concrete structure is likely to break within a few years after construction, and MgO is severely restricted. Therefore, the generation of high MgO slag becomes a problem in resource utilization.) In the current blast furnace method, which is the current ironmaking process, the slag produced is mainly effectively used as a roadbed material and a cement raw material. .

溶融還元法は製銑法として高炉代替を目指すものであ
り、生成するスラグが多量のMgO分を含有していると次
の2つの問題を生ずる。
The smelting reduction method aims to replace the blast furnace as an ironmaking method, and if the generated slag contains a large amount of MgO, the following two problems occur.

(イ)MgO飽和量近くまで含有していると、消化の傾向
を有するため路盤材としては好ましくない。
(B) If the content of MgO is close to the saturated amount, it tends to be digested, which is not preferable as a roadbed material.

(ロ)MgOを7%以上含有していると、セメント用原料
としては不適になる。従って、生成スラグを現行高炉法
のルートの中で有効利用するためには、スラグのMgO含
有量を高めることはできない。従って、このような理由
でスラグ中へのMgOの富化操業が不可能な状況下では、
従来の転炉で高耐用を示しているMgO76%、C17%
のMgO-C煉瓦を内張りした場合においては煉瓦中のMgOの
溶出が浸食を律速する。
(B) If the content of MgO is 7% or more, it becomes unsuitable as a raw material for cement. Therefore, in order to effectively utilize the produced slag in the route of the current blast furnace method, the MgO content of the slag cannot be increased. Therefore, under the circumstances where the enriched operation of MgO in the slag is impossible for this reason,
76% of MgO and 17% of C, which show high durability in the conventional converter
In the case of lining MgO-C bricks, the elution of MgO in the bricks limits the rate of erosion.

高炉操業下では、当該部位の溶損速度は0.04mm/吹酸時
間(min)であり溶損量は1ヒート4.8mmと大きく、内張り
層厚を600mmとした場合、120ヒートで炉止めとなり溶損
速度は従来転炉の場合の0.01mm/吹酸時間(min)に比し
約4倍大きい値となる。
During blast furnace operation, the rate of erosion at the relevant part is 0.04 mm / blowing acid time (min), and the amount of erosion is as large as 1 heat 4.8 mm. When the lining layer thickness is 600 mm, the furnace stops at 120 heat and melts. The loss rate is about 4 times larger than 0.01 mm in the conventional converter / blown acid time (min).

一方、スラグ浴面上部では前記した還元生成ガスである
CO2及び上部吹込みO2ガスにより高温酸化雰囲気とな
り、MgO-C煉瓦の稼動面では黒鉛の優先的酸化が著しく
強度低下を生じ、溶損速度は0.2mm/吹酸時間(min)と大
きくなる。この対策としてAl、Si等の金属を添加し、こ
れらを優先酸化させることにより、耐酸化性の向上が試
みられたが抜本的な改善に至らなかった。
On the other hand, the above-mentioned reduction product gas is above the slag bath surface.
Due to CO 2 and O 2 gas blown into the top, a high-temperature oxidizing atmosphere was created, and the preferential oxidation of graphite caused a marked decrease in strength on the operating surface of MgO-C bricks, and the melting rate was as large as 0.2 mm / propoxylic acid time (min). Become. As a countermeasure against this, an attempt was made to improve the oxidation resistance by adding metals such as Al and Si and preferentially oxidizing them, but the improvement was not radical.

本発明は、鉄鉱石の溶融還元に適性の高いライニング構
造を有する溶融還元炉を提供するためになされたもので
ある。
The present invention has been made to provide a smelting reduction furnace having a lining structure that is highly suitable for smelting reduction of iron ore.

