JP2010133002A - Method for removing copper contained in steel scraps - Google Patents
Method for removing copper contained in steel scraps Download PDFInfo
- Publication number
- JP2010133002A JP2010133002A JP2009006297A JP2009006297A JP2010133002A JP 2010133002 A JP2010133002 A JP 2010133002A JP 2009006297 A JP2009006297 A JP 2009006297A JP 2009006297 A JP2009006297 A JP 2009006297A JP 2010133002 A JP2010133002 A JP 2010133002A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- hot metal
- sulfur
- steel
- flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010949 copper Substances 0.000 title claims abstract description 190
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 184
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 183
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 94
- 239000010959 steel Substances 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims abstract description 81
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 96
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 96
- 239000011593 sulfur Substances 0.000 claims abstract description 96
- 230000004907 flux Effects 0.000 claims abstract description 95
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 92
- 229910052742 iron Inorganic materials 0.000 claims abstract description 46
- 238000007670 refining Methods 0.000 claims abstract description 33
- 238000010907 mechanical stirring Methods 0.000 claims abstract description 22
- 238000009628 steelmaking Methods 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims description 190
- 239000002184 metal Substances 0.000 claims description 190
- 238000006243 chemical reaction Methods 0.000 claims description 24
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 13
- 230000008018 melting Effects 0.000 claims description 13
- 238000007664 blowing Methods 0.000 claims description 12
- 229910000796 S alloy Inorganic materials 0.000 claims description 8
- 238000005255 carburizing Methods 0.000 claims description 7
- 239000012159 carrier gas Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 239000007858 starting material Substances 0.000 claims description 3
- 238000002347 injection Methods 0.000 abstract description 16
- 239000007924 injection Substances 0.000 abstract description 16
- 239000000243 solution Substances 0.000 abstract description 2
- 238000012360 testing method Methods 0.000 description 37
- 239000002893 slag Substances 0.000 description 29
- 238000006477 desulfuration reaction Methods 0.000 description 24
- 230000023556 desulfurization Effects 0.000 description 24
- 238000003756 stirring Methods 0.000 description 24
- 239000003795 chemical substances by application Substances 0.000 description 17
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 16
- 230000008569 process Effects 0.000 description 14
- 239000007789 gas Substances 0.000 description 12
- 239000000571 coke Substances 0.000 description 9
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 8
- 229910000029 sodium carbonate Inorganic materials 0.000 description 8
- 235000017550 sodium carbonate Nutrition 0.000 description 8
- 229910001018 Cast iron Inorganic materials 0.000 description 7
- 102000005298 Iron-Sulfur Proteins Human genes 0.000 description 7
- 108010081409 Iron-Sulfur Proteins Proteins 0.000 description 7
- 239000003610 charcoal Substances 0.000 description 7
- 230000003009 desulfurizing effect Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 2
- AQKDYYAZGHBAPR-UHFFFAOYSA-M copper;copper(1+);sulfanide Chemical compound [SH-].[Cu].[Cu+] AQKDYYAZGHBAPR-UHFFFAOYSA-M 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000007885 magnetic separation Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 239000005997 Calcium carbide Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- -1 alkaline earth metal sulfide Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005261 decarburization Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- CLZWAWBPWVRRGI-UHFFFAOYSA-N tert-butyl 2-[2-[2-[2-[bis[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]amino]-5-bromophenoxy]ethoxy]-4-methyl-n-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]anilino]acetate Chemical compound CC1=CC=C(N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)C(OCCOC=2C(=CC=C(Br)C=2)N(CC(=O)OC(C)(C)C)CC(=O)OC(C)(C)C)=C1 CLZWAWBPWVRRGI-UHFFFAOYSA-N 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/10—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
- C22B9/106—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents the refining being obtained by intimately mixing the molten metal with a molten salt or slag
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/04—Removing impurities other than carbon, phosphorus or sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/02—Dephosphorising or desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C1/00—Refining of pig-iron; Cast iron
- C21C1/02—Dephosphorising or desulfurising
- C21C1/025—Agents used for dephosphorising or desulfurising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/064—Dephosphorising; Desulfurising
- C21C7/0645—Agents used for dephosphorising or desulfurising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0026—Pyrometallurgy
- C22B15/0056—Scrap treating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/10—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with refining or fluxing agents; Use of materials therefor, e.g. slagging or scorifying agents
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C2200/00—Recycling of waste material
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/005—Preliminary treatment of scrap
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、鉄源として鋼屑(鉄系スクラップ)を使用して高級鋼を製造する場合に品質上の問題となる鋼屑中の銅を除去する方法に関するものである。 The present invention relates to a method for removing copper in steel scrap, which causes quality problems when high-grade steel is produced using steel scrap (iron-based scrap) as an iron source.
製鋼過程で使用する鉄源は、鉄鉱石を高炉で還元して得られる溶銑が主体であるが、鉄鋼材料の加工工程で発生する鋼屑や、建築物及び機械製品などの老朽化に伴って発生する鋼屑も、かなりの量が使用されている。高炉での溶銑の製造には、鉄鉱石を還元し且つ溶融するための多大なエネルギーを要するのに対し、鋼屑は溶解熱のみを必要としており、製鋼過程で鋼屑を利用した場合には、鉄鉱石の還元熱分のエネルギー使用量を少なくすることができるという利点がある。従って、省エネルギー及びCO2削減による地球温暖化防止の観点からも、鋼屑利用の促進が望まれている。 The iron source used in the steelmaking process is mainly hot metal obtained by reducing iron ore in a blast furnace, but with the aging of steel scraps, buildings and machinery products generated in the processing process of steel materials A considerable amount of steel scrap is also used. The production of hot metal in the blast furnace requires a great deal of energy to reduce and melt iron ore, whereas steel scrap requires only heat of melting, and when steel scrap is used in the steelmaking process, There is an advantage that the amount of energy used for reducing heat of iron ore can be reduced. Therefore, from the viewpoint of energy saving and prevention of global warming by reducing CO 2, it is desired to promote the use of steel scrap.
従来は、鋼屑を転炉、電気炉などの製鋼炉へ直接投入して使用されることが多かった。しかし、鉄源として多様な鋼屑を使用すると、製造される溶鋼の成分調整が難しいという問題があった。また、転炉は、鋼屑の溶解熱として溶銑中炭素の燃焼熱を利用していることから、鋼屑の配合比率を高めることできないという欠点があり、一方、電気炉は、エネルギー効率が低く、エネルギー使用量の点で欠点があった。そこで近年、エネルギー効率の高い竪型炉を使用し、転炉の前工程で鋼屑を簡易且つ低コストな方法で溶解し、できるだけ均一組成とする方法が注目されている。 Conventionally, steel scrap is often used by directly feeding it into a steelmaking furnace such as a converter or an electric furnace. However, when various steel scraps are used as the iron source, there is a problem that it is difficult to adjust the composition of the molten steel to be produced. Moreover, since the converter uses the combustion heat of carbon in the hot metal as the melting heat of steel scrap, there is a disadvantage that the mixing ratio of steel scrap cannot be increased, while the electric furnace has low energy efficiency. There was a drawback in terms of energy consumption. Therefore, in recent years, a method of using a vertical furnace with high energy efficiency, melting steel scraps by a simple and low-cost method in the pre-process of the converter, and making the composition as uniform as possible has attracted attention.
ところで、鋼屑を再生利用する際に、これら鋼屑に随伴する銅及び錫に代表されるトランプエレメントが、鋼屑溶解の過程で不可避的に溶鉄中に混入する。トランプエレメントは鋼の性質を損なう成分であり、一定の濃度以下に保つ必要がある。このため、高級鋼を製造する鉄源として、銅や錫を含む恐れのある低級鋼屑を使用することは困難であった。しかしながら、近年の鋼屑発生量の増加及びCO2発生削減のための鋼屑増使用の要請を勘案すると、低級鋼屑の再生利用を進める必要がある。 By the way, when recycling steel scraps, trump elements represented by copper and tin accompanying these steel scraps are inevitably mixed in the molten iron in the process of steel scrap melting. The trump element is a component that impairs the properties of steel and must be kept below a certain concentration. For this reason, it has been difficult to use low-grade steel scrap that may contain copper or tin as an iron source for producing high-grade steel. However, considering the recent increase in steel scrap generation and the demand for increased use of steel scrap to reduce CO 2 generation, it is necessary to promote recycling of lower steel scrap.
現在の低級鋼屑を使用するための実用技術としては、鋼屑を物理的に分解し、有害な部分を人力や磁力選別などの方法で分離して、有害な部分を分離したものを、有害成分をほとんど含有しない原料に配合して、鋼材の材料特性上問題のない範囲内で使用する以外に、有効な方法はない。このような方法では、使用済み自動車などの鋼屑を大量に再生利用することは不可能であり、今後予想される鋼屑多量発生時代に対応する鋼屑中の銅の除去技術としては、十分な解決策には成り得ない。 As a practical technology for using the current low-grade steel scrap, the steel scrap is physically decomposed, the harmful parts are separated by methods such as human power and magnetic separation, and the harmful parts are separated. There is no effective method other than blending with raw materials containing almost no components and using them within the range where there is no problem in the material properties of the steel. With such a method, it is impossible to recycle a large amount of scrap steel from used cars, etc., and it is sufficient as a technology for removing copper in steel scrap corresponding to the era of the large amount of scrap scrap expected in the future. Cannot be a good solution.
一方、溶鉄に混入した後の脱銅方法について、以下に述べる原理的発明が公知になっている。即ち、含銅高炭素溶鉄とFeS−Na2S系フラックスとを接触させ、溶鉄中の銅成分をCu2Sとしてフラックス中に分離除去する原理的技術知見が、非特許文献1及び非特許文献2に報告されている。この技術は、銅の除去技術として、前述の物理的除去方法に対して、より広い適用の可能性を提案するものである。但し、この方法では、Na2S系フラックスから硫黄(S)成分が溶鉄中に混入するという問題がある。また、フラックスが溶融して溶鉄上に形成されるスラグ中のCu濃度と溶鉄中のCu濃度との比である分配比が高々30程度であり、スラグに充分な撹拌を与えて分配比を低下させないようにする必要がある。 On the other hand, the principle invention described below is known about the copper removal method after mixing in molten iron. That is, the basic technical knowledge of contacting the copper-containing high carbon molten iron with the FeS-Na 2 S-based flux and separating and removing the copper component in the molten iron as Cu 2 S is disclosed in Non-Patent Document 1 and Non-Patent Document. 2 is reported. This technique proposes a wider applicability to the above-described physical removal method as a copper removal technique. However, this method has a problem that a sulfur (S) component is mixed into the molten iron from the Na 2 S-based flux. Moreover, the distribution ratio, which is the ratio of the Cu concentration in the slag formed on the molten iron by melting the flux and the Cu concentration in the molten iron, is about 30 at most, and the distribution ratio is lowered by giving sufficient stirring to the slag. It is necessary not to let it.
この原理的技術知見に基づいた脱銅処理方法として、特許文献1には、含銅鋼屑を加炭溶融して含銅高炭素溶鉄とした後、Na2Sを主成分とするフラックスと接触反応させて、溶鉄中の銅成分をCu2SとしてNa2S系フラックス中に分離除去する方法が開示されている。 As a decoppering treatment method based on this fundamental technical knowledge, Patent Document 1 discloses that a copper-containing high-carbon molten iron is obtained by carburizing and melting copper-containing steel scrap, and then contacting with a flux mainly composed of Na 2 S. A method is disclosed in which the copper component in molten iron is separated and removed in the Na 2 S flux as Cu 2 S by reacting.
但し、特許文献1では、脱銅後の高炭素溶鉄の脱硫については一切開示していない。また、反応容器(溶銑鍋)の底部からのArガス吹き込みによる溶銑とスラグとの撹拌で脱銅処理を行っているが、スラグの撹拌は不充分である。これを補うために、1200〜1500℃の反応温度を保持するための電気加熱装置を備えるとともに、大気との接触を断つための有蓋の反応容器を使用しているが、設備が大がかりであり、実用化技術としては確立されたものではない。 However, Patent Document 1 does not disclose any desulfurization of high carbon molten iron after copper removal. Moreover, although the copper removal treatment is performed by stirring the hot metal and slag by blowing Ar gas from the bottom of the reaction vessel (hot metal ladle), stirring of the slag is insufficient. In order to compensate for this, an electric heating device for maintaining a reaction temperature of 1200 to 1500 ° C. is provided, and a covered reaction vessel for cutting off contact with the atmosphere is used, but the equipment is large-scale, It has not been established as a practical technology.
本発明は上記事情に鑑みてなされたもので、その目的とするところは、鉄源として銅含有鋼屑を使用して高級鋼を製造するに際し、鋼屑中の銅を効率良く、且つ大がかりな設備を必要とせずに除去する方法を提供することである。 The present invention has been made in view of the above circumstances, and the object of the present invention is to efficiently and large-scale copper in steel scrap when manufacturing high-grade steel using copper-containing steel scrap as an iron source. It is to provide a method for removing equipment without the need for it.
上記課題を解決するための第1の発明に係る鋼屑中の銅の除去方法は、銅含有鋼屑を加炭溶解して製鋼用溶銑を製造し、その後、該溶銑に含まれる銅を硫黄含有フラックスを用いて除去し、次いで、溶銑に含まれる硫黄を除去することを特徴とするものである。 The method for removing copper in steel scraps according to the first aspect of the present invention for solving the above-mentioned problem is to produce a hot metal for steel making by carburizing and melting copper-containing steel scraps, and then sulfur contained in the hot metal It removes using a containing flux, Then, the sulfur contained in a hot metal is removed, It is characterized by the above-mentioned.
第2の発明に係る鋼屑中の銅の除去方法は、第1の発明において、前記硫黄含有フラックスがNa2Sを主成分とすることを特徴とするものである。 The method for removing copper in scraps according to the second invention is characterized in that, in the first invention, the sulfur-containing flux contains Na 2 S as a main component.
第3の発明に係る鋼屑中の銅の除去方法は、第1または第2の発明において、前記硫黄含有フラックスの出発原料として、Na2CO3を主成分とする材料及び鉄−硫黄合金を使用することを特徴とするものである。 According to a third aspect of the present invention, there is provided a method for removing copper in steel scraps according to the first or second aspect of the present invention, wherein a starting material for the sulfur-containing flux is a material mainly composed of Na 2 CO 3 and an iron-sulfur alloy. It is characterized by being used.
第4の発明に係る鋼屑中の銅の除去方法は、第1ないし第3の発明の何れかにおいて、前記硫黄含有フラックスによって銅を除去する前の溶銑は、温度が1200℃以上1500℃以下、炭素濃度が2質量%以上、銅濃度が0.1質量%以上1.0質量%以下であることを特徴とするものである。 The method for removing copper in steel scrap according to the fourth aspect of the present invention is the hot metal before removing copper by the sulfur-containing flux in any of the first to third aspects, wherein the temperature is 1200 ° C. or higher and 1500 ° C. or lower. The carbon concentration is 2% by mass or more and the copper concentration is 0.1% by mass or more and 1.0% by mass or less.
第5の発明に係る鋼屑中の銅の除去方法は、第4の発明において、前記硫黄含有フラックスによって銅を除去する前の溶銑は、温度が1250℃以上1350℃以下であることを特徴とするものである。 The method for removing copper in steel scrap according to the fifth invention is characterized in that, in the fourth invention, the hot metal before removing copper by the sulfur-containing flux has a temperature of 1250 ° C. or higher and 1350 ° C. or lower. To do.
第6の発明に係る鋼屑中の銅の除去方法は、第1ないし第5の発明の何れかにおいて、前記硫黄含有フラックスによって銅を除去する前の溶銑は、硫黄濃度が0.01質量%以上であることを特徴とするものである。 The method for removing copper in steel scraps according to a sixth aspect of the present invention is the hot metal before removing copper by the sulfur-containing flux in any one of the first to fifth aspects, wherein the sulfur concentration is 0.01% by mass. It is the above, It is characterized by the above.
第7の発明に係る鋼屑中の銅の除去方法は、第1ないし第6の発明の何れかにおいて、前記溶銑に含まれる銅の除去処理を機械攪拌式精錬装置で行うことを特徴とするものである。 The method for removing copper in steel scraps according to a seventh aspect of the present invention is characterized in that, in any one of the first to sixth aspects, the copper contained in the molten iron is removed by a mechanical stirring type refining apparatus. Is.
第8の発明に係る鋼屑中の銅の除去方法は、第1ないし第6の発明の何れかにおいて、前記溶銑に含まれる銅の除去処理を、硫黄含有フラックスを搬送用ガスとともに反応容器中の溶銑に吹き込んで行うことを特徴とするものである。 According to an eighth aspect of the present invention, there is provided a method for removing copper in steel scraps according to any one of the first to sixth aspects, wherein the copper contained in the molten iron is removed in a reaction vessel together with a sulfur-containing flux along with a carrier gas. It is characterized by being blown into the hot metal.
第9の発明に係る鋼屑中の銅の除去方法は、第1ないし第8の発明の何れかにおいて、前記銅含有鋼屑を、内部に炭材ベッドを形成した竪型炉を用いて加炭溶解することを特徴とするものである。 According to a ninth aspect of the present invention, there is provided a method for removing copper in steel scraps according to any one of the first to eighth aspects, wherein the copper-containing steel scraps are added using a vertical furnace in which a carbon material bed is formed. It is characterized by melting charcoal.
第10の発明に係る鋼屑中の銅の除去方法は、第1ないし第6の発明の何れかにおいて、前記銅含有鋼屑を、内部に炭材ベッドを形成した竪型炉を用いて加炭溶解し、該竪型炉から溶銑保持容器への鋳床樋を流れる溶銑に前記硫黄含有フラックスを供給して溶銑中の銅を除去することを特徴とするものである。 According to a tenth aspect of the present invention, there is provided a method for removing copper in steel scraps according to any one of the first to sixth aspects, wherein the copper-containing steel scraps are added using a vertical furnace in which a carbon material bed is formed. The sulfur-containing flux is supplied to the hot metal flowing through the cast iron from the vertical furnace to the hot metal holding container, and the copper in the hot metal is removed.
第11の発明に係る鋼屑中の銅の除去方法は、第1ないし第10の発明の何れかにおいて、前記溶銑に含まれる硫黄の除去処理を機械攪拌式精錬装置で行うことを特徴とするものである。 The method for removing copper in steel scraps according to an eleventh aspect of the invention is characterized in that, in any one of the first to tenth aspects, a removal process of sulfur contained in the hot metal is performed with a mechanical stirring type refining apparatus. Is.
第12の発明に係る鋼屑中の銅の除去方法は、第1ないし第11の発明の何れかにおいて、前記硫黄含有フラックスによって銅を除去した後の溶銑に高炉溶銑を混合し、その後、高炉溶銑を混合した溶銑に含まれる硫黄を除去することを特徴とするものである。 A method for removing copper in steel scraps according to a twelfth aspect of the present invention is the method for removing copper in the first to eleventh aspects, wherein the blast furnace hot metal is mixed with the hot metal after the copper is removed by the sulfur-containing flux, and then the blast furnace It is characterized by removing sulfur contained in the hot metal mixed with hot metal.
本発明によれば、銅含有鋼屑を加炭溶解した後に、鋼屑から持ち来たされた溶銑中の銅を硫黄含有フラックス中に分離除去するので、鋼屑を物理的に分解した後に磁力選別などで分離除去する方法では分離の困難であった銅を効率良く分離することができるとともに、銅の除去処理後に、硫黄含有フラックスから持ち来たされる溶銑中の硫黄の除去処理を行うので、銅含有鋼屑から銅及び硫黄の少ない溶銑を効率良く得ることができ、その結果、銅含有鋼屑を高級鋼の鉄源として利用可能となり、低級鋼屑の利用が促進される。 According to the present invention, after the copper-containing steel scrap is carburized and melted, the copper in the hot metal brought from the steel scrap is separated and removed into the sulfur-containing flux. Copper that was difficult to separate by separation and removal methods such as sorting can be separated efficiently, and after the copper removal treatment, the sulfur removal treatment brought from the sulfur-containing flux is performed. The hot metal containing less copper and sulfur can be efficiently obtained from the copper-containing steel scrap. As a result, the copper-containing steel scrap can be used as an iron source for high-grade steel, and the use of lower-grade steel scrap is promoted.
以下、本発明を具体的に説明する。 The present invention will be specifically described below.
銅含有鋼屑を加炭溶解して炭素を含有した製鋼用溶銑を製造すると、鋼屑中の銅はほぼ全量が溶銑中に溶解する。本発明では、この銅を除去する手段として、硫黄含有フラックスを溶銑と接触させ、溶銑中の銅を硫化銅(Cu2S)として硫黄含有フラックス中に分離除去する。硫黄含有フラックスとしては、アルカリ金属またはアルカリ土類金属の硫化物を主成分とするものが好適である。硫黄含有フラックス中の硫黄含有量を高めるためにFeS(硫化鉄)を混合してもよい。特に好適なのは、Na2Sを主成分とするフラックスである。Na2Sを主成分とするフラックスの場合、Na源として工業的に広く利用されているNa2CO3(ソーダ灰)を使用し、硫黄源として鉄−硫黄合金(フェロサルファー)を使用すれば、コスト面で有利である。硫黄含有フラックスの組成としては、効率的な銅除去の観点から、フラックス中のNa2Sのモル分率が0.2以上であることが望ましい。 When the hot metal for steelmaking containing carbon is produced by carburizing and dissolving copper-containing steel scrap, almost all of the copper in the steel scrap is dissolved in the hot metal. In the present invention, as a means for removing the copper, the sulfur-containing flux is brought into contact with the hot metal, and the copper in the hot metal is separated and removed as copper sulfide (Cu 2 S) in the sulfur-containing flux. As the sulfur-containing flux, those containing an alkali metal or alkaline earth metal sulfide as a main component are suitable. In order to increase the sulfur content in the sulfur-containing flux, FeS (iron sulfide) may be mixed. Particularly suitable is a flux mainly composed of Na 2 S. In the case of a flux mainly composed of Na 2 S, if Na 2 CO 3 (soda ash) widely used industrially is used as the Na source, and an iron-sulfur alloy (ferrosulfur) is used as the sulfur source, This is advantageous in terms of cost. As the composition of the sulfur-containing flux, it is desirable that the molar fraction of Na 2 S in the flux is 0.2 or more from the viewpoint of efficient copper removal.
ところで、硫黄含有フラックスによる脱銅は、原理的に確認されているが、分配比(フラックス中のCu濃度と溶銑中のCu濃度との比)の低いプロセスであるため、脱銅を十分に進行させるには、硫黄含有フラックスを添加することにより反応容器内に形成されるスラグ側の物質移動を促進させる必要がある。このためには、スラグ層も撹拌することが重要である。特に、本発明では溶銑段階で脱銅処理しており、溶銑の温度域(1200〜1400℃)は溶鋼の温度域(1550〜1700℃)に比較して低温であり、スラグの流動性も低く、スラグの撹拌が重要である。 By the way, although copper removal by a sulfur-containing flux has been confirmed in principle, it is a process with a low distribution ratio (ratio between the Cu concentration in the flux and the Cu concentration in the molten iron), so the copper removal proceeds sufficiently. In order to achieve this, it is necessary to promote mass transfer on the slag side formed in the reaction vessel by adding a sulfur-containing flux. For this purpose, it is important to also stir the slag layer. In particular, in the present invention, the copper removal treatment is performed in the hot metal stage, the hot metal temperature range (1200 to 1400 ° C.) is lower than the molten steel temperature range (1550 to 1700 ° C.), and the slag fluidity is also low. Slag agitation is important.
溶銑及び溶銑上に存在するスラグを同時に攪拌する方法として、反応容器内の溶銑に浸漬させたインジェクションランスまたは反応容器の底部に設置した羽口から攪拌用ガスを吹き込んでスラグと溶銑とを攪拌する方法も採り得るが、本発明においては、良好な攪拌が得られることから、機械攪拌式精錬装置を用いて脱銅処理を行うことが好ましい。機械攪拌式精錬装置としては、インペラ(「攪拌羽根」ともいう)を使用した撹拌が代表的である。つまり、取鍋状の反応容器内に収容された溶銑にインペラを浸漬させ、このインペラを、軸心を回転軸として回転させ、溶銑及び溶銑上に添加された硫黄含有フラックスを強制的に攪拌する方法である。機械攪拌式精錬装置では、溶銑上に投入された硫黄含有フラックスが溶銑内に充分に巻き込まれ、溶銑と硫黄含有フラックスとの撹拌が充分に行われる。一方、特許文献1に示されたガス撹拌法では、スラグは溶銑中に巻き込まれ難く、撹拌は不充分である。 As a method of simultaneously stirring the molten iron and the slag present on the molten iron, the stirring slag is blown from the injection lance immersed in the molten iron in the reaction vessel or the tuyere installed at the bottom of the reaction vessel, and the slag and molten iron are stirred. Although a method can also be adopted, in the present invention, it is preferable to perform a copper removal treatment using a mechanical stirring type refining apparatus because good stirring can be obtained. As a mechanical stirring type refining apparatus, stirring using an impeller (also referred to as “stirring blade”) is typical. In other words, the impeller is immersed in the hot metal contained in a ladle-shaped reaction vessel, and the impeller is rotated about the axis of rotation to forcibly stir the hot metal and the sulfur-containing flux added on the hot metal. Is the method. In the mechanical stirring type refining apparatus, the sulfur-containing flux charged on the hot metal is sufficiently entrained in the hot metal, and the hot metal and the sulfur-containing flux are sufficiently stirred. On the other hand, in the gas stirring method disclosed in Patent Document 1, the slag is not easily caught in the hot metal, and stirring is insufficient.
また、溶銑に浸漬させたインジェクションランスから搬送用ガスとともに粉体状の硫黄含有フラックスを溶銑中に吹き込む方法、所謂フラックス吹き込み法も好ましい処理方法である。この場合、溶銑中に吹き込まれた粉体状の硫黄含有フラックスは溶銑と直接接触し、しかも、新たな未反応の硫黄含有フラックスが連続的に溶銑と接触するので、スラグ側の物質移動を促進させた場合と同等の効果が発現し、溶銑と硫黄含有フラックスとの反応が促進される。また、搬送用ガスは攪拌用ガスとしても機能するので、機械攪拌式精錬装置ほどの攪拌強度はないものの、溶銑と溶銑上スラグとの攪拌が行われる。 Further, a method of blowing a powdery sulfur-containing flux into the hot metal together with the conveying gas from an injection lance immersed in the hot metal, so-called flux blowing method, is also a preferable processing method. In this case, the powdered sulfur-containing flux blown into the hot metal is in direct contact with the hot metal, and new unreacted sulfur-containing flux is continuously in contact with the hot metal, facilitating mass transfer on the slag side. The effect equivalent to the case where it is made to develop is exhibited, and the reaction between the hot metal and the sulfur-containing flux is promoted. Further, since the carrier gas also functions as a stirring gas, although the stirring strength is not as high as that of the mechanical stirring type refining apparatus, the hot metal and the hot metal slag are stirred.
この脱銅処理の際、雰囲気への大気の混入を防ぐために、Arガスなどの不活性ガスやプロパンなどの還元性ガスを溶銑浴面上に供給してもよい。脱銅処理後、硫黄含有フラックスの添加により形成されたスラグを系外に除去する。 In the copper removal treatment, an inert gas such as Ar gas or a reducing gas such as propane may be supplied onto the hot metal bath surface in order to prevent air from entering the atmosphere. After the copper removal treatment, the slag formed by adding the sulfur-containing flux is removed from the system.
本発明において、脱銅処理前の溶銑、つまり、銅含有鋼屑を加炭溶解して製造する、炭素を含有する製鋼用溶銑の温度は、1200℃以上1500℃以下、望ましくは1250℃以上1350℃以下であることが好ましい。溶銑温度が1200℃未満では、低温に起因するフラックス及び溶銑自体の固化・凝固が懸念される。特に、その後の脱硫工程や転炉脱炭工程での温度保証を考慮すると、1250℃以上とすることが望ましい。一方、1500℃以上では、高温によるフラックスの蒸発が無視できない。つまり、硫黄含有フラックスの蒸発を抑えて効率的に脱銅反応を行うには、溶銑温度は低いほど好ましく、従って、効率的な脱銅反応のためには、溶銑温度を1350℃以下とすることが望ましい。 In the present invention, the temperature of the hot metal before copper removal treatment, that is, the temperature of the hot metal for steelmaking containing carbon produced by carburizing and melting the copper-containing steel scrap is 1200 ° C. or higher and 1500 ° C. or lower, preferably 1250 ° C. or higher and 1350 ° C. It is preferable that it is below ℃. If the hot metal temperature is less than 1200 ° C., there is a concern about solidification and solidification of the flux and the hot metal itself due to the low temperature. In particular, considering the temperature guarantee in the subsequent desulfurization process and converter decarburization process, it is desirable to set the temperature to 1250 ° C. or higher. On the other hand, at 1500 ° C. or higher, the evaporation of flux due to high temperature cannot be ignored. That is, in order to suppress the evaporation of the sulfur-containing flux and perform the copper removal reaction efficiently, the lower the hot metal temperature is preferable, and therefore, the hot metal temperature should be 1350 ° C. or lower for efficient copper removal reaction. Is desirable.
また、脱銅処理前の溶銑中の炭素濃度は2質量%以上が好ましい。溶銑中の銅が硫化銅となる反応は、熱力学的に溶銑中の炭素濃度が高いほど進行しやすいことが知られている。脱銅処理前の溶銑中の炭素濃度が2質量%未満では、硫化銅の生成反応が充分に起こらないことに加え、溶銑の液相線温度が上昇し、溶銑の容器壁への付着などが問題となる。また更に、脱銅処理前の溶銑中の銅濃度は0.1質量%以上1.0質量%以下であることが好ましい。脱銅処理前の溶銑中の銅濃度が1.0質量%を超えると銅の除去に必要な硫黄含有フラックスの量が過大となり、実用上の負荷が大きい。一方、0.1質量%未満の場合には、脱銅処理を施さなくても、例えば、銅含有量の低い溶銑で希釈するなどして対処可能である。 The carbon concentration in the hot metal before the copper removal treatment is preferably 2% by mass or more. It is known that the reaction in which the copper in the hot metal becomes copper sulfide proceeds more thermodynamically as the carbon concentration in the hot metal is higher. If the carbon concentration in the hot metal before the copper removal treatment is less than 2% by mass, the formation reaction of copper sulfide does not occur sufficiently, the liquidus temperature of the hot metal rises, and the hot metal adheres to the vessel wall. It becomes a problem. Furthermore, the copper concentration in the hot metal before the copper removal treatment is preferably 0.1% by mass or more and 1.0% by mass or less. When the copper concentration in the hot metal before the copper removal treatment exceeds 1.0% by mass, the amount of the sulfur-containing flux necessary for removing copper becomes excessive, and the practical load is large. On the other hand, when it is less than 0.1% by mass, it can be dealt with by, for example, diluting with a hot metal having a low copper content without performing a copper removal treatment.
更に、脱銅処理前の溶銑の硫黄濃度としては、0.01質量%以上が好ましく、0.05質量%以上が更に好ましい。脱銅処理前の溶銑の硫黄濃度が0.01質量%未満では、硫黄含有フラックスから溶銑中への硫黄の溶解量が過大となり、硫黄含有フラックスの利用効率が低くなり経済的でない。硫黄濃度の上限は特に規定する必要はないが、余りに高濃度であると脱硫処理に支障を来すので、0.5質量%以下とすることが望ましい。 Furthermore, the sulfur concentration of the hot metal before the copper removal treatment is preferably 0.01% by mass or more, and more preferably 0.05% by mass or more. If the sulfur concentration of the hot metal before the copper removal treatment is less than 0.01% by mass, the amount of sulfur dissolved from the sulfur-containing flux into the hot metal becomes excessive, and the use efficiency of the sulfur-containing flux is lowered, which is not economical. The upper limit of the sulfur concentration does not need to be specified in particular, but if it is too high, the desulfurization treatment will be hindered, so it is desirable to set it to 0.5% by mass or less.
脱銅処理前の上記以外の溶銑の成分としては、例えば珪素濃度は0.5質量%以下、マンガン濃度は0.5質量%以下が望ましい。これらの濃度を超えると、脱銅処理中のこれら成分の酸化により生じる酸化珪素及び酸化マンガンがスラグに移行してスラグ量が増大し、スラグ処理が困難になるだけでなく、酸化珪素及び酸化マンガンが硫黄含有フラックスの脱銅反応を阻害する恐れがある。 As the hot metal components other than those described above before the copper removal treatment, for example, the silicon concentration is preferably 0.5% by mass or less and the manganese concentration is preferably 0.5% by mass or less. When these concentrations are exceeded, silicon oxide and manganese oxide generated by oxidation of these components during the copper removal treatment are transferred to slag to increase the amount of slag, making slag treatment difficult, as well as silicon oxide and manganese oxide. May inhibit the copper removal reaction of the sulfur-containing flux.
尚、銅含有鋼屑を加炭溶解して製造した製鋼用溶銑に、必要に応じて高炉から出銑された溶銑(以下、「高炉溶銑」と呼ぶ)を混合し、その後、混合した溶銑に含まれる銅を、硫黄含有フラックスを用いて除去するようにしてもよい。 In addition, the hot metal for steelmaking produced by carburizing and melting copper-containing steel scraps is mixed with hot metal extracted from a blast furnace (hereinafter referred to as “blast furnace hot metal”) as necessary, and then the mixed hot metal is mixed. Copper contained may be removed using a sulfur-containing flux.
銅含有鋼屑を加炭溶解して溶銑を製造する工程としては、電気炉を用いた方法、転炉を用いた方法、竪型炉を用いた方法などがあるが、特に、内部に炭材ベッドを形成した竪型炉を用いた方法が好ましい。 As a process for producing hot metal by carburizing and dissolving copper-containing steel scrap, there are a method using an electric furnace, a method using a converter, a method using a vertical furnace, etc. A method using a vertical furnace in which a bed is formed is preferable.
ここで、内部に炭材ベッドを形成した竪型炉とは、竪型炉の上部から銅含有鋼屑及びコークス更には必要に応じて造滓剤を装入し、竪型炉の下部に設けた羽口から、空気、酸素富化空気、酸素ガス、熱風などを送風してコークスを燃焼させ、コークスの燃焼熱によって銅含有鋼屑及び造滓剤を溶解し、炉底部の出湯口から溶銑及び溶融スラグを取り出す装置である。炉底部の出湯口から取り出された溶銑は、炉前の鋳床に設けられた耐火物製の鋳床樋を流れ、鋳床樋の先端下方に配置される溶銑鍋などの溶銑保持容器に落下して、溶銑保持容器内に収容される。この場合、炉底から羽口の上方或る高さ位置までの範囲にはコークスだけを詰め、これを燃焼してコークスの上部に装入した銅含有鋼屑を溶解している。炉底に詰めるコークスを「炭材ベッド」と呼び、この炭材ベッドは燃焼して消耗するので、これを補いながら溶解を継続するために、炉体の上部からコークスを装入する。銅含有鋼屑が溶解して生成される溶融鉄は、コークスの間隙を流下し、コークスにより加炭されて溶銑が生成される。この内部に炭材ベッドを形成した竪型炉は、電気炉などに比較してエネルギー効率が高いことが知られている。 Here, a vertical furnace with a charcoal bed formed inside is a steel containing copper-containing steel scraps and coke from the upper part of the vertical furnace and, if necessary, a slagging agent, and is provided at the lower part of the vertical furnace. The coke is burned by blowing air, oxygen-enriched air, oxygen gas, hot air, etc. from the heated tuyere, and the copper-containing steel scrap and iron making agent are melted by the combustion heat of the coke, and the hot metal is melted from the tap at the bottom of the furnace. And an apparatus for taking out molten slag. The hot metal taken out from the hot water outlet at the bottom of the furnace flows through the refractory cast iron provided in the cast floor in front of the furnace and falls into a hot metal holding container such as a hot metal pan located below the tip of the cast iron. Then, it is accommodated in the hot metal holding container. In this case, only the coke is packed in the range from the furnace bottom to a certain height above the tuyere, and this is burned to melt the copper-containing steel scrap charged in the upper part of the coke. The coke that fills the bottom of the furnace is called a “charcoal bed”, and the charcoal bed burns and wears out. To compensate for this, the coke is charged from the top of the furnace body. The molten iron produced by melting the copper-containing steel scraps flows down the coke gap and is carburized by the coke to produce hot metal. It is known that a vertical furnace having a charcoal bed formed therein has higher energy efficiency than an electric furnace or the like.
このような、内部に炭材ベッドを形成した竪型炉を用いて溶銑を製造する場合、高炉溶銑に比して溶銑中の硫黄濃度は一般に高くなる。この硫黄濃度の高い状態を利用して、硫黄含有フラックスによる脱銅を有利に進めることができる。溶銑中の硫黄濃度が高いことにより、硫黄含有フラックスから溶銑中への硫黄の移動が少なくて済み、硫黄含有フラックスの利用効率を高めることができる。 When hot metal is produced using such a vertical furnace in which a carbon material bed is formed, the sulfur concentration in the hot metal is generally higher than that in the blast furnace hot metal. Taking advantage of this high sulfur concentration, copper removal with a sulfur-containing flux can be advantageously advanced. Since the sulfur concentration in the hot metal is high, there is little movement of sulfur from the sulfur-containing flux into the hot metal, and the utilization efficiency of the sulfur-containing flux can be increased.
竪型炉を用いて銅含有鋼屑を溶解する場合には、出湯口から取り出された溶銑は鋳床樋を流れて溶銑保持容器に落下・注入されるので、この鋳床樋を流れる溶銑に、上置き添加する、ガスとともに吹き付ける、ガスとともに吹き込む、などして硫黄含有フラックスを供給することで、脱銅処理を行うことができる。鋳床樋を流れる溶銑に供給された硫黄含有フラックスは、溶銑が鋳床樋を流れる期間、溶銑に脱銅処理を施すのみならず、鋳床樋から溶銑保持容器への落下により溶銑と激しく攪拌され、溶銑の脱銅処理が効率的に行われる。この場合、溶銑保持容器に予め硫黄含有フラックスを別途入れ置きすることにより、脱銅反応がより一層促進される。尚、この鋳床樋での脱銅処理のみでは脱銅が不足する場合には、前述した機械攪拌式精錬装置やフラックス吹き込み法を用いて更に脱銅処理を施すことができる。 When melting copper-containing steel scraps using a vertical furnace, the hot metal taken out from the pouring spout flows through the cast iron and is dropped and injected into the hot metal holding container. The decoppering treatment can be performed by supplying the sulfur-containing flux by, for example, adding on top, blowing with the gas, or blowing with the gas. The sulfur-containing flux supplied to the hot metal flowing through the cast iron is not only decopperized during the period when the hot metal flows through the hot metal, but also vigorously stirred with the hot metal by dropping from the cast iron into the hot metal holding container. Thus, the copper removal treatment of the hot metal is efficiently performed. In this case, the copper removal reaction is further promoted by separately placing a sulfur-containing flux in the hot metal holding container in advance. In addition, when the copper removal is insufficient only by the copper removal treatment in the cast iron, the copper removal treatment can be further performed using the mechanical stirring type refining apparatus and the flux blowing method described above.
脱銅処理に伴い、硫黄含有フラックス中の硫黄が不可避的に溶銑中に移行するため、溶銑中の硫黄濃度は上昇する。従って、脱銅処理を行った後、更に、溶銑中の硫黄を除去する処理を行う。脱硫処理は、公知の機械攪拌式精錬装置による方法、ランスからの粉体吹き込みによる方法、転炉を使用する方法などの何れであってもよい。脱硫剤としては、CaOを主成分とする脱硫剤、カルシウム・カーバイドを主成分とする脱硫剤、ソーダ灰を主成分とする脱硫剤、金属Mgなど種々の脱硫剤を使用することができる。機械攪拌式精錬装置で脱銅処理を行った後、生成したスラグを除去し、その後、同じ機械攪拌式精錬装置で脱硫処理を行ってもよい。また、脱硫処理を実施する場合に、高炉溶銑を、脱銅処理を施した溶銑に追加混合し、その後、混合した溶銑の脱硫処理を行ってもよい。更には、脱硫処理後の溶銑に高炉溶銑を混合してもよい。 Along with the copper removal treatment, sulfur in the sulfur-containing flux inevitably moves into the hot metal, so the sulfur concentration in the hot metal increases. Therefore, after the copper removal treatment, a treatment for removing sulfur in the hot metal is further performed. The desulfurization treatment may be any of a method using a known mechanical stirring type refining device, a method by blowing powder from a lance, a method using a converter, and the like. As the desulfurization agent, various desulfurization agents such as a desulfurization agent mainly composed of CaO, a desulfurization agent mainly composed of calcium carbide, a desulfurization agent mainly composed of soda ash, and metallic Mg can be used. After performing the copper removal treatment with the mechanical stirring type refining device, the generated slag may be removed, and then the desulfurization treatment may be performed with the same mechanical stirring type refining device. Moreover, when implementing a desulfurization process, a blast furnace hot metal may be additionally mixed with the hot metal which performed the decoppering process, and the mixed hot metal desulfurization process may be performed after that. Furthermore, you may mix a blast furnace hot metal with the hot metal after a desulfurization process.
脱硫処理に先立ち、脱銅処理に供した硫黄含有フラックスを反応容器から除去することが必要である。硫黄含有フラックスを除去しないまま、脱硫処理すると、硫黄含有フラックス中の硫化銅(Cu2S)が分解して溶銑に戻り、溶銑中の銅濃度が上昇する恐れがあるからである。スラグ除去作業は、公知のスラグドラッガーを用いた方法、スラグ吸引機による方法、溶銑収容容器を傾けて容器内のスラグを排出する方法などの何れでもよく、各製鉄所の保有する設備状況に適したものを選択すればよい。 Prior to the desulfurization treatment, it is necessary to remove the sulfur-containing flux subjected to the decopperization treatment from the reaction vessel. This is because if the desulfurization treatment is performed without removing the sulfur-containing flux, copper sulfide (Cu 2 S) in the sulfur-containing flux is decomposed and returned to the hot metal, which may increase the copper concentration in the hot metal. The slag removal operation may be any of a method using a known slag dragger, a method using a slag suction machine, a method of discharging the slag in the container by inclining the hot metal container, and is suitable for the equipment situation possessed by each steelworks You can select the one you want.
以上説明したように、本発明によれば、銅含有鋼屑を加炭溶解した後に、鋼屑から持ち来たされた溶銑中の銅を硫黄含有フラックス中に分離除去するので、鋼屑を物理的に分解した後に磁力選別などで分離除去する方法では分離の困難であった銅を効率良く分離することができるともに、銅の除去処理後に、硫黄含有フラックスから持ち来たされる溶銑中の硫黄の除去処理を行うので、銅含有鋼屑から銅及び硫黄の少ない溶銑を効率良く得ることができる。 As described above, according to the present invention, after the copper-containing steel scrap is carburized and melted, the copper in the hot metal brought from the steel scrap is separated and removed into the sulfur-containing flux. Can be separated efficiently by the method of separating and removing by magnetic separation etc. after it is decomposed efficiently, and sulfur in the hot metal brought from the sulfur-containing flux after copper removal treatment Therefore, hot metal with less copper and sulfur can be efficiently obtained from the copper-containing steel scrap.
内部に炭材ベッドを形成した竪型炉を用いて、銅含有鋼屑を溶解して製鋼用溶銑を製造し、この溶銑を、FeS−Na2Sを主成分とするフラックスを用いて脱銅処理し、脱銅処理後、更に、CaO系脱硫剤を用いて脱硫処理する試験を実施した。 Using a vertical furnace with a charcoal bed formed inside, copper-containing steel scrap is melted to produce hot metal for steel making, and this hot metal is removed using a flux containing FeS-Na 2 S as a main component. After the treatment and the copper removal treatment, a test was further carried out using a CaO-based desulfurization agent.
脱銅処理は、鍋形状の反応容器に約5トンの前記製鋼用溶銑を装入し、機械攪拌式精錬装置において、FeS−Na2Sを主成分とするフラックス(フラックス中のNa2Sのモル分率0.4)を溶銑上に投入し、耐火物で被覆したインペラを溶銑に浸漬させ、インペラを回転して溶銑及びフラックスを攪拌して行う場合(試験No.1)と、反応容器内の溶銑に浸漬させたインジェクションランスから攪拌用ガスを吹き込んで溶銑を攪拌しながらFeS−Na2Sを主成分とするフラックスを添加して行う場合(試験No.2)と、反応容器内の溶銑に浸漬させたインジェクションランスから搬送用ガスとともにFeS−Na2Sを主成分とするフラックスを溶銑中に吹き込んで添加して行う場合(試験No.3)との3水準で実施した。何れの試験でも、FeS−Na2Sを主成分とするフラックスを溶銑トンあたり200kg投入した。 In the copper removal treatment, about 5 tons of the hot metal for steel making was charged into a pan-shaped reaction vessel, and in a mechanical stirring type refining device, a flux containing FeS-Na 2 S as a main component (of Na 2 S in the flux). Molten fraction 0.4) is put on the hot metal, the impeller coated with refractory is immersed in the hot metal, and the impeller is rotated to stir the hot metal and the flux (Test No. 1), and the reaction vessel In the case where the stirring gas is blown from the injection lance soaked in the molten iron and the flux containing FeS-Na 2 S as a main component is added while the molten metal is stirred (Test No. 2), The test was carried out at three levels, as in the case where a flux mainly composed of FeS-Na 2 S was blown into the hot metal and added from the injection lance immersed in the hot metal into the hot metal (Test No. 3). In any test, 200 kg of flux containing FeS—Na 2 S as a main component was introduced per ton of hot metal.
脱銅処理後、生成したスラグを除去した後、試験No.1、試験No.2及び試験No.3ともに、機械攪拌式精錬装置において、耐火物で被覆したインペラを溶銑に浸漬させ、インペラを回転して溶銑及び脱硫剤を攪拌して脱硫処理を実施した。表1に、溶銑中の銅濃度及び硫黄濃度の推移、並びに、溶銑温度の推移を示す。 After the copper removal treatment, the generated slag is removed, and in each of test No.1, test No.2 and test No.3, the impeller coated with a refractory is immersed in hot metal in a mechanical stirring type refining device. The desulfurization treatment was performed by rotating and stirring the hot metal and the desulfurizing agent. Table 1 shows the transition of the copper concentration and sulfur concentration in the hot metal and the transition of the hot metal temperature.
表1に示すように、機械攪拌式精錬装置でインペラにより溶銑及び硫黄含有フラックスを攪拌した試験No.1では、溶銑中の銅濃度が0.33質量から0.10質量%へと大幅に低下していた。また、硫黄含有フラックスを吹き込み添加した試験No.3では、試験No.1と同様に、溶銑中の銅濃度は0.30質量から0.11質量%へと大幅に低下していた。これに対して、攪拌用ガスで溶銑を攪拌しながら硫黄含有フラックスを添加した試験No.2では、脱銅したものの、脱銅率は低く、機械攪拌式精錬装置で脱銅処理することが好ましいことが確認できた。 As shown in Table 1, in test No. 1 in which hot metal and sulfur-containing flux were stirred with an impeller in a mechanical stirring type refining device, the copper concentration in the hot metal decreased significantly from 0.33 mass to 0.10 mass%. Was. Further, in test No. 3 in which the sulfur-containing flux was blown and added, the copper concentration in the hot metal was greatly reduced from 0.30 mass to 0.11 mass%, as in test No. 1. On the other hand, in test No. 2 in which the sulfur-containing flux was added while stirring the hot metal with the stirring gas, the copper removal rate was low, but the copper removal treatment was preferably performed with a mechanical stirring type refining device. I was able to confirm.
試験No.1及び試験No.3では、脱硫処理することで、最終的に銅濃度及び硫黄濃度ともに低い溶銑を得ることができ、高級鋼用の溶銑として問題なく使用できることが分かった。 In Test No. 1 and Test No. 3, it was found that by performing desulfurization treatment, it was possible to finally obtain hot metal having both a low copper concentration and a low sulfur concentration, and it could be used without any problem as hot metal for high-grade steel.
温度、組成の異なる製鋼用溶銑を使用して、脱銅処理及び脱銅処理後の脱硫処理を実施する試験を行った(試験No.4〜13)。 A test for performing a copper removal treatment and a desulfurization treatment after the copper removal treatment was carried out using hot metal for steel making having different temperatures and compositions (Test Nos. 4 to 13).
脱銅処理は、鍋形状の反応容器に約5トンの製鋼用溶銑を装入し、鍋上に設けた精錬剤供給用ホッパーから脱銅精錬用のフラックスを添加して行った。脱銅精錬用フラックスとして、溶銑トンあたり40kgの鉄−硫黄合金(フェロサルファー、硫黄含有量:48質量%)と、溶銑トンあたり30kgのソーダ灰(Na2CO3)とを用いた。鍋内溶銑の攪拌方法としては、耐火物で被覆したインペラを溶銑に浸漬させ、インペラを回転して溶銑及びフラックスを攪拌して行う方法を用いた。 The copper removal treatment was performed by charging a hot metal for steelmaking in a pan-shaped reaction vessel and adding a flux for decopper refining from a refining agent supply hopper provided on the pan. As the flux for copper removal refining, 40 kg of iron-sulfur alloy (ferrosulfur, sulfur content: 48 mass%) per ton of hot metal and 30 kg of soda ash (Na 2 CO 3 ) per ton of hot metal were used. As a method of stirring the hot metal in the pan, a method was used in which an impeller coated with a refractory was immersed in the hot metal, and the hot metal and flux were stirred by rotating the impeller.
全ての試験で脱銅処理後に生成したスラグを除去し、スラグを除去した後、機械攪拌式精錬装置において脱硫処理を実施した。脱硫処理は、CaO系脱硫剤を溶銑トンあたり20kg投入し、耐火物で被覆したインペラを溶銑に浸漬させ、インペラを回転して溶銑及び脱硫剤を攪拌して行った。表2に、脱銅処理前後並びに脱硫処理後の溶銑温度及び溶銑成分を一覧で示す。尚、表2に示した以外の溶銑成分については、珪素濃度が0.05〜0.4質量%、マンガン濃度が0.05〜0.4質量%、燐濃度が0.02〜0.2質量%の範囲であった。 In all tests, the slag produced after the copper removal treatment was removed, and after the slag was removed, the desulfurization treatment was carried out in a mechanical stirring type refining apparatus. The desulfurization treatment was performed by adding 20 kg of CaO-based desulfurizing agent per ton of molten iron, immersing the impeller coated with the refractory in the molten iron, rotating the impeller, and stirring the molten iron and the desulfurizing agent. Table 2 lists hot metal temperatures and hot metal components before and after the copper removal treatment and after the desulfurization treatment. For the hot metal components other than those shown in Table 2, the silicon concentration is 0.05 to 0.4 mass%, the manganese concentration is 0.05 to 0.4 mass%, and the phosphorus concentration is 0.02 to 0.2 mass%. It was the range of mass%.
試験No.4〜9においては、溶銑の温度が1200℃以上1500℃以下、炭素濃度が2質量%以上、銅濃度が0.1質量%以上1.0質量%以下、硫黄濃度が0.01質量%以上の条件、つまり、本発明の好ましい条件の範囲内であり、脱銅率(=処理後溶銑中銅濃度/処理前溶銑中銅濃度)が0.4以上であり、脱銅が良好に行われたことが確認できた。一方、試験No.10〜13においては、本発明の好ましい条件を外れた条件下で脱銅処理を実施したことから、脱銅率(=(処理前溶銑中銅濃度−処理後溶銑中銅濃度)×100/処理前溶銑中銅濃度)は40%未満であった。 In Test Nos. 4 to 9, the hot metal temperature is 1200 ° C. or more and 1500 ° C. or less, the carbon concentration is 2% by mass or more, the copper concentration is 0.1% by mass or more and 1.0% by mass or less, and the sulfur concentration is 0.01%. It is within the range of the conditions of mass% or more, that is, the preferred conditions of the present invention, and the copper removal rate (= copper concentration in the hot metal after treatment / copper concentration in the hot metal before treatment) is 0.4 or more and the copper removal is good. It was confirmed that this was done. On the other hand, in Test Nos. 10 to 13, since the copper removal treatment was performed under conditions that deviated from the preferred conditions of the present invention, the copper removal rate (= (copper concentration in hot metal before treatment−copper concentration in hot metal after treatment) ) × 100 / copper concentration in hot metal before treatment) was less than 40%.
内部に炭材ベッドを形成した竪型炉を用いて、銅含有鋼屑を溶解して製鋼用溶銑を製造し、この溶銑を、出発原料としてソーダ灰(Na2CO3)及び鉄−硫黄合金(フェロサルファー)からなるフラックスを用いて脱銅処理し、脱銅処理後、脱銅処理後の溶銑に高炉溶銑を混合し、この混合した溶銑に対して、CaO系脱硫剤を用いて脱硫処理する試験を実施した。 Using a vertical furnace with a charcoal bed inside, copper-containing steel scraps are melted to produce hot metal for steel making, and this hot metal is used as a starting material soda ash (Na 2 CO 3 ) and iron-sulfur alloy. (Ferrosulfur) is used to decopperize, and after decoppering, blast furnace hot metal is mixed with the hot metal after decoppering, and the mixed hot metal is desulfurized using a CaO-based desulfurizing agent. A test was conducted.
竪型炉で製造した製鋼用溶銑の温度は1400℃、炭素濃度は4.0質量%、銅濃度は0.30質量%、硫黄濃度は0.11質量%であった。 The temperature of the hot metal for steel making produced in the vertical furnace was 1400 ° C., the carbon concentration was 4.0% by mass, the copper concentration was 0.30% by mass, and the sulfur concentration was 0.11% by mass.
脱銅処理は、鍋形状の反応容器に前記製鋼用溶銑約60トンを装入し、機械攪拌式精錬装置において、溶銑トンあたりソーダ灰35kg及び鉄−硫黄合金(合金中硫黄濃度48質量%)50kgを溶銑上に投入し、耐火物で被覆したインペラを溶銑に浸漬させ、インペラを回転して溶銑及びフラックスを攪拌して行った。脱銅処理後の溶銑の銅濃度は0.14質量%、硫黄濃度は0.44質量%であった。 In the copper removal treatment, about 60 tons of hot metal for steel making is charged into a pan-shaped reaction vessel, and 35 kg of soda ash and iron-sulfur alloy (sulfur concentration in alloy is 48 mass%) per ton of hot metal in a mechanical stirring type refining device. 50 kg was put on the hot metal, the impeller covered with the refractory was immersed in the hot metal, and the impeller was rotated to stir the hot metal and the flux. The copper concentration of the hot metal after the copper removal treatment was 0.14% by mass, and the sulfur concentration was 0.44% by mass.
脱銅処理により生成したスラグをスラグドラッガーで除去した後、脱銅処理後の溶銑約60トンと高炉で製造された高炉溶銑約240トンとを鍋形状の反応容器で混合した。混合後の溶銑の銅濃度は0.03質量%、硫黄濃度は0.09質量%であった。 After removing the slag produced by the copper removal treatment with a slag dragger, about 60 tons of hot metal after the copper removal treatment and about 240 tons of blast furnace hot metal produced in a blast furnace were mixed in a pan-shaped reaction vessel. The copper concentration in the hot metal after mixing was 0.03% by mass, and the sulfur concentration was 0.09% by mass.
混合後の溶銑に対して、機械攪拌式精錬装置において、CaO系脱硫剤を溶銑トンあたり20kg投入し、耐火物で被覆したインペラを溶銑に浸漬させ、インペラを回転して溶銑及び脱硫剤を攪拌して脱硫処理を実施した。脱硫処理後の溶銑の銅濃度は0.03質量%、硫黄濃度は0.01質量%であった。 For the molten iron after mixing, in a mechanical stirring type refining device, 20 kg of CaO-based desulfurizing agent is added per ton of molten iron, the impeller covered with refractory is immersed in the molten iron, and the impeller is rotated to stir the molten iron and desulfurizing agent. Then, desulfurization treatment was performed. The copper concentration of the hot metal after the desulfurization treatment was 0.03% by mass, and the sulfur concentration was 0.01% by mass.
溶銑温度の脱銅率に及ぼす影響を明確にするための調査試験を行った。鍋形状の反応容器に約5トンの製鋼用溶銑を装入して脱銅試験を行った(試験No.14〜20)。鍋上に設けた精錬剤供給用ホッパーから脱銅精錬用のフラックスを添加した。脱銅精錬用フラックスとしては、鉄−硫黄合金(フェロサルファー、硫黄含有量:48質量%)とソーダ灰(Na2CO3)とを用いた。鍋内溶銑の攪拌方法としては、耐火物で被覆したインペラを溶銑に浸漬させ、インペラを回転して攪拌する方法を用いた。表3に、試験条件及び試験結果を一覧で示す。脱銅処理前の溶銑成分は、表3に記載以外の成分については、炭素が4.5〜4.7質量%、珪素が0.20質量%、マンガンが0.15質量%、燐が0.050質量%になるように調製して試験を行った。 An investigation test was conducted to clarify the effect of hot metal temperature on the copper removal rate. About 5 tons of hot metal for steel making was charged into a pot-shaped reaction vessel, and a copper removal test was conducted (Test Nos. 14 to 20). A flux for removing copper refining was added from a hopper for supplying a refining agent provided on the pan. An iron-sulfur alloy (ferrosulfur, sulfur content: 48% by mass) and soda ash (Na 2 CO 3 ) were used as the flux for copper removal refining. As a method for stirring the hot metal in the pan, a method was used in which an impeller coated with a refractory was immersed in the hot metal, and the impeller was rotated and stirred. Table 3 lists the test conditions and test results. Regarding the components other than those listed in Table 3, the hot metal component before the copper removal treatment is 4.5 to 4.7% by mass of carbon, 0.20% by mass of silicon, 0.15% by mass of manganese, and 0% of phosphorus. The test was carried out with a preparation of 0.050 mass%.
図1に、脱銅処理前の溶銑温度と脱銅率との関係を示す。溶銑温度が1250〜1500℃の範囲においては、溶銑温度が低いほど脱銅率が高くなる結果が得られた。但し、1200℃の試験水準においては、脱銅率が33.3%まで低下した。これは、低温化により脱銅精錬用フラックスの反応性が悪化したためと考えられる。本結果から、望ましくは溶銑温度を1250〜1350℃の範囲とすることで50%を超える、高い脱銅率が得られることが分かった。 FIG. 1 shows the relationship between the hot metal temperature before the copper removal treatment and the copper removal rate. When the hot metal temperature was 1250 to 1500 ° C., the lower the hot metal temperature, the higher the copper removal rate. However, at a test level of 1200 ° C., the copper removal rate decreased to 33.3%. This is presumably because the reactivity of the decopper refining flux deteriorated due to low temperature. From this result, it was found that a high copper removal rate exceeding 50% can be obtained by setting the hot metal temperature in the range of 1250 to 1350 ° C.
インジェクションランスを介して脱銅精錬用フラックスを溶銑中に吹き込んで行う脱銅処理試験を、鍋形状の反応容器に収容された約5トンの製鋼用溶銑に対して実施した(試験No.21〜26)。試験は、鍋内の溶銑に耐火物を被覆したインジェクションランスを浸漬させ、窒素ガスを搬送用ガスとして脱銅精錬用フラックスの一部または全部を、インジェクションランスを通じて溶銑中に吹き込んだ。インジェクションランスからの吹込み添加以外には、鍋上の精錬剤供給用ホッパーから上置き添加した。 A decoppering treatment test was carried out by blowing a copper removal refining flux into the hot metal via an injection lance, with respect to about 5 tons of steelmaking hot metal accommodated in a pan-shaped reaction vessel (test No. 21 to 21). 26). In the test, an injection lance coated with a refractory was immersed in the hot metal in the pan, and a part or all of the decopper refining flux was blown into the hot metal through the injection lance using nitrogen gas as a carrier gas. In addition to the addition from the injection lance, the addition was performed from the hopper for supplying the refining agent on the pan.
脱銅精錬用フラックスには、鉄−硫黄合金(フェロサルファー、硫黄含有量:48質量%)とソーダ灰(Na2CO3)を用いた。表4に、試験条件及び試験結果を一覧で示す。脱銅処理前の溶銑成分は、表4に記載以外の成分については、炭素を4.5〜4.7質量%、珪素を0.20質量%、マンガンを0.15質量%、燐を0.050質量%に調製し、溶銑温度は1400℃とした。 An iron-sulfur alloy (ferrosulfur, sulfur content: 48 mass%) and soda ash (Na 2 CO 3 ) were used for the flux for copper removal refining. Table 4 shows a list of test conditions and test results. Regarding the components other than those listed in Table 4, the hot metal components before the copper removal treatment are 4.5 to 4.7% by mass of carbon, 0.20% by mass of silicon, 0.15% by mass of manganese, and 0% of phosphorus. The hot metal temperature was set to 1400 ° C.
尚、インジェクションランスの浸漬深さについては、溶銑の浴深をH(m)、溶銑浴面からインジェクションランス先端までの距離をL(m)とした時、L/Hが0.3以上であれば吹き込んだフラックスが脱銅反応に寄与できることを別途実験で確認している。また、用いるインジェクションランスの仕様としては、溶銑内に浸漬してフラックスを吹き込む処理に耐えうるものであればどのようなものを用いても構わない。更に、搬送用ガス流量とフラックス吹込み速度との関係についても、インジェクションランス内でのフラックス詰りが発生しない程度であれば冶金特性にはなんら影響しない。搬送用ガスの種類も不活性ガスであれば問題なく、例えばArガスを用いても構わない。 Regarding the immersion depth of the injection lance, if the bath depth of the hot metal is H (m) and the distance from the hot metal bath surface to the tip of the injection lance is L (m), L / H should be 0.3 or more. It has been confirmed in a separate experiment that the blown flux can contribute to the copper removal reaction. Moreover, as a specification of the injection lance to be used, any specification may be used as long as it can withstand the process of dipping in the hot metal and blowing the flux. Further, the relationship between the flow rate of the conveying gas and the flux blowing speed has no influence on the metallurgical characteristics as long as the flux clogging does not occur in the injection lance. There is no problem as long as the kind of the carrier gas is an inert gas, for example, Ar gas may be used.
試験No.21〜26において、インジェクションランスによる添加の割合を変化させたが、脱銅率に大きな差はなく50%程度であり、機械攪拌式精錬装置を用いた場合と同等であることを確認した。また、試験No.25では、ソーダ灰のみをインジェクションランスから吹き込み添加し、試験No.26では、フェロサルファーのみを吹き込み添加する試験を行ったが、何れの試験も脱銅率は同等であった。 In Test Nos. 21 to 26, the ratio of addition by injection lance was changed, but there was no significant difference in the copper removal rate and it was about 50%, confirming that it was the same as when using a mechanical stirring type refining device did. In Test No. 25, only soda ash was blown and added from the injection lance, and in Test No. 26, only ferrosulfur was blown and added. All tests had the same copper removal rate. .
以上の結果から、機械攪拌式精錬装置でなく、インジェクションランスによりフラックスの一部または全部を添加する方法でも脱銅処理が可能であることを確認した。 From the above results, it was confirmed that the copper removal treatment was possible not only by the mechanical stirring type refining apparatus but also by a method of adding a part or all of the flux with an injection lance.
Claims (12)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009006297A JP5402005B2 (en) | 2008-03-05 | 2009-01-15 | Method for removing copper in steel scrap |
MX2010009609A MX2010009609A (en) | 2008-03-05 | 2009-03-03 | Process for removal of copper contained in steel scraps. |
US12/920,741 US20110000340A1 (en) | 2008-03-05 | 2009-03-03 | Method for removing copper in steel scraps |
KR1020137009853A KR20130045955A (en) | 2008-03-05 | 2009-03-03 | Method for removing copper in steel scraps |
CA 2715322 CA2715322C (en) | 2008-03-05 | 2009-03-03 | Method for removing copper in steel scraps |
CN200980107370.2A CN101960023B (en) | 2008-03-05 | 2009-03-03 | Process for removal of copper contained in steel scraps |
KR1020107019379A KR101276921B1 (en) | 2008-03-05 | 2009-03-03 | Method for removing copper in steel scraps |
EP20090717326 EP2248916B1 (en) | 2008-03-05 | 2009-03-03 | Process for removal of copper contained in steel scraps |
BRPI0909687A BRPI0909687A2 (en) | 2008-03-05 | 2009-03-03 | method to remove copper in steel fragments |
PCT/JP2009/054370 WO2009110627A1 (en) | 2008-03-05 | 2009-03-03 | Process for removal of copper contained in steel scraps |
TW98107087A TWI409338B (en) | 2008-03-05 | 2009-03-05 | Removal of copper from steel scrap |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008054635 | 2008-03-05 | ||
JP2008054635 | 2008-03-05 | ||
JP2008284935 | 2008-11-06 | ||
JP2008284935 | 2008-11-06 | ||
JP2009006297A JP5402005B2 (en) | 2008-03-05 | 2009-01-15 | Method for removing copper in steel scrap |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010133002A true JP2010133002A (en) | 2010-06-17 |
JP5402005B2 JP5402005B2 (en) | 2014-01-29 |
Family
ID=41056175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009006297A Active JP5402005B2 (en) | 2008-03-05 | 2009-01-15 | Method for removing copper in steel scrap |
Country Status (10)
Country | Link |
---|---|
US (1) | US20110000340A1 (en) |
EP (1) | EP2248916B1 (en) |
JP (1) | JP5402005B2 (en) |
KR (2) | KR20130045955A (en) |
CN (1) | CN101960023B (en) |
BR (1) | BRPI0909687A2 (en) |
CA (1) | CA2715322C (en) |
MX (1) | MX2010009609A (en) |
TW (1) | TWI409338B (en) |
WO (1) | WO2009110627A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011084811A (en) * | 2009-09-15 | 2011-04-28 | Jfe Steel Corp | Method for producing molten pig iron |
JP2013119666A (en) * | 2011-12-09 | 2013-06-17 | Nippon Steel & Sumitomo Metal Corp | Method of sulphurizing and removing copper from iron scrap |
JP2014101542A (en) * | 2012-11-20 | 2014-06-05 | Jfe Steel Corp | Processing method of copper removal from molten pig iron |
JP2016501987A (en) * | 2012-12-26 | 2016-01-21 | ポスコ | Pig iron processing apparatus and method |
CN115369258A (en) * | 2022-08-04 | 2022-11-22 | 江苏鑫瑞崚新材料科技有限公司 | Low-silver low-sulfur ultrahigh-purity copper purification vacuum melting process |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5581759B2 (en) * | 2010-03-19 | 2014-09-03 | Jfeスチール株式会社 | Method for removing copper in steel scrap |
JP5581760B2 (en) * | 2010-03-19 | 2014-09-03 | Jfeスチール株式会社 | Method for removing copper in steel scrap and method for producing molten steel using steel scrap as an iron source |
KR101321086B1 (en) * | 2010-12-22 | 2013-10-23 | 주식회사 포스코 | Method for refining molten iron |
CN107130082B (en) * | 2017-04-26 | 2019-05-07 | 湖南工业大学 | A kind of method that copper efficiently separates in high-copper iron charge |
CN107151736A (en) * | 2017-06-21 | 2017-09-12 | 江苏省冶金设计院有限公司 | A kind of system and method for preparing decopper(ing) molten iron |
CN110793880A (en) * | 2019-09-30 | 2020-02-14 | 鞍钢股份有限公司 | Device and method for simulating metallurgical reduction mineral aggregate process |
CN110565120B (en) * | 2019-10-18 | 2021-09-07 | 东北大学 | Method for removing and recovering copper from copper-containing iron liquid |
WO2022164878A1 (en) * | 2021-01-26 | 2022-08-04 | Nucor Corporation | Method and system of reducing non-ferrous metal content of scrap steel |
CN116287549B (en) * | 2023-03-21 | 2024-07-02 | 武汉科技大学 | Method for simultaneously removing residual elements of tin and antimony by vacuum treatment of low-carbon low-sulfur steel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61119612A (en) * | 1984-11-14 | 1986-06-06 | Sumitomo Metal Ind Ltd | Method for simultaneously removing copper and tin from molten iron |
JPS61266515A (en) * | 1985-05-21 | 1986-11-26 | Masanori Tokuda | Manufacture of low copper steel from molten iron containing copper |
JPS63192812A (en) * | 1987-02-05 | 1988-08-10 | Sumitomo Metal Ind Ltd | Cu removing method in molten iron |
JPH07316618A (en) * | 1994-05-17 | 1995-12-05 | Nkk Corp | Method for pre-refining smelting reduction molten iron |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2403419A (en) * | 1943-04-15 | 1946-07-02 | Revere Copper & Brass Inc | Method of recovering the constituents of scrap bi-metal |
US2512578A (en) * | 1949-05-26 | 1950-06-20 | Jordan James Fernando | Method of desulfurizing and decopperizing ferrous metal |
SU1227689A1 (en) * | 1984-07-03 | 1986-04-30 | Магнитогорский горно-металлургический институт им.Г.И.Носова | Method of removing copper from cast iron melt |
US4925488A (en) * | 1987-07-30 | 1990-05-15 | Milton Blander | Removal of copper from ferrous scrap |
JPH04198431A (en) | 1990-11-29 | 1992-07-17 | Nippon Steel Corp | Method for removing copper in steel iron |
JPH09143586A (en) * | 1995-11-28 | 1997-06-03 | Ryokichi Shinpo | Method for removing copper in molten iron |
JP4745731B2 (en) * | 2005-06-24 | 2011-08-10 | 日本鋳鉄管株式会社 | Method of melting hot metal with cupola |
-
2009
- 2009-01-15 JP JP2009006297A patent/JP5402005B2/en active Active
- 2009-03-03 KR KR1020137009853A patent/KR20130045955A/en not_active Application Discontinuation
- 2009-03-03 EP EP20090717326 patent/EP2248916B1/en active Active
- 2009-03-03 WO PCT/JP2009/054370 patent/WO2009110627A1/en active Application Filing
- 2009-03-03 CN CN200980107370.2A patent/CN101960023B/en active Active
- 2009-03-03 CA CA 2715322 patent/CA2715322C/en active Active
- 2009-03-03 MX MX2010009609A patent/MX2010009609A/en not_active Application Discontinuation
- 2009-03-03 BR BRPI0909687A patent/BRPI0909687A2/en not_active Application Discontinuation
- 2009-03-03 US US12/920,741 patent/US20110000340A1/en not_active Abandoned
- 2009-03-03 KR KR1020107019379A patent/KR101276921B1/en active IP Right Grant
- 2009-03-05 TW TW98107087A patent/TWI409338B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61119612A (en) * | 1984-11-14 | 1986-06-06 | Sumitomo Metal Ind Ltd | Method for simultaneously removing copper and tin from molten iron |
JPS61266515A (en) * | 1985-05-21 | 1986-11-26 | Masanori Tokuda | Manufacture of low copper steel from molten iron containing copper |
JPS63192812A (en) * | 1987-02-05 | 1988-08-10 | Sumitomo Metal Ind Ltd | Cu removing method in molten iron |
JPH07316618A (en) * | 1994-05-17 | 1995-12-05 | Nkk Corp | Method for pre-refining smelting reduction molten iron |
Non-Patent Citations (2)
Title |
---|
JPN6013016814; 白川博一他: '溶融フラックスによる溶銑の脱銅' 鉄と鋼 vol.72, No.12, 198609, S961 * |
JPN6013033015; 今井正他: '炭素飽和溶鉄とNa2S系フラックス間の銅の分配平衡' 鉄と鋼 vol.72, No.12, 198609, S962 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011084811A (en) * | 2009-09-15 | 2011-04-28 | Jfe Steel Corp | Method for producing molten pig iron |
JP2013119666A (en) * | 2011-12-09 | 2013-06-17 | Nippon Steel & Sumitomo Metal Corp | Method of sulphurizing and removing copper from iron scrap |
JP2014101542A (en) * | 2012-11-20 | 2014-06-05 | Jfe Steel Corp | Processing method of copper removal from molten pig iron |
JP2016501987A (en) * | 2012-12-26 | 2016-01-21 | ポスコ | Pig iron processing apparatus and method |
CN115369258A (en) * | 2022-08-04 | 2022-11-22 | 江苏鑫瑞崚新材料科技有限公司 | Low-silver low-sulfur ultrahigh-purity copper purification vacuum melting process |
Also Published As
Publication number | Publication date |
---|---|
KR20130045955A (en) | 2013-05-06 |
TW200944594A (en) | 2009-11-01 |
MX2010009609A (en) | 2010-09-30 |
CN101960023B (en) | 2014-06-18 |
CN101960023A (en) | 2011-01-26 |
WO2009110627A1 (en) | 2009-09-11 |
EP2248916B1 (en) | 2013-10-30 |
EP2248916A4 (en) | 2011-01-05 |
CA2715322C (en) | 2013-01-15 |
TWI409338B (en) | 2013-09-21 |
JP5402005B2 (en) | 2014-01-29 |
KR20100105794A (en) | 2010-09-29 |
US20110000340A1 (en) | 2011-01-06 |
KR101276921B1 (en) | 2013-06-19 |
CA2715322A1 (en) | 2009-09-11 |
BRPI0909687A2 (en) | 2015-09-22 |
EP2248916A1 (en) | 2010-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5402005B2 (en) | Method for removing copper in steel scrap | |
JP5772339B2 (en) | Reuse method of slag in ladle | |
JP2010265485A (en) | Method for operating arc-furnace | |
US11473841B2 (en) | Electric furnace | |
JP5326590B2 (en) | Method for removing copper and sulfur from hot metal | |
JP5589688B2 (en) | Hot metal production method | |
JP5493335B2 (en) | Hot copper decoppering method | |
JP5707668B2 (en) | Hot copper decoppering method | |
JP5581760B2 (en) | Method for removing copper in steel scrap and method for producing molten steel using steel scrap as an iron source | |
JP5625654B2 (en) | Hot metal production method | |
JP6065538B2 (en) | Hot copper decoppering method | |
JP5581759B2 (en) | Method for removing copper in steel scrap | |
JP5326591B2 (en) | Hot metal manufacturing method using steel scrap as iron source | |
JP3790414B2 (en) | Hot metal refining method | |
JP5365207B2 (en) | Method for producing molten steel using steel scrap as iron source | |
JP2008063600A (en) | Method for desulfurizing molten iron containing chromium | |
JP6369699B2 (en) | Recovery method of refining flux from hot metal desulfurization slag and dephosphorization / desulfurization method of hot metal | |
JP2011208172A (en) | Decarburize-refining method in converter using iron-scrap as iron source | |
JP6126355B2 (en) | Hot metal desulfurization treatment method | |
JP2008214711A (en) | Method for desulfurizing chromium-containing molten iron | |
JP2008240135A (en) | METHOD FOR MELTING Mo-CONTAINING STEEL UTILIZING SPENT CATALYST | |
JPH05239510A (en) | Production of low si, low s and low p molten iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110824 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130709 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131001 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131014 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5402005 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |