JP3947288B2 - Desulfurization method of molten iron - Google Patents
Desulfurization method of molten iron Download PDFInfo
- Publication number
- JP3947288B2 JP3947288B2 JP00126598A JP126598A JP3947288B2 JP 3947288 B2 JP3947288 B2 JP 3947288B2 JP 00126598 A JP00126598 A JP 00126598A JP 126598 A JP126598 A JP 126598A JP 3947288 B2 JP3947288 B2 JP 3947288B2
- Authority
- JP
- Japan
- Prior art keywords
- molten iron
- reduction
- gas
- reducing agent
- desulfurization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Treatment Of Steel In Its Molten State (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、硫黄と反応し易い金属の蒸気により溶銑、溶鋼等の脱硫を行う溶鉄の脱硫方法に関する。
【0002】
【従来の技術】
近年、鋼材の品質に対する要求が厳しくなるにともない、製鋼過程で脱硫精錬を強化して、低硫鋼、極低硫鋼を溶製する必要性が高まっている。
【0003】
高炉溶銑を主原料として溶鋼を製造する際に、脱硫精錬は溶銑段階、転炉での脱炭精錬段階、溶鋼段階で行うことができるが、近年溶銑予備処理技術が発達して、転炉では主に脱炭と昇熱のみを行う製鋼法が主流になりつつあり、溶銑予備処理工程及び二次精錬工程での脱硫精錬が重要になっている。
【0004】
溶銑予備処理での脱硫は、高炉鋳床や溶銑搬送容器内で、生石灰、ソーダ灰等の塩基性造滓材を用いて行う方法が一般的であるが、生石灰は滓化しにくいため、粉体インジェクション法によっても脱硫反応の効率が低く、また鉄分ロスや生成したスラグの処理が問題となる。一方ソーダ灰を用いる場合には、粉塵の発生や耐火物の損耗が問題となる。
【0005】
二次精錬での脱硫は、溶鋼鍋にフラックスを添加し脱硫スラグを形成させて行う方法が一般的であるが、この場合同時に又は先行して溶鋼の脱酸を行う必要があり、脱酸剤の歩留り低下や二次精錬時間の延長による溶鋼の温度低下、取鍋耐火物の損耗等の問題がある。
【0006】
このため近年、MgやCa等の金属を溶鋼鍋やタンディッシュで添加して、溶鋼の脱硫を行う方法が多数提案されている。しかし、この方法では高価な金属Mgや金属Caを用いる必要があり、かつこれらの金属は溶鋼温度では蒸発ロスし易いため反応効率が低く、脱硫コストが高くなるという問題がある。
【0007】
【発明が解決しようとする課題】
本発明は、上記のような従来の脱硫技術の問題点に鑑み、生石灰やソーダ灰等の造滓材を用いることなく、かつ金属Mgや金属Caのような高価な脱硫剤を用いずに、比較的低コストで溶銑、溶鋼等を脱硫できる新たな溶鉄の脱硫方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の発明者らは、アルカリ金属、アルカリ土類金属の酸化物又はこれら金属の炭酸塩を固体還元剤で還元して、発生した金属蒸気を不活性ガスをキャリアガスとして溶鉄内に吹き込むことにより、溶銑、溶鋼等を効率よく脱硫し得ることを見出した。これら金属の酸化物、炭酸塩や固体還元剤は安価であり、この脱硫方法ではスラグがほとんど生成しないから、従来より脱硫コストの低減を図ることができる。
【0009】
この知見に基づく本発明の要旨は、
(1)酸化マグネシウムと固体還元剤とを混合し、これらの混合物を1300℃以上に加熱し、酸化マグネシウムが還元されて生成したマグネシウム蒸気を、不活性ガスをキャリアガスとして溶鉄中に吹き込む溶鉄の脱硫方法であって、前記固体還元剤が固体炭素又は/及びカルシウムカーバイドであることを特徴とする溶鉄の脱硫方法である。
【0010】
(2)少なくともその脚部が溶鉄中に浸漬し、その上部にガス導入孔とその脚部の溶鉄中に浸漬する部分にガス排出孔とを有する耐火物製の還元用容器を用い、該還元用容器内に前記の酸化マグネシウムと固体還元剤との混合物を充填して、この充填物を溶鉄からの伝熱により加熱してマグネシウム蒸気を生成させ、生成したマグネシウム蒸気を前記ガス導入孔から導入された不活性ガスに同伴させて前記ガス排出孔から溶鉄中に吹き込むことを特徴とする前項(1)記載の溶鉄の脱硫方法である。
【0011】
(3)少なくともその脚部が溶鉄中に浸漬し、その上部にガス導入孔とその脚部の溶鉄中に浸漬する部分にガス排出孔とを有し、かつその内部に加熱手段を有する耐火物製の還元用容器を用い、該還元用容器内に前記の酸化マグネシウムと固体還元剤との混合物を充填して、この充填物を溶鉄からの伝熱および前記加熱手段により加熱してマグネシウム蒸気を生成させ、生成したマグネシウム蒸気を前記ガス導入孔から導入された不活性ガスに同伴させて前記ガス排出孔から溶鉄中に吹き込むことを特徴とする前項(1)記載の溶鉄の脱硫方法である。
【0012】
(4)前記還元用容器内に溶鉄トン当り0.2kg以上の酸化マグネシウムとその還元に必要な量以上の固体還元剤とを充填し、かつ不活性ガス流量を溶鉄トン当り0.6Nm3/h以上とすることを特徴とする前項(2)または(3)記載の溶鉄の脱硫方法である。
【0013】
【発明の実施の形態】
本発明の溶鉄の脱硫方法は、硫黄と反応し易いアルカリ金属(Na、Kなど)又はアルカリ土類金属(Mg、Ca、Baなど)の蒸気を溶鉄中に吹き込んで脱硫を行うものであるが、これら金属の酸化物又は炭酸塩を固体還元剤で還元して、生成した金属蒸気を不活性ガスをキャリアガスとして溶鉄中に吹き込むことを特徴とする。
【0014】
固体還元剤としては、固体炭素や金属炭化物(とくに金属アセチレン化物)等を用いる。この還元反応は通常は固相間の反応であるから、所定粒度の被還元物(前記金属の酸化物又は炭酸塩)と固体還元剤を混合して還元用容器内に充填し、これを所定の温度に加熱して還元を行う。
【0015】
適正な還元温度は被還元物の種類によって大幅に相違するが、通常これらの金属の沸点は、その酸化物又は炭酸塩の還元温度より低い。したがって、還元されて生成した金属は直ちに蒸気になり、還元用容器内に充満する。還元用容器にガスの導入孔と排出孔を設けて不活性ガスを流通させ、容器内に充満した金属蒸気を不活性ガスに同伴させて溶鉄中に吹き込めばよい。
【0016】
金属蒸気の吹き込みに際し、不活性ガスをキャリアガスとして用いる理由は、これが還元反応の促進に寄与すること及び金属蒸気と耐火物材料との反応を緩和することによる。
【0017】
すなわち、還元反応の主体は、固体還元剤中のCと金属酸化物中のOとでCOが生成する反応である(一部他種金属により還元されることもある)。したがって、不活性ガスにより還元用容器内のCO分圧を低下させて、還元反応を促進せしめることができる。
【0018】
また、還元用容器や吹き込み管の材料は、これがきわめて高温になるため、耐火物材料とくに酸化物系耐火物が用いられることが多い。金属蒸気の濃度が高いと、金属蒸気と酸化物系耐火物との反応が問題になるが、不活性ガスで希釈することにより、この反応を緩和することができる。
【0019】
なお、アルカリ土類金属の炭酸塩は、通常その還元温度よりかなり低い温度で熱分解してCO2又はCOが生成するが、生成したCO2又はCOは還元用容器から排出するか溶鉄中に吹き込めばよく、本発明を実施する上で支障にならない。
【0020】
不活性ガスとともに溶鉄中に吹込まれた金属蒸気は、気泡上昇の間に溶鉄中の[S]と反応して金属硫化物を生成させる。この硫化物生成の反応速度は溶鉄温度ではきわめて大きく、かつ気泡内のガス拡散の速度も大きいため、気泡上昇時間が短くても相当に高い反応効率、例えば50%程度又はそれ以上の反応効率が得られる。
【0021】
金属MgやCaを溶鉄に添加する従来の脱硫方法では、これらの金属を溶鉄の内部に供給することが難しく、また比重の小さいこれらの金属は浮上し易いため、反応効率が安定しないのが実情である。これに対して、本発明の脱硫方法は、金属蒸気と溶鉄との反応条件が一定であり、安定して高い反応効率を確保しうることが利点の一つである。
【0022】
むしろ問題となるのは、一旦生成した金属硫化物が分解して、復硫することである。Ca、Ba等の硫化物は高温でも安定であるが、Mgの硫化物はやや分解し易く、Na等の硫化物はさらに分解し易い。
【0023】
したがって、金属硫化物が分解し易い場合には、溶鉄表面にCaO等の塩基性成分を含み、かつ酸素ポテンシャルの低いスラグを置いて、生成した金属硫化物をこのスラグに吸収させて固定することが望ましい。
【0024】
アルカリ金属及びアルカリ土類金属の中で、酸化物又は炭酸塩が比較的安価で工業的に実用性が高いのは、酸化物では酸化ナトリウム(Na2O)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)であり、炭酸塩では炭酸ナトリウム(Na2CO3)、炭酸マグネシウム(MgCO3)、炭酸カルシウム(CaCO3)である。
【0025】
上記の酸化物のうち、Na2Oは還元温度は低いが、Na蒸気が耐火物と反応し易く、また脱硫生成物(Na2S)が分解し易い。またCaは脱硫性能に優れるが、CaOの還元温度が1700℃以上と非常に高いことが問題である。
【0026】
したがって、還元温度が比較的低く、脱硫性能にも優れ、最も好ましいのはMgOである。MgOの還元剤としては、各種の固体炭素(石炭・コークス類、グラファイト、カーボンブラックなど)又は/及びカルシウムカーバイト(CaC2)が望ましい。