[課題を解決するための手段] 本発明は、炉内へ鉄鉱石を還元剤および造滓剤と共に、
提供しこの炉内に酸素を吹き込むことによって鉄鉱石を
溶融還元し、銑鉄を製造する溶融還元炉において操業状
態でスラグ浴面下に位置する炉壁、炉低部の内張りをカ
ーボンボンドの黒鉛含有中性煉瓦で構成し、操業状態で
スラグ浴面より上部に位置する側壁部の内張りを融点の
高いセラミックボンドの塩基性煉瓦で構成したことを特
徴とする溶融還元炉である。
[Means for Solving the Problems] The present invention relates to a method in which iron ore is introduced into a furnace together with a reducing agent and a slag-forming agent.
Provided and blown oxygen into the furnace to smelt and reduce the iron ore, and in the smelting and reduction furnace that produces pig iron, the furnace wall located below the slag bath surface in the operating state and the lining of the furnace bottom contain carbon bond graphite. A smelting reduction furnace characterized in that it is made of neutral bricks, and the lining of the side wall portion located above the slag bath surface in the operating state is made of a ceramic-bonded basic brick having a high melting point.

本発明者らは、先ずスラグ浴面より上部の高温酸化雰囲
気用耐火物について炉内条件の解明実験等を行い、その
結果従来のカーボンボンド黒鉛含有塩基性耐火物より、
セラミックボンドの酸化物系耐火物が高耐用を示すこと
を確認した。具体的にはAl2O3-SiO2系耐火物では当該部
位の高温下で軟化するため酸化に対しては、安定である
が耐食性は低い。
The present inventors first conducted an elucidation experiment of the in-furnace conditions for the refractory for high-temperature oxidizing atmosphere above the slag bath surface, and as a result, the conventional carbon-bonded graphite-containing basic refractory
It was confirmed that the oxide-based refractory of the ceramic bond has high durability. Specifically, the Al 2 O 3 —SiO 2 refractory material is stable against oxidation because it softens at a high temperature in the relevant part, but has low corrosion resistance.

MgO-Cr2O3、MgO-MgO・Al2O3等のダイレクトボンドのセラ
ミックボンドを形成する塩基性耐火物が高耐用を示し
た。固定型の溶融還元炉においてはスラグ浴面より上部
は、溶融スラグや溶融金属に常時浸されることはなく、
スプラッシュ等が煉瓦表面に付着するのみで煉瓦内の気
孔を通って、スラグあるいは溶融金属が浸透することは
ないので、稼動面側に緻密な変質層を形成することはな
く、セラミックボンド塩基性耐火物の欠点である構造ス
ポールの発生は殆どない。
Basic refractories that form direct bond ceramic bonds such as MgO-Cr 2 O 3 and MgO-MgO.Al 2 O 3 showed high durability. In the fixed type smelting reduction furnace, the upper part of the slag bath surface is not constantly immersed in molten slag or molten metal,
Since slag or molten metal does not permeate through the pores in the brick, only the splash adheres to the brick surface, so a dense altered layer is not formed on the operating surface side, and ceramic bond basic fire resistance There is almost no occurrence of structural spall which is a defect of the product.

一方、熱衝撃による損傷に対しては、操業−操業間の温
度変動を極力小さくする為に保熱を強化することによっ
て対処可能であり、カーボンボンドの黒鉛含有塩基性煉
瓦で発生したような黒鉛の酸化による組織劣化はなく、
スラグ浴面上部で高耐用を示す。
On the other hand, damage due to thermal shock can be dealt with by strengthening heat retention in order to minimize temperature fluctuation between operations, and graphite such as that generated in carbon-bonded graphite-containing basic bricks can be used. There is no tissue deterioration due to the oxidation of
High durability at the upper part of the slag bath surface.

又、スラグ浴下部の低塩基度、高Al2O3低MgOスラグに浸
される部位の耐火物については当該スラグに対してMgO
よりも拡散速度の小さいAl2O3骨材をベースとし、スラ
グ浸潤を防止し、耐熱衝撃性が向上する黒鉛を含有さ
せ、さらに、Al、Siの単独あるいは2種を含有させ、黒
鉛の酸化防止を図ったカーボンボンドの黒鉛含有中性煉
瓦を適用すれば骨材の溶出が大幅に緩和され高耐用を示
すことを確認した。なお、Al2O3よりも融点は低いが、
当該部位の溶度はせいぜい1500℃程度であるため、骨材
の軟化による悪影響はない。
Also, for the refractory in the lower basicity and high Al 2 O 3 low MgO slag bath, the MgO
Based on Al 2 O 3 aggregate, which has a smaller diffusion rate than that, contains graphite that prevents slag infiltration and improves thermal shock resistance, and further contains Al or Si alone or in combination with two types to oxidize graphite. It was confirmed that the application of carbon-bonded graphite-containing neutral bricks, which was designed to prevent this, significantly reduced the elution of aggregates and demonstrated high durability. Although it has a lower melting point than Al 2 O 3 ,
Since the solubility of the site is about 1500 ° C at most, there is no adverse effect due to the softening of the aggregate.

それ故、本発明の溶融還元炉においては、スラグ浴面よ
り下部の内張りを構成する煉瓦とスラグ浴面より、上部
の内張りを構成する煉瓦を異なる性質の煉瓦としてそれ
ぞれの煉瓦適性を充分にいかしたものである。
Therefore, in the smelting reduction furnace of the present invention, the bricks forming the inner lining below the slag bath surface and the bricks forming the upper lining above the slag bath surface have different brick suitability as bricks of different properties. It was done.

このカーボンボンドの黒鉛含有の中性耐火物としては、
Al2O3-C系、Al2O3-SiC-C系が好適であり、Al2O3-C系の
場合は重量%でAl2O375〜90%、C7〜22%含有
し、さらにAl、Si等を黒鉛の酸化抑制剤として1〜5%
含有させた場合耐スラグ性、耐酸化性、耐熱衝撃性、確
保の上で好適であり又、Al2O3-SiC-C系の場合は、重量
%でAl2O375〜90%、C5〜20%、SiC5〜15%
を含有し、さらにAl、Si、等金属を黒鉛酸化抑制剤とし
て1〜5%含有させたものが耐スラグ性、耐酸化性、耐
熱衝撃性確保の上で好適である。
As the graphite-containing neutral refractory of this carbon bond,
Al 2 O 3 -C type and Al 2 O 3 -SiC-C type are suitable. In the case of Al 2 O 3 -C type, Al 2 O 3 contains 75 to 90% by weight and C 7 to 22% by weight. , 1% to 5% of Al, Si, etc. as graphite oxidation inhibitors
When contained, it is suitable for ensuring slag resistance, oxidation resistance, thermal shock resistance, and in the case of Al 2 O 3 -SiC-C system, Al 2 O 3 is 75 to 90% by weight. C5-20%, SiC5-15%
In addition, 1 to 5% of a metal such as Al and Si as a graphite oxidation inhibitor is suitable for ensuring slag resistance, oxidation resistance and thermal shock resistance.

なお、この場合のSiCは、操業状態下においてガラス化
して、煉瓦表面を被覆して、特に黒鉛の酸化を抑制し、
耐スポール性を向上する作用をする。
Incidentally, SiC in this case is vitrified under operating conditions, coats the brick surface, particularly suppresses oxidation of graphite,
Functions to improve spall resistance.

又、Al2O3、SiC、C等は特にスラグとの反応を抑制する
上で純度96%以上のものを用いることが好ましい。
又、Al源として、経済性の面からMg-Al、Cal-Al等Al合
金を用いる場合は、Hg、Caが2%程度含有するが、Mg、
Caはマイナスの要素が多いので、極力2%以下にするこ
とが好ましい。
Further, it is preferable to use Al 2 O 3 , SiC, C and the like having a purity of 96% or more in order to suppress the reaction with slag.
When an Al alloy such as Mg-Al or Cal-Al is used as the Al source from the economical viewpoint, Hg and Ca are contained in about 2%, but Mg,
Since Ca has many negative factors, it is preferable to make it 2% or less as much as possible.

[実施例] 以下に本発明の実施例を第1図に基づいて説明する。[Embodiment] An embodiment of the present invention will be described below with reference to FIG.

この実施例における溶融還元炉は、170ton/chの炉容を
有する転炉型溶融還元炉である。
The smelting reduction furnace in this example is a converter type smelting reduction furnace having a furnace capacity of 170 ton / ch.

第1図においてAは溶融還元炉で、炉内は溶融金属浴M
と、鉄鉱石、コークス、スラグ、混合浴域S、さらに上
部の雰囲気域Bに大別される。
In FIG. 1, A is a smelting reduction furnace, and the inside of the furnace is a molten metal bath M.
And iron ore, coke, slag, mixed bath area S, and further upper atmosphere area B.

この上部の雰囲気域Bの炉壁部にセラミックボンド塩基
性煉瓦であるMgO-Cr2O3のダイレクトボンド煉瓦1を内
張りし、その他にはAl2O3-SiC-Cのカーボンボンド黒鉛
含有中性煉瓦2を内張りした。なお、図中Lは上吹ラン
スNは下吹ノズルである。
The furnace wall in the upper atmosphere area B is lined with a direct bond brick 1 of MgO-Cr 2 O 3 which is a ceramic bond basic brick, and in addition, carbon bond graphite containing Al 2 O 3 -SiC-C is included. Sex brick 2 was lined. In the drawing, L is an upper blowing lance N is a lower blowing nozzle.

ここで、用いたそれぞれの煉瓦の組成物特性を実験室的
にテストした結果を従来のMgO-C系のものと併せて表−
1に示す。
Here, the results of laboratory tests of the composition properties of each of the bricks used are shown together with those of the conventional MgO-C system.
Shown in 1.

特徴的なことは塩基度1.0、Al2O320%、MgO5%の溶
融還元相当スラグに対する浸食性は、Al2O3−C=Al2O3
−SiC-C>MgO=Cr2O3ダイレクトボンド>MgO-Cの順であ
り、Al2O3系の場合当該スラグ中への溶出速度が小さ
く、高温酸化雰囲気下では黒鉛含有煉瓦の酸化損耗が著
しいことである。
The characteristic is that the erosion property against slag equivalent to smelting reduction of basicity 1.0, Al 2 O 3 20%, MgO 5% is Al 2 O 3 -C = Al 2 O 3
-SiC-C> is in the order of MgO = Cr 2 O 3 Direct Bond> MgO-C, Al 2 O 3 system when low dissolution rate into the slag in the oxidation wear of the graphite-containing bricks under high-temperature oxidizing atmosphere Is remarkable.

前述した炉容170ton/chの転炉型の溶融還元炉で約2時
間要して1チャージの溶融還元反応が完了した時の溶損
速度を従来のライニング構造と比較して表−2に示す。
従来に比較し、スラグ浴面より上部の炉壁溶損速度は1/
16に又、スラグ浴面より下部は1/2.4に低減出来、大幅
なライニング寿命の向上により炉材原単位の大幅な低減
と共に、生産性を向上し、製造コストの大巾低減ができ
る。
Table 2 shows the erosion rate when the smelting reduction reaction of one charge was completed in about 2 hours in a converter type smelting reduction furnace with a furnace capacity of 170 ton / ch as compared with the conventional lining structure. .
Compared with the conventional method, the melting rate of the furnace wall above the slag bath surface is 1 /
In addition, the area below the slag bath surface can be reduced to 1 / 2.4, and the life of the lining is greatly reduced, which greatly reduces the unit consumption of furnace material, improves productivity, and greatly reduces manufacturing costs.

Al2O3-C煉瓦の実施例については詳述しなかったが、表
−1におけるAl2O3-SiC-Cと同等の溶損速度が得られ
る。なお、Al2O3-C、Al2O3-SiC-Cに添加する。Al、Si等
金属は煉瓦中のCと例えばAlの場合、Al4C3を生成し、
黒鉛の酸化抑制と共に、黒鉛マトリックス部の強度発現
に有効となる。
Although an example of Al 2 O 3 -C bricks was not described in detail, the same corrosion loss rate as Al 2 O 3 -SiC-C in Table 1 can be obtained. Incidentally, Al 2 O 3 -C, added to Al 2 O 3 -SiC-C. Al, Si and metal in the case of C and for example, Al in the brick, generates Al 4 C 3,
It is effective in suppressing the oxidation of graphite and developing the strength of the graphite matrix part.

なお本発明では操業〜操業間の炉口部からの放熱による
内張り煉瓦の急冷に伴うスポールを防止するために従来
のMgO-C系煉瓦で内張りした場合より保熱を強化して操
業した。
In the present invention, in order to prevent spalls caused by rapid cooling of the lining bricks due to heat radiation from the furnace opening between the operations, the heat retention was strengthened compared to the case where the conventional MgO-C bricks were lined.

[発明の効果] 本発明の溶融還元炉においては内張りライニング構造を
スラグ浴面より上部の高温酸化雰囲気部にセラミックボ
ンド塩基性耐火物を内張りし、それ以外の部分にカーボ
ンボンドの黒鉛含有中性煉瓦を内張りすることによっ
て、炉全体の内張りの損速度が均一となり、大幅な炉寿
命延長炉材コストの低減が図れる。
[Advantages of the Invention] In the smelting reduction furnace of the present invention, the lining structure is lined with a ceramic bond basic refractory in the high temperature oxidizing atmosphere above the slag bath surface, and the carbon bond graphite-containing neutral in the other parts. By lining the brick, the loss rate of the lining of the entire furnace becomes uniform, and the furnace life can be greatly extended, and the cost of the furnace material can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の溶融還元炉の一実施例を示す縦断面
説明図である。 1…セラミックボンド塩基性煉瓦、 2…カーボンボンド黒鉛含有中性煉瓦、 B…雰囲気域、L…上吹ランス、 M…溶融金属浴、N…底吹ノズル、 S…鉄鉱石、コークス、無煙炭、スラグ管のスラグ浴。
FIG. 1 is a vertical cross-sectional explanatory view showing an embodiment of the smelting reduction furnace of the present invention. 1 ... Ceramic bond basic brick, 2 ... Carbon bond graphite-containing neutral brick, B ... Atmosphere region, L ... Top blowing lance, M ... Molten metal bath, N ... Bottom blowing nozzle, S ... Iron ore, coke, anthracite, Slag bath for slag pipe.

フロントページの続き (72)発明者 中尾 淳 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式會社設備技術本部内 (72)発明者 片山 裕之 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式會社第3技術研究所内 (72)発明者 阪本 克彦 大阪府堺市築港八幡町1番地 新日本製鐵 株式會社堺製鐵所内Front page continuation (72) Atsushi Nakao Atsushi Nakao 1-1-1, Emitsu Hachimanto-ku, Kitakyushu, Fukuoka Prefecture Inside the Engineering Department, Nippon Steel Co., Ltd. ―1-1 ― Inside Nippon Steel Co., Ltd. 3rd Technical Research Laboratory (72) Inventor Katsuhiko Sakamoto No. 1 Tsukiko Hachiman-cho, Sakai City, Osaka Prefecture Inside Nippon Steel Co., Ltd. Sakai Steel

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】炉内へ鉄鉱石を還元剤および造滓剤と共に
供給し、この炉内に酸素を吹き込むことによって鉄鉱石
を溶融還元して銑鉄を製造する溶融還元炉において、操
業状態でスラグ溶面下に位置する炉壁部内張りをカーボ
ンボンドの黒鉛含有中性煉瓦で構成し、操業状態でスラ
グ浴面より上部に位置する炉壁内張りをセラミックボン
ドの塩基性煉瓦で構成したことを特徴とする溶融還元炉
1. A slag in a smelting reduction furnace in which iron ore is supplied into a furnace together with a reducing agent and a slag-forming agent, and oxygen is blown into the furnace to melt-reduce the iron ore to produce pig iron. The inner wall of the furnace wall located below the molten surface is made of carbon-bonded graphite-containing neutral bricks, and the inner wall of the furnace wall located above the slag bath surface in operation is made of ceramic-bonded basic bricks. Smelting reduction furnace
【請求項2】操業状態でスラグ浴面下に位置する炉壁部
内張りを重量%でAl2O3が75〜95%、C=7〜22
%範囲内の化学成分を含有し、さらにAl、Si1種又は2
種を1〜5%含有しているカーボンボンドの黒鉛含有中
性煉瓦で形成したことを特徴とする請求項1記載の溶融
還元炉
2. The furnace wall lining located below the slag bath surface in an operating state is 75 to 95% by weight of Al 2 O 3 and C = 7 to 22.
Containing chemical components within the range of%, Al, Si type 1 or 2
The smelting reduction furnace according to claim 1, wherein the smelting reduction furnace is formed of a carbon-bonded graphite-containing neutral brick containing 1 to 5% of seeds.
【請求項3】操業状態下でスラグ浴面下に位置する炉壁
部内張りを重量%でAl2O3が75〜90%、C=7〜2
2%、SiCが5〜15%範囲内の化学成分を有し、さら
に、Al、Siの1種又は2種を1〜5%含有しているカー
ボンボンドの黒鉛含有中性煉瓦で形成したことを特徴と
する請求項1記載の溶融還元炉
3. A furnace wall lining located below the surface of the slag bath under operating conditions contains 75 to 90% by weight of Al 2 O 3 and C = 7 to 2
2%, SiC has a chemical component within the range of 5 to 15%, and is formed of a carbon-bonded graphite-containing neutral brick containing 1 to 5% of one or two of Al and Si. The smelting reduction furnace according to claim 1, wherein
JP30518388A 1988-12-02 1988-12-02 Smelting reduction furnace Expired - Fee Related JPH0611883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30518388A JPH0611883B2 (en) 1988-12-02 1988-12-02 Smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30518388A JPH0611883B2 (en) 1988-12-02 1988-12-02 Smelting reduction furnace

Publications (2)

Publication Number Publication Date
JPH02153011A JPH02153011A (en) 1990-06-12
JPH0611883B2 true JPH0611883B2 (en) 1994-02-16

Family

ID=17942055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30518388A Expired - Fee Related JPH0611883B2 (en) 1988-12-02 1988-12-02 Smelting reduction furnace

Country Status (1)

Country Link
JP (1) JPH0611883B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4418734A1 (en) * 1994-05-28 1995-11-30 Abb Gadelius K K Melting furnace for residues from waste incineration plants

Also Published As

Publication number Publication date
JPH02153011A (en) 1990-06-12

Similar Documents

Publication Publication Date Title
CN105734197A (en) Novel environment-friendly synthetic slag forming material
CA1321075C (en) Additive for promoting slag formation in steel refining ladle
RU2321641C1 (en) Complex synthetic low-melting temperature flux for ferrous metallurgy
CN108330243A (en) A method of it reducing converter lining and corrodes
JPH0611883B2 (en) Smelting reduction furnace
JP4329724B2 (en) Converter scrap increase method
JP4598875B2 (en) Iron bath smelting reduction furnace
JP2716173B2 (en) Smelting reduction furnace
JP4422318B2 (en) Hot metal dephosphorization method with little refractory damage
JPH0437136B2 (en)
JP2704904B2 (en) Converter floor coating method
JP3106870B2 (en) A smelting method that suppresses erosion of refractories
JP3158912B2 (en) Stainless steel refining method
RU2771889C1 (en) Method for smelting steel from scrap metal in electric arc furnace
RU2805114C1 (en) Steel melting method in electric arc furnace
JPS62127413A (en) Raw material charging method for blast furnace
JP2783894B2 (en) Iron bath smelting reduction method
Biswas et al. Iron-and Steel-Making Process
JPH10183219A (en) Slag coating method
RU2287018C2 (en) Method of converter steelmaking process
RU2387717C2 (en) Method of steelmaking in converter
JP3764543B2 (en) Method of melting iron-containing cold material
JPH0564684B2 (en)
JP2002275521A (en) Method for dephosphorizing molten high carbon steel
CN116240330A (en) Clean duplex method for converter steelmaking

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees