JP4498816B2 - Eccentric oscillation type planetary gear unit - Google Patents

Eccentric oscillation type planetary gear unit Download PDF

Info

Publication number
JP4498816B2
JP4498816B2 JP2004142505A JP2004142505A JP4498816B2 JP 4498816 B2 JP4498816 B2 JP 4498816B2 JP 2004142505 A JP2004142505 A JP 2004142505A JP 2004142505 A JP2004142505 A JP 2004142505A JP 4498816 B2 JP4498816 B2 JP 4498816B2
Authority
JP
Japan
Prior art keywords
teeth
external
gear
internal
passing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004142505A
Other languages
Japanese (ja)
Other versions
JP2005325865A (en
Inventor
憲一 藤本
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to JP2004142505A priority Critical patent/JP4498816B2/en
Priority claimed from CN2008100989634A external-priority patent/CN101328953B/en
Priority claimed from KR1020067015361A external-priority patent/KR101140794B1/en
Publication of JP2005325865A publication Critical patent/JP2005325865A/en
Application granted granted Critical
Publication of JP4498816B2 publication Critical patent/JP4498816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、内歯歯車に噛み合う外歯歯車をクランク軸によって偏心揺動させるようにした偏心揺動型遊星歯車装置に関する。     The present invention relates to an eccentric oscillating planetary gear device in which an external gear meshing with an internal gear is eccentrically oscillated by a crankshaft.
従来の偏心揺動型遊星歯車装置としては、例えば以下の特許文献1に記載されているようなものが知られている。
特開平7−299791号公報
As a conventional eccentric oscillating planetary gear device, for example, one described in Patent Document 1 below is known.
JP-A-7-299791
このものは、内周に多数の円柱状ピンで構成された内歯が設けられた内歯歯車と、複数のクランク軸孔および貫通孔が形成され、外周に全歯で内歯に噛み合いトロコイド歯形からなる多数の外歯を有する外歯歯車と、各クランク軸孔に挿入され、回転することで外歯歯車を偏心揺動させるクランク軸と、前記クランク軸を回転可能に支持するとともに、各貫通孔に挿入された複数の柱部を有する支持体とを備えたものである。   This is a trochoidal tooth profile that has an internal gear provided with internal teeth composed of a large number of cylindrical pins on the inner periphery, a plurality of crankshaft holes and through-holes, and meshes with all teeth on the outer periphery. An external gear having a large number of external teeth, a crankshaft that is inserted into each crankshaft hole and rotates to eccentrically swing the external gear, and rotatably supports the crankshaft. And a support having a plurality of pillars inserted into the holes.
そして、このものにおいては、図6に示すように、各外歯01から対応する内歯(ピン)02に対して付与される駆動分力の反力Kの作用線Sは一つの集合点Cにおいて重なり合うが、このような集合点Cは全ての貫通孔03の半径方向外端を通過する外端通過円Gと、半径方向内端を通過する内端通過円Nとの間に位置していた。   In this case, as shown in FIG. 6, the action line S of the reaction force K of the driving component force applied from each external tooth 01 to the corresponding internal tooth (pin) 02 is one set point C. However, such a set point C is located between the outer end passing circle G passing through the radially outer ends of all the through holes 03 and the inner end passing circle N passing through the radially inner ends. It was.
しかしながら、このような従来の偏心揺動型遊星歯車装置にあっては、前述のように集合点Cが外端通過円Gと内端通過円Nとの間に位置しているため、外歯歯車04の偏心揺動回転によって前記集合点Cが貫通孔03の中心近傍に位置するようになると、各反力Kの作用線Sは貫通孔03に対してほぼ法線方向に延びることになる。ここで、外歯歯車04のうち、貫通孔03の半径方向外側に位置するブリッジ部05は、他の部位に比較して薄肉であるため、剛性が低いが、この剛性の低いブリッジ部05に対して一部の反力Kが前述のように貫通孔03のほぼ法線方向に、即ちブリッジ部05の延在方向にほぼ直交する方向に作用するため、ブリッジ部05および該ブリッジ部05近傍の外歯01が弾性変形をして外歯01と内歯(ピン)02とが片当たりし、外歯01の歯面寿命が短くなってしまうという課題があった。     However, in such a conventional eccentric oscillating planetary gear device, the set point C is located between the outer end passing circle G and the inner end passing circle N as described above. When the set point C is positioned near the center of the through hole 03 due to the eccentric oscillating rotation of the gear 04, the action line S of each reaction force K extends substantially in the normal direction with respect to the through hole 03. . Here, in the external gear 04, the bridge portion 05 located on the outer side in the radial direction of the through hole 03 is thinner than other portions, so the rigidity is low. On the other hand, since a part of the reaction force K acts in the direction almost normal to the through-hole 03 as described above, that is, in the direction substantially perpendicular to the extending direction of the bridge portion 05, the bridge portion 05 and the vicinity of the bridge portion 05 The outer teeth 01 are elastically deformed, and the outer teeth 01 and the inner teeth (pins) 02 come into contact with each other, and the tooth surface life of the outer teeth 01 is shortened.
この発明は、外歯歯車のブリッジ部、外歯の弾性変形を抑制することで外歯の歯面寿命を延ばすことができる偏心揺動型遊星歯車装置を提供することを目的とする。   An object of the present invention is to provide an eccentric oscillating planetary gear device that can extend the life of the tooth surface of the external teeth by suppressing the elastic deformation of the bridge portion and external teeth of the external gear.
このような目的は、内周に多数の円柱状ピンで構成された内歯が設けられた内歯歯車と、少なくとも1個のクランク軸孔および複数の貫通孔が形成され、外周にトロコイド歯形からなり前記内歯に噛み合う多数の外歯を有する外歯歯車と、各クランク軸孔に挿入され、回転することで外歯歯車を偏心揺動させるクランク軸と、前記クランク軸を回転可能に支持するとともに、各貫通孔に挿入された複数の柱部を有する支持体とを備えた偏心揺動型遊星歯車装置において、各外歯から対応する内歯に対して付与される駆動分力の反力Kの作用線Sが重なり合う集合点Cを、内歯を構成する全てのピンの中心を通過するピン円Pと、全ての貫通孔の半径方向外端を通過する外端通過円Gとの間に位置させることにより、達成することができる。     The purpose of this is to form an internal gear provided with internal teeth composed of a large number of cylindrical pins on the inner periphery, at least one crankshaft hole and a plurality of through holes, and from the trochoidal tooth profile on the outer periphery. An external gear having a large number of external teeth meshing with the internal teeth, a crankshaft that is inserted into each crankshaft hole and rotates eccentrically by rotating, and the crankshaft is rotatably supported. In addition, in the eccentric oscillating planetary gear device provided with a support body having a plurality of pillars inserted into each through hole, a reaction force of a driving component force applied from each external tooth to the corresponding internal tooth The set point C where the action lines S of K overlap is between the pin circle P passing through the centers of all the pins constituting the inner teeth and the outer end passing circle G passing through the radially outer ends of all the through holes. Can be achieved by positioning the
この発明においては、各外歯から対応する内歯に対して付与される駆動分力の反力Kの作用線Sが重なり合う集合点Cを、全ての貫通孔の半径方向外端を通過する外端通過円Gより半径方向外側に位置させるようにしたので、集合点Cが貫通孔の中心を通る半径方向線上に位置するようになったとき、いずれの反力Kの作用線Sも貫通孔に対して従来より接線方向側に傾斜し、ブリッジ部の延在方向に近付くようになる。この結果、薄肉で剛性の低いブリッジ部および該ブリッジ部近傍の外歯の弾性変形が抑制され、外歯の歯面寿命が延びるのである。   In the present invention, the outer point that passes through the radially outer ends of all the through holes passes through the set point C where the action lines S of the reaction force K of the driving component force applied from the respective outer teeth to the corresponding inner teeth overlap. Since it is positioned radially outward from the end passing circle G, when the set point C is positioned on a radial line passing through the center of the through hole, any line of action S of the reaction force K is also the through hole. On the other hand, it inclines in the tangential direction side from the past, and comes closer to the extending direction of the bridge portion. As a result, the thin and low-rigidity bridge portion and the elastic deformation of the external teeth in the vicinity of the bridge portion are suppressed, and the tooth surface life of the external teeth is extended.
しかも、前記集合点Cが前述のように外端通過円Gより半径方向外側に位置していると、前記各反力Kの接線方向成分を貫通孔の空洞部分ではなく、接線方向剛性の高いブリッジ部が受けることになるため、貫通孔の変形を抑制することができる。但し、前記集合点Cが内歯を構成する全てのピンの中心を通過するピン円Pより半径方向外側に位置すると、外歯の歯面に尖った部分が生じるため、前記集合点Cは外端通過円Gとピン円Pとの間に位置していなければならない。   In addition, when the set point C is located radially outside the outer end passing circle G as described above, the tangential direction component of each reaction force K is not a hollow portion of the through-hole, but has high tangential rigidity. Since the bridge portion is received, deformation of the through hole can be suppressed. However, when the set point C is located radially outward from the pin circle P passing through the centers of all the pins constituting the inner teeth, a pointed portion is generated on the tooth surface of the outer teeth. It must be located between the end passing circle G and the pin circle P.
ここで、前記集合点Cがピン円Pと歯底円Mとの間に位置しているときには、一部の反力Kが外歯歯車に対してほぼ接線方向に延び、この結果、このような反力Kにより外歯が曲げ変形するおそれがあるが、請求項2に記載のように前記集合点Cを歯底円Mと外端通過円Gとの間に位置させるようにすれば、このような事態を防止することができる。
また、請求項3に記載のように構成すれば、歯数差を2以上とした場合に比較して高減速比とすることができるとともに、加工コストを低減させることができる。
Here, when the set point C is located between the pin circle P and the root circle M, a part of the reaction force K extends almost tangentially to the external gear, and as a result, The external teeth may be bent and deformed by the reaction force K, but if the set point C is positioned between the root circle M and the outer end passing circle G as described in claim 2, Such a situation can be prevented.
Moreover, if comprised as described in Claim 3, compared with the case where the number-of-teeth difference shall be 2 or more, it can be set as a high reduction ratio, and processing cost can be reduced.
以下、この発明の実施例1を図面に基づいて説明する。
図1、2、3において、11はロボット等に使用される偏心揺動型遊星歯車装置であり、この遊星歯車装置11は、例えば図示していないロボットのアーム、ハンド等に取り付けられた略円筒状の回転ケース12を有する。この回転ケース12の内周でその軸方向中央部には断面が半円形をした多数のピン溝13が形成され、これらのピン溝13は軸方向に延びるとともに周方向に等距離離れて配置されている。
Embodiment 1 of the present invention will be described below with reference to the drawings.
In FIGS. 1, 2, and 3, reference numeral 11 denotes an eccentric oscillating planetary gear device used for a robot or the like. A rotating case 12 is provided. A large number of pin grooves 13 having a semicircular cross section are formed in the central portion in the axial direction on the inner periphery of the rotating case 12, and these pin grooves 13 extend in the axial direction and are arranged at equal distances in the circumferential direction. ing.
14は多数(ピン溝13と同数)の円柱状をしたピンからなる内歯であり、これらの内歯(ピン)14はそのほぼ半分がピン溝13内に挿入されることで回転ケース12の内周に周方向に等距離離れて設けられている。前述した回転ケース12、内歯(ピン)14は全体として、内周に複数の円柱状ピンで構成された内歯14が設けられた内歯歯車15を構成する。ここで、前記内歯(ピン)14は25〜 100本程度配置されるが、30〜80本の範囲内が好ましい。その理由は、内歯(ピン)14の本数が前述の範囲内とするとともに、後述の外歯車40、42と組み合わせることで、必要な速比を容易に得ることができ、しかも、固有振動数の高い高減速比の遊星歯車装置を構成することができるからである。   14 is an internal tooth composed of a number of cylindrical pins (the same number as the pin groove 13), and almost half of these internal teeth (pins) 14 are inserted into the pin groove 13 so that the rotating case 12 The inner circumference is provided at an equal distance in the circumferential direction. The rotating case 12 and the internal teeth (pins) 14 described above constitute an internal gear 15 provided with internal teeth 14 formed of a plurality of cylindrical pins on the inner periphery. Here, about 25 to 100 inner teeth (pins) 14 are arranged, but preferably in the range of 30 to 80. The reason is that the number of the internal teeth (pins) 14 is within the above-mentioned range, and the required speed ratio can be easily obtained by combining with the external gears 40 and 42 described later, and the natural frequency. This is because a planetary gear device having a high reduction ratio can be configured.
前記内歯歯車15内にはリング状をした複数(ここでは2個)の外歯歯車18が軸方向に並べられて収納され、これら外歯歯車18の外周にはトロコイド歯形、詳しくはペリトロコイド歯形からなる多数の外歯19がそれぞれ形成されている。そして、前記外歯歯車18の外歯19の歯数は前記内歯(ピン)14の歯数より1だけ少ない(歯数差が1である)。このように内歯(ピン)14と外歯19との歯数差を1としたのは、これらの歯数差が2以上の値Rである場合に比較し、容易に高減速比とすることができるとともに、加工コストを低減させることができるからである。   A plurality of (in this case, two) external gears 18 in the form of a ring are accommodated in the axial direction in the internal gear 15, and a trochoidal tooth profile, more specifically a peritrochoid, is arranged on the outer periphery of the external gear 18. A large number of external teeth 19 each having a tooth shape are formed. The number of external teeth 19 of the external gear 18 is one less than the number of internal teeth (pins) 14 (the difference in the number of teeth is 1). In this way, the difference in the number of teeth between the internal teeth (pins) 14 and the external teeth 19 is set to 1, compared with the case where the difference in the number of teeth is a value R of 2 or more, a high reduction ratio is easily achieved. This is because the processing cost can be reduced.
ここで、歯数差が2以上の値Rである外歯歯車とは、トロコイド外歯歯車の外形輪郭を、外歯19間ピッチを該Rの値で除した角度だけ周方向にずらすとともに、これら周方向にずれたR個の外形輪郭が重なり合った部分を歯形として取り出した外歯歯車のことである(特開平3−181641号公報参照)。そして、これら外歯歯車18と内歯歯車15とは内接した状態で外歯19と内歯(ピン)14とが噛み合っているが、2つの外歯歯車18の最大噛み合い部(噛み合いの最も深い部位)は 180度だけ位相がずれている。   Here, the external gear whose tooth number difference is a value R of 2 or more means that the outer contour of the trochoid external gear is shifted in the circumferential direction by an angle obtained by dividing the pitch between the external teeth 19 by the value of R, This is an external gear obtained by taking out a portion where R outlines deviated in the circumferential direction overlap each other as a tooth profile (see Japanese Patent Laid-Open No. 3-181641). The external teeth 19 and the internal teeth (pins) 14 are meshed with each other while the external gear 18 and the internal gear 15 are inscribed, but the maximum meshing portion (the most meshed portion of the two external gears 18). The deep part) is 180 degrees out of phase.
各外歯歯車18には少なくとも1個、ここでは3個の軸方向に貫通したクランク軸孔21が形成され、これらの複数のクランク軸孔21は外歯歯車18の中心軸から半径方向に等距離離れるとともに、周方向に等距離離れている。22は各外歯歯車18に形成された複数(クランク軸孔21と同数)の貫通孔であり、これらの貫通孔22はクランク軸孔21と周方向に交互に配置されるとともに、周方向に等距離離れて配置されている。そして、前記貫通孔22は半径方向外側に向かって周方向幅が広くなった略ベース形を呈している。   Each external gear 18 is formed with at least one, in this case, three crankshaft holes 21 penetrating in the axial direction, and the plurality of crankshaft holes 21 are arranged in the radial direction from the central axis of the external gear 18. Along with the distance, they are equidistant in the circumferential direction. Reference numeral 22 denotes a plurality of (as many as the crankshaft holes 21) through-holes formed in each external gear 18, and these through-holes 22 are arranged alternately with the crankshaft holes 21 in the circumferential direction and in the circumferential direction. They are arranged equidistantly. The through-hole 22 has a substantially base shape with a circumferential width increasing toward the outside in the radial direction.
25は回転ケース12内に遊嵌され図示していない固定ロボット部材に取り付けられた支持体であり、この支持体25は外歯歯車18の軸方向両外側に配置された一対の略リング状を呈する端板部26、27と、一端が端板部26に一体的に連結され、他端が複数のボルト28により端板部27に着脱可能に連結された複数(貫通孔22と同数)の柱部29とから構成されている。そして、前記端板部26、27同士を連結する柱部29は軸方向に延びるとともに、外歯歯車18の貫通孔22内に若干の間隙を保持しながら挿入(遊嵌)されている。   Reference numeral 25 denotes a support loosely fitted in the rotary case 12 and attached to a fixed robot member (not shown). The support 25 has a pair of substantially ring shapes disposed on both outer sides in the axial direction of the external gear 18. End plate portions 26 and 27 to be presented, and a plurality (the same number as the through holes 22) of which one end is integrally connected to the end plate portion 26 and the other end is detachably connected to the end plate portion 27 by a plurality of bolts 28 It is comprised from the pillar part 29. FIG. The column portion 29 that connects the end plate portions 26 and 27 extends in the axial direction, and is inserted (freely fitted) into the through hole 22 of the external gear 18 while maintaining a slight gap.
31は前記支持体25、詳しくは端板部26、27の外周と回転ケース12の軸方向両端部内周との間に介装された軸受であり、これらの軸受31により内歯歯車15は支持体25に回転可能に支持される。35は周方向に等角度離れて配置された少なくとも1本(クランク軸孔21と同数)のクランク軸であり、これらのクランク軸35は、その軸方向一端部に外嵌された円錐ころ軸受36およびその軸方向他端部に外嵌された円錐ころ軸受37によって支持体25、詳しくは端板部26、27に回転可能に支持されている。   31 is a bearing interposed between the outer periphery of the support body 25, specifically, the end plate portions 26 and 27 and the inner periphery of both end portions in the axial direction of the rotary case 12, and the internal gear 15 is supported by these bearings 31. The body 25 is rotatably supported. Reference numeral 35 denotes at least one (same number as the crankshaft hole 21) crankshafts arranged at an equal angle in the circumferential direction. These crankshafts 35 are tapered roller bearings 36 fitted on one end in the axial direction. And it is rotatably supported by the support body 25, specifically the end plate portions 26 and 27, by a tapered roller bearing 37 fitted on the other end portion in the axial direction.
前記クランク軸35はその軸方向中央部にクランク軸35の中心軸から等距離だけ偏心した2個の偏心カム38を有し、これら偏心カム38は互いに 180度だけ位相がずれている。ここで、前記クランク軸35の偏心カム38は外歯歯車18のクランク軸孔21内にそれぞれ遊嵌されるとともに、これらの間には針状ころ軸受39が介装され、この結果、前記外歯歯車18とクランク軸35との相対回転が許容される。また、各クランク軸35の軸方向一端には外歯車40が固定され、これらの外歯車40には図示していない駆動モータの出力軸41の一端部に設けられた外歯車42が噛み合っている。   The crankshaft 35 has two eccentric cams 38 that are eccentric by an equal distance from the central axis of the crankshaft 35 at the center in the axial direction, and these eccentric cams 38 are out of phase with each other by 180 degrees. Here, the eccentric cam 38 of the crankshaft 35 is loosely fitted in the crankshaft hole 21 of the external gear 18, and a needle roller bearing 39 is interposed between them, and as a result, the outer cam 38 is inserted. Relative rotation between the toothed gear 18 and the crankshaft 35 is allowed. An external gear 40 is fixed to one end of each crankshaft 35 in the axial direction, and an external gear 42 provided at one end of an output shaft 41 of a drive motor (not shown) meshes with these external gears 40. .
そして、駆動モータが作動して外歯車40が回転すると、クランク軸35が自身の中心軸回りに回転し、この結果、クランク軸35の偏心カム38が外歯歯車18のクランク軸孔21内において偏心回転し、外歯歯車18が偏心揺動回転をする。このとき、互いに噛み合っている内歯(ピン)14と外歯19との接触点には、外歯19から対応する内歯(ピン)14に対して作用線S方向の駆動分力がそれぞれ付与される。   When the drive motor operates and the external gear 40 rotates, the crankshaft 35 rotates around its own central axis, and as a result, the eccentric cam 38 of the crankshaft 35 is moved into the crankshaft hole 21 of the external gear 18. As a result, the external gear 18 rotates eccentrically. At this time, the driving force in the direction of the action line S is applied from the external teeth 19 to the corresponding internal teeth (pins) 14 at the contact points between the internal teeth (pins) 14 and the external teeth 19 that are engaged with each other. Is done.
ここで、前述した各駆動分力の反力Kの作用線Sは、図4に示すように前記接触点における歯面に垂直な線上に位置するが、これら複数の作用線Sは、前述のように内歯(ピン)14が円柱状を呈し、外歯19がトロコイド歯形から構成されているので、外歯歯車18上の一点、即ち集合点Cで集合(交差)する。そして、前記各駆動分力の接線方向成分の合計が内歯歯車15に回転駆動力として付与される。   Here, the action line S of the reaction force K of each driving component described above is located on a line perpendicular to the tooth surface at the contact point, as shown in FIG. Thus, since the internal teeth (pins) 14 have a cylindrical shape and the external teeth 19 are formed of a trochoidal tooth profile, they are set (intersected) at one point on the external gear 18, that is, at a set point C. Then, the sum of the tangential components of each driving component is given to the internal gear 15 as a rotational driving force.
ここで、集合点Cが、前述の背景技術で説明したように外端通過円Gと内端通過円Nとの間に位置していると(図6参照)、剛性の低いブリッジ部05に対して一部(最大噛み合い部近傍)の駆動分力の反力Kがブリッジ部05の延在方向にほぼ直交する方向に作用するため、該ブリッジ部05およびブリッジ部05近傍の外歯01が弾性変形をして外歯01と内歯(ピン)02とが片当たりし、外歯01の歯面寿命が短くなってしまう。   Here, when the set point C is located between the outer end passing circle G and the inner end passing circle N as described in the background art (see FIG. 6), the bridge portion 05 having low rigidity is formed. On the other hand, since the reaction force K of the drive component force of a part (near the maximum meshing portion) acts in a direction substantially orthogonal to the extending direction of the bridge portion 05, the external teeth 01 in the vicinity of the bridge portion 05 and the bridge portion 05 are The outer teeth 01 and the inner teeth (pins) 02 come into contact with each other due to elastic deformation, and the tooth surface life of the outer teeth 01 is shortened.
しかしながら、この実施例においては、前述の集合点Cを従来より半径方向外側に移動させ、前記外端通過円Gより半径方向外側に位置させたのである。これにより、集合点Cが、図4に示すように、貫通孔22の中心を通る半径方向線上に位置するようになったとき、いずれの反力Kの作用線Sも貫通孔22に対して従来より接線方向側に傾斜し、ブリッジ部18aの延在方向に近付くようになったのである。この結果、薄肉で剛性の低いブリッジ部18aおよび該ブリッジ部18a近傍の外歯19の弾性変形が抑制され、外歯19の歯面寿命が延びるのである。   However, in this embodiment, the above-mentioned set point C is moved radially outward from the conventional position, and is positioned radially outward from the outer end passing circle G. As a result, when the set point C is positioned on a radial line passing through the center of the through hole 22 as shown in FIG. It is inclined to the tangential direction side from the past, and comes closer to the extending direction of the bridge portion 18a. As a result, elastic deformation of the thin and low-rigidity bridge portion 18a and the external teeth 19 in the vicinity of the bridge portion 18a is suppressed, and the tooth surface life of the external teeth 19 is extended.
しかも、前記集合点Cが前述のように外端通過円Gより半径方向外側に位置していると、前記反力Kの接線方向成分を貫通孔22の空洞部分ではなく、接線方向剛性の高いブリッジ部18aが受けることになるため、貫通孔22の変形を抑制することができる。但し、前記集合点Cが内歯14を構成する全てのピンの中心を通過するピン円Pより半径方向外側に位置すると、外歯19の歯面に尖った部分が生じるため、前記集合点Cは外端通過円Gとピン円Pとの間に位置していなければならない。   Moreover, when the set point C is located radially outside the outer end passing circle G as described above, the tangential direction component of the reaction force K is not a hollow portion of the through-hole 22 but has high tangential rigidity. Since the bridge portion 18a receives the deformation, the deformation of the through hole 22 can be suppressed. However, when the set point C is located radially outward from the pin circle P passing through the centers of all the pins constituting the inner tooth 14, a sharp portion is formed on the tooth surface of the outer tooth 19, and therefore the set point C Must be located between the outer end passing circle G and the pin circle P.
ここで、前述した内歯歯車15の中心Oから集合点Cまでの半径方向距離Lは、内歯歯車15に対する外歯歯車18の偏心量Hに内歯歯車15の内歯(ピン)14の歯数Zを乗じることで表すことができるため、距離Lを図6に示す従来の距離Lより大とするには、偏心量Hまたは歯数のいずれか一方または双方を従来より大とすればよい。そして、この実施例では前記距離Lを大とするために偏心量Hを大としているが、このような偏心量Hをさらに大とするため、内歯(ピン)14の外径を従来より小径としている。   Here, the radial distance L from the center O of the internal gear 15 to the set point C is equal to the eccentric amount H of the external gear 18 with respect to the internal gear 15 and the internal teeth (pins) 14 of the internal gear 15. Since the distance L can be expressed by multiplying by the number of teeth Z, in order to make the distance L larger than the conventional distance L shown in FIG. Good. In this embodiment, the amount of eccentricity H is increased in order to increase the distance L. However, in order to further increase the amount of eccentricity H, the outer diameter of the inner teeth (pins) 14 is smaller than the conventional one. It is said.
ここで、前記半径方向距離Lと前記ピン円Pの半径Qとの比(L/Q)の値は0.86〜1.00の範囲内であることが好ましい。その理由は、前記比L/Qの値が0.86以上であると、図5から明らかなように、荷重比率がほぼ一定となり、同一トルクを得るために、外歯19にかかるトルク伝達に関する荷重(駆動分力の接線方向成分)がほぼ一定で最小となっているが、O.86未満となると、荷重比率の変化が大きくなり、外歯19にかかるトルク伝達に関する荷重が増大するからであり、一方、前記比L/Qの値が1.00を超えると、外歯19の創成時に歯面に尖った部位が生じてしまうからである。   Here, the value (L / Q) of the radial distance L and the radius Q of the pin circle P is preferably in the range of 0.86 to 1.00. The reason is that when the value of the ratio L / Q is 0.86 or more, as is apparent from FIG. 5, the load ratio becomes substantially constant, and in order to obtain the same torque, the load related to torque transmission applied to the external teeth 19 ( The tangential direction component of the drive component) is almost constant and minimum, but if it is less than O.86, the change in the load ratio increases, and the load related to torque transmission applied to the external teeth 19 increases. On the other hand, when the value of the ratio L / Q exceeds 1.00, a sharp portion is generated on the tooth surface when the external tooth 19 is created.
ここで、前述のグラフは以下の諸元においてシミュレーションを行い求めたものである。即ち、各遊星歯車装置の内歯(ピン)の歯数Z(本数)を40、内歯(ピン)の直径を10mm、ピン円Pの半径Qを 120mm、外歯の歯数を39の一定値とする一方、L/Qの値を 0.5から 1.0の範囲で変化させ、集合点Cに作用する反力Kの合力の接線方向成分を求めた。ここで、図5にはL/Qの値が0.75のときの前記接線方向成分を、荷重比率が指数1であるとしてグラフ表示している。   Here, the above-mentioned graph is obtained by performing simulation in the following specifications. That is, the number of teeth Z (number) of the internal teeth (pins) of each planetary gear device is 40, the diameter of the internal teeth (pins) is 10 mm, the radius Q of the pin circle P is 120 mm, and the number of external teeth is 39. On the other hand, the value of L / Q was changed in the range of 0.5 to 1.0, and the tangential direction component of the resultant force of the reaction force K acting on the gathering point C was obtained. Here, in FIG. 5, the tangential direction component when the value of L / Q is 0.75 is displayed as a graph with the load ratio being index 1.
前述のように内歯(ピン)14の外径を従来より小径としながら偏心量Hを従来より大とすると、内歯(ピン)14に両歯面が接触する外歯19が大型、即ち、歯厚、歯丈が共に大きくなる。しかしながら、回転ケース12の内周は、一般にほぼ前記ピン円P上に位置しているため、外歯19が大型化すると、回転ケース12の内周に外歯19が干渉してしまう。このため、この実施例では、前記外歯19の歯先部(図3に仮想線で示す部位)を外歯歯車18の中心を曲率中心とする円に沿って所定量だけ切除し、外歯19と回転ケース12の内周との干渉を防止している。なお、前述の干渉は、外歯19の歯先部を切除する代わりに、隣接する内歯(ピン)14間の回転ケース12の内周を所定深さだけ切除することで、防止するようにしてもよい。   As described above, when the outer diameter of the inner teeth (pins) 14 is smaller than that of the conventional one and the amount of eccentricity H is larger than that of the conventional one, the outer teeth 19 whose both tooth surfaces are in contact with the inner teeth (pins) 14 are larger. Both tooth thickness and tooth height increase. However, since the inner periphery of the rotating case 12 is generally located substantially on the pin circle P, the outer teeth 19 interfere with the inner periphery of the rotating case 12 when the outer teeth 19 increase in size. For this reason, in this embodiment, the tooth tip portion of the external tooth 19 (the part indicated by the phantom line in FIG. 3) is excised by a predetermined amount along a circle whose center of curvature is the center of the external gear 18, and the external tooth Interference between 19 and the inner periphery of the rotating case 12 is prevented. The above-mentioned interference is prevented by cutting the inner periphery of the rotating case 12 between the adjacent inner teeth (pins) 14 by a predetermined depth instead of cutting the tip portion of the external tooth 19. May be.
ここで、前述の集合点Cは、全ての外歯19の歯底を通過する歯底円Mと前記外端通過円Gとの間に位置させることが好ましい。その理由は、集合点Cがピン円Pと歯底円Mとの間に位置しているときには、一部の反力Kが外歯歯車18に対してほぼ接線方向に延び、この結果、このような反力Kにより外歯19が曲げ変形するおそれがあるが、前述のように集合点Cを歯底円Mと外端通過円Gとの間に位置させるようにすれば、このような事態を防止することができるからである。   Here, the above-mentioned set point C is preferably located between the root circle M passing through the roots of all the external teeth 19 and the outer end passing circle G. The reason is that when the set point C is located between the pin circle P and the root circle M, a part of the reaction force K extends almost tangentially to the external gear 18, and as a result, The external teeth 19 may be bent and deformed by such a reaction force K, but if the set point C is positioned between the root circle M and the outer end passing circle G as described above, This is because the situation can be prevented.
また、前述のように各外歯19の歯先部を切除すると、内歯(ピン)14と外歯19とはその一部でのみ、ここでは約 3/4でのみ噛み合うようになるため、残りの約 1/4の内歯(ピン)14は外歯19に接触せずピン溝13から抜け出ようとする。このため、この実施例では、前記軸受31のアウターレース31aの内端面に前記内歯(ピン)14の両端部が挿入される挿入穴31bを形成し、これにより、内歯(ピン)14がピン溝13から抜け出るのを防止するようにしている。そして、このとき、外歯19から内歯(ピン)14に対して約 3/8の範囲で駆動力が伝達される。   In addition, when the tooth tip part of each external tooth 19 is excised as described above, the internal teeth (pins) 14 and the external teeth 19 are engaged with only a part thereof, here only about 3/4. The remaining approximately 1/4 of the internal teeth (pins) 14 do not come into contact with the external teeth 19 and try to come out of the pin groove 13. For this reason, in this embodiment, insertion holes 31b into which both end portions of the inner teeth (pins) 14 are inserted are formed on the inner end surface of the outer race 31a of the bearing 31, whereby the inner teeth (pins) 14 are formed. The pin groove 13 is prevented from coming out. At this time, the driving force is transmitted from the outer teeth 19 to the inner teeth (pins) 14 in a range of about 3/8.
前述した挿入穴31bは全体として外歯19に接触していない内歯(ピン)14がピン溝13から抜け出すのを防止する規制手段43を構成する。なお、前述の規制手段43として、挿入穴31bの代わりに、アウターレース31aの内端面に形成され、幅が内歯(ピン)14の直径と同一である円周溝を用いたり、あるいは、前記2個の外歯歯車18間に配置され、外周が全ての内歯(ピン)14に接触する1個のピン押さえリングを用いたり、さらには、軸受31と外歯歯車18との間に配置され、内歯(ピン)14の両端部が挿入される穴、円周溝が形成された2個のピン押さえリングを用いるようにしてもよい。   The aforementioned insertion hole 31b constitutes a restricting means 43 that prevents the internal teeth (pins) 14 that are not in contact with the external teeth 19 from coming out of the pin grooves 13 as a whole. As the aforementioned restricting means 43, instead of the insertion hole 31b, a circumferential groove formed on the inner end surface of the outer race 31a and having the same width as the diameter of the inner teeth (pins) 14 can be used. One pin holding ring that is arranged between the two external gears 18 and whose outer periphery contacts all the internal teeth (pins) 14 is used, or is further arranged between the bearing 31 and the external gear 18. It is also possible to use two pin pressing rings formed with holes and circumferential grooves into which both end portions of the internal teeth (pins) 14 are inserted.
次に、この発明の実施例1の作用について説明する。
今、駆動モータが作動し、クランク軸35が自身の中心軸回りに同一方向に同一速度で回転しているとする。このとき、クランク軸35の偏心カム38が外歯歯車18のクランク軸孔21内において偏心回転して外歯歯車18を偏心揺動回転させるが、前記外歯歯車18の外歯19の歯数が内歯(ピン)14の数より1個だけ少ないので、回転ケース12およびロボットのアーム等は外歯歯車18の偏心揺動回転により低速で回転する。
Next, the operation of the first embodiment of the present invention will be described.
Now, it is assumed that the drive motor operates and the crankshaft 35 is rotating around the center axis in the same direction and at the same speed. At this time, the eccentric cam 38 of the crankshaft 35 rotates eccentrically in the crankshaft hole 21 of the external gear 18 to rotate the external gear 18 eccentrically, and the number of teeth of the external teeth 19 of the external gear 18 is increased. Is one less than the number of internal teeth (pins) 14, the rotating case 12, the robot arm, and the like rotate at a low speed due to the eccentric oscillation rotation of the external gear 18.
ここで、外歯歯車18の各外歯19から対応する内歯(ピン)14に対して付与される駆動分力(反力K)の作用線Sが重なり合う集合点Cを、全ての内歯(ピン)14の中心を通過するピン円Pと、全ての貫通孔22の半径方向外端を通過する外端通過円Gとの間に位置させたので、集合点Cが貫通孔22の中心を通る半径方向線上に位置するようになったとき、いずれの反力Kの作用線Sも貫通孔22に対して従来より接線方向側に傾斜し、これにより、ブリッジ部18aおよび該ブリッジ部18a近傍の外歯19の弾性変形が抑制される。   Here, the set point C where the action lines S of the driving component force (reaction force K) applied from the external teeth 19 of the external gear 18 to the corresponding internal teeth (pins) 14 overlap is defined as all internal teeth. The pin C is located between the pin circle P passing through the center of the pin 14 and the outer end passing circle G passing through the radially outer ends of all the through holes 22. , The line of action S of any reaction force K is inclined to the tangential side with respect to the through-hole 22 in the conventional manner, whereby the bridge portion 18a and the bridge portion 18a Elastic deformation of the adjacent external teeth 19 is suppressed.
なお、前述の実施例においては、外歯歯車18に複数(3個)のクランク軸孔21を形成するとともに、各クランク軸孔21に同一方向に等速回転するクランク軸35をそれぞれ挿入して外歯歯車18を偏心揺動回転させるようにしたが、この発明においては、外歯歯車18の中心軸上に形成された1個のクランク軸孔に1本のクランク軸を挿入し、このクランク軸の回転により外歯歯車を偏心揺動回転させるようにしてもよい。この場合には、支持体の柱部は貫通孔の内周に線接触する必要がある。     In the above-described embodiment, a plurality (three) of the crankshaft holes 21 are formed in the external gear 18, and the crankshafts 35 that rotate at the same speed in the same direction are inserted into the crankshaft holes 21, respectively. Although the external gear 18 is rotated eccentrically and rotated, in the present invention, one crankshaft is inserted into one crankshaft hole formed on the central shaft of the external gear 18, and the crank The external gear may be rotated eccentrically by rotating the shaft. In this case, the pillar portion of the support needs to be in line contact with the inner periphery of the through hole.
また、前述の実施例においては、支持体25を固定し、内歯歯車15を低速回転させるようにしたが、この発明においては、内歯歯車を固定し、支持体を低速回転させるようにしてもよい。さらに、この発明においては、前記遊星歯車装置11の前段に減速比が 1/7より小さい( 1/1に近い)平歯車減速機を設け、2段で減速するようにしてもよい。このようにすれば、固有振動数の高い高減速比の歯車装置を得ることができる。   In the above-described embodiment, the support 25 is fixed and the internal gear 15 is rotated at a low speed. However, in the present invention, the internal gear is fixed and the support is rotated at a low speed. Also good. Furthermore, in the present invention, a spur gear reducer having a reduction ratio smaller than 1/7 (close to 1/1) may be provided in the preceding stage of the planetary gear unit 11 to reduce the speed in two stages. If it does in this way, the gear apparatus of a high reduction ratio with a high natural frequency can be obtained.
この発明は、内歯歯車に噛み合う外歯歯車をクランク軸によって偏心揺動させるようにした偏心揺動型遊星歯車装置に適用できる。   The present invention can be applied to an eccentric oscillating planetary gear device in which an external gear meshing with an internal gear is eccentrically oscillated by a crankshaft.
この発明の実施例1を示す側面断面図である。It is side surface sectional drawing which shows Example 1 of this invention. 図1のI−I矢視断面図である。It is II sectional view taken on the line of FIG. 内歯と外歯との噛み合い状態を示す図2と同様の断面図である。It is sectional drawing similar to FIG. 2 which shows the meshing state of an internal tooth and an external tooth. 駆動分力(反力K)の作用線Sが集合点Cに集合している状態を説明する説明図である。FIG. 5 is an explanatory diagram for explaining a state where action lines S of driving component force (reaction force K) are gathered at a set point C; 荷重比率とL/Qの値との関係を示すグラフである。It is a graph which shows the relationship between a load ratio and the value of L / Q. 背景技術で説明した駆動分力(反力K)の作用線Sが集合点Cに集合している状態を説明する説明図である。FIG. 5 is an explanatory diagram for explaining a state where action lines S of driving component force (reaction force K) described in the background art are gathered at a set point C;
符号の説明Explanation of symbols
11…遊星歯車装置 14…内歯(ピン)
15…内歯歯車 18…外歯歯車
19…外歯 21…クランク軸孔
22…貫通孔 25…支持体
29…柱部 35…クランク軸
P…ピン円 G…外端通過円
M…歯底円 C…集合点
S…作用線 K…駆動分力の反力
11 ... Planetary gear unit 14 ... Internal teeth (pin)
15 ... Internal gear 18 ... External gear
19 ... External teeth 21 ... Crankshaft hole
22 ... through hole 25 ... support
29 ... pillar 35 ... crankshaft P ... pin circle G ... outer end passing circle M ... root circle C ... set point S ... action line K ... reaction force of driving component force

Claims (3)

  1. 内周に多数の円柱状ピンで構成された内歯が設けられた内歯歯車と、少なくとも1個のクランク軸孔および複数の貫通孔が形成され、外周にトロコイド歯形からなり前記内歯に噛み合う多数の外歯を有する外歯歯車と、各クランク軸孔に挿入され、回転することで外歯歯車を偏心揺動させるクランク軸と、前記クランク軸を回転可能に支持するとともに、各貫通孔に挿入された複数の柱部を有する支持体とを備えた偏心揺動型遊星歯車装置において、各外歯から対応する内歯に対して付与される駆動分力の反力Kの作用線Sが重なり合う集合点Cを、内歯を構成する全てのピンの中心を通過するピン円Pと、全ての貫通孔の半径方向外端を通過する外端通過円Gとの間に位置させるようにしたことを特徴とする偏心揺動型遊星歯車装置。     An internal gear provided with internal teeth composed of a large number of cylindrical pins on the inner periphery, at least one crankshaft hole and a plurality of through holes are formed, and has a trochoidal tooth shape on the outer periphery and meshes with the internal teeth An external gear having a large number of external teeth, a crankshaft that is inserted into each crankshaft hole and rotates eccentrically by rotating, and supports the crankshaft rotatably, and in each through hole In an eccentric oscillating planetary gear device including a support body having a plurality of inserted column portions, an action line S of a reaction force K of a driving component force applied from each external tooth to a corresponding internal tooth is obtained. The overlapping set point C is positioned between the pin circle P passing through the centers of all the pins constituting the inner teeth and the outer end passing circle G passing through the radially outer ends of all the through holes. An eccentric oscillating planetary gear device characterized by that.
  2. 前記集合点Cを、全ての外歯の歯底を通過する歯底円Mと前記外端通過円Gとの間に位置させるようにした請求項1記載の偏心揺動型遊星歯車装置。     2. The eccentric oscillating planetary gear device according to claim 1, wherein the set point C is positioned between a root circle M passing through the roots of all external teeth and the outer end passing circle G.
  3. 前記外歯の歯数を内歯の歯数より1だけ少なくした請求項1または2記載の偏心揺動型遊星歯車装置。     The eccentric oscillating planetary gear device according to claim 1 or 2, wherein the number of teeth of the external teeth is one less than the number of teeth of the internal teeth.
JP2004142505A 2004-05-12 2004-05-12 Eccentric oscillation type planetary gear unit Active JP4498816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142505A JP4498816B2 (en) 2004-05-12 2004-05-12 Eccentric oscillation type planetary gear unit

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2004142505A JP4498816B2 (en) 2004-05-12 2004-05-12 Eccentric oscillation type planetary gear unit
CN2008100989634A CN101328953B (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
KR1020067015361A KR101140794B1 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
EP12000498.1A EP2463548B1 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
EP05704240.0A EP1712814B1 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
EP12000499.9A EP2461071B1 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
PCT/JP2005/001188 WO2005072067A2 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
EP12000500.4A EP2463549B1 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
CN2008100989649A CN101368612B (en) 2004-01-30 2005-01-28 Eccentric swing type planetary gear device
US10/597,534 US7476174B2 (en) 2004-01-30 2005-01-28 Eccentric oscillating-type planetary gear device
TW094102766A TWI345616B (en) 2004-01-30 2005-01-28

Publications (2)

Publication Number Publication Date
JP2005325865A JP2005325865A (en) 2005-11-24
JP4498816B2 true JP4498816B2 (en) 2010-07-07

Family

ID=35472382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142505A Active JP4498816B2 (en) 2004-05-12 2004-05-12 Eccentric oscillation type planetary gear unit

Country Status (1)

Country Link
JP (1) JP4498816B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069612B2 (en) * 2008-06-03 2012-11-07 ナブテスコ株式会社 Eccentric oscillating gear unit
WO2012176304A1 (en) 2011-06-23 2012-12-27 トヨタ自動車株式会社 Helical gear and power transmission device
JP5490752B2 (en) * 2011-06-24 2014-05-14 住友重機械工業株式会社 Swing intermeshing type speed reducer
JP5240405B1 (en) 2011-09-14 2013-07-17 トヨタ自動車株式会社 Helical gear and power transmission device
JP6463174B2 (en) * 2015-03-06 2019-01-30 国立大学法人長岡技術科学大学 Control device and reduction gear system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723456U (en) * 1981-06-25 1982-02-06
JPH02261943A (en) * 1989-03-30 1990-10-24 Teijin Seiki Co Ltd Planetary gearing speed reduction machine
JPH0544789A (en) * 1991-08-13 1993-02-23 Sumitomo Heavy Ind Ltd Internal planetary gear structure
JPH07299791A (en) * 1994-12-02 1995-11-14 Teijin Seiki Co Ltd Deceleration device for joint drive of industrial robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723456U (en) * 1981-06-25 1982-02-06
JPH02261943A (en) * 1989-03-30 1990-10-24 Teijin Seiki Co Ltd Planetary gearing speed reduction machine
JPH0544789A (en) * 1991-08-13 1993-02-23 Sumitomo Heavy Ind Ltd Internal planetary gear structure
JPH07299791A (en) * 1994-12-02 1995-11-14 Teijin Seiki Co Ltd Deceleration device for joint drive of industrial robot

Also Published As

Publication number Publication date
JP2005325865A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
JP4969680B2 (en) Eccentric oscillation type planetary gear unit
US7476174B2 (en) Eccentric oscillating-type planetary gear device
EP2068038B1 (en) Reduction gear
JP2005226827A (en) Eccentrically swinging gear device
JP5156961B2 (en) Reduction gear
JP5121696B2 (en) Reduction gear
JP5297756B2 (en) Gear transmission
JP4498816B2 (en) Eccentric oscillation type planetary gear unit
JP2001221298A (en) Eccentric rotary reduction gear
JP4626948B2 (en) Eccentric oscillation type planetary gear unit
CN106402285B (en) Eccentric swinging type planetary gear speed reducer capable of increasing output torque
TW201730453A (en) Speed reducer for improving configuration precision and suppressing abrasion and damage of components
RU2659187C1 (en) Dual harmonic gear drive
TWI675976B (en) Gear transmission
JP2010014177A (en) Eccentric rocking type gear transmission device
JP4498823B2 (en) Eccentric oscillation type planetary gear unit
JP2005201308A (en) Eccentric oscillation type planetary gear device
JP5798882B2 (en) Gear transmission
JP2006312957A (en) Rotary section structure of industrial robot
JP2888674B2 (en) Inner mesh planetary gear structure
JP2020067093A (en) Gear mechanism and inscribed planetary gear speed reduction mechanism
JP4437457B2 (en) Industrial robot swivel structure
JP6878036B2 (en) Eccentric swing type gear device
JP4966136B2 (en) Eccentric oscillating gear unit
JP2017110714A (en) Eccentric oscillation type reduction gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100414

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250