【0027】
MgOの還元温度は1300℃以上であることが必要で、これ未満では、不活性ガスで希釈してCO分圧を下げても、実用上必要な還元速度(Mg蒸気の生成速度)が得られない。
【0028】
また、MgOの適正な還元温度は還元剤の種類に依存し、固体炭素よりもCaC2の方が比較的低温で大きな還元速度が得られる。その理由は、CaC2が分解して生成する金属CaがMgOの還元に寄与するためと考えられる。したがって、還元剤が固体炭素のみの場合は、より高い温度範囲例えば1500℃以上で還元を行うことが望ましい。
【0029】
図1は、本発明を実施するための還元用容器の例を示す断面概要図である。図1(a)の例では、耐火物製で縦長の筒状の還元用容器1の内部ほぼ全体に、被還元物と固体還元剤の充填層2が形成されており、容器1の上部にガス導入孔3とその脚部にガス排出孔4が設けられている。
【0030】
図1(b)の例では、耐火物製の還元用容器1は、内部に充填層2を形成した容器本体1aと中空の吹き込み管1bが一体に連結されて構成され、容器本体1aの上部にガス導入孔3と吹き込み管1bの下部にガス排出孔4が設けられている。
【0031】
いずれの還元用容器も、その脚部のガス排出孔4が溶鉄中に浸漬されていればよく、溶鉄からの伝熱を利用する場合は、なるべく容器のほぼ全体を溶鉄中に浸漬し、これが必要のない場合或いは好ましくない場合は、脚部のみを浸漬すればよい。
【0032】
還元用容器を上記のような構造にすることにより、必要に応じて溶鉄からの伝熱を利用することができ、かつ生成した金属蒸気が冷却されて、搬送経路の内壁に凝着するのを防止することができる。また、図1(b)のような還元用容器は、ガス排出孔4の浸漬深さを大きくする上で有効である。
【0033】
被還元物と固体還元剤の充填層2を形成する方法についてはとくに制約はないが、還元速度を大きくするためには両者の粒度が細かい方が望ましく、一方粒度が細かいと充填層の通気性が確保できない。したがって、被還元物と固体還元剤の粉末を混合して何らかの方法で造粒し、例えば5〜30mm程度のペレット状、タブレット状にしたものを用いれば良い。
【0034】
還元温度が溶鉄温度より高い場合、あるいは溶鉄からの伝熱速度が還元反応熱の供給に十分でない場合には、還元用容器内に加熱手段を有することが必要である。加熱手段は図1に示すように、充填層2内に発熱体5を配するような方法によればよい。
【0035】
また、固体炭素を含む充填層はある程度の導電性を有するから、充填層自体に通電して発熱させることも可能である。この際、黒鉛等の電極を上部から充填層内に挿入してもよく、還元用容器の内壁に黒鉛、アルミナグラファイト等の材料を用いて、これを電極として利用してもよい。
【0036】
図1に示すような還元用容器に充填する被還元物と固体還元剤の量は、反応効率を勘案して脱硫反応に必要な量の金属蒸気を発生させ得るものでなければならない。
【0037】
本発明者らの検討結果によれば、金属酸化物としてMgOを用いる場合には、還元容器内に溶鉄トン当り0.2kg以上のMgOと、その還元に必要な量(溶鉄トン当り0.2kgのMgOの還元に必要な理論量)以上の固体還元剤を充填することが望ましい。
【0038】
MgOと固体還元剤の量のいずれかが上記未満では、適正な還元温度(通常は1600〜1700℃)でも、実用上必要な脱硫速度が得られず、あるいは脱硫処理後の[S]が十分低下しない。
【0039】
MgOの還元速度は高温ほど大きいが、還元用容器の耐熱性等から1700℃以下で還元することが望ましい。1700℃以下でのMgO+C→Mg(g)+COの反応速度はCO分圧に強く依存するから、所定流量の不活性ガス(窒素又はアルゴン)を流してCO分圧を低下させることが望ましい。
【0040】
後記の実施例に示すように、還元温度が1700℃以下の場合、不活性ガス流量が溶鉄トン当り0.6Nm3/h未満では、十分な脱硫速度が得られない。したがって本発明においては、還元用容器内に溶鉄トン当り0.2kg以上のMgOとその還元に必要な量の固体還元剤を充填し、かつ不活性ガス流量を溶鉄トン当り0.6Nm3/h以上とすることが望ましい。
【0041】
【実施例】
(実施例1)
300t溶銑鍋内の溶銑を、図1(a)に示すような還元用容器を用いて、本発明の方法により脱硫処理した。還元用容器は内径400mm、高さ約2mの円筒状で、上部にガス導入孔と側壁下部に4個のガス排出孔を有し、アルミナグラファイトの成形体の外周に断熱層を形成させたものである。
【0042】
この還元用容器に、約200kgの含炭MgOペレットを充填した。含炭MgOペレットは、いずれも200メッシュ以下のMgO粉末とコークス粉末(MgO重量の約30%)を10〜15mmに造粒し、焼成したものである。
【0043】
また、還元用容器内の充填層の中央底部近くまで、径100mmの黒鉛棒を挿入し、この黒鉛棒と容器のアルミナグラファイトとを電極として、含炭MgOペレットの充填層を通電加熱した。含炭MgOペレットを充填した還元用容器を溶銑温度近くまで予熱し、この還元用容器を溶銑中に1m程度浸漬した後通電を開始した。
【0044】
通電開始後充填層温度が1650℃になってから、還元用容器に所定流量のN2ガスを流して脱硫処理を開始し、充填層温度を1650〜1700℃に維持して20分間脱硫処理を行った。加熱電力は最大でも2MW以下であった。
【0045】
脱硫処理前の溶銑組成は、[C]4.2〜4.7%、[Si]0.1〜0.3%、[S]0.020〜0.030%で、溶銑温度は1300〜1370℃であった。
【0046】
Mg蒸気を溶鉄中に吹き込むキャリアガスとしてのN2流量は、溶銑トン当り0.3〜1.0Nm3/hの範囲で4段階に変え、それぞれ脱硫処理開始後10分及び20分での脱硫率を調査した。調査結果を表1に示す。
【0047】
【表1】
【0048】
表1の脱硫率はいずれも5ヒートの平均値である。表1に見られるように、N2流量が0.6Nm3/h・t以上であった実施例1及び2(請求項4の本発明の実施例)では、脱硫処理開始10分後及び20分後の脱硫率が共に高かった。
【0049】
これに対して、N2流量が0.6Nm3/h・t未満の比較例1及び2ではとくに10分後の脱硫率が低く、脱硫処理に長時間を要することが知れた。
【0050】
(実施例2)
300t取鍋内の溶鋼を、実施例1と同様の方法で脱硫処理した。すなわち、還元用容器及び還元条件は実施例1と同じにし、不活性ガスはArを用いて、Ar流量0.7Nm3/h・t一定で20分間脱硫処理した。
【0051】
処理対象の溶鋼は低炭Alキルド鋼用のもので、Al脱酸後の溶鋼を脱硫処理した。処理開始前の溶鋼の[S]は0.02〜0.03%で、溶鋼温度は約1650℃であった。また、処理前に取鍋内のスラグにCaO等を添加してその塩基度を調整し、脱硫生成物であるMgSの固定が容易になるようにした。
【0052】
上記の方法で脱硫処理を行った結果、10分間処理後の脱硫率は40%、20分間処理後の脱硫率は65%となり(いずれも5ヒートの平均値)、本発明の方法が溶鋼の脱硫処理にも適用できることが確かめられた。
【0053】
【発明の効果】
本発明により、アルカリ金属、アルカリ土類金属の酸化物又は炭酸塩を還元して、生成した金属蒸気を溶鉄の脱硫に効率良く利用することが可能になった。これにより、金属Mgや金属Caのような高価な脱硫剤を用いず、低コストで脱硫することが可能になった。
【0054】
また、本発明の方法は、発生するスラグがきわめて少ないため、スラグ生成に伴なう歩留り低下、熱損失、スラグ処理等の問題が回避できると共に、溶銑にも溶鋼にも適用しうるという利点を有する。
【図面の簡単な説明】
【図1】本発明を実施するための還元用容器の例を示す断面概要図である。
【符号の説明】
1 還元用容器
1a 容器本体
1b 吹き込み管
2 被還元物と固体還元剤の充填層
3 ガス導入孔
4 ガス排出孔
5 発熱体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molten iron desulfurization method for desulfurizing hot metal, molten steel, etc. with a metal vapor that easily reacts with sulfur.
[0002]
[Prior art]
In recent years, as the demand for the quality of steel materials has become stricter, there is an increasing need for strengthening desulfurization refining in the steelmaking process and melting low-sulfur steel and ultra-low-sulfur steel.
[0003]
When manufacturing molten steel using blast furnace hot metal as the main raw material, desulfurization and refining can be performed at the hot metal stage, the decarburizing and refining stage in the converter, and the molten steel stage. Steelmaking methods that mainly perform decarburization and heating are becoming mainstream, and desulfurization and refining in the hot metal pretreatment process and secondary refining process are important.
[0004]
Desulfurization in hot metal pretreatment is generally performed using a basic ironmaking material such as quicklime or soda ash in a blast furnace casting floor or hot metal transfer container. Depending on the method, the efficiency of the desulfurization reaction is low, and iron loss and the treatment of generated slag are problematic. On the other hand, when soda ash is used, dust generation and refractory wear are problems.
[0005]
Desulfurization in secondary refining is generally performed by adding flux to the molten steel pan to form desulfurized slag. In this case, it is necessary to deoxidize the molten steel at the same time or in advance. There are problems such as lowering the yield of steel, lowering the temperature of the molten steel due to the extension of the secondary refining time, and wear of the ladle refractory.
[0006]
For this reason, in recent years, many methods for desulfurizing molten steel by adding a metal such as Mg or Ca in a molten steel pan or tundish have been proposed. However, this method requires the use of expensive metal Mg or metal Ca, and these metals are liable to evaporate at the molten steel temperature, resulting in low reaction efficiency and high desulfurization costs.
[0007]
[Problems to be solved by the invention]
In view of the problems of the conventional desulfurization technology as described above, the present invention does not use a slagging material such as quick lime or soda ash, and without using an expensive desulfurization agent such as metal Mg or metal Ca. It is an object of the present invention to provide a new method for desulfurizing molten iron that can desulfurize hot metal, molten steel, etc. at a relatively low cost.
[0008]
[Means for Solving the Problems]
The inventors of the present invention reduce alkali metal, alkaline earth metal oxides or carbonates of these metals with a solid reducing agent, and blow the generated metal vapor into the molten iron using an inert gas as a carrier gas. Thus, it has been found that hot metal, molten steel and the like can be efficiently desulfurized. Since these metal oxides, carbonates, and solid reducing agents are inexpensive, and this desulphurization method hardly generates slag, it is possible to reduce the desulfurization cost conventionally.
[0009]
The gist of the present invention based on this finding is as follows:
(1) a magnesium oxide and a solid reducing agent are mixed, the mixtures were heated to above 1300 ° C., the magnesium vapor magnesium oxide generated is reduced, the molten iron blown into molten iron an inert gas as a carrier gas a desulfurization process is a molten iron desulfurization method wherein said solid reducing agent is a solid carbon and / or calcium carbide.
[0010]
(2) at least a leg immersed in molten iron, with refractory made of the reducing vessel that having a thereon a gas introducing hole and a gas discharge hole in a portion immersed in the molten iron of the legs, the mixture was filled with the said magnesium oxide and a solid reducing agent in the reducing for the container, the packing to produce a magnesium vapor more heated heat transfer from the molten iron, said gas introducing the resulting magnesium vapor The molten iron desulfurization method according to item (1) above, wherein the molten iron is blown into the molten iron through the gas discharge hole in association with an inert gas introduced from the hole.
[0011]
(3) having at least its legs immersed in molten iron, has thereon a gas introducing hole and a gas discharge hole in a portion immersed in the molten iron of the legs, or internal to the heating means Tsuso with refractory made of the reducing vessel, by filling a mixture of the magnesium oxide and a solid reducing agent in the reducing for the container, magnesium is heated by heat transfer and the heating means of the filling from the molten iron The molten iron desulfurization method according to (1) above, wherein steam is generated, and the generated magnesium vapor is entrained in the inert gas introduced from the gas introduction hole and blown into the molten iron from the gas discharge hole. is there.
[0012]
(4) The reduction vessel is filled with 0.2 kg or more of magnesium oxide per ton of molten iron and a solid reducing agent in an amount necessary for the reduction, and the inert gas flow rate is 0.6 Nm 3 / ton of molten iron. The method for desulfurizing molten iron according to the above item (2) or (3), characterized by being h or more.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The method for desulfurizing molten iron according to the present invention performs desulfurization by blowing steam of alkali metal (Na, K, etc.) or alkaline earth metal (Mg, Ca, Ba, etc.) that easily reacts with sulfur into molten iron. The metal oxide or carbonate is reduced with a solid reducing agent, and the generated metal vapor is blown into molten iron using an inert gas as a carrier gas.
[0014]
As the solid reducing agent, solid carbon, metal carbide (particularly metal acetylenide) or the like is used. Since this reduction reaction is usually a reaction between solid phases, a substance to be reduced (the metal oxide or carbonate) having a predetermined particle size and a solid reducing agent are mixed and filled into a reduction container, The reduction is carried out by heating to the above temperature.
[0015]
The proper reduction temperature varies greatly depending on the type of the substance to be reduced, but usually the boiling point of these metals is lower than the reduction temperature of the oxide or carbonate thereof. Therefore, the metal produced | generated by reduction | restoration becomes a vapor | steam immediately, and fills the container for a reduction | restoration. A gas introduction hole and a discharge hole may be provided in the reduction container to allow the inert gas to flow, and the metal vapor filled in the container may be entrained in the inert gas and blown into the molten iron.
[0016]
The reason why the inert gas is used as the carrier gas when blowing the metal vapor is that this contributes to the promotion of the reduction reaction and the reaction between the metal vapor and the refractory material is mitigated.
[0017]
That is, the main component of the reduction reaction is a reaction in which CO is generated between C in the solid reducing agent and O in the metal oxide (some of them may be reduced by other kinds of metals). Therefore, the reduction reaction can be promoted by reducing the CO partial pressure in the reduction vessel with the inert gas.
[0018]
Moreover, since the material for the reduction container and the blow-in pipe becomes extremely high, a refractory material, particularly an oxide refractory is often used. When the concentration of the metal vapor is high, the reaction between the metal vapor and the oxide refractory becomes a problem, but this reaction can be mitigated by diluting with an inert gas.
[0019]
The alkaline earth metal carbonate is usually thermally decomposed at a temperature considerably lower than the reduction temperature to produce CO 2 or CO. The produced CO 2 or CO is discharged from the reduction vessel or in the molten iron. It is only necessary to blow in, and does not hinder the implementation of the present invention.
[0020]
The metal vapor blown into the molten iron together with the inert gas reacts with [S] in the molten iron to generate a metal sulfide while the bubbles rise. Since the reaction rate of this sulfide formation is extremely high at the molten iron temperature and the gas diffusion rate in the bubbles is also large, even if the bubble rise time is short, a considerably high reaction efficiency, for example, a reaction efficiency of about 50% or more is obtained. can get.
[0021]
In the conventional desulfurization method in which the metals Mg and Ca are added to the molten iron, it is difficult to supply these metals into the molten iron, and these metals having a low specific gravity are likely to float, so the reaction efficiency is not stable. It is. On the other hand, the desulfurization method of the present invention has an advantage that the reaction conditions between the metal vapor and the molten iron are constant, and a high reaction efficiency can be secured stably.
[0022]
Rather, the problem is that once produced metal sulfide is decomposed and sulfidized. Sulfides such as Ca and Ba are stable even at high temperatures, but Mg sulfides are somewhat easily decomposed and sulfides such as Na are further easily decomposed.
[0023]
Therefore, when the metal sulfide is easily decomposed, a slag containing a basic component such as CaO and having a low oxygen potential is placed on the surface of the molten iron, and the generated metal sulfide is absorbed into this slag and fixed. Is desirable.
[0024]
Among the alkali metal and alkaline earth metal, the higher industrial utility oxide or relatively inexpensive carbonate, sodium oxide in the oxide (Na 2 O), magnesium oxide (MgO), calcium oxide (CaO), and carbonates include sodium carbonate (Na 2 CO 3 ), magnesium carbonate (MgCO 3 ), and calcium carbonate (CaCO 3 ).
[0025]
Among the above oxides, Na 2 O has a low reduction temperature, but Na vapor easily reacts with the refractory, and the desulfurized product (Na 2 S) easily decomposes. Moreover, although Ca is excellent in desulfurization performance, it is a problem that the reduction temperature of CaO is very high as 1700 degreeC or more.
[0026]
Accordingly, the reduction temperature is relatively low, the desulfurization performance is excellent, and MgO is most preferable. As the reducing agent for MgO, various kinds of solid carbon (coal / coke, graphite, carbon black, etc.) and / or calcium carbide (CaC 2 ) are desirable.
[0027]
The reduction temperature of MgO must be 1300 ° C. or more. Below this, the reduction rate (production rate of Mg vapor) necessary for practical use can be obtained even if the CO partial pressure is lowered by dilution with an inert gas. Absent.
[0028]
Further, the appropriate reduction temperature of MgO depends on the kind of the reducing agent, and CaC 2 can obtain a larger reduction rate at a relatively low temperature than solid carbon. The reason is considered that metal Ca produced by decomposition of CaC 2 contributes to reduction of MgO. Therefore, when the reducing agent is only solid carbon, it is desirable to perform the reduction in a higher temperature range, for example, 1500 ° C. or higher.
[0029]
FIG. 1 is a schematic cross-sectional view showing an example of a reducing container for carrying out the present invention. In the example of FIG. 1 (a), a packed
[0030]
In the example of FIG. 1 (b), a refractory reducing container 1 is configured by integrally connecting a container body 1a having a filled
[0031]
In any reduction vessel, it is only necessary that the gas discharge holes 4 in the legs are immersed in the molten iron. When using heat transfer from the molten iron, the entire vessel is immersed in the molten iron as much as possible. If unnecessary or undesirable, only the legs need be immersed.
[0032]
By making the reduction container as described above, heat transfer from the molten iron can be used as necessary, and the generated metal vapor is cooled and adhered to the inner wall of the transfer path. Can be prevented. Moreover, the reducing container as shown in FIG. 1B is effective in increasing the immersion depth of the
[0033]
There are no particular restrictions on the method for forming the packed
[0034]
When the reduction temperature is higher than the molten iron temperature, or when the heat transfer rate from the molten iron is not sufficient for supplying the reduction reaction heat, it is necessary to have a heating means in the reduction vessel. As shown in FIG. 1, the heating means may be a method in which a heating element 5 is arranged in the packed
[0035]
In addition, since the filled layer containing solid carbon has a certain degree of conductivity, it is also possible to generate heat by energizing the filled layer itself. At this time, an electrode such as graphite may be inserted into the packed bed from the top, or a material such as graphite or alumina graphite may be used for the inner wall of the reduction vessel and used as the electrode.
[0036]
The amount of the substance to be reduced and the solid reducing agent filled in the reducing container as shown in FIG. 1 must be capable of generating the amount of metal vapor necessary for the desulfurization reaction in consideration of the reaction efficiency.
[0037]
According to the examination results of the present inventors, when MgO is used as the metal oxide, 0.2 kg or more of MgO per ton of molten iron in the reduction vessel and the amount required for the reduction (0.2 kg per ton of molten iron). It is desirable to fill a solid reducing agent in excess of the theoretical amount necessary for the reduction of MgO.
[0038]
If either of the amount of MgO and the solid reducing agent is less than the above, a desulfurization rate necessary for practical use cannot be obtained even at an appropriate reduction temperature (usually 1600 to 1700 ° C.), or [S] after the desulfurization treatment is sufficient. It will not decline.
[0039]
Although the reduction rate of MgO increases as the temperature increases, it is preferable to reduce the MgO at 1700 ° C. or lower because of the heat resistance of the reduction container. Since the reaction rate of MgO + C → Mg (g) + CO at 1700 ° C. or less strongly depends on the CO partial pressure, it is desirable to reduce the CO partial pressure by flowing an inert gas (nitrogen or argon) at a predetermined flow rate.
[0040]
As shown in Examples described later, when the reduction temperature is 1700 ° C. or lower, a sufficient desulfurization rate cannot be obtained when the inert gas flow rate is less than 0.6 Nm 3 / h per ton of molten iron. Therefore, in the present invention, 0.2 kg or more of MgO per ton of molten iron and a solid reducing agent necessary for the reduction are charged in the reducing vessel, and the inert gas flow rate is 0.6 Nm 3 / h per ton of molten iron. It is desirable to set it above.
[0041]
【Example】
Example 1
The hot metal in the 300 t hot metal ladle was desulfurized by the method of the present invention using a reducing container as shown in FIG. The reduction vessel has a cylindrical shape with an inner diameter of 400 mm and a height of about 2 m, and has a gas introduction hole at the top and four gas discharge holes at the bottom of the side wall, and a heat insulating layer is formed on the outer periphery of the molded body of alumina graphite. It is.
[0042]
About 200 kg of carbon-containing MgO pellets were filled in this reducing container. Each of the carbon-containing MgO pellets is obtained by granulating an MgO powder having a size of 200 mesh or less and a coke powder (about 30% of the MgO weight) to 10 to 15 mm and firing.
[0043]
Further, a graphite rod having a diameter of 100 mm was inserted to the vicinity of the center bottom of the packed bed in the reduction vessel, and the packed bed of carbon-containing MgO pellets was energized and heated using the graphite rod and the alumina graphite of the vessel as electrodes. The reduction container filled with the carbon-containing MgO pellets was preheated to near the hot metal temperature, and the current supply was started after the reduction container was immersed in the hot metal for about 1 m.
[0044]
After the energization starts, the packed bed temperature reaches 1650 ° C., and then a desulfurization treatment is started by flowing a predetermined flow rate of N 2 gas into the reduction vessel, and the packed bed temperature is maintained at 1650-1700 ° C. for 20 minutes. went. The heating power was 2 MW or less at maximum.
[0045]
The hot metal composition before the desulfurization treatment is [C] 4.2 to 4.7%, [Si] 0.1 to 0.3%, [S] 0.020 to 0.030%, and the hot metal temperature is 1300 to 300%. It was 1370 ° C.
[0046]
The flow rate of N 2 as a carrier gas for blowing Mg vapor into the molten iron is changed in four stages in the range of 0.3 to 1.0 Nm 3 / h per ton of molten iron, and desulfurization at 10 minutes and 20 minutes after the start of the desulfurization treatment, respectively. The rate was investigated. The survey results are shown in Table 1.
[0047]
[Table 1]
[0048]
All desulfurization rates in Table 1 are average values of 5 heats. As seen in Table 1, N in 2 flow rate 0.6Nm 3 / h · t Exceeded Examples 1 and 2 (Example of the present invention of claim 4), desulfurized after 10 minutes and 20 Both desulfurization rates after minutes were high.
[0049]
In contrast, in Comparative Examples 1 and 2 where the N 2 flow rate was less than 0.6 Nm 3 / h · t, the desulfurization rate after 10 minutes was particularly low, and it was known that the desulfurization treatment took a long time.
[0050]
(Example 2)
The molten steel in the 300 t ladle was desulfurized in the same manner as in Example 1. That is, the reduction vessel and the reduction conditions were the same as in Example 1, and the desulfurization treatment was performed using Ar as the inert gas at a constant Ar flow rate of 0.7 Nm 3 / h · t for 20 minutes.
[0051]
The molten steel to be treated was for low-carbon Al killed steel, and the molten steel after Al deoxidation was desulfurized. [S] of the molten steel before the start of treatment was 0.02 to 0.03%, and the molten steel temperature was about 1650 ° C. Moreover, CaO etc. were added to the slag in a ladle before a process, the basicity was adjusted, and it was made easy to fix | immobilize MgS which is a desulfurization product.
[0052]
As a result of performing the desulfurization treatment by the above method, the desulfurization rate after the 10-minute treatment is 40%, and the desulfurization rate after the 20-minute treatment is 65% (both are average values of 5 heats). It was confirmed that it can be applied to desulfurization treatment.
[0053]
【The invention's effect】
According to the present invention, it is possible to reduce an alkali metal or alkaline earth metal oxide or carbonate and efficiently use the generated metal vapor for desulfurization of molten iron. This makes it possible to perform desulfurization at low cost without using expensive desulfurization agents such as metal Mg and metal Ca.
[0054]
In addition, since the method of the present invention generates very little slag, problems such as yield reduction, heat loss and slag treatment associated with slag generation can be avoided, and it can be applied to both hot metal and molten steel. Have.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of a reducing container for carrying out the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reduction container 1a Container main body 1b Blow-in
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00126598A JP3947288B2 (en) | 1998-01-07 | 1998-01-07 | Desulfurization method of molten iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP00126598A JP3947288B2 (en) | 1998-01-07 | 1998-01-07 | Desulfurization method of molten iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11199913A JPH11199913A (en) | 1999-07-27 |
JP3947288B2 true JP3947288B2 (en) | 2007-07-18 |
Family
ID=11496637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP00126598A Expired - Fee Related JP3947288B2 (en) | 1998-01-07 | 1998-01-07 | Desulfurization method of molten iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3947288B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101277592B1 (en) * | 2011-09-28 | 2013-06-21 | 현대제철 주식회사 | Steel refinery flux |
US9481917B2 (en) * | 2012-12-20 | 2016-11-01 | United Technologies Corporation | Gaseous based desulfurization of alloys |
CN113337675B (en) * | 2021-06-04 | 2023-07-14 | 辽宁科技大学 | Molten iron desulfurization device and method |
-
1998
- 1998-01-07 JP JP00126598A patent/JP3947288B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH11199913A (en) | 1999-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2243006T3 (en) | DIRECT FUSION PROCEDURE TO PRODUCE METALS FROM METAL OXIDES. | |
JP5418733B2 (en) | Hot metal refining method | |
CN104039987A (en) | Steel slag reduction method | |
JP6729720B2 (en) | Electric furnace | |
KR20010099690A (en) | A process and an apparatus for producing metals and metal alloys | |
JP2011038142A (en) | Converter steelmaking method with the use of large quantity of iron scrap | |
CN104164529A (en) | Method for producing cast iron by adopting remelting furnace blowing smelting and purification, and apparatus thereof | |
JP6361885B2 (en) | Hot metal refining method | |
JP3947288B2 (en) | Desulfurization method of molten iron | |
JP5983492B2 (en) | Hot metal pretreatment method | |
JP4445564B2 (en) | Hot metal desulfurization method | |
KR102517013B1 (en) | Carbonized ash and carbonized method using the same | |
JP4329724B2 (en) | Converter scrap increase method | |
JP2000119731A (en) | Method for refining molten iron | |
CA2397539C (en) | Method for the treatment of slag from electric steel plants | |
JP4639943B2 (en) | Hot metal desulfurization method | |
RU2735536C1 (en) | Method for dephosphorization of fused iron and a refining additive | |
KR100257213B1 (en) | Process for smelting reduction of chromium ore | |
US3954446A (en) | Method of producing high duty cast iron | |
RU2805114C1 (en) | Steel melting method in electric arc furnace | |
RU2107738C1 (en) | Method of steel melting from metal scrap in electric-arc furnace | |
RU2818100C1 (en) | Liquid iron refining method | |
JP2005200762A (en) | Method for desulfurizing molten pig iron | |
JPH0987730A (en) | Method for heat-raising and refining molten steel | |
JP2011058046A (en) | Method for dephosphorizing molten iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041217 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060801 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060801 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070309 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070410 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070413 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110420 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120420 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130420 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140420 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |