JP5493335B2 - Hot copper decoppering method - Google Patents

Hot copper decoppering method Download PDF

Info

Publication number
JP5493335B2
JP5493335B2 JP2008284934A JP2008284934A JP5493335B2 JP 5493335 B2 JP5493335 B2 JP 5493335B2 JP 2008284934 A JP2008284934 A JP 2008284934A JP 2008284934 A JP2008284934 A JP 2008284934A JP 5493335 B2 JP5493335 B2 JP 5493335B2
Authority
JP
Japan
Prior art keywords
hot metal
copper
sulfur
mass
refining agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008284934A
Other languages
Japanese (ja)
Other versions
JP2010111908A (en
Inventor
章敏 松井
祐一 内田
太 小笠原
直樹 菊池
康夫 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008284934A priority Critical patent/JP5493335B2/en
Publication of JP2010111908A publication Critical patent/JP2010111908A/en
Application granted granted Critical
Publication of JP5493335B2 publication Critical patent/JP5493335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、溶銑中に含まれる銅を除去する方法に関するものである。   The present invention relates to a method for removing copper contained in hot metal.

製鋼工程で使用する鉄源は、鉄鉱石を高炉で還元して得られる溶銑が主体であるが、鉄鋼材料の加工工程で発生する鉄屑(鉄スクラップ)や、建築物及び機械製品などの老朽化に伴って発生する鉄屑も、かなりの量が使用されている。高炉での溶銑の製造には、鉄鉱石を還元し且つ溶融するための多大なエネルギーを要するのに対し、鉄屑は還元が不要であり溶解エネルギーのみで済むという利点がある。従って、省エネルギー及びCO2削減による地球温暖化防止の観点からも、鉄屑利用の促進が望まれている。 The iron source used in the steelmaking process is mainly hot metal obtained by reducing iron ore in a blast furnace, but iron scrap (iron scrap) generated in the processing process of steel materials, old buildings and machinery products, etc. A considerable amount of iron scrap is also generated. The production of hot metal in a blast furnace requires a great deal of energy for reducing and melting iron ore, whereas iron scrap has the advantage that no reduction is required and only melting energy is required. Therefore, from the viewpoint of energy saving and prevention of global warming by reducing CO 2, it is desired to promote the use of iron scrap.

従来は、鉄屑を転炉や電気炉などの製鋼炉へ直接投入して使用されることが多かった。しかし、鉄源として多様な鉄屑を使用すると、製造される溶鋼の成分調整が困難になるという問題があった。また、転炉は鉄屑の溶解熱として溶銑中炭素の燃焼熱を利用していることから、鉄屑の配合比率を高めるには限界があり、一方、電気炉はエネルギー利用効率が低く、生産性も低いという欠点を有している。そこで、近年、エネルギー効率の高い竪型炉を使用し、転炉の前工程で鉄屑を簡易且つ低コストな方法で溶解して溶銑を製造し、その溶銑を転炉で精錬して高級鋼を製造するという方法が注目されている。   In the past, iron scrap was often used by directly charging it into a steelmaking furnace such as a converter or electric furnace. However, when various iron scraps are used as the iron source, there is a problem that it is difficult to adjust the components of the molten steel to be produced. In addition, since the converter uses the combustion heat of carbon in hot metal as the melting heat of iron scrap, there is a limit to increasing the mixing ratio of iron scrap, while the electric furnace has low energy utilization efficiency and production. It has a disadvantage that it has low properties. Therefore, in recent years, a high-efficiency vertical furnace is used, iron scrap is melted by a simple and low-cost method in the pre-process of the converter to produce hot metal, and the hot metal is refined in the converter to make high-grade steel. The method of manufacturing is attracting attention.

ところで、鉄屑を再生利用する際に、これら鉄屑に含まれる銅や錫に代表されるトランプエレメントが、鉄屑溶解の過程で不可逆的に溶鉄中に混入する。トランプエレメントは鋼の性質を損なう成分であり、一定の濃度以下に保つ必要がある。そのため、高級鋼を製造する鉄源として、銅や錫を含む低級鉄屑の利用には限界があった。しかしながら、近年の鉄屑発生量の増加及びCO2発生低減のための鉄屑増使用要求を勘案すると、低級鉄屑の再生利用を進める必要がある。 By the way, when iron scraps are recycled, trump elements represented by copper and tin contained in these iron scraps are irreversibly mixed into the molten iron in the process of melting iron scraps. The trump element is a component that impairs the properties of steel and must be kept below a certain concentration. Therefore, there has been a limit to the use of lower iron scraps containing copper and tin as an iron source for producing high-grade steel. However, in consideration of the recent increase in the amount of generated iron scrap and the demand for increased use of iron scrap to reduce the generation of CO 2, it is necessary to promote the recycling of lower iron scrap.

現在の低級鉄屑を使用するための実用化技術としては、鉄屑を物理的に分解し、有害な成分を人力や磁力選別などの方法で分離して、分離したものを、有害成分をほとんど含有しない原料に配合して、鋼材の材料特性上問題の無い範囲内で使用する以外に、有効な方法は無い。このような方法では、銅と鉄とが分離しているような形状の鉄屑であれば処理できるが、銅と鉄とが合金化しているような鉄屑の場合には物理的分離が不可能である。更に、使用済み自動車などの鉄屑を大量に再生利用するには能率が悪く、今後予想される鉄屑多量発生時代に対応するための銅除去技術としては、十分な解決策には成り得ない。   The practical technology for using the current low-grade iron scraps is to physically decompose the iron scraps, separate the harmful components by methods such as human power and magnetic separation, and remove the separated components. There is no effective method other than blending with raw materials not contained and using within the range where there is no problem in the material properties of the steel. With such a method, it is possible to treat iron scraps having a shape in which copper and iron are separated, but physical separation is not possible in the case of iron scraps in which copper and iron are alloyed. Is possible. Furthermore, it is inefficient to recycle and reuse a large amount of scrap steel such as used cars, and it cannot be a sufficient solution as a copper removal technology to cope with the anticipated era of a large amount of scrap scrap. .

一方、溶鉄に混入した後の脱銅方法について、実験室規模において以下に述べるような原理的発明が公知となっている。つまり、含銅高炭素溶鉄とFeS−Na2S系フラックスとを接触させ、溶鉄中の銅成分をCu2Sとしてフラックス中に分離除去する原理的技術知見が、非特許文献1及び非特許文献2に報告されている。この技術は、銅の除去技術として、前述の物理的除去方法に対して、より広い適用の可能性を提案するものである。 On the other hand, regarding the copper removal method after mixing in molten iron, the principle invention as described below is known on a laboratory scale. That is, contacting the copper-containing high carbon molten iron and FeS-Na 2 S based flux principle technology knowledge to separate off in the flux of the copper component in the molten iron as Cu 2 S is, non-patent documents 1 and 2 is reported. This technique proposes a wider applicability to the above-described physical removal method as a copper removal technique.

この原理的技術知見に基づいた脱銅処理方法として、特許文献1には、含銅鉄屑を加炭溶融して含銅高炭素溶鉄とした後、Na2Sを主成分とするフラックスと接触反応させて、溶鉄中の銅成分をCu2SとしてNa2S系フラックス中に分離除去する方法が開示されている。但し、特許文献1では340kg/t-鉄もの大量のフラックスを用いて精錬処理を行っており、精錬コストやフラックスのハンドリングの点で実用化が困難である。更には、反応温度を1200〜1500℃に保つための電気加熱装置を備えるとともに、大気との接触を断つための有蓋の反応容器を使用しているが、設備が大掛かりであり、設備的側面からも実用化技術として確立しているとは言いがたい。
特開平4−198431号公報 今井正等、鉄と鋼、vol.74(1988)No.4.p.640 王潮等、鉄と鋼、vol.77(1991)No.4.p.504
As a decoppering treatment method based on this fundamental technical knowledge, Patent Document 1 discloses that a copper-containing high-carbon molten iron is obtained by carburizing and melting copper-containing iron scrap, and then contacting with a flux mainly composed of Na 2 S. A method is disclosed in which the copper component in molten iron is separated and removed in the Na 2 S flux as Cu 2 S by reacting. However, in Patent Document 1, refining treatment is performed using a large amount of flux of 340 kg / t-iron, and practical application is difficult in terms of refining cost and flux handling. Furthermore, while having an electric heating device for keeping the reaction temperature at 1200 to 1500 ° C. and using a covered reaction vessel for cutting off the contact with the atmosphere, the equipment is large and from the equipment side It is hard to say that it has been established as a practical technology.
Japanese Patent Laid-Open No. 4-198431 Masato Imai, iron and steel, vol.74 (1988) No.4. p. 640 Oshio et al., Iron and Steel, vol. 77 (1991) No. 4. p. 504

本発明は上記事情に鑑みてなされたもので、その目的とするところは、製鋼用の溶銑中に含まれる有害成分である銅を効率良く、且つ大掛かりな設備を必要とせずに除去する方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to provide a method for removing copper, which is a harmful component contained in hot metal for steelmaking, efficiently and without requiring large-scale equipment. Is to provide.

上記課題を解決するための第1の発明に係る溶銑の脱銅処理方法は、反応容器内に収容された溶銑に、精錬剤として鉄−硫黄合金とNa2CO3とを添加し、該精錬剤によって溶銑中の銅を除去する溶銑の脱銅処理方法であって、脱銅処理前の溶銑中に含まれる硫黄質量S1(kg-S/t-溶銑)と前記精錬剤中の硫黄質量S2(kg-S/t-溶銑)との合計値(S1+S2)が5〜30kg-S/t-溶銑となり、且つ、前記Na2CO3の質量N1(kg-Na2CO3/t-溶銑)と前記合計値(S1+S2)との比(N1/(S1+S2))が0.5〜5となるように調整することを特徴とするものである。 In the hot metal decoppering method according to the first invention for solving the above-mentioned problem, an iron-sulfur alloy and Na 2 CO 3 are added as a refining agent to the hot metal contained in the reaction vessel, and the refining process is performed. A method for removing copper in hot metal by removing copper in the hot metal with a sulfur mass S 1 (kg-S / t-hot metal) contained in the hot metal before the copper removal treatment and sulfur mass in the refining agent The total value (S 1 + S 2 ) of S 2 (kg-S / t-hot metal) is 5-30 kg-S / t-hot metal, and the mass N 1 of the Na 2 CO 3 (kg-Na 2 CO 3 / t-molten iron) and the total value (S 1 + S 2 ) (N 1 / (S 1 + S 2 )) is adjusted to be 0.5 to 5. .

第2の発明に係る溶銑の脱銅処理方法は、第1の発明において、前記精錬剤は、予め鉄−硫黄合金とNa2CO3とが混合されたものであることを特徴とするものである。 The hot metal decoppering method according to the second invention is characterized in that, in the first invention, the refining agent is a mixture of an iron-sulfur alloy and Na 2 CO 3 in advance. is there.

第3の発明に係る溶銑の脱銅処理方法は、第1または第2の発明において、前記精錬剤を溶銑に連続的に添加することを特徴とするものである。   The hot metal decoppering treatment method according to the third invention is characterized in that, in the first or second invention, the refining agent is continuously added to the hot metal.

第4の発明に係る溶銑の脱銅処理方法は、第1の発明において、前記精錬剤のうちで、鉄−硫黄合金のみを先に溶銑に添加し、溶銑中の硫黄含有量を高めた後に、Na2CO3を連続的に溶銑に添加することを特徴とするものである。 The hot metal decoppering method according to the fourth aspect of the present invention is the first invention, wherein only the iron-sulfur alloy is first added to the hot metal in the refining agent, and the sulfur content in the hot metal is increased. Na 2 CO 3 is continuously added to the hot metal.

第5の発明に係る溶銑の脱銅処理方法は、第1または第2の発明において、前記精錬剤の総添加量のうちの30〜70質量%を脱銅処理の開始と同時に添加するまたは添加し始めて脱銅処理を施し、当該精錬剤の添加完了から少なくとも3分間経過した時点で脱銅処理を一旦中断して溶銑上に浮遊した脱銅スラグを反応容器外に除去し、その後、残りの精錬剤を添加するまたは添加し始めて再度脱銅処理を行うことを特徴とするものである。   The hot metal decoppering method according to the fifth invention is the first or second invention, wherein 30 to 70% by mass of the total amount of the refining agent is added or added simultaneously with the start of the decoppering process. After at least 3 minutes have elapsed from the completion of the addition of the refining agent, the copper removal treatment is temporarily interrupted and the copper removal slag floating on the hot metal is removed from the reaction vessel. It is characterized by adding a refining agent or starting addition, and performing copper removal treatment again.

第6の発明に係る溶銑の脱銅処理方法は、第1ないし第5の発明の何れかにおいて、脱銅処理終了後に、更に溶銑中の硫黄を除去することを特徴とするものである。   The hot metal decoppering method according to the sixth invention is characterized in that, in any of the first to fifth inventions, sulfur in the hot metal is further removed after completion of the copper removal treatment.

第7の発明に係る溶銑の脱銅処理方法は、第1ないし第6の発明の何れかにおいて、前記脱銅処理を機械攪拌式精錬装置で行うことを特徴とするものである。   A hot metal decoppering method according to a seventh aspect of the present invention is characterized in that, in any one of the first to sixth aspects, the decoppering process is performed by a mechanical stirring type refining apparatus.

本発明によれば、銅と鉄とが合金化している鉄屑から持ち来たされる銅のように、物理的分離では従来分離困難であった銅であっても、効率良く溶銑から除去することが実現される。その結果、製鋼用溶銑の原料として従来使用困難であった、銅を多量に含む鉄屑の利用が可能となり、低級屑の利用促進やCO2削減などの工業上有益な効果を得ることができる。 According to the present invention, even copper that has conventionally been difficult to be separated by physical separation, such as copper brought from iron scrap in which copper and iron are alloyed, is efficiently removed from the hot metal. Is realized. As a result, iron scrap containing a large amount of copper, which has been difficult to use as a raw material for hot metal for steelmaking, can be used, and industrially beneficial effects such as promotion of use of lower scrap and reduction of CO 2 can be obtained. .

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

例えば、銅含有鉄屑を加炭溶解して炭素を含有した製鋼用溶銑を製造すると、鉄屑中の銅はほぼ全量が溶銑中に溶解する。本発明者らは、精錬剤を用いて溶銑中の銅を硫化銅(Cu2S)として除去することに着目し鋭意調査・研究を行った。その結果、溶銑からの脱銅反応には、(1)反応容器内の溶銑及びフラックスの硫黄含有量を高めること、(2)フラックスの塩基性を高めてCu2Sの活量を低下させること、(3)フラックスの溶融性を高めること、が重要であることを突き止めた。 For example, when steel containing hot metal containing carbon is produced by carburizing and dissolving copper-containing iron scrap, almost all of the copper in the iron scrap is dissolved in the hot metal. The inventors of the present invention conducted intensive studies and researches focusing on removing copper in the hot metal as copper sulfide (Cu 2 S) using a refining agent. As a result, in the copper removal reaction from hot metal, (1) to increase the sulfur content of the hot metal and flux in the reaction vessel, and (2) to increase the basicity of the flux and lower the Cu 2 S activity. (3) It was found that it is important to increase the meltability of the flux.

先ず、(1)の硫黄含有量については、フラックス中の硫黄含有量を高めてもよいし、溶銑中の硫黄濃度を高めても、どちらでも構わないことが分かった。フラックス中の硫黄含有量を高める手段としては、工業的にも広く利用されている鉄−硫黄合金(フェロサルファー)を用いることがコスト面でも好ましい。また、鉄−硫黄合金は溶銑中の硫黄濃度を高めるために用いることも当然可能である。   First, with regard to the sulfur content of (1), it was found that either the sulfur content in the flux may be increased or the sulfur concentration in the hot metal may be increased. As a means for increasing the sulfur content in the flux, it is preferable in terms of cost to use an iron-sulfur alloy (ferrosulfur) widely used industrially. Further, it is naturally possible to use the iron-sulfur alloy in order to increase the sulfur concentration in the hot metal.

次に、(2)及び(3)について説明する。フラックス中の硫黄含有量及び溶銑中の硫黄含有量を高めることでも脱銅反応は起こったが、脱銅量は極めて少量(Δ[%Cu]=0.01〜0.03質量%程度)で反応が停滞してしまった。この要因について本発明者らは考察を重ねた結果、塩基性フラックスを用いて脱銅スラグ中のCu2Sの活量を低下させる必要があることを見出した。そこで、Cu2Sの活量を低下させるべく、製鋼工程で一般的に用いられるCaO系フラックスの添加を試みた。しかしながら、CaO系フラックスを添加した場合、スラグが固化してしまい脱銅反応を促進することはできなかった。そこで、CaO系フラックスよりも低融点であり、CaOと同様に製鋼工程で一般的に用いられているNa2CO3(ソーダ灰)を用いて実験した。その結果、脱銅スラグの液相が確保でき、脱銅反応が促進されることが確認できた。 Next, (2) and (3) will be described. Although the copper removal reaction also occurred by increasing the sulfur content in the flux and the sulfur content in the hot metal, the copper removal amount was very small (Δ [% Cu] = about 0.01 to 0.03 mass%) The reaction has stagnated. As a result of repeated investigations on this factor, the present inventors have found that it is necessary to reduce the activity of Cu 2 S in the copper removal slag using a basic flux. Therefore, in order to reduce the activity of Cu 2 S, an attempt was made to add a CaO-based flux that is generally used in the steel making process. However, when a CaO-based flux was added, the slag solidified and the copper removal reaction could not be promoted. Therefore, an experiment was conducted using Na 2 CO 3 (soda ash), which has a melting point lower than that of the CaO-based flux and is generally used in the steel making process in the same manner as CaO. As a result, it was confirmed that the liquid phase of the copper removal slag could be secured and the copper removal reaction was promoted.

また、更なる実験・調査の結果、溶銑中の硫黄含有量とフラックス中の硫黄含有量との合計値、並びに、Na2CO3の添加量を最適な範囲に調整することが脱銅反応の促進には必要なことが明らかとなった。具体的には、処理前の溶銑中の硫黄含有量をS1(kg-S/t-溶銑)とし、フラックス中の硫黄含有量をS2(kg-S/t-溶銑)とすると、S1とS2との合計値(S1+S2)を5〜30kg-S/t-溶銑の範囲にするとともに、Na2CO3の添加量をN1(kg-Na2CO3/t-溶銑)とすると、N1と合計値(S1+S2)との比(N1/(S1+S2))を0.5〜5の範囲にすることが必要であることが分かった。 In addition, as a result of further experiments and investigations, adjusting the total value of the sulfur content in the hot metal and the sulfur content in the flux, and the addition amount of Na 2 CO 3 to the optimum range, It became clear that it was necessary for promotion. Specifically, when the sulfur content in the hot metal before the treatment is S 1 (kg-S / t-hot metal) and the sulfur content in the flux is S 2 (kg-S / t-hot metal), S The total value of S 1 and S 2 (S 1 + S 2 ) is in the range of 5 to 30 kg-S / t-molten iron, and the amount of Na 2 CO 3 added is N 1 (kg-Na 2 CO 3 / t- It was found that the ratio (N 1 / (S 1 + S 2 )) between N 1 and the total value (S 1 + S 2 ) needs to be in the range of 0.5 to 5.

合計値(S1+S2)が5kg-S/t-溶銑よりも小さい場合には、溶銑中の銅を硫化除去するのに必要な硫黄分が不足し、脱銅率が低位となる。一方、合計値(S1+S2)が30kg-S/t-溶銑よりも大きい場合には、脱銅処理終了時の溶銑中の硫黄濃度が高くなり過ぎ、その後、溶銑中の硫黄を除去するのが困難となるため好ましくない。更に、比(N1/(S1+S2))が0.5よりも小さい場合には、Na2CO3添加によるCu2Sの活量低下の効果を十分に得ることができないために脱銅不良となる。一方で、比(N1/(S1+S2))を5よりも大きくした場合、若干の脱銅率の低下が見られた。この要因としてはフラックス中のNa2CO3が過剰になることで、メタル側の硫黄濃度が低下傾向になるためと推定される。また、当然のことながら、Na2CO3の使用量が増えてコスト面も悪化するため、好ましくない。このように、合計値(S1+S2)及び比(N1/(S1+S2))をそれぞれ最適な範囲にすることで効率良い脱銅を行うことが可能であることが分かった。ここで、脱銅率とは、「(処理前溶銑中銅濃度−処理後溶銑中銅濃度)×100/処理前溶銑中銅濃度」で表される値である。 When the total value (S 1 + S 2 ) is smaller than 5 kg-S / t-molten metal, the sulfur content necessary for sulfidation and removal of copper in the molten metal is insufficient, and the copper removal rate becomes low. On the other hand, when the total value (S 1 + S 2 ) is larger than 30 kg-S / t-hot metal, the sulfur concentration in the hot metal at the end of the copper removal process becomes too high, and thereafter the sulfur in the hot metal is removed. This is not preferable because it becomes difficult. Further, when the ratio (N 1 / (S 1 + S 2 )) is smaller than 0.5, the effect of lowering the activity of Cu 2 S due to the addition of Na 2 CO 3 cannot be sufficiently obtained, so that the removal. Copper defect. On the other hand, when the ratio (N 1 / (S 1 + S 2 )) was larger than 5, a slight decrease in the copper removal rate was observed. This is presumably because Na 2 CO 3 in the flux becomes excessive, and the sulfur concentration on the metal side tends to decrease. Also, as a matter of course, the amount of Na 2 CO 3 used is increased and the cost is also deteriorated, which is not preferable. Thus, it has been found that efficient copper removal can be performed by setting the total value (S 1 + S 2 ) and the ratio (N 1 / (S 1 + S 2 )) to optimum ranges. Here, the copper removal rate is a value represented by “(copper concentration in hot metal before treatment−copper concentration in hot metal after treatment) × 100 / copper concentration in hot metal before treatment”.

また、本発明者らはフラックスの添加方法について調査を行った。その結果、鉄−硫黄合金とNa2CO3とを予め混合してから溶銑に連続的に添加することで、より一層の脱銅効率の向上が望めることが分かった。これは、連続的にフラックスを添加することで、溶融性の高いスラグを形成しうるためと考えられる。しかし、この方法ではフラックスの事前混合作業が必要となる。 In addition, the present inventors investigated the method of adding flux. As a result, it was found that a further improvement in the copper removal efficiency can be expected by previously mixing the iron-sulfur alloy and Na 2 CO 3 and then continuously adding it to the hot metal. This is considered to be because a slag with high meltability can be formed by continuously adding flux. However, this method requires a flux premixing operation.

そこで、本発明者らは更に検討を重ねた。その結果、フラックスのうちの鉄−硫黄合金のみを先に溶銑に添加して溶銑中の硫黄濃度を高めた後にNa2CO3を連続的に添加することでも、十分に効率の良い脱銅方法が得られることを見出した。この反応メカニズムについて本発明者らは以下のように類推している。 Therefore, the inventors have further studied. As a result, only the iron-sulfur alloy of the flux is added to the hot metal first to increase the sulfur concentration in the hot metal, and then Na 2 CO 3 is continuously added, so that a sufficiently efficient copper removal method is achieved. It was found that can be obtained. The present inventors analogize the reaction mechanism as follows.

即ち、溶銑の硫黄濃度を高めることで、溶銑はFe相とFeS相との2相に分離することが知られている。このFeS相とNa2CO3とが反応することで脱銅能に優れた溶融スラグが形成され、銅を硫化除去することが可能になると考えられる。従って、先に鉄−硫黄合金を添加してFeS相を形成させておき、潤沢なFeS相にNa2CO3を添加していくことで溶融スラグを効率的に形成することができ、脱銅効率を高めることができると考えられる。この方法であれば、鉄−硫黄合金及びNa2CO3をそれぞれ別の供給系統から添加でき、Na2CO3は例えばロータリーフィーダーのような連続供給が可能な装置を用いて添加すればよく、また、事前混合作業を必要としないという利点もある。尚、逆にNa2CO3を先に添加した後に鉄−硫黄合金を添加する実験も行ったが、この場合は脱銅効率の向上は見られなかった。 That is, it is known that the hot metal is separated into two phases of Fe phase and FeS phase by increasing the sulfur concentration of the hot metal. It is considered that the reaction between this FeS phase and Na 2 CO 3 forms a molten slag excellent in decoppering ability and makes it possible to sulfidize and remove copper. Therefore, the iron-sulfur alloy is added first to form the FeS phase, and Na 2 CO 3 is added to the abundant FeS phase, so that molten slag can be efficiently formed, It is thought that efficiency can be improved. In this method, iron-sulfur alloy and Na 2 CO 3 can be added from separate supply systems, and Na 2 CO 3 may be added using a device capable of continuous supply such as a rotary feeder, There is also an advantage that no pre-mixing work is required. In contrast, an experiment was conducted in which Na 2 CO 3 was added first and then an iron-sulfur alloy was added. In this case, no improvement in copper removal efficiency was observed.

また、本発明者らは更に脱銅効率を高める手段について調査し、脱銅処理を2回に分ける方法を見出した。その内容について以下に具体的に説明する。   In addition, the present inventors further investigated means for increasing the copper removal efficiency, and found a method of dividing the copper removal treatment into two. The contents will be specifically described below.

前述の精錬剤の総添加量のうちの30〜70質量%を先ず処理開始と同時に一括添加する、または添加し始めて脱銅処理を行い、その後一旦処理を中断して、溶銑上に浮遊する脱銅スラグを除去し、その後、再度残りの精錬剤を一括添加する、または添加し始めて脱銅処理することで脱銅効率が向上することを見出した。つまり、脱銅処理の期間を2回に分けることで、更なる高効率化が可能であることが分かった。但し、最初に添加するフラックス量は総添加量のうちの30〜70質量%が好適であり、この範囲を外れる場合には、フラックスを2回に分ける効果を十分に享受できないことも分かった。更に、最初のフラックスを添加し終わった後、少なくとも3分間は脱銅処理を続けることが重要であることも分かった。これは、添加したフラックスが脱銅反応に寄与する時間が必要なためである。尚、この方法では、途中の脱銅スラグ除去作業のための時間やコストが必要となる。スラグ除去作業は、公知のスラグドラッガーを用いた方法でもよいし、反応容器を傾けて容器内のスラグを排出する方法でも何でもよく、各製鉄所の保有する設備状況に適したものが選択されることになる。   First, 30 to 70% by mass of the total amount of the above-mentioned refining agent is added at the same time as the start of the treatment, or decoppering treatment is started after the start of the addition, and then the treatment is interrupted once, and the desulfurization that floats on the hot metal It has been found that the copper removal efficiency is improved by removing the copper slag and then adding the remaining refining agent all at once or by starting the addition and removing the copper. That is, it was found that further efficiency improvement can be achieved by dividing the copper removal treatment period into two. However, the amount of flux added first is preferably 30 to 70% by mass of the total amount added, and it was also found that the effect of dividing the flux into two portions cannot be fully enjoyed when outside this range. It has also been found that it is important to continue the copper removal treatment for at least 3 minutes after the first flux has been added. This is because the added flux needs time to contribute to the copper removal reaction. Note that this method requires time and cost for removing copper removal slag on the way. The slag removal operation may be a method using a known slag dragger or a method of inclining the reaction vessel to discharge the slag in the vessel, and a method suitable for the equipment situation possessed by each steelworks is selected. It will be.

以上述べたように、本発明における脱銅処理は硫化反応であるので、脱銅処理後の溶銑中硫黄濃度が通常の溶銑と比較して極めて高くなる。従って、脱銅処理を行った後に、溶銑中の硫黄を除去する工程が必要となる。脱硫処理は、公知の機械攪拌式精錬装置による方法、ランスからの粉体吹き込みによる方法、転炉を使用する方法などの何れであってもよい。脱硫剤としては、CaOを主成分とする脱硫剤、カルシウムカーバイドを主成分とする脱硫剤、Na2CO3(ソーダ灰)を主成分とする脱硫剤、金属Mgなど種々の脱硫剤を使用することができる。また脱硫処理を実施する場合には、例えば脱銅処理を行った後に、脱銅スラグを除去してから、同一反応容器内で脱硫処理を行ってもよいし、別の容器に移し変えた後に行っても構わない。また、脱銅処理後の溶銑と、比較的硫黄濃度の低い、高炉から出銑された溶銑(「高炉溶銑」という)とを混合してから、混合溶銑で脱硫処理を実施しても構わない。 As described above, since the copper removal treatment in the present invention is a sulfurization reaction, the sulfur concentration in the hot metal after the copper removal treatment is extremely high as compared with the normal hot metal. Therefore, a step for removing sulfur in the hot metal after the copper removal treatment is required. The desulfurization treatment may be any of a method using a known mechanical stirring type refining device, a method by blowing powder from a lance, a method using a converter, and the like. As the desulfurization agent, various desulfurization agents such as a desulfurization agent mainly composed of CaO, a desulfurization agent mainly composed of calcium carbide, a desulfurization agent mainly composed of Na 2 CO 3 (soda ash), and metallic Mg are used. be able to. Moreover, when performing a desulfurization process, for example, after performing a copper removal process, after removing a copper removal slag, you may perform a desulfurization process within the same reaction container, or after transferring to another container, You can go. Alternatively, after the copper removal treatment, the hot metal extracted from the blast furnace (referred to as “blast furnace hot metal”) having a relatively low sulfur concentration may be mixed, and then the desulfurization treatment may be performed with the mixed hot metal. .

ところで、これまでに述べたように本発明における脱銅処理は、Fe相とFeS相とへの2相分離、及び速やかな溶融スラグの形成により行われることから、これらを促進させるために、メタル相とスラグ相の双方に攪拌を付与することが望ましい。溶銑及び溶銑上に存在するスラグを同時に攪拌する方法として、反応容器内の溶銑に浸漬させたインジェクションから攪拌用ガスを吹き込んでスラグと溶銑とを攪拌する方法、溶銑に浸漬させたインジェクションランスから粉体フラックスと攪拌用ガスとを同時に吹き込む方法も採り得るが、本発明においては、良好な攪拌が得られることから、機械攪拌式精錬装置を用いて脱銅処理を行うことが好ましい。機械攪拌式精錬装置としては、インペラー(「攪拌羽根」ともいう)を使用した攪拌が代表的である。つまり、反応容器内に収容された溶銑にインペラーを浸漬させ、このインペラーを、軸芯を回転軸として回転させ、溶銑及び溶銑上に添加されたフラックスを強制的に攪拌する方法であり、メタル相・スラグ相の双方に十分な攪拌を付与することができ、良好な脱銅効率を得ることができる。   By the way, as described so far, the copper removal treatment in the present invention is performed by two-phase separation into an Fe phase and an FeS phase and rapid formation of molten slag. It is desirable to give stirring to both the phase and the slag phase. As a method of simultaneously stirring the hot metal and the slag present on the hot metal, the method of stirring the slag and hot metal by blowing a stirring gas from the injection immersed in the hot metal in the reaction vessel, the powder from the injection lance immersed in the hot metal Although a method of blowing the body flux and the gas for stirring at the same time can be employed, in the present invention, it is preferable to perform the copper removal treatment using a mechanical stirring type refining apparatus because good stirring can be obtained. As a mechanical stirring type refining apparatus, stirring using an impeller (also referred to as “stirring blade”) is typical. In other words, the impeller is immersed in the hot metal accommodated in the reaction vessel, the impeller is rotated about the shaft core, and the hot metal and the flux added on the hot metal are forcibly stirred. -Sufficient stirring can be given to both of the slag phases, and good copper removal efficiency can be obtained.

以上説明したように、本発明によれば、製鋼用溶銑中に含まれる有害成分である銅を、フラックスを用いて効率良く除去でき、その結果、製鋼用溶銑の原料として従来使用困難であった銅を多量に含む鉄屑の利用が可能となり、低級屑の利用促進やCO2削減などの工業上有益な効果を得ることができる。 As described above, according to the present invention, copper, which is a harmful component contained in hot metal for steelmaking, can be efficiently removed using a flux, and as a result, it has been difficult to use as a raw material for hot metal for steelmaking. Iron scrap containing a large amount of copper can be used, and industrially beneficial effects such as promoting the use of lower scrap and reducing CO 2 can be obtained.

鍋形状の反応容器に約5トンの製鋼用溶銑を装入して脱銅試験を行った。鍋上に設けた精錬剤供給用ホッパーから脱銅精錬用のフラックスを添加した。脱銅精錬用フラックスとしては、鉄−硫黄合金(フェロサルファー、硫黄含有量:48質量%)とソーダ灰(Na2CO3)とを用いた。鍋内溶銑の攪拌方法としては、溶銑にインジェクションランスを浸漬させて窒素ガスを吹き込んで攪拌する方法か、或いは耐火物で被覆したインペラーを溶銑に浸漬させ、インペラーを回転して攪拌する方法の何れかを用いた。表1に、実験条件及び実験結果を一覧で示す。尚、用いた溶銑の処理前温度は1200〜1500℃の範囲であり、溶銑成分は、表1以外の成分については、炭素が3.8〜5.2質量%、珪素が0.05〜0.54質量%、マンガンが0.05〜0.38質量%、燐が0.020〜0.185質量%の範囲であった。 About 5 tons of hot metal for steel making was charged into a pot-shaped reaction vessel, and a copper removal test was conducted. A flux for removing copper refining was added from a hopper for supplying a refining agent provided on the pan. An iron-sulfur alloy (ferrosulfur, sulfur content: 48% by mass) and soda ash (Na 2 CO 3 ) were used as the flux for copper removal refining. As a stirring method of hot metal in the pan, either a method of immersing an injection lance in hot metal and blowing and stirring nitrogen gas, or a method of immersing an impeller coated with a refractory in hot metal and rotating and stirring the impeller Was used. Table 1 shows a list of experimental conditions and experimental results. In addition, the temperature before processing of the hot metal used is in the range of 1200 to 1500 ° C. The hot metal components other than those in Table 1 are 3.8 to 5.2% by mass of carbon and 0.05 to 0 of silicon. .54% by mass, manganese was 0.05 to 0.38% by mass, and phosphorus was 0.020 to 0.185% by mass.

Figure 0005493335
Figure 0005493335

表1の本発明例1〜5に示すように、処理前の溶銑中の硫黄含有量(S1)とフラックス中の硫黄含有量(S2)との合計値(S1+S2)及びNa2CO3の使用量(N1)と合計値(S1+S2)との比(N1/(S1+S2))を本発明の範囲とすることで、良好な脱銅率が得られた。 As shown in Invention Examples 1 to 5 in Table 1, the total value (S 1 + S 2 ) of the sulfur content (S 1 ) in the hot metal before the treatment and the sulfur content (S 2 ) in the flux and Na By setting the ratio (N 1 / (S 1 + S 2 )) of the amount of use of 2 CO 3 (N 1 ) to the total value (S 1 + S 2 ) within the range of the present invention, a good copper removal rate can be obtained. It was.

一方、比較例1のように合計値(S1+S2)が5kg-S/t-溶銑より小さい場合においては、脱銅率が著しく低位となった。また、比較例2のように合計値(S1+S2)が30kg-S/t-溶銑より大きい場合では、脱銅率は良好なものの、脱銅処理後の溶銑中硫黄濃度が非常に高くなっている。更に、比較例3に示すように、比(N1/(S1+S2))が0.5より小さい場合にも脱銅率は低位となった。また、比較例4〜5のように、比(N1/(S1+S2))が5より大きい場合も、脱銅率はやや低位となる傾向が見られた。 On the other hand, when the total value (S 1 + S 2 ) was smaller than 5 kg-S / t-molten iron as in Comparative Example 1, the copper removal rate was remarkably low. When the total value (S 1 + S 2 ) is larger than 30 kg-S / t-hot metal as in Comparative Example 2, the copper removal rate is good, but the sulfur concentration in the hot metal after the copper removal treatment is very high. It has become. Furthermore, as shown in Comparative Example 3, the copper removal rate was low even when the ratio (N 1 / (S 1 + S 2 )) was smaller than 0.5. Moreover, when the ratio (N 1 / (S 1 + S 2 )) was larger than 5 as in Comparative Examples 4 to 5, the copper removal rate tended to be slightly lower.

本発明例6〜9は、攪拌手段としてインペラーを用いた試験の結果である。これらの試験結果に示すように、攪拌手段としてインペラーを用いることで、脱銅率のより一層の向上が確認できた。   Invention Examples 6 to 9 are results of tests using an impeller as a stirring means. As shown in these test results, it was confirmed that the copper removal rate was further improved by using the impeller as the stirring means.

また、本発明例10〜11のように、フラックスを事前に混合してから、溶銑に連続的に添加する方法でも脱銅率は向上し、更には、本発明例12〜13のように、先に鉄−硫黄合金を溶銑に添加し、その後、ソーダ灰を連続的に添加する方法でも脱銅率の向上が確認できた。   Further, as in Invention Examples 10-11, the copper removal rate is improved by a method in which the flux is mixed in advance and then continuously added to the hot metal, and further, as in Invention Examples 12-13, It was confirmed that the copper removal rate was improved by adding iron-sulfur alloy to the hot metal first and then adding soda ash continuously.

脱銅処理の途中で除滓作業を実施し、脱銅処理を2つに分割した脱銅試験を実施した。また比較のために、除滓作業を行わず、連続して脱銅処理する試験も実施した。   A copper removal test was performed in which the copper removal operation was performed in the middle of the copper removal treatment, and the copper removal treatment was divided into two. For comparison, a test for removing copper continuously without carrying out the removal work was also conducted.

実施例1と同様に、鍋形状の反応容器に約5トンの製鋼用溶銑を装入して試験を行った。実験では攪拌装置としてインペラーを用いた。また、脱銅処理途中の除滓の影響のみを厳密に調査するために、溶銑の成分及び温度は可能な範囲で同一となるように調整した。即ち、脱銅処理前の溶銑中の硫黄濃度を0.071〜0.092質量%、銅濃度を0.33〜0.37質量%に調整するとともに、炭素濃度を4.4〜4.8質量%、珪素濃度を0.15〜0.20質量%、マンガン濃度を0.10〜0.17質量%、燐濃度を0.090〜0.110質量%に調整した。また、脱銅処理前の溶銑温度は1350〜1400℃の範囲で調整した。   In the same manner as in Example 1, about 5 tons of hot metal for steel making was charged in a pot-shaped reaction vessel for testing. In the experiment, an impeller was used as a stirring device. Further, in order to strictly investigate only the influence of the removal during the copper removal treatment, the hot metal components and temperature were adjusted to be the same as possible. That is, the sulfur concentration in the hot metal before the copper removal treatment is adjusted to 0.071 to 0.092 mass%, the copper concentration is adjusted to 0.33 to 0.37 mass%, and the carbon concentration is 4.4 to 4.8. The mass concentration, the silicon concentration was adjusted to 0.15 to 0.20 mass percent, the manganese concentration was adjusted to 0.10 to 0.17 mass percent, and the phosphorus concentration was adjusted to 0.090 to 0.110 mass percent. Moreover, the hot metal temperature before the copper removal treatment was adjusted in the range of 1350 to 1400 ° C.

更に、フラックス条件も統一すべく、鉄−硫黄合金を40kg/t-溶銑、Na2CO3を25kg/t-溶銑とし、事前に混合してから処理開始と同時に添加開始した。最初に投入するフラックスの添加が完了した後、3分間以上が経過した後に、インペラー攪拌を停止した。尚、最初に投入するフラックスの添加完了から3分間未満のうちに攪拌を停止した場合には、脱銅率の向上が認められなかったことは事前に確認している。攪拌停止後、反応容器を傾転させてスラグドラッガーにて脱銅スラグを除去し、その後、再度インペラーを浸漬し、溶銑を回転・攪拌させて残りのフラックスを添加した。試験結果を表2に示す。 Further, in order to unify the flux conditions, the iron-sulfur alloy was 40 kg / t-hot metal and Na 2 CO 3 was 25 kg / t-hot metal. The impeller stirring was stopped after 3 minutes or more had elapsed after the addition of the first flux was completed. In addition, when stirring was stopped within less than 3 minutes from the completion of the addition of the flux initially supplied, it was confirmed in advance that no improvement in the copper removal rate was observed. After stopping the stirring, the reaction vessel was tilted to remove the copper removal slag with a slag dragger, and then the impeller was immersed again, and the remaining flux was added by rotating and stirring the hot metal. The test results are shown in Table 2.

Figure 0005493335
Figure 0005493335

表2に示すように、最初に添加するフラックスの割合が総添加量の30〜70質量%の範囲の試験(本発明例15〜19)において、脱銅率が向上していることが分かる。上記範囲外のものについては、途中で除滓しても、途中除滓の無い場合(本発明例22)とほぼ同程度の脱銅率であった。   As shown in Table 2, it can be seen that the copper removal rate is improved in tests (Invention Examples 15 to 19) in which the ratio of the flux added first is in the range of 30 to 70% by mass of the total addition amount. About the thing outside the said range, even if it remove | eliminated in the middle, it was about the same copper removal rate as the case (Example 22 of this invention) when there was no removal in the middle.

Claims (8)

反応容器内に収容された溶銑に、精錬剤として鉄−硫黄合金とNa2CO3とを添加し、該精錬剤によって溶銑中の銅を除去する溶銑の脱銅処理方法であって、脱銅処理前の溶銑中に含まれる硫黄質量S1(kg-S/t-溶銑)と前記精錬剤中の硫黄質量S2(kg-S/t-溶銑)との合計値(S1+S2)が5〜30kg-S/t-溶銑となり、且つ、前記Na2CO3の質量N1(kg-Na2CO3/t-溶銑)と前記合計値(S1+S2)との比(N1/(S1+S2))が0.5〜5となるように調整する(但し、溶銑中の銅濃度が0.45質量%のときに、精錬剤中の硫黄質量S 2 が22.5kg-S/t-溶銑で、且つ、Na 2 CO 3 の質量N 1 が90kg-Na 2 CO 3 /t-溶銑となる条件、及び、溶銑中の銅濃度が0.49質量%のときに、精錬剤中の硫黄質量S 2 が24.5kg-S/t-溶銑で、且つ、Na 2 CO 3 の質量N 1 が98kg-Na 2 CO 3 /t-溶銑となる条件を除く)ことを特徴とする、溶銑の脱銅処理方法。 An iron-sulfur alloy and Na 2 CO 3 are added to a hot metal contained in a reaction vessel as a refining agent, and the copper in the hot metal is removed by the refining agent. Total value (S 1 + S 2 ) of sulfur mass S 1 (kg-S / t-hot metal) contained in the hot metal before treatment and sulfur mass S 2 (kg-S / t-hot metal) in the refining agent There will 5~30kg-S / t- molten iron, and a ratio of the mass N 1 of the Na 2 CO 3 (kg-Na 2 CO 3 / t- hot metal) and the total value (S 1 + S 2) ( N 1 / (S 1 + S 2 )) is adjusted to 0.5 to 5 (however, when the copper concentration in the hot metal is 0.45 mass%, the sulfur mass S 2 in the refining agent is 22. When 5kg-S / t-hot metal and Na 2 CO 3 mass N 1 is 90kg-Na 2 CO 3 / t-hot metal and the copper concentration in the hot metal is 0.49% by mass , Sulfur mass S 2 in the refining agent is 24.5kg-S / In t-hot metal, and the mass N 1 of Na 2 CO 3 excluding the condition that the 98kg-Na 2 CO 3 / t- hot metal), characterized in that, the copper removal treatment method hot metal. 前記精錬剤は、予め鉄−硫黄合金とNa2CO3とが混合されたものであることを特徴とする、請求項1に記載の溶銑の脱銅処理方法。 2. The hot metal decoppering method according to claim 1, wherein the refining agent is a mixture of an iron-sulfur alloy and Na 2 CO 3 in advance. 前記精錬剤を溶銑に連続的に添加することを特徴とする、請求項1または請求項2に記載の溶銑の脱銅処理方法。   The method for removing copper from hot metal according to claim 1, wherein the refining agent is continuously added to the hot metal. 前記精錬剤のうちで、鉄−硫黄合金のみを先に溶銑に添加し、溶銑中の硫黄含有量を高めた後に、Na2CO3を連続的に溶銑に添加することを特徴とする、請求項1に記載の溶銑の脱銅処理方法。 Among the refining agents, only an iron-sulfur alloy is added to the hot metal first, and after increasing the sulfur content in the hot metal, Na 2 CO 3 is continuously added to the hot metal, Item 2. A method for removing copper from hot metal according to Item 1. 反応容器内に収容された溶銑に、精錬剤として鉄−硫黄合金とNa 2 CO 3 とを添加し、該精錬剤によって溶銑中の銅を除去する溶銑の脱銅処理方法であって、脱銅処理前の溶銑中に含まれる硫黄質量S 1 (kg-S/t-溶銑)と前記精錬剤中の硫黄質量S 2 (kg-S/t-溶銑)との合計値(S 1 +S 2 )が5〜30kg-S/t-溶銑となり、且つ、前記Na 2 CO 3 の質量N 1 (kg-Na 2 CO 3 /t-溶銑)と前記合計値(S 1 +S 2 )との比(N 1 /(S 1 +S 2 ))が0.5〜5となるように調整し、前記精錬剤の総添加量のうちの30〜70質量%を脱銅処理の開始と同時に添加するまたは添加し始めて脱銅処理を施し、当該精錬剤の添加完了から少なくとも3分間経過した時点で脱銅処理を一旦中断して溶銑上に浮遊した脱銅スラグを反応容器外に除去し、その後、残りの精錬剤を添加するまたは添加し始めて再度脱銅処理を行うことを特徴とする、溶銑の脱銅処理方法。 An iron-sulfur alloy and Na 2 CO 3 are added to a hot metal contained in a reaction vessel as a refining agent , and the copper in the hot metal is removed by the refining agent. Total value (S 1 + S 2 ) of sulfur mass S 1 (kg-S / t-hot metal) contained in the hot metal before treatment and sulfur mass S 2 (kg-S / t-hot metal) in the refining agent There will 5~30kg-S / t- molten iron, and a ratio of the mass N 1 of the Na 2 CO 3 (kg-Na 2 CO 3 / t- hot metal) and the total value (S 1 + S 2) ( N 1 / (S 1 + S 2 )) is adjusted to 0.5 to 5, and 30 to 70% by mass of the total amount of the refining agent is added or added simultaneously with the start of the copper removal treatment. The copper removal treatment is performed for the first time, and when at least 3 minutes have elapsed since the addition of the refining agent has been completed, the copper removal treatment is temporarily suspended and the copper removal slag floating on the hot metal is removed from the reaction vessel. After, and performing the remaining refining agent is added or added started to copper removal process again, the copper removal treatment methods molten iron. 前記精錬剤は、予め鉄−硫黄合金とNaThe refining agent includes iron-sulfur alloy and Na in advance. 22 COCO 3Three とが混合されたものであることを特徴とする、請求項5に記載の溶銑の脱銅処理方法。The method for removing copper from hot metal according to claim 5, wherein: 脱銅処理終了後に、更に溶銑中の硫黄を除去することを特徴とする、請求項1ないし請求項の何れか1つに記載の溶銑の脱銅処理方法。 The method for removing copper from hot metal according to any one of claims 1 to 6 , further comprising removing sulfur in the hot metal after completion of the copper removal treatment. 前記脱銅処理を機械攪拌式精錬装置で行うことを特徴とする、請求項1ないし請求項の何れか1つに記載の溶銑の脱銅処理方法。 The hot metal decoppering method according to any one of claims 1 to 7 , wherein the decoppering process is performed by a mechanical stirring type refining apparatus.
JP2008284934A 2008-11-06 2008-11-06 Hot copper decoppering method Expired - Fee Related JP5493335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284934A JP5493335B2 (en) 2008-11-06 2008-11-06 Hot copper decoppering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284934A JP5493335B2 (en) 2008-11-06 2008-11-06 Hot copper decoppering method

Publications (2)

Publication Number Publication Date
JP2010111908A JP2010111908A (en) 2010-05-20
JP5493335B2 true JP5493335B2 (en) 2014-05-14

Family

ID=42300693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284934A Expired - Fee Related JP5493335B2 (en) 2008-11-06 2008-11-06 Hot copper decoppering method

Country Status (1)

Country Link
JP (1) JP5493335B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5651978B2 (en) * 2010-03-30 2015-01-14 Jfeスチール株式会社 Method for recovering sodium and sulfur components from sulfurized copper slag
JP6065538B2 (en) * 2012-11-20 2017-01-25 Jfeスチール株式会社 Hot copper decoppering method
KR101462168B1 (en) * 2012-12-26 2014-11-14 주식회사 포스코 Treatment apparatus for molten metal and the method thereof
KR101618305B1 (en) 2014-11-18 2016-05-04 주식회사 포스코 Flux for removing copper and method for removing copper using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198431A (en) * 1990-11-29 1992-07-17 Nippon Steel Corp Method for removing copper in steel iron
JPH09143586A (en) * 1995-11-28 1997-06-03 Ryokichi Shinpo Method for removing copper in molten iron

Also Published As

Publication number Publication date
JP2010111908A (en) 2010-05-20

Similar Documents

Publication Publication Date Title
JP5402005B2 (en) Method for removing copper in steel scrap
JP5493335B2 (en) Hot copper decoppering method
JP5326590B2 (en) Method for removing copper and sulfur from hot metal
JP5707668B2 (en) Hot copper decoppering method
JP5581760B2 (en) Method for removing copper in steel scrap and method for producing molten steel using steel scrap as an iron source
JP5625654B2 (en) Hot metal production method
JP6065538B2 (en) Hot copper decoppering method
JP2019151535A (en) Method of producing phosphate slag fertilizer
JP4714655B2 (en) Desulfurization method for chromium-containing molten iron
JP5581759B2 (en) Method for removing copper in steel scrap
JP6542560B2 (en) Method of treating non-ferrous smelting slag
JP5326591B2 (en) Hot metal manufacturing method using steel scrap as iron source
JP5970863B2 (en) Hot metal detinning method
JP6369699B2 (en) Recovery method of refining flux from hot metal desulfurization slag and dephosphorization / desulfurization method of hot metal
JP5365207B2 (en) Method for producing molten steel using steel scrap as iron source
JP7167704B2 (en) Hot metal desulfurization method
JP6947024B2 (en) Hot metal desulfurization method
JP2011208172A (en) Decarburize-refining method in converter using iron-scrap as iron source
JP6126355B2 (en) Hot metal desulfurization treatment method
CN108588317A (en) a kind of ultra-pure pig iron preparation system and preparation method
JPH05239510A (en) Production of low si, low s and low p molten iron
JP2018035404A (en) Method of refining cast iron
JPH04173913A (en) Steelmaking method in converter using cu and sn-containing scrap as raw material and molten material treating furnace
JP2008214711A (en) Method for desulfurizing chromium-containing molten iron
JP2009052079A (en) Method for desulfurizing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5493335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees