JP2014092209A - Planetary gear reduction device and fabrication method of the same - Google Patents

Planetary gear reduction device and fabrication method of the same Download PDF

Info

Publication number
JP2014092209A
JP2014092209A JP2012242258A JP2012242258A JP2014092209A JP 2014092209 A JP2014092209 A JP 2014092209A JP 2012242258 A JP2012242258 A JP 2012242258A JP 2012242258 A JP2012242258 A JP 2012242258A JP 2014092209 A JP2014092209 A JP 2014092209A
Authority
JP
Japan
Prior art keywords
flange body
reduction device
planetary gear
pin member
gear reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012242258A
Other languages
Japanese (ja)
Other versions
JP5899102B2 (en
Inventor
Takashi Kurosawa
隆 黒沢
Tetsuzo Ishikawa
哲三 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2012242258A priority Critical patent/JP5899102B2/en
Priority to KR20130106470A priority patent/KR101491679B1/en
Priority to CN201310445680.3A priority patent/CN103807420B/en
Priority to DE102013017925.4A priority patent/DE102013017925B4/en
Publication of JP2014092209A publication Critical patent/JP2014092209A/en
Application granted granted Critical
Publication of JP5899102B2 publication Critical patent/JP5899102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H57/082Planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/14Making specific metal objects by operations not covered by a single other subclass or a group in this subclass gear parts, e.g. gear wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/325Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising a carrier with pins guiding at least one orbital gear with circular holes

Abstract

PROBLEM TO BE SOLVED: To provide a planetary gear reduction device which reinforces a fatigue strength of a root part with a flange body of a pin member, in the planetary gear reduction device in which the pin member penetrating an outer tooth gear is integrally protruded and formed from the flange body.SOLUTION: A planetary gear reduction device G1 includes: an external tooth gear 11; an internal tooth gear 16 which is inscribed and meshes with the external tooth gear 11; a first flange body 41 arranged on a lateral part in the axial direction of the external tooth gear 11; and an inner pin (pin member) 54 which are integrally protruded and formed in the axial direction from the first flange body 41 and penetrate the external tooth gear 11 and an inner roller 58 and, therein, plastic processing is performed on a root part 54 P1 of the pin member 54.

Description

本発明は、遊星歯車減速装置及びその製造方法に関する。   The present invention relates to a planetary gear reduction device and a manufacturing method thereof.

特許文献1に、遊星歯車減速装置が開示されている。   Patent Document 1 discloses a planetary gear reduction device.

この遊星歯車減速装置は、遊星歯車である外歯歯車と、該外歯歯車が内接噛合する内歯歯車とを備えている。外歯歯車の軸方向側部には、フランジ体が配置されている。フランジ体からは、ピン部材が一体的に突出・形成され、単一のフランジ体ユニットを構成している。ピン部材は外歯歯車を軸方向に貫通し、該外歯歯車の自転成分をフランジ体に伝達している。フランジ体は、ケーシングに支持され、内歯歯車の軸心周りで回転可能である。   This planetary gear reduction device includes an external gear that is a planetary gear, and an internal gear that is internally meshed with the external gear. A flange body is disposed on the axial side portion of the external gear. From the flange body, a pin member is integrally projected and formed to constitute a single flange body unit. The pin member penetrates the external gear in the axial direction, and transmits the rotation component of the external gear to the flange body. The flange body is supported by the casing and is rotatable around the axis of the internal gear.

フランジ体は、ピン部材を介して伝達されてきた前記外歯歯車の自転成分と同期して回転し、遊星歯車減速装置の出力部材として機能している。   The flange body rotates in synchronization with the rotation component of the external gear transmitted through the pin member, and functions as an output member of the planetary gear reduction device.

特開2006−263878号公報(図2、図3)Japanese Patent Laying-Open No. 2006-263878 (FIGS. 2 and 3)

このように、外歯歯車を貫通するピン部材が、該外歯歯車の軸方向側部に配置されたフランジ体と一体化されている遊星歯車減速装置にあっては、特に、ピン部材のフランジ体との根元部分に曲げ応力が集中し易く、疲労強度(破断荷重以下であっても繰返し加わることで部材が破壊する現象に対する強度)が低下し易いという問題があった。   As described above, in the planetary gear reduction device in which the pin member penetrating the external gear is integrated with the flange body arranged on the axial side portion of the external gear, the flange of the pin member is particularly suitable. There is a problem that bending stress tends to concentrate on the root part with the body, and fatigue strength (strength against the phenomenon that the member breaks due to repeated application even if it is less than the breaking load) tends to be lowered.

本発明は、このような問題を解消するためになされたものであって、外歯歯車を貫通するピン部材がフランジ体から一体的に突出形成されている遊星歯車減速装置において、該ピン部材のフランジ体との根元部分の疲労強度をより増強させることをその課題としている。   The present invention has been made to solve such a problem, and in a planetary gear reduction device in which a pin member penetrating an external gear is integrally formed to protrude from a flange body, The task is to further increase the fatigue strength of the root portion with the flange body.

本発明は、外歯歯車と、該外歯歯車が内接噛合する内歯歯車と、前記外歯歯車の軸方向側部に配置されたフランジ体と、該フランジ体から軸方向に一体的に突出形成され外歯歯車を貫通するピン部材と、を備えた遊星歯車減速装置であって、前記ピン部材の根元部分に塑性加工が施されている構成とすることにより、上記課題を解決したものである。   The present invention includes an external gear, an internal gear in which the external gear meshes internally, a flange body disposed on an axial side portion of the external gear, and an axial direction integrally from the flange body. A planetary gear reduction device comprising a pin member protruding and penetrating through an external gear, wherein the above-mentioned problems are solved by adopting a configuration in which the base portion of the pin member is plastically processed It is.

本発明においては、ピン部材のフランジ体との根元部分に塑性加工を施すようにしている。   In the present invention, plastic working is performed on the root portion of the pin member with the flange body.

これにより、該塑性加工によってピン部材の根元部分に強い残留圧縮応力を生じさせることができ、該根元部分に集中する曲げ応力が緩和(相殺)されることから、疲労強度をより増強させることができる。   Thereby, a strong residual compressive stress can be generated in the root portion of the pin member by the plastic working, and the bending stress concentrated on the root portion is relieved (cancelled), so that the fatigue strength can be further enhanced. it can.

外歯歯車を貫通するピン部材がフランジ体から一体的に突出形成されている遊星歯車減速装置において、該ピン部材のフランジ体との根元部分の疲労強度をより増強させることができる。   In the planetary gear reduction device in which the pin member penetrating the external gear is integrally formed to protrude from the flange body, the fatigue strength of the root portion of the pin member with the flange body can be further increased.

本発明の実施形態の一例が適用された遊星歯車減速装置の全体構成を示す断面図Sectional drawing which shows the whole structure of the planetary gear speed reducer to which an example of embodiment of this invention was applied. 図1のフランジ体ユニットの、一部に拡大断面を含む正面図1 is a front view partially including an enlarged cross section of the flange body unit of FIG.

以下、図面に基づいて、本発明の実施形態の一例について詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail based on the drawings.

図1は、本発明の実施形態の一例が適用された遊星歯車減速装置の全体構成を示す断面図、図2は、図1のフランジ体ユニットの、一部に拡大断面を含む正面図である。   FIG. 1 is a cross-sectional view showing an overall configuration of a planetary gear speed reduction device to which an example of an embodiment of the present invention is applied, and FIG. 2 is a front view partially including an enlarged cross section of the flange body unit of FIG. .

この遊星歯車減速装置G1は、偏心揺動型と称される遊星歯車減速装置である。   This planetary gear reduction device G1 is a planetary gear reduction device called an eccentric oscillating type.

この遊星歯車減速装置G1の入力軸18は、中空部18Aを有するホロー軸で構成され、該遊星歯車減速装置G1の内歯歯車16の軸心O1位置に配置されている。入力軸18の端部には、図示せぬ駆動源側の部材から動力を受けるためのスプライン18Bが形成されている。入力軸18の外周には、3個の偏心体21が一体的に軸方向に並んで形成されている。各偏心体21の外周は、入力軸18の軸心に対してそれぞれ120度の偏心位相差で偏心している。   The input shaft 18 of the planetary gear reduction device G1 is a hollow shaft having a hollow portion 18A, and is arranged at the position of the axis O1 of the internal gear 16 of the planetary gear reduction device G1. A spline 18 </ b> B for receiving power from a drive source side member (not shown) is formed at the end of the input shaft 18. Three eccentric bodies 21 are integrally formed along the axial direction on the outer periphery of the input shaft 18. The outer periphery of each eccentric body 21 is eccentric with an eccentric phase difference of 120 degrees with respect to the axis of the input shaft 18.

偏心体21の外周には、ころ軸受31を介して3枚の外歯歯車11が組み込まれている。各外歯歯車11は、内歯歯車16に内接噛合している。外歯歯車11が3列に並んで組み込まれているのは、伝達容量の増大、および偏心位相をずらすことによる低振動、低騒音化を意図したためである。各列の構成は、偏心位相が異なっている以外は同一である。   Three external gears 11 are incorporated on the outer periphery of the eccentric body 21 via roller bearings 31. Each external gear 11 is in mesh with the internal gear 16. The reason why the external gear 11 is incorporated in three rows is that the increase in transmission capacity and the reduction in vibration and noise by shifting the eccentric phase are intended. The configuration of each row is the same except that the eccentric phase is different.

内歯歯車16は、この実施形態では、ケーシング36と一体化された内歯歯車本体16Aと、該内歯歯車本体16Aに回転自在に支持され、当該内歯歯車16の内歯を構成する外ピン16Bとで構成されている。内歯歯車16の内歯の数(外ピン16Bの本数)は、外歯歯車11の外歯の数よりも僅かだけ(この例では1だけ)多い。   In this embodiment, the internal gear 16 is an internal gear main body 16A integrated with the casing 36, and is rotatably supported by the internal gear main body 16A, and the external gear constituting the internal teeth of the internal gear 16 is provided. It consists of pins 16B. The number of internal teeth of the internal gear 16 (the number of external pins 16B) is slightly larger (only 1 in this example) than the number of external teeth of the external gear 11.

外歯歯車11の軸方向両側部には、第1、第2フランジ体41、42が配置されている。第1、第2フランジ体41、42は、第1、第2アンギュラ玉軸受44、46を介してケーシング36に回転自在に支持されている。   First and second flange bodies 41 and 42 are arranged on both axial sides of the external gear 11. The first and second flange bodies 41 and 42 are rotatably supported by the casing 36 via first and second angular ball bearings 44 and 46.

第1、第2フランジ体41、42の外周は、それぞれ第1、第2アンギュラ玉軸受44、46の内輪を兼ねており、第1、第2アンギュラ玉軸受44、46の転動体44A、46Aの転走面41A、42Aを構成している。また、第1フランジ体41の外周には、該第1アンギュラ玉軸受44の転動体44Aの転走面41Aに隣接して、オイルシール48の摺動面41Bが形成されている。   The outer circumferences of the first and second flange bodies 41 and 42 also serve as inner rings of the first and second angular ball bearings 44 and 46, respectively, and rolling elements 44A and 46A of the first and second angular ball bearings 44 and 46, respectively. The rolling surfaces 41A and 42A are configured. Further, on the outer periphery of the first flange body 41, a sliding surface 41B of the oil seal 48 is formed adjacent to the rolling surface 41A of the rolling element 44A of the first angular ball bearing 44.

なお、前記入力軸18は、この第1、第2フランジ体41、42の径方向内側において、玉軸受51、52を介して支持されている。   The input shaft 18 is supported via ball bearings 51 and 52 on the radially inner side of the first and second flange bodies 41 and 42.

第1、第2フランジ体41、42のうち、紙面左側の第1フランジ体41からは、円柱状の内ピン54(ピン部材)が、台座部41Dの側面41Gに連続して、軸方向に複数本(この実施形態では6本)一体的に突出形成されており、単体のフランジ体ユニット56を構成している。   Of the first and second flange bodies 41, 42, a cylindrical inner pin 54 (pin member) extends from the first flange body 41 on the left side of the drawing to the side surface 41G of the base portion 41D in the axial direction. A plurality (six in this embodiment) are integrally formed to form a single flange body unit 56.

この実施形態では、この内ピン54の第1フランジ体41との根元部分54P1にフランジ体ユニット56のベース部材(後述するフランジ体母材)を製造するために従来行われている熱間鍛造等の塑性加工とは別に(ベース部材の浸炭、熱処理後に)、ショットピーニングによる塑性加工が施されている。この根元部分54P1の塑性加工については、後に詳述する。   In this embodiment, hot forging or the like conventionally performed to manufacture a base member (flange body base material to be described later) of the flange body unit 56 at the root portion 54P1 of the inner pin 54 with the first flange body 41. Apart from the plastic processing (after carburizing and heat treatment of the base member), plastic processing by shot peening is performed. The plastic working of the root portion 54P1 will be described in detail later.

内ピン54は、外歯歯車11に形成された貫通孔11Aを貫通している。内ピン54には、摺動促進部材として内ローラ58が回転自在に被せられている。内ローラ58は、第1、第2フランジ体41、42の台座部41D、42Dの側面41G、42Gによって軸方向の移動規制が行われている。すなわち、内ローラ58は、内ピン54の根元部分54P1を含め、ほぼ完全に内ピン54を覆っている。   The inner pin 54 passes through a through hole 11 </ b> A formed in the external gear 11. An inner roller 58 is rotatably covered on the inner pin 54 as a sliding promotion member. The inner roller 58 is restricted from moving in the axial direction by the side surfaces 41G and 42G of the pedestal portions 41D and 42D of the first and second flange bodies 41 and 42, respectively. That is, the inner roller 58 covers the inner pin 54 almost completely, including the root portion 54P1 of the inner pin 54.

内ピン54は、その先端部が第2フランジ体42に形成された有底凹部42Cに嵌入されており、軸方向反第1フランジ体側から挿入されたボルト60と共に第1フランジ体41と第2フランジ体42とを連結している。   The inner pin 54 has a tip portion fitted into a bottomed recess 42C formed in the second flange body 42, and the first flange body 41 and the second flange together with the bolt 60 inserted from the axially opposite first flange body side. The flange body 42 is connected.

内ピン54に被せた内ローラ58の外径d1は、貫通孔11Aの内径D1よりも偏心体21の偏心量の2倍に相当する分だけ小さく形成されている。これにより、内ローラ58の被せられた内ピン54は、外歯歯車11の揺動を許容しながら、常に(内ローラ58を介して)外歯歯車11の貫通孔11Aの反偏心方向側の内周と接触する状態が維持される。   The outer diameter d1 of the inner roller 58 covered on the inner pin 54 is formed to be smaller than the inner diameter D1 of the through hole 11A by an amount corresponding to twice the eccentric amount of the eccentric body 21. As a result, the inner pin 54 covered by the inner roller 58 is always (via the inner roller 58) on the side opposite to the eccentric side of the through hole 11A of the outer gear 11 while allowing the outer gear 11 to swing. The state in contact with the inner periphery is maintained.

図2に示されるように、内ピン54が第1フランジ体41から立ち上がっている部分、すなわち、内ピン54の第1フランジ体41側の根元部分54P1には、意図的に円弧状の凹部54Aが形成されている。   As shown in FIG. 2, a portion where the inner pin 54 rises from the first flange body 41, that is, a root portion 54P1 on the first flange body 41 side of the inner pin 54 is intentionally formed in an arcuate recess 54A. Is formed.

これは、内ピン54は、第1フランジ体41から90度の角度で一体的に立ち上がっていることから、内ピン54の根元部分54P1に、僅かでも加工誤差や加工不足等によって局部的に寸法の増大した部位が存在すると、内ローラ58の円滑な回転が阻害されてしまうためである。   This is because the inner pin 54 is integrally raised at an angle of 90 degrees from the first flange body 41, so that the root portion 54P1 of the inner pin 54 is locally dimensioned due to a processing error or insufficient processing. This is because the smooth rotation of the inner roller 58 is hindered when there is a portion where the increase is made.

これに対し、第2フランジ体42側では、内ピン54は、該第2フランジ体42とは別部材として均一の外径d1を保ったまま有底凹部42Cに嵌入されているため、内ローラ58の回転が阻害されるような加工誤差や加工不足による寸法の増大等が発生する恐れがない。そのため、内ピン54の第2フランジ体42側の根元部分54P2には、第1フランジ体41側の根元部分54P1に形成したような円弧状の凹部(54A)は、特に形成されていない。   On the other hand, on the second flange body 42 side, the inner pin 54 is fitted into the bottomed recess 42C while maintaining a uniform outer diameter d1 as a separate member from the second flange body 42. There is no risk of processing errors that hinder the rotation of 58 or increase in dimensions due to insufficient processing. Therefore, the arc-shaped concave portion (54A) formed in the root portion 54P1 on the first flange body 41 side is not particularly formed in the root portion 54P2 on the second flange body 42 side of the inner pin 54.

この実施形態では、第1、第2フランジ体41、42のうち、第1フランジ体41に形成したタップ穴を介して、相手機械(図示略)の被動部材が、該第1フランジ体41の側面41Hに連結されている。   In this embodiment, of the first and second flange bodies 41, 42, the driven member of the counterpart machine (not shown) is connected to the first flange body 41 via a tap hole formed in the first flange body 41. It is connected to the side surface 41H.

次に、この遊星歯車減速装置G1の作用を説明する。   Next, the operation of the planetary gear reduction device G1 will be described.

まず、動力伝達の作用を簡単に説明する。   First, the operation of power transmission will be briefly described.

駆動源からの動力がスプライン18Bを介して入力軸18に伝達されると、該入力軸18と一体化されている3個の偏心体21がそれぞれ120度の位相差で偏心回転する。その結果、ころ軸受31を介して3枚の外歯歯車11がそれぞれ120度の位相差で揺動する。   When the power from the drive source is transmitted to the input shaft 18 via the spline 18B, the three eccentric bodies 21 integrated with the input shaft 18 rotate eccentrically with a phase difference of 120 degrees. As a result, the three external gears 11 oscillate with a phase difference of 120 degrees via the roller bearing 31.

各外歯歯車11は内歯歯車16に内接噛合しているため、各外歯歯車11が揺動すると、内歯歯車16に対して外歯歯車11の噛合位置が順次ずれてゆく現象が生じる。そして、入力軸18が1回回転するごとに、固定状態にある内歯歯車16に対して外歯歯車11は、歯数差(1歯)分だけ自転する。   Since each external gear 11 is internally meshed with the internal gear 16, when each external gear 11 swings, the meshing position of the external gear 11 sequentially shifts with respect to the internal gear 16. Arise. Each time the input shaft 18 rotates once, the external gear 11 rotates by the number of teeth difference (one tooth) with respect to the internal gear 16 in the fixed state.

この外歯歯車11の自転により、該外歯歯車11を貫通している内ピン54及び内ローラ58が内歯歯車16の軸心周りで公転し、第1、第2フランジ体41、42の回転として伝達される。第1、第2フランジ体41、42が回転すると、第1フランジ体41のタップ穴を利用して連結されている相手機械の被動体が回転する。   Due to the rotation of the external gear 11, the inner pin 54 and the inner roller 58 passing through the external gear 11 revolve around the axis of the internal gear 16, and the first and second flange bodies 41, 42 are rotated. Transmitted as rotation. When the first and second flange bodies 41 and 42 rotate, the driven body of the counterpart machine connected using the tap holes of the first flange body 41 rotates.

ここで、特に、フランジ体ユニット56の作用を、該フランジ体ユニット56の製造方法の説明と共に説明する。   Here, in particular, the operation of the flange body unit 56 will be described together with the description of the method for manufacturing the flange body unit 56.

本実施形態では、フランジ体ユニット56における内ピン54の(第1フランジ体41から立ち上がる)根元部分54P1に、ショットピーニングによる塑性加工が施される。   In the present embodiment, plastic working by shot peening is performed on the root portion 54P1 of the inner pin 54 (rise from the first flange body 41) in the flange body unit 56.

具体的には、第1フランジ体41から内ピン54が一体的に突出したフランジ体母材(フランジ体ユニット56のベースとなる部材)を、スチール系の素材(例えば、SCM420(H))を用いて、熱間鍛造によって製造する。熱間鍛造後は、浸炭−焼き入れ(熱処理)を行う。そして、本実施形態では、浸炭、熱処理後であって仕上げ加工に入る前に、該フランジ体母材の内ピン(54)の根元部分(54P1)に、ショットピーニングによる塑性加工を施している。   Specifically, a flange body base material (a member serving as a base of the flange body unit 56) from which the inner pin 54 protrudes integrally from the first flange body 41 is replaced with a steel material (for example, SCM420 (H)). And manufactured by hot forging. After hot forging, carburizing and quenching (heat treatment) is performed. In this embodiment, after carburizing and heat treatment, before the finishing process is performed, the base part (54P1) of the inner pin (54) of the flange base material is subjected to plastic working by shot peening.

本実施形態のように、フランジ体母材自体(フランジ体の全体形状)が熱間鍛造等の塑性加工により製造される場合において、このフランジ体の全体形状を形成するためにフランジ体の全体に施される塑性加工は、本発明における「ピン部材の根元部分に塑性加工が施されている」という概念には含まれない。つまり、本実施形態でいうのであれば、ピン部材の根元部分を含むフランジ体の一部分のみに施す塑性加工(ショットピーニング)が、本発明における「ピン部材の根元部分に塑性加工が施されている」という概念に相当する。   When the flange base material itself (the overall shape of the flange body) is manufactured by plastic working such as hot forging as in this embodiment, the entire flange body is formed to form the overall shape of the flange body. The plastic processing to be applied is not included in the concept of “plastic processing is applied to the base portion of the pin member” in the present invention. That is, if it says in this embodiment, the plastic processing (shot peening) performed only to a part of flange body including the root part of a pin member is "plastic processing is given to the root part of a pin member in this invention. Is equivalent to the concept of “

また、別の見方をするのであれば、本実施形態においては、フランジ体母材自体を製造するための熱間鍛造等の塑性加工の後に、熱処理が行われ、その後に、ピン部材の根元部分へのショットピーニングが行われることから、「フランジ体母材の全体形状を形成する工程の後に、ピン部材の根元部分に施される塑性加工」、あるいは「フランジ体母材に熱処理を行った後に、ピン部材の根元部分に施される塑性加工」が、本発明における「ピン部材の根元部分に塑性加工が施されている」という概念に相当するということもできる。   Further, if another view is taken, in this embodiment, heat treatment is performed after plastic working such as hot forging for manufacturing the flange base material itself, and then the root portion of the pin member. Since the shot peening is performed, “after the step of forming the overall shape of the flange body base material, plastic processing applied to the root portion of the pin member” or “after the heat treatment of the flange body base material It can also be said that “plastic processing applied to the base portion of the pin member” corresponds to the concept “plastic processing is applied to the base portion of the pin member” in the present invention.

なお、本発明に係るピン部材の根元部分に施す塑性加工は、仕上げ加工の前に行ってもよいし、仕上げ加工の後に行ってもよい。   The plastic working applied to the base portion of the pin member according to the present invention may be performed before finishing or after finishing.

本実施形態では、浸炭−熱処理後であって仕上げ加工に入る前に、該フランジ体母材の内ピン(54)の根元部分(54P1)に、ショットピーニングによる塑性加工を施している。   In this embodiment, after carburizing and heat treatment and before finishing, the base portion (54P1) of the inner pin (54) of the flange base material is subjected to plastic working by shot peening.

この実施形態では、ショットピーニングの投射材として、φ0.6mm、Hv600の硬度粒子を投射している。ショットピーニングは、一般的には、投射面に対して90度の投射角度で投射するのが有効であるが、本実施形態では、敢えて、内ピン54の軸と直角の面から15〜30度の範囲で傾けられた投射角度αにて投射する。これは、本実施形態のような構成の内ピンの54の根元部分54P1にショットピーニングを施す場合、内ピン54の軸に対して90度の投射角度で投射するより、むしろ若干傾けられた投射角度から投射した方が、結果としてより多量の残留応力を生成できることが、発明者らの実験によって確認されたためである。これについては後に触れる。   In this embodiment, φ0.6 mm, Hv600 hardness particles are projected as a shot peening projection material. In shot peening, it is generally effective to project at a projection angle of 90 degrees with respect to the projection plane. However, in this embodiment, the shot peening is intentionally performed at 15 to 30 degrees from a plane perpendicular to the axis of the inner pin 54. Projection is performed at a projection angle α tilted within a range of. This is because, when shot peening is applied to the root portion 54P1 of the inner pin 54 configured as in the present embodiment, the projection is slightly inclined rather than projecting at a projection angle of 90 degrees with respect to the axis of the inner pin 54. This is because it has been confirmed by experiments by the inventors that a larger amount of residual stress can be generated as a result of projecting from an angle. This will be discussed later.

ショットピーニングは、フランジ体母材の内ピン(54)の根元部分(54P1)相当位置のみに行われる。例えば、内ピン(54)の根元部分(54P1)以外の外周面(内ローラ58との摺動面41A:内ローラがない場合には外歯歯車との摺動面になる面)には行わない。また、第2フランジ体42側は、この根元部分(54P2)の塑性加工さえも行わない。これは、第2フランジ体42側は、該第2フランジ体42と内ピン54とが別体とされ、第1フランジ体41側のような「一体であるが故の応力集中」が発生しにくいためである。   Shot peening is performed only at the position corresponding to the root portion (54P1) of the inner pin (54) of the flange base material. For example, it is performed on the outer peripheral surface other than the root portion (54P1) of the inner pin (54) (the sliding surface 41A with the inner roller 58: the surface that becomes the sliding surface with the external gear when there is no inner roller). Absent. Further, the second flange body 42 side does not even perform plastic working of the root portion (54P2). This is because the second flange body 42 and the inner pin 54 are separated from each other on the second flange body 42 side, and “stress concentration due to being integral” occurs as in the first flange body 41 side. This is because it is difficult.

さらに、この実施形態では、フランジ体母材の内ピン(54)の当該遊星歯車減速装置G1の径方向内側部54F相当位置にも、ショットピーニングを行わない。   Furthermore, in this embodiment, shot peening is not performed on the position corresponding to the radially inner portion 54F of the planetary gear reduction device G1 of the inner pin (54) of the flange base material.

本実施形態においては、内ピン54の外周面54Sのうち、軸心O1からの距離が最小の部分を中心に±90度の範囲を径方向内側部54Fとしているが、これに限定されず、±90度よりも大きい範囲でも小さい範囲でもよい。つまり、内ピン54の外周面54Sのうち、軸心O1からの距離が最小の部分を含む一定範囲にショットピーニングが行われていなければよい。   In the present embodiment, a range of ± 90 degrees around the portion of the outer peripheral surface 54S of the inner pin 54 that is the smallest distance from the axis O1 is the radially inner portion 54F, but is not limited thereto. The range may be larger or smaller than ± 90 degrees. That is, it is only necessary that shot peening is not performed in a certain range including a portion having a minimum distance from the axis O1 on the outer peripheral surface 54S of the inner pin 54.

この理由は以下の通りである。   The reason is as follows.

前述したように、外歯歯車11が揺動しているとき、外歯歯車11の貫通孔11Aは、該外歯歯車11が偏心している方向と逆の方向で内ピン54(具体的には内ピン54に被せられた内ローラ58:以下同様)と当接している。換言するならば、外歯歯車11の貫通孔11Aは、外歯歯車11が如何なる方向に偏心しているときでも、内ピン54の遊星歯車減速装置G1の径方向外側部の近傍と当接している。そして外歯歯車11の自転に伴って内ピン54の周方向位置が動かされていくときは、内ピン54に対して最大荷重が掛かる位置は、最大偏心方向からずれるものの、大掴みで言うならば、正転時も、逆転時も、内ピン54は、遊星歯車減速装置G1の径方向外側部54E(内ピン54のピッチ円r1よりも外側に位置している部分)にて外歯歯車11から自転によるトルクを受け、該トルクを第1、第2フランジ体41、42に伝達していると言える。よって、内ピン54の遊星歯車減速装置G1の径方向内側部54Fは、負荷的には問題とはなりにくい。そのため、ショットピーニングを、内ピン54の遊星歯車減速装置G1の径方向外側部54Eのみに施すだけでも、該ショットピーニングの目的はほぼ達成できる。一方、遊星歯車減速装置G1の径方向内側部54Fにはショットピーニングを行わないようにすることにより、(内ピン54の根元部分54P1の全周に亘ってショットピーニングを施す場合と較べて)より加工コストの低減、加工時間の短縮を図ることができる。   As described above, when the external gear 11 is oscillating, the through hole 11A of the external gear 11 has an inner pin 54 (specifically, in a direction opposite to the direction in which the external gear 11 is eccentric). The inner roller 58 is covered with the inner pin 54: the same applies hereinafter). In other words, the through-hole 11A of the external gear 11 is in contact with the vicinity of the radially outer portion of the planetary gear reduction device G1 of the inner pin 54, regardless of the direction of the external gear 11 in any direction. . When the circumferential position of the inner pin 54 is moved along with the rotation of the external gear 11, the position where the maximum load is applied to the inner pin 54 deviates from the maximum eccentric direction. For example, at the time of forward rotation and reverse rotation, the inner pin 54 is an external gear at the radially outer portion 54E of the planetary gear reduction device G1 (the portion located outside the pitch circle r1 of the inner pin 54). It can be said that the torque by rotation is received from 11 and the torque is transmitted to the first and second flange bodies 41, 42. Therefore, the radially inner portion 54F of the planetary gear reduction device G1 of the inner pin 54 is unlikely to be a problem in terms of load. Therefore, even if shot peening is performed only on the radially outer portion 54E of the planetary gear reduction device G1 of the inner pin 54, the purpose of the shot peening can be substantially achieved. On the other hand, by preventing shot peening from being performed on the radially inner portion 54F of the planetary gear reduction device G1, (as compared with the case where shot peening is performed over the entire circumference of the root portion 54P1 of the inner pin 54). It is possible to reduce the processing cost and the processing time.

この実施形態では、ショットピーニングによる塑性加工を行った後に、仕上げ加工を行う。仕上げ加工には、内ピン54の外周面54Sの加工、円弧状の凹部54Aの加工、第1アンギュラ玉軸受44の転走面41Aの加工、オイルシール48の摺動面41Bの加工等が含まれる。ショットピーニングの後に仕上げ加工が行われるため、ショットピーニングの際に、内ピン54の外周面54Sの根元部分54P1以外の部分やアンギュラ玉軸受51の転走面41A、オイルシール48の摺動面41B等に周到なマスキングを施したりする手間と時間が不要になる。尤も、このショットピーニング(塑性加工)→仕上げ加工の順序は、必須の順序ではなく、逆であってもよい。すなわち、浸炭、熱処理→仕上げ加工→ショットピーニング(塑性加工)の順でもよい。   In this embodiment, after performing plastic working by shot peening, finishing is performed. The finishing includes machining of the outer peripheral surface 54S of the inner pin 54, machining of the arc-shaped recess 54A, machining of the rolling surface 41A of the first angular ball bearing 44, machining of the sliding surface 41B of the oil seal 48, and the like. It is. Since finish processing is performed after shot peening, the portion other than the root portion 54P1 of the outer peripheral surface 54S of the inner pin 54, the rolling surface 41A of the angular ball bearing 51, and the sliding surface 41B of the oil seal 48 are used during shot peening. Eliminates the time and effort required for careful masking. However, the order of shot peening (plastic working) → finishing is not an essential order and may be reversed. That is, carburizing, heat treatment → finishing → shot peening (plastic working) may be performed in this order.

本実施形態では、とりわけ内ピン54の根元部分54P1に円弧状の凹部54Aが形成されているため、内ピン54に外歯歯車11の自転に伴う動力が伝達されてきたときに、構造上、特にこの凹部54Aに曲げ応力が集中し易い。しかし、本実施形態では、このようにして遊星歯車減速装置G1のフランジ体ユニット56を製造しているため、内ピン54の根元部分54P1に適正な残留応力を生成することができ、疲労強度を効果的に増強することができる。   In the present embodiment, in particular, since the arc-shaped recess 54A is formed in the root portion 54P1 of the inner pin 54, when the power accompanying the rotation of the external gear 11 is transmitted to the inner pin 54, structurally, In particular, bending stress tends to concentrate on the recess 54A. However, in this embodiment, since the flange body unit 56 of the planetary gear reduction device G1 is manufactured in this way, an appropriate residual stress can be generated in the root portion 54P1 of the inner pin 54, and the fatigue strength can be increased. It can be effectively enhanced.

また、本実施形態では、内ローラ58が第1フランジ体41の側面41Gにて位置決めされており、第1フランジ体41の側面41Gに内ローラ58の端面が摺接しているが、内ピン54の根元部分54P1の塑性加工の副次的効果として、(当該根元部分54P1に隣接している)第1フランジ体41の側面41Bの内ローラ58の摺接部分の「加工硬化による耐摩耗性の増大」も期待できる。   In the present embodiment, the inner roller 58 is positioned on the side surface 41G of the first flange body 41, and the end surface of the inner roller 58 is in sliding contact with the side surface 41G of the first flange body 41. As a secondary effect of plastic working of the base portion 54P1, the “sliding contact portion of the inner roller 58 of the side surface 41B of the first flange body 41 (adjacent to the base portion 54P1)” An increase can also be expected.

また、本実施形態においては、内ピン54の根元部分54P1に施す塑性加工の具体的な手段として、ショットピーニングによる加工を採用しているため、簡易かつ安価に塑性加工を行うことができる。また、該ショットピーニングの粒子の投射角度を、内ピン54の軸と直角の面から15〜30度の範囲で傾けるようにしたため、投射された粒子の多くが内ピン54の台座部41Dやその軸方向側面41Gに当たって散乱するのを防止でき、効率的な投射を行うことができる。前述したように、このことは発明者らの実験によっても確認されている。   In the present embodiment, since the processing by shot peening is adopted as a specific means of plastic processing applied to the root portion 54P1 of the inner pin 54, plastic processing can be performed easily and inexpensively. Moreover, since the projection angle of the particles of the shot peening is inclined within a range of 15 to 30 degrees from the plane perpendicular to the axis of the inner pin 54, most of the projected particles are pedestal 41D of the inner pin 54 and its It is possible to prevent scattering by hitting the axial side surface 41G, and efficient projection can be performed. As described above, this has been confirmed by experiments by the inventors.

また、当該偏心揺動型の遊星歯車減速装置G1の作用特性上、疲労強度的に問題となりにくい内ピン54の当該遊星歯車減速装置G1の径方向内側部54Fには、ショットピーニングを施さないようにしているため、加工コストの低減および加工時間の短縮を図ることができる。   In addition, due to the operational characteristics of the eccentric oscillating planetary gear reduction device G1, the shot pin peening is not performed on the radially inner portion 54F of the planetary gear reduction device G1 of the inner pin 54, which is unlikely to be a problem in terms of fatigue strength. Therefore, it is possible to reduce the processing cost and the processing time.

なお、上記実施形態においては、外歯歯車11を揺動させる偏心体軸(入力軸18)が内歯歯車16の軸心位置に配置された偏心揺動型の遊星歯車減速装置G1に本発明を適用していた。しかし、本発明は、遊星歯車減速装置G1の構成については、特に上記実施形態の構成に限定されるものではなく、要は、外歯歯車の軸方向側部にフランジ体を有し、外歯歯車を貫通するピン部材が、該フランジ体から軸方向に一体的に突出形成されているような構成を有している遊星歯車減速装置であるならば、全く同様に適用することができ、同様な効果が得られる。   In the above embodiment, the present invention is applied to the eccentric oscillating planetary gear reduction device G1 in which the eccentric body shaft (input shaft 18) for oscillating the external gear 11 is disposed at the axial center position of the internal gear 16. Had been applied. However, the present invention is not particularly limited to the configuration of the above-described embodiment with respect to the configuration of the planetary gear reduction device G1. In short, the planetary gear reduction device G1 has a flange body on the side portion in the axial direction of the external gear. If the planetary gear reduction device has a configuration in which the pin member penetrating the gear is integrally formed so as to protrude from the flange body in the axial direction, it can be applied in exactly the same manner. Effects can be obtained.

例えば、偏心揺動型の遊星歯車減速装置としては、外歯歯車を揺動させるための偏心体軸が、内歯歯車の軸心からオフセットされた位置に複数配置され、偏心体軸自体の公転によって外歯歯車を揺動させるように構成した遊星歯車減速装置も公知である。このような遊星歯車減速装置の場合は、通常、外歯歯車の軸方向両側部に偏心体軸を支持するフランジ体が配置され、両フランジ体は外歯歯車を貫通するキャリヤピンによって連結される構成が採用される。したがって、該キャリヤピンが、フランジ体から一体的に突出形成されている場合には、このキャリヤピンの根元部分に対して、本発明を適用することができ、同様な作用効果が得られる。   For example, in an eccentric oscillating planetary gear speed reducer, a plurality of eccentric body shafts for oscillating external gears are arranged at positions offset from the axis of the internal gear, and the eccentric body shaft itself revolves. Also known is a planetary gear reduction device configured to swing an external gear by the above-described method. In the case of such a planetary gear speed reduction device, flange bodies that support the eccentric body shaft are usually disposed on both axial sides of the external gear, and both flange bodies are connected by carrier pins that pass through the external gear. Configuration is adopted. Therefore, when the carrier pin is integrally formed so as to protrude from the flange body, the present invention can be applied to the base portion of the carrier pin, and similar effects can be obtained.

また、基本的に先の実施形態と同様な構成を有し、外歯歯車との間で動力の伝達を行う複数の内ピンの一部を、外歯歯車の両側部に配置したフランジ体を単に連結するだけのキャリヤピンに置き換えた遊星歯車減速装置G1も公知である。このような遊星歯車減速装置の場合であっても、外歯歯車の軸方向側部に配置されたフランジ体から一体的に突出され、外歯歯車を貫通するキャリヤピンの根元部分に対して、本発明を適用することができ、同様な作用効果が得られる。   Also, a flange body having a configuration basically similar to that of the previous embodiment, in which a part of a plurality of inner pins that transmit power to and from an external gear is arranged on both sides of the external gear. A planetary gear reduction device G1 is also known which is replaced by a carrier pin that is simply connected. Even in the case of such a planetary gear reduction device, with respect to the base portion of the carrier pin that protrudes integrally from the flange body disposed on the axial side portion of the external gear and penetrates the external gear, The present invention can be applied, and similar effects can be obtained.

さらには、このような外歯歯車が揺動する偏心揺動型の遊星歯車減速装置だけでなく、例えば、外歯歯車が遊星歯車として単純に太陽歯車の周りを公転する単純遊星歯車減速装置においても、外歯歯車の軸方向側部に配置されたフランジ体から一体的に外歯歯車を貫通するピン部材(いわゆる遊星ピン)が突出形成されている場合には、当該ピン部材の根元部分に対して、本発明を適用することができ、同様な作用効果が得られる。   Furthermore, not only in an eccentric oscillating planetary gear reduction device in which the external gear oscillates, but also in a simple planetary gear reduction device in which the external gear simply revolves around the sun gear as a planetary gear. However, when a pin member (so-called planetary pin) that integrally penetrates the external gear from the flange body disposed on the axial side portion of the external gear is formed to protrude at the root portion of the pin member On the other hand, the present invention can be applied, and similar effects can be obtained.

また、本発明は、必ずしも外歯歯車の軸方向両側にフランジ体を有している必要はない。例えば、外歯歯車の軸方向片側にのみフランジ体を有し、該フランジ体から外歯歯車を貫通するピン部材が一体的に(片持ち状態で)突出している構成を有する減速装置においても適用することができる。むしろ、このようにピン部材がフランジ体から片持ち状態で一体的に突出形成されている場合には、「曲げ応力」という点では、フランジ体が外歯歯車の軸方向両側にある場合よりも厳しい状況にあるため、本発明の効果を一層顕著に得ることができる適用状況であるとも言える。   In the present invention, it is not always necessary to have flange bodies on both axial sides of the external gear. For example, the present invention is also applicable to a reduction gear having a structure in which a flange member is provided only on one axial side of an external gear, and a pin member penetrating the external gear from the flange body integrally protrudes (in a cantilever state). can do. Rather, when the pin member is integrally protruded from the flange body in a cantilever manner in this way, in terms of “bending stress”, the flange body is more than the case where the flange body is on both sides in the axial direction of the external gear. Since the situation is severe, it can be said that this is an application situation in which the effects of the present invention can be obtained more remarkably.

なお、上記実施形態においては、偏心揺動型の内ピン(ピン部材)に生じる曲げ応力の作用特性を考慮して、該ピン部材の径方向内側部については、その根元部分に塑性加工を施すのを省略し、加工コストの低減と加工時間の短縮を図るようにしていた。しかしながら、例えば、外歯歯車の貫通孔との間で動力伝達が行われないキャリヤピンや、単純遊星歯車減速装置の遊星ピンのように、そのような作用特性上の理由が特にない場合であっても、遊星歯車減速装置の径方向内側部に塑性加工を施すのが困難である場合には、当該径方向内側部については、塑性加工を省略するようにしてもよい。即ち、本発明は、必ずしも常にピン部材の根元部分の全周に亘って塑性加工を施すことを要求するものではない。逆に、当該径方向内側部を含め、内ピンの根元部分以外の部位にも塑性加工を施すことを禁止するものではない。   In the above embodiment, in consideration of the action characteristic of the bending stress generated in the eccentric rocking type inner pin (pin member), the root portion of the inner side in the radial direction of the pin member is subjected to plastic working. Was omitted to reduce the processing cost and the processing time. However, there is no particular reason for such operational characteristics, such as a carrier pin that does not transmit power to the through hole of the external gear or a planetary pin of a simple planetary gear reduction device. However, when it is difficult to perform plastic working on the radially inner portion of the planetary gear speed reducer, the plastic working may be omitted for the radially inner portion. That is, the present invention does not necessarily require that the plastic working is always performed over the entire circumference of the root portion of the pin member. On the other hand, it is not prohibited to perform plastic working on portions other than the root portion of the inner pin including the radially inner portion.

また、先の実施形態においては、ショットピーニングの投射角度に関し、ピン部材の軸に対して90度の投射角度を維持するより、15〜30度の範囲で傾けられた投射角度とした方が、結果としてより多量の残留応力を生成することができることに着目して、投射角度を上記範囲に維持するようにしていたが、適正な投射角度の範囲は、装置の投射ガンの構造や、粒子の大きさ、形状等によっても変化するため、必ずしも上記範囲に限定されるものではない。   Further, in the previous embodiment, with respect to the projection angle of shot peening, the projection angle inclined in the range of 15 to 30 degrees is more preferable than maintaining the projection angle of 90 degrees with respect to the axis of the pin member. Focusing on the fact that a larger amount of residual stress can be generated as a result, the projection angle was maintained in the above range. However, the proper projection angle range depends on the structure of the projection gun of the device and the particle Since it varies depending on the size, shape, etc., it is not necessarily limited to the above range.

ショットピーニングの投射材の形状や素材も上記実施形態例に限定されない。例えば、上記実施形態のような粒子を投射するもののほか、針金状の部材を突くタイプのショットピーニングであってもよい。   The shape and material of the shot peening projection material are not limited to the above embodiment. For example, in addition to the one that projects particles as in the above embodiment, it may be a type of shot peening that pokes a wire-like member.

また、そもそも、ピン部材の根元部分に塑性加工を施す手段自体が、ショットピーニングのみに限定されない。要は、素材に弾性限度以上の応力を加えて残留圧縮応力を有する塑性変形を生じさせ、切りくずを出さずに所望の形状に成形する加工法ならば、種類を問わず採用することができる。例えば、ローレット加工や、硬い工具を押し付けるような手法による塑性加工などであってもよい。   In the first place, the means for applying plastic working to the root portion of the pin member is not limited to shot peening. In short, any kind of processing method can be adopted as long as it is a processing method in which a stress exceeding the elastic limit is applied to the material to cause a plastic deformation having a residual compressive stress and it is molded into a desired shape without producing chips. . For example, knurling or plastic working by a method of pressing a hard tool may be used.

G1…遊星歯車減速装置
11…外歯歯車
11A…貫通孔
16…内歯歯車
18…入力軸
21…偏心体
41、42…第1、第2フランジ体
41A、42A…転走面
44、46…第1、第2アンギュラ玉軸受
54…内ピン
56…フランジ体ユニット
58…内ローラ
G1 ... Planetary gear speed reducer 11 ... External gear 11A ... Through hole 16 ... Internal gear 18 ... Input shaft 21 ... Eccentric body 41, 42 ... First and second flange bodies 41A, 42A ... Rolling surfaces 44, 46 ... First and second angular contact ball bearings 54 ... inner pin 56 ... flange body unit 58 ... inner roller

Claims (7)

外歯歯車と、該外歯歯車が内接噛合する内歯歯車と、前記外歯歯車の軸方向側部に配置されたフランジ体と、該フランジ体から軸方向に一体的に突出形成され外歯歯車を貫通するピン部材と、を備えた遊星歯車減速装置であって、
前記ピン部材の根元部分に塑性加工が施されている
ことを特徴とする遊星歯車減速装置。
An external gear, an internal gear with which the external gear meshes internally, a flange body disposed on the axial side of the external gear, and an externally projecting and integrally formed axially projecting from the flange body A planetary gear reduction device comprising a pin member penetrating the toothed gear,
A planetary gear reduction device characterized in that plastic processing is applied to a root portion of the pin member.
請求項1において、
前記塑性加工は、ショットピーニングによる加工である
ことを特徴とする遊星歯車減速装置。
In claim 1,
The planetary gear reduction device, wherein the plastic processing is processing by shot peening.
請求項1または2において、
前記ピン部材の当該遊星歯車減速装置の径方向内側部には、前記塑性加工が施されない
ことを特徴とする遊星歯車減速装置。
In claim 1 or 2,
The planetary gear reduction device is characterized in that the plastic working is not performed on a radially inner portion of the planetary gear reduction device of the pin member.
外歯歯車と、該外歯歯車が内接噛合する内歯歯車と、前記外歯歯車の軸方向側部に配置されたフランジ体と、該フランジ体から軸方向に一体的に突出形成され外歯歯車を貫通するピン部材と、を備えた遊星歯車減速装置の製造方法であって、
前記フランジ体から前記ピン部材が一体的に突出形成されたフランジ体母材を製造する工程と、
該フランジ体母材の前記ピン部材の根元部分に塑性加工を施す工程と、を含む
ことを特徴とする遊星歯車減速装置の製造方法。
An external gear, an internal gear with which the external gear meshes internally, a flange body disposed on the axial side of the external gear, and an externally projecting and integrally formed axially projecting from the flange body A pin member penetrating the tooth gear, and a manufacturing method of a planetary gear reduction device comprising:
Producing a flange body base material in which the pin member integrally projects from the flange body;
And a step of performing plastic working on a root portion of the pin member of the flange body base material. A method for manufacturing a planetary gear reduction device, comprising:
請求項4において、
前記塑性加工は、ショットピーニングによる加工である
ことを特徴とする遊星歯車減速装置の製造方法。
In claim 4,
The plastic processing is processing by shot peening. A method for manufacturing a planetary gear reduction device, wherein:
請求項4または5において、
前記ショットピーニングは、ショットの投射角度が、前記ピン部材の軸と直角の面から15〜30度の範囲で傾けられている
ことを特徴とする遊星歯車減速装置の製造方法。
In claim 4 or 5,
In the shot peening, a shot projection angle is inclined in a range of 15 to 30 degrees from a plane perpendicular to the axis of the pin member.
請求項4〜6のいずれかにおいて、
前記塑性加工を行った後に、仕上げ加工が行われる
ことを特徴とする遊星歯車減速装置の製造方法。
In any one of Claims 4-6,
A finishing process is performed after the plastic working. A method for manufacturing a planetary gear reduction device, wherein:
JP2012242258A 2012-11-01 2012-11-01 Planetary gear reduction device and manufacturing method thereof Active JP5899102B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012242258A JP5899102B2 (en) 2012-11-01 2012-11-01 Planetary gear reduction device and manufacturing method thereof
KR20130106470A KR101491679B1 (en) 2012-11-01 2013-09-05 Planetary gear deceleration apparatus and method for manufacturing it
CN201310445680.3A CN103807420B (en) 2012-11-01 2013-09-26 Epicyclic reduction gear unit and manufacture method thereof
DE102013017925.4A DE102013017925B4 (en) 2012-11-01 2013-10-28 Planetary reducers and manufacturing processes therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242258A JP5899102B2 (en) 2012-11-01 2012-11-01 Planetary gear reduction device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014092209A true JP2014092209A (en) 2014-05-19
JP5899102B2 JP5899102B2 (en) 2016-04-06

Family

ID=50489862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242258A Active JP5899102B2 (en) 2012-11-01 2012-11-01 Planetary gear reduction device and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP5899102B2 (en)
KR (1) KR101491679B1 (en)
CN (1) CN103807420B (en)
DE (1) DE102013017925B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105065580A (en) * 2015-06-26 2015-11-18 吴小杰 Carrying welding robot planet cycloid decelerator
JP2021071189A (en) * 2019-11-01 2021-05-06 住友重機械工業株式会社 Reduction gear
CN114515943A (en) * 2020-11-20 2022-05-20 住友重机械工业株式会社 Method for manufacturing gear device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3500778A1 (en) * 2017-03-23 2019-06-26 Bharat Forge Limited A planet carrier and a process and apparatus to manufacture it
JP7319784B2 (en) * 2019-01-29 2023-08-02 住友重機械工業株式会社 Manufacturing method for eccentric oscillating speed reducer and external gear
JP7438665B2 (en) * 2019-02-05 2024-02-27 住友重機械工業株式会社 Eccentric rocking type reduction gear, manufacturing method of eccentric body
JP7368344B2 (en) * 2020-07-29 2023-10-24 美的集団股▲フン▼有限公司 Internally meshing planetary gears and actuators
DE102022005001A1 (en) 2022-04-25 2023-10-26 Sumitomo (Shi) Cyclo Drive Germany Gmbh FORCE RECEIVING COMPONENT AND TRANSMISSION ASSEMBLY
DE102022109841A1 (en) 2022-04-25 2023-10-26 Sumitomo (Shi) Cyclo Drive Germany Gmbh Transmission assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537276A (en) * 1978-09-11 1980-03-15 Hino Motors Ltd Work method for fillet portion of crankshaft
JPH109247A (en) * 1996-06-21 1998-01-13 Mitsubishi Heavy Ind Ltd Shot peening attachment for reinforcing crankshaft
JP2000154849A (en) * 1998-11-19 2000-06-06 Teijin Seiki Co Ltd Reduction and device provided with gear
JP2002161948A (en) * 2000-11-24 2002-06-07 Tsubakimoto Chain Co Inner pin supporting structure for planetary gear
JP2004083927A (en) * 2002-08-22 2004-03-18 Kobe Steel Ltd Method for improving fatigue strength on cut surface of metal plate and high tension steel plate formed product using this method
JP2006057772A (en) * 2004-08-20 2006-03-02 Sumitomo Heavy Ind Ltd Pin structure of planetary rotating member of planetary reduction mechanism and method of manufacturing pin
JP2006292065A (en) * 2005-04-11 2006-10-26 Sumitomo Heavy Ind Ltd Epicycle reduction gear

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29616862U1 (en) * 1996-09-27 1996-11-14 Stihl Maschf Andreas Anti-rotation device for a rotating tool of an implement
JP2003106112A (en) * 2001-09-28 2003-04-09 Toyota Motor Corp Cam follower, manufacturing method therefor and mechanism thereof
JP4484741B2 (en) 2005-03-24 2010-06-16 住友重機械工業株式会社 Power transmission device and power transmission device for driving robot wrist
JP2007255642A (en) * 2006-03-24 2007-10-04 Aisin Ai Co Ltd Planetary gear type transmission
JP2011226535A (en) * 2010-04-19 2011-11-10 Nsk Ltd Planetary gear device for reducer
JP5857179B2 (en) 2011-05-20 2016-02-10 パナソニックIpマネジメント株式会社 Gas shut-off device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5537276A (en) * 1978-09-11 1980-03-15 Hino Motors Ltd Work method for fillet portion of crankshaft
JPH109247A (en) * 1996-06-21 1998-01-13 Mitsubishi Heavy Ind Ltd Shot peening attachment for reinforcing crankshaft
JP2000154849A (en) * 1998-11-19 2000-06-06 Teijin Seiki Co Ltd Reduction and device provided with gear
JP2002161948A (en) * 2000-11-24 2002-06-07 Tsubakimoto Chain Co Inner pin supporting structure for planetary gear
JP2004083927A (en) * 2002-08-22 2004-03-18 Kobe Steel Ltd Method for improving fatigue strength on cut surface of metal plate and high tension steel plate formed product using this method
JP2006057772A (en) * 2004-08-20 2006-03-02 Sumitomo Heavy Ind Ltd Pin structure of planetary rotating member of planetary reduction mechanism and method of manufacturing pin
JP2006292065A (en) * 2005-04-11 2006-10-26 Sumitomo Heavy Ind Ltd Epicycle reduction gear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105065580A (en) * 2015-06-26 2015-11-18 吴小杰 Carrying welding robot planet cycloid decelerator
JP2021071189A (en) * 2019-11-01 2021-05-06 住友重機械工業株式会社 Reduction gear
CN114515943A (en) * 2020-11-20 2022-05-20 住友重机械工业株式会社 Method for manufacturing gear device

Also Published As

Publication number Publication date
CN103807420A (en) 2014-05-21
CN103807420B (en) 2016-08-31
JP5899102B2 (en) 2016-04-06
DE102013017925B4 (en) 2021-04-22
KR20140055965A (en) 2014-05-09
KR101491679B1 (en) 2015-02-09
DE102013017925A1 (en) 2014-05-08

Similar Documents

Publication Publication Date Title
JP5899102B2 (en) Planetary gear reduction device and manufacturing method thereof
US7476174B2 (en) Eccentric oscillating-type planetary gear device
JP5121696B2 (en) Reduction gear
JP4746907B2 (en) Planetary gear reducer
JP5156961B2 (en) Reduction gear
EP2068037A1 (en) Eccentric oscillating reduction gear and stabilizer shaft rotating device using eccentric oscillating reduction gear
JP2005226827A (en) Eccentrically swinging gear device
CN108331886B (en) Speed reducer and heat treatment method for rotating body
TW201730453A (en) Speed reducer for improving configuration precision and suppressing abrasion and damage of components
JP7340908B2 (en) Laser hardening method
JP6356514B2 (en) Decelerator
JP5069612B2 (en) Eccentric oscillating gear unit
JP3897924B2 (en) Inner meshing planetary gear unit
JP5961214B2 (en) Reduction gear
JP6144996B2 (en) Eccentric oscillation type speed reducer
US20180347668A1 (en) Helical gear device
JP4554586B2 (en) Inner meshing planetary gear unit
JP2005147285A (en) Planetary gearing mechanism
TW201335512A (en) Gear transmission device
JP4498816B2 (en) Eccentric oscillation type planetary gear unit
JP2012172783A (en) Reduction gear manufacturing method, and reduction gear
CN116428316A (en) Eccentric swing type gear device
JP6906352B2 (en) Decelerator
JP2018197601A (en) Fixing method and fixing construction
JP2011007293A (en) Rocking type reduction gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5899102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150