JP2021071189A - Reduction gear - Google Patents

Reduction gear Download PDF

Info

Publication number
JP2021071189A
JP2021071189A JP2019199784A JP2019199784A JP2021071189A JP 2021071189 A JP2021071189 A JP 2021071189A JP 2019199784 A JP2019199784 A JP 2019199784A JP 2019199784 A JP2019199784 A JP 2019199784A JP 2021071189 A JP2021071189 A JP 2021071189A
Authority
JP
Japan
Prior art keywords
inner pin
cross
external gear
carrier
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019199784A
Other languages
Japanese (ja)
Other versions
JP7450364B2 (en
Inventor
友彦 長谷川
Tomohiko Hasegawa
友彦 長谷川
信彦 岩本
Nobuhiko Iwamoto
信彦 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2019199784A priority Critical patent/JP7450364B2/en
Publication of JP2021071189A publication Critical patent/JP2021071189A/en
Application granted granted Critical
Publication of JP7450364B2 publication Critical patent/JP7450364B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Retarders (AREA)

Abstract

To improve torque density as compared with a conventional reduction gear.SOLUTION: A reduction gear (1) includes an external tooth gear (14), a carrier (20) synchronized with an autorotation component of the external tooth gear (14) and an inner pin (21) for transmitting the autorotation component of the external tooth gear (14) to the carrier (20). The external tooth gear (14) has an inner pin hole (14h) arranged on a position offset from a rotation center line of the carrier (20) to insert the inner pin (21). In a cross-sectional shape of the inner pin (21) on a face vertical to a center axis (O1), a radial direction width (b1) along a radial direction of the center axis (O1) is smaller than a tangent direction width (a1) along a direction vertical to the radial direction. In a cross-sectional shape of the inner pin hole (14h) on a face vertical to the center axis (O1), a radial direction width (b2) along the radial direction of a center axis (O2) of the external tooth gear (14) is smaller than a tangent direction width (a2) along the direction vertical to the radial direction.SELECTED DRAWING: Figure 2

Description

本発明は、減速装置に関する。 The present invention relates to a speed reducer.

従来、偏心揺動させた外歯歯車を用いて減速させた出力を得る偏心揺動型の減速装置が知られている(例えば、特許文献1参照)。
この種の減速装置では、例えば図7に示すように、出力軸であるキャリアに設けられた円筒状の内ピンが、外歯歯車に設けられた円形の内ピン穴に挿通されている。これにより、偏心揺動した外歯歯車の自転成分が内ピンを介してキャリアに伝達される。
Conventionally, an eccentric swing type speed reducer that obtains a decelerated output by using an eccentric swing type external gear is known (see, for example, Patent Document 1).
In this type of reduction gear, for example, as shown in FIG. 7, a cylindrical inner pin provided in a carrier which is an output shaft is inserted into a circular inner pin hole provided in an outer gear. As a result, the rotation component of the eccentrically oscillated external gear is transmitted to the carrier via the inner pin.

特開2016−102529号公報Japanese Unexamined Patent Publication No. 2016-102529

上記従来の減速装置では、トルク伝達時に外歯歯車からの荷重より内ピンの根元に生じる曲げ応力が問題となる。また外歯歯車では、内ピン穴の外径側の薄肉部に生じる歯車荷重や、内ピン穴の内径側の薄肉部に生じる偏心軸受からの荷重が問題となる。
これらの強度上の問題が制約となり、トルク密度(減速装置の単位重量当たりの出力トルク)を上げることが困難であった。
In the above-mentioned conventional reduction gear, the bending stress generated at the root of the inner pin rather than the load from the external gear during torque transmission becomes a problem. Further, in the external tooth gear, the gear load generated in the thin-walled portion on the outer diameter side of the inner pin hole and the load generated from the eccentric bearing on the thin-walled portion on the inner diameter side of the inner pin hole become problems.
These strength problems became a constraint, and it was difficult to increase the torque density (output torque per unit weight of the reduction gear).

本発明は、従来に比べてトルク密度を向上させることを目的とする。 An object of the present invention is to improve the torque density as compared with the conventional case.

本発明は、外歯歯車と、前記外歯歯車の自転成分と同期するキャリアと、前記外歯歯車の自転成分を前記キャリアに伝達する内ピンと、を備えた偏心揺動型の減速装置であって、
前記外歯歯車は、前記キャリアの回転中心線からオフセットされた位置に配置されて前記内ピンが挿通される内ピン穴を有し、
前記回転中心線に垂直な面における前記内ピンの断面形状は、前記回転中心線に対する径方向の幅が、当該径方向に垂直な方向の幅よりも小さく、
前記回転中心線に垂直な面における前記内ピン穴の断面形状は、前記外歯歯車の自転中心に対する第2の径方向の幅が、当該第2の径方向に垂直な方向の幅よりも小さい構成とした。
The present invention is an eccentric swing type speed reducer including an external gear, a carrier that synchronizes with the rotation component of the external gear, and an internal pin that transmits the rotation component of the external gear to the carrier. hand,
The external gear has an internal pin hole that is arranged at a position offset from the rotation center line of the carrier and through which the internal pin is inserted.
The cross-sectional shape of the inner pin on the plane perpendicular to the rotation center line has a radial width with respect to the rotation center line smaller than a width in the direction perpendicular to the radial direction.
In the cross-sectional shape of the inner pin hole on the plane perpendicular to the rotation center line, the width in the second radial direction with respect to the rotation center of the external gear is smaller than the width in the direction perpendicular to the second radial direction. It was configured.

本発明によれば、従来に比べてトルク密度を向上させることができる。 According to the present invention, the torque density can be improved as compared with the conventional case.

本発明の実施形態に係る減速装置の断面図である。It is sectional drawing of the speed reduction apparatus which concerns on embodiment of this invention. 図1のA−A線での減速装置の断面図である。It is sectional drawing of the reduction gear in line AA of FIG. 内ピンの変形例を示す図である。It is a figure which shows the modification of the inner pin. 内ピンの他の変形例を説明するための部分断面図である。It is a partial cross-sectional view for demonstrating another modification of an inner pin. 内ピン穴の変形例を示す図である。It is a figure which shows the modification of the inner pin hole. 内ピン穴の他の変形例を示す図である。It is a figure which shows the other modification of the inner pin hole. 従来の減速装置における外歯歯車とキャリアを示す図である。It is a figure which shows the external tooth gear and a carrier in a conventional reduction gear.

以下、本発明の実施形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

<減速装置の全体構成>
図1は、本発明の実施形態に係る減速装置の断面図である。
この図に示すように、本実施形態の減速装置1は、センタークランク式の偏心揺動型減速装置である。この減速装置1は、第1偏心体12b及び第2偏心体12cを有する入力軸12と、2つの外歯歯車14(第1外歯歯車15及び第2外歯歯車16)と、2つの外歯歯車14と噛合する内歯歯車18と、内ピン21を有するキャリア20とを備える。さらに、減速装置1は、第1カバー22、第2カバー24、第3カバー26、偏心体軸受31、32、キャリア軸受34、35及び入力軸軸受37、38を備える。
<Overall configuration of speed reducer>
FIG. 1 is a cross-sectional view of a speed reducer according to an embodiment of the present invention.
As shown in this figure, the speed reducer 1 of the present embodiment is a center crank type eccentric swing type speed reducer. The reduction gear 1 includes an input shaft 12 having a first eccentric body 12b and a second eccentric body 12c, two external gears 14 (first external gear 15 and a second external gear 16), and two external gears. An internal gear 18 that meshes with the gear 14 and a carrier 20 having an internal pin 21 are provided. Further, the reduction gear 1 includes a first cover 22, a second cover 24, a third cover 26, eccentric bearings 31, 32, carrier bearings 34, 35, and input shaft bearings 37, 38.

入力軸12は、回転軸O1を中心軸とする軸部12aと、回転軸O1から偏心量eだけ偏心して設けられた第1偏心体12b及び第2偏心体12cとを有する(図2参照)。第1偏心体12b及び第2偏心体12cは、回転軸O1に垂直な断面が円形であり、入力軸12が回転することで互いに異なる位相で偏心回転する。
なお、以下の説明では、特に断りのない限り、回転軸O1に沿った方向を「軸方向」、回転軸O1に垂直な方向を「径方向」、回転軸O1を中心とする回転方向を「周方向」という。径方向の内側を「内径側」、径方向の外側を「外径側」という。また、軸方向のうち、入力軸12が露出する方向(図1の右方)を入力側、キャリア20が露出する方向(図1の左方)を負荷側と呼ぶ。ただし、回転軸O1からオフセットされた外歯歯車14及び内ピン穴14hの説明においては、後述するように、外歯歯車14の中心軸(自転中心)O2に垂直な方向を「径方向」、当該中心軸O2を中心とする回転方向を「周方向」という。
The input shaft 12 has a shaft portion 12a centered on the rotation shaft O1 and a first eccentric body 12b and a second eccentric body 12c provided eccentrically by an eccentric amount e from the rotation shaft O1 (see FIG. 2). .. The first eccentric body 12b and the second eccentric body 12c have a circular cross section perpendicular to the rotation axis O1, and the rotation of the input shaft 12 causes eccentric rotation in different phases.
In the following description, unless otherwise specified, the direction along the rotation axis O1 is "axial direction", the direction perpendicular to the rotation axis O1 is "diametrical direction", and the rotation direction centered on the rotation axis O1 is "axial direction". It is called "circumferential direction". The inner side in the radial direction is called the "inner diameter side", and the outer side in the radial direction is called the "outer diameter side". Further, among the axial directions, the direction in which the input shaft 12 is exposed (right side in FIG. 1) is referred to as an input side, and the direction in which the carrier 20 is exposed (left side in FIG. 1) is referred to as a load side. However, in the description of the external gear 14 and the internal pin hole 14h offset from the rotating shaft O1, the direction perpendicular to the central axis (rotation center) O2 of the external gear 14 is referred to as the "radial direction" as described later. The direction of rotation about the central axis O2 is called the "circumferential direction".

入力軸12は、軸部12a、第1偏心体12b及び第2偏心体12cを含めて、例えば、樹脂材料から構成された一体成形品である。樹脂材料から構成する場合、一体成形品とすることで、各部間の高い強度が得られる。樹脂材料としては、例えば、POM、PEEK、FRP(Fiber-Reinforced Plastic)、CFRP(Carbon Fiber Reinforced Plastic)などを適用できる。しかし、これらに限られず、樹脂材料として紙ベーク材又は布ベーク材などの様々な樹脂材料が適用されてもよい。
なお、入力軸12は、一部又は全部が金属材料から構成されてもよく、また、複数の部分が別体に形成され、互いに連結された構成としてもよい。金属材料としては、アルミ、アルミ合金、マグネシウム合金など、鉄より比重の低い金属を適用してもよいし、鉄系の金属を適用してもよい。
The input shaft 12 is an integrally molded product made of, for example, a resin material, including the shaft portion 12a, the first eccentric body 12b, and the second eccentric body 12c. When composed of a resin material, high strength between each part can be obtained by forming an integrally molded product. As the resin material, for example, POM, PEEK, FRP (Fiber-Reinforced Plastic), CFRP (Carbon Fiber Reinforced Plastic) and the like can be applied. However, the present invention is not limited to these, and various resin materials such as paper bake material and cloth bake material may be applied as the resin material.
The input shaft 12 may be partially or wholly made of a metal material, or may have a plurality of parts formed as separate bodies and connected to each other. As the metal material, a metal having a specific gravity lower than that of iron such as aluminum, an aluminum alloy, and a magnesium alloy may be applied, or an iron-based metal may be applied.

2つの外歯歯車14は、樹脂材料から構成される。樹脂材料の具体例は上述したものと同様である。このうち、第1外歯歯車15は、第1偏心体12bに偏心体軸受31を介して組み込まれ、入力軸12が回転することで揺動する。一方、第2外歯歯車16は、第2偏心体12cに偏心体軸受32を介して組み込まれ、入力軸12が回転することで、第1外歯歯車15と異なる位相で揺動する。第1外歯歯車15と第2外歯歯車16とは、その間にサシワ28が配置され、間隔が設けられている。 The two external gears 14 are made of a resin material. Specific examples of the resin material are the same as those described above. Of these, the first external gear 15 is incorporated into the first eccentric body 12b via an eccentric bearing 31, and swings as the input shaft 12 rotates. On the other hand, the second external gear 16 is incorporated into the second eccentric body 12c via the eccentric bearing 32, and the input shaft 12 rotates to swing in a phase different from that of the first external gear 15. A wrinkle 28 is arranged between the first external gear 15 and the second external gear 16 so as to provide an interval.

2つの外歯歯車14の各々には、キャリア20の内ピン21がそれぞれに通される複数の内ピン穴14hが、回転軸O1から径方向にオフセットされた位置に、周方向に離間して設けられている(図2参照)。第1外歯歯車15の内ピン穴14hと、第2外歯歯車16の内ピン穴14hとは、一部が重なるように配置され、重なった部分に内ピン21が通される。内ピン21は、第1外歯歯車15の内ピン穴14hの内周面と接触し、かつ、第2外歯歯車16の内ピン穴14hの内周面と接触するように、各内ピン穴14hに通されている。
内ピン穴14hの具体形状については後述する。
In each of the two external gears 14, a plurality of inner pin holes 14h through which the inner pins 21 of the carrier 20 are passed are separated in the circumferential direction at positions offset in the radial direction from the rotation axis O1. It is provided (see FIG. 2). The inner pin hole 14h of the first external gear 15 and the inner pin hole 14h of the second external gear 16 are arranged so as to partially overlap each other, and the inner pin 21 is passed through the overlapping portion. Each inner pin 21 is in contact with the inner peripheral surface of the inner pin hole 14h of the first outer gear 15 and is in contact with the inner peripheral surface of the inner pin hole 14h of the second outer gear 16. It is passed through the hole 14h.
The specific shape of the inner pin hole 14h will be described later.

内歯歯車18は、第1外歯歯車15の最大偏心方向にある外歯、並びに、第2外歯歯車16の最大偏心方向にある外歯と噛合する。内歯歯車18は、樹脂材料から構成されるが、金属から構成されてもよい。樹脂材料及び金属材料の具体例は上述したものと同様である。 The internal gear 18 meshes with the external teeth in the maximum eccentric direction of the first external gear 15 and the external teeth in the maximum eccentric direction of the second external gear 16. The internal gear 18 is made of a resin material, but may be made of a metal. Specific examples of the resin material and the metal material are the same as those described above.

キャリア20は、一体成形された内ピン21を介して2つの外歯歯車14と接続され、当該2つの外歯歯車14の自転運動と同期して回転運動する。すなわち、内ピン21は、2つの外歯歯車14の自転成分をキャリア20に伝達する。キャリア20は、回転軸O1を中心軸(回転中心線)とする軸部20aを有する。軸部20a及び複数の内ピン21を有するキャリア20は、樹脂材料から構成された一体成形品である。一体成形品とすることで、各部間の高い強度が得られる。樹脂材料の具体例は上述したものと同様である。
内ピン21の具体形状については後述する。
The carrier 20 is connected to two external gears 14 via an integrally molded inner pin 21, and rotates in synchronization with the rotation of the two external gears 14. That is, the inner pin 21 transmits the rotation component of the two external gears 14 to the carrier 20. The carrier 20 has a shaft portion 20a having a rotation shaft O1 as a central axis (rotation center line). The carrier 20 having the shaft portion 20a and the plurality of inner pins 21 is an integrally molded product made of a resin material. By making it an integrally molded product, high strength between each part can be obtained. Specific examples of the resin material are the same as those described above.
The specific shape of the inner pin 21 will be described later.

第1カバー22は、内歯歯車18、2つの外歯歯車14及び内ピン21の軸方向の一方(負荷側)を覆い、第2カバー24はこれらの軸方向の他方(入力側)を覆う。第1カバー22、第2カバー24及び内歯歯車18は、連結部材41を介して連結される。
第1カバー22は、キャリア軸受34、35を介してキャリア20の軸部20aを回転自在に支持する。第2カバー24は、入力軸軸受37、38を介して入力軸12の軸部12aを回転自在に支持する。第3カバー26は、軸方向の一方(負荷側)において、ネジ42を介して第1カバー22に固定され、キャリア軸受34、35の軸方向の一方(負荷側)を覆う。
第1カバー22、第2カバー24、第3カバー26は、樹脂材料から構成されるが、これらのうち一部又は全部が金属から構成されてもよい。樹脂材料及び金属材料の具体例は上述したものと同様である。
The first cover 22 covers one of the internal gears 18, the two external gears 14 and the internal pin 21 in the axial direction (load side), and the second cover 24 covers the other (input side) in the axial direction. .. The first cover 22, the second cover 24, and the internal gear 18 are connected via the connecting member 41.
The first cover 22 rotatably supports the shaft portion 20a of the carrier 20 via the carrier bearings 34 and 35. The second cover 24 rotatably supports the shaft portion 12a of the input shaft 12 via the input shaft bearings 37 and 38. The third cover 26 is fixed to the first cover 22 via a screw 42 in one axial direction (load side) and covers one axial direction (load side) of the carrier bearings 34 and 35.
The first cover 22, the second cover 24, and the third cover 26 are made of a resin material, but a part or all of them may be made of a metal. Specific examples of the resin material and the metal material are the same as those described above.

偏心体軸受31、32は、例えば玉軸受であり、内輪、転動体及び外輪を有する。
キャリア軸受34、35は、例えば玉軸受であり、内輪、転動体及び外輪を有する。
入力軸軸受37、38は、例えば玉軸受であり、内輪、転動体及び外輪を有する。入力軸軸受38は、第2カバー24のネジ孔に螺着されたプレッシャスクリュー43から軸方向に圧力が加えられて固定されている。
偏心体軸受31、32、キャリア軸受34、35及び入力軸軸受37、38は、金属から構成されるが、これらも上述した樹脂材料から構成されてもよい。また、偏心体軸受31、32、キャリア軸受34、35及び入力軸軸受37、38は、内輪、外輪、又はこれら両方が省略された構成としてもよく、玉軸受以外の種類の軸受が採用されてもよい。
The eccentric bearings 31 and 32 are, for example, ball bearings, and have an inner ring, a rolling element, and an outer ring.
The carrier bearings 34 and 35 are, for example, ball bearings, and have an inner ring, a rolling element, and an outer ring.
The input shaft bearings 37 and 38 are, for example, ball bearings, and have an inner ring, a rolling element, and an outer ring. The input shaft bearing 38 is fixed by applying pressure in the axial direction from the pressure screw 43 screwed into the screw hole of the second cover 24.
The eccentric body bearings 31 and 32, the carrier bearings 34 and 35 and the input shaft bearings 37 and 38 are made of metal, but these may also be made of the resin material described above. Further, the eccentric body bearings 31 and 32, the carrier bearings 34 and 35 and the input shaft bearings 37 and 38 may have a configuration in which the inner ring, the outer ring, or both of them are omitted, and a type of bearing other than the ball bearing is adopted. May be good.

<内ピンの形状>
図2は、図1のA−A線での減速装置1の断面図であり、図3は、内ピン21の断面形状の変形例を示す図であり、図4は、内ピン21の他の変形例を説明するための部分断面図である。図3では、紙面の上下方向が径方向(上側が外径側)に対応している。
各内ピン21は、キャリア20の軸部20aから軸方向に沿って片持ち状に立設しており、本実施形態では、軸方向に垂直な面における断面形状(以下、単に「断面形状」という。)が一様な形状に形成されている。本実施形態の内ピン21の断面形状は、図2に示すように、周方向に長尺な楕円形に形成されている。より詳しくは、内ピン21の断面形状は、短軸が径方向に略沿うとともに長軸が周方向(正確には、断面内で径方向に垂直な方向)に略沿った楕円形に形成されている。
<Shape of inner pin>
FIG. 2 is a cross-sectional view of the speed reducer 1 along the line AA of FIG. 1, FIG. 3 is a diagram showing a modified example of the cross-sectional shape of the inner pin 21, and FIG. 4 is a diagram showing a modified example of the cross-sectional shape of the inner pin 21. It is a partial cross-sectional view for demonstrating the modification of. In FIG. 3, the vertical direction of the paper surface corresponds to the radial direction (the upper side corresponds to the outer diameter side).
Each inner pin 21 is cantilevered from the shaft portion 20a of the carrier 20 along the axial direction, and in the present embodiment, the cross-sectional shape on the plane perpendicular to the axial direction (hereinafter, simply “cross-sectional shape””. ) Is formed in a uniform shape. As shown in FIG. 2, the cross-sectional shape of the inner pin 21 of the present embodiment is formed in an elliptical shape elongated in the circumferential direction. More specifically, the cross-sectional shape of the inner pin 21 is formed in an elliptical shape in which the short axis substantially follows the radial direction and the long axis substantially follows the circumferential direction (to be exact, the direction perpendicular to the radial direction in the cross section). ing.

なお、内ピン21の断面形状は、楕円形に限定されず、径方向に沿った径方向幅b1が、径方向に垂直な方向に沿った接線方向幅a1よりも小さければよい。ここで、「〜幅」とは、その方向に沿った内ピン21の最大幅をいい、本実施形態では接線方向幅a1が長軸、径方向幅b1が短軸に相当する。したがって、この断面形状は、図3(a)に示す長円形(角丸長方形)であってもよいし、図3(b)に示すように、円形を基調として径方向の両側を切り欠いた切り欠き形状などであってもよい。切り欠き形状の場合、切り欠き部は平坦でなくともよく、図3(c)、(d)に示す凹状や凸状であってもよいし、図3(e)に示すように平坦な切り欠き部の両側を面取りした形状などであってもよい。図3(c)〜(e)では、中心21cよりも外径側(径方向外側:図中の上側)のみを切り欠いた形状を示したが、中心21cよりも内径側(径方向内側:図中の下側)も切り欠いてよい。この場合、外径側と内径側とで互いに異なる形状の切り欠き部としてもよい。
これにより、例えば内ピン21が円形断面の場合などに比べ、内ピン21の周方向の断面係数を大きくできる。
The cross-sectional shape of the inner pin 21 is not limited to an elliptical shape, and the radial width b1 along the radial direction may be smaller than the tangential width a1 along the direction perpendicular to the radial direction. Here, "~ width" means the maximum width of the inner pin 21 along the direction, and in the present embodiment, the tangential width a1 corresponds to the long axis and the radial width b1 corresponds to the short axis. Therefore, this cross-sectional shape may be an oval shape (rounded rectangle) shown in FIG. 3 (a), or as shown in FIG. 3 (b), both sides in the radial direction are cut out based on the circle. It may have a notch shape or the like. In the case of the notch shape, the notch portion does not have to be flat, and may be concave or convex as shown in FIGS. 3 (c) and 3 (d), or may be a flat cut as shown in FIG. 3 (e). The shape may be such that both sides of the notch are chamfered. In FIGS. 3 (c) to 3 (e), only the outer diameter side (diameter outside: upper side in the drawing) of the center 21c is cut out, but the inner diameter side (diameter inside:) of the center 21c is shown. The lower side in the figure) may also be cut out. In this case, the cutouts having different shapes on the outer diameter side and the inner diameter side may be used.
Thereby, for example, the cross-sectional coefficient in the circumferential direction of the inner pin 21 can be increased as compared with the case where the inner pin 21 has a circular cross section.

また、内ピン21の断面形状は、軸方向に一様な形状でなくともよい。
この場合、内ピン21の基端部の断面積(軸方向に垂直な断面積)が、当該基端部から先端側の部分の断面積よりも大きいことが好ましい。これにより、トルク伝達時に内ピン21の付け根(基端部表面)に生じる応力を緩和できる。この場合、断面積の大きい内ピン21の基端部は、第1外歯歯車15と軸方向の位置が重なっていてもよい。
さらにこの場合、図4に示すように、内ピン21の基端部21dが、基端側(負荷側)に向かって断面積が段階的に大きくなる段部を有することがより好ましい。そして、この段部を、第1外歯歯車15の軸方向負荷側への移動を規制する規制部(規制面)として利用してもよい。これにより、この段部が無い場合(例えば図1の状態)に比べてキャリア20と第1外歯歯車15との摺動面(接触面)を小さくしつつ、外歯歯車14の軸方向の移動を規制できる。
Further, the cross-sectional shape of the inner pin 21 does not have to be uniform in the axial direction.
In this case, it is preferable that the cross-sectional area of the base end portion of the inner pin 21 (cross-sectional area perpendicular to the axial direction) is larger than the cross-sectional area of the portion on the tip end side from the base end portion. As a result, the stress generated at the base (base end surface) of the inner pin 21 during torque transmission can be relaxed. In this case, the base end portion of the inner pin 21 having a large cross-sectional area may overlap with the first external gear 15 in the axial direction.
Further, in this case, as shown in FIG. 4, it is more preferable that the base end portion 21d of the inner pin 21 has a step portion in which the cross-sectional area gradually increases toward the base end side (load side). Then, this step portion may be used as a regulating portion (regulating surface) for restricting the movement of the first external gear 15 to the axial load side. As a result, the sliding surface (contact surface) between the carrier 20 and the first external gear 15 is made smaller than in the case where this step is not provided (for example, in the state of FIG. 1), and the external gear 14 is axially smaller. Movement can be regulated.

<内ピン穴の形状>
各内ピン穴14hは、内ピン21に対応して設けられ、軸方向に垂直な面における断面形状(つまり、軸方向から見た形状)が内ピン21の断面形状に対応している。本実施形態では、内ピン穴14hの断面形状は、図2に示すように、周方向に長尺な楕円形に形成されている。より詳しくは、内ピン21の断面形状は、短軸が径方向に略沿うとともに長軸が周方向(正確には、断面内で径方向に垂直な方向)に略沿った楕円形に形成されている。
ただし、外歯歯車14は、回転軸O1から偏心量eだけ偏心した中心軸O2(自転中心)を中心とする同心形状に形成されている。そのため、内ピン穴14hは、回転軸O1ではなく中心軸O2を基準とする形状に形成されている。以下、内ピン穴14hの形状の説明では、特に断りのない限り、「径方向」が中心軸O2に垂直な方向を、「周方向」が中心軸O2を中心とする回転方向を指すものとする。
<Shape of inner pin hole>
Each inner pin hole 14h is provided corresponding to the inner pin 21, and the cross-sectional shape (that is, the shape seen from the axial direction) on the plane perpendicular to the axial direction corresponds to the cross-sectional shape of the inner pin 21. In the present embodiment, the cross-sectional shape of the inner pin hole 14h is formed into an elliptical shape elongated in the circumferential direction as shown in FIG. More specifically, the cross-sectional shape of the inner pin 21 is formed in an elliptical shape in which the short axis substantially follows the radial direction and the long axis substantially follows the circumferential direction (to be exact, the direction perpendicular to the radial direction in the cross section). ing.
However, the external gear 14 is formed in a concentric shape centered on the central axis O2 (rotation center) eccentric from the rotation axis O1 by the amount of eccentricity e. Therefore, the inner pin hole 14h is formed in a shape based on the central axis O2 instead of the rotation axis O1. Hereinafter, in the description of the shape of the inner pin hole 14h, unless otherwise specified, the "diameter direction" refers to the direction perpendicular to the central axis O2, and the "circumferential direction" refers to the rotation direction centered on the central axis O2. To do.

なお、内ピン穴14hの断面形状は、楕円形に限定されず、外歯歯車14の径方向に沿った径方向幅b2が、当該径方向に垂直な方向に沿った接線方向幅a2よりも小さければよい。ここで、「〜幅」とは、その方向に沿った内ピン穴14hの最大幅をいい、本実施形態では接線方向幅a2が長軸、径方向幅b2が短軸に相当する。したがって、内ピン穴14hの断面形状は、内ピン21と同様に、長円形(角丸長方形)であってもよいし、円形を基調として径方向の両側を切り欠いた切り欠き形状などであってもよい。
これにより、例えば内ピン穴14hが円形の場合などに比べ、外歯歯車14における内ピン穴14hから外周の歯底までの外径側の肉厚と、内ピン穴14hから偏心体軸受31、32の外輪が嵌合される内周面までの内径側の肉厚とを、それぞれ厚くできる。
The cross-sectional shape of the inner pin hole 14h is not limited to an elliptical shape, and the radial width b2 along the radial direction of the external gear 14 is larger than the tangential width a2 along the direction perpendicular to the radial direction. It should be small. Here, "~ width" means the maximum width of the inner pin hole 14h along the direction, and in the present embodiment, the tangential width a2 corresponds to the long axis and the radial width b2 corresponds to the short axis. Therefore, the cross-sectional shape of the inner pin hole 14h may be an oval shape (rounded rectangle) as in the inner pin 21, or may be a notch shape in which both sides in the radial direction are cut out based on the circle. You may.
As a result, as compared with the case where the inner pin hole 14h is circular, for example, the wall thickness on the outer diameter side from the inner pin hole 14h to the outer peripheral tooth bottom of the outer gear 14 and the eccentric body bearing 31 from the inner pin hole 14h, The wall thickness on the inner diameter side up to the inner peripheral surface into which the outer ring of 32 is fitted can be increased.

また、内ピン穴14hの断面形状は、内ピン21が偏心量eの振れ回り半径で振れ回ったときに当該内ピン21(の外縁)が描く包絡線状に形成されることが好ましい。したがって、例えば内ピン21の断面形状が楕円の場合には、図5(a)に示すように内ピン穴14hの断面形状も楕円となり、内ピン21の断面形状が長円形状の場合には、図5(b)に示すように内ピン穴14hの断面形状も長円形状となるのが好ましい。
これにより、偏心量eで偏心揺動する外歯歯車14の自転成分を、内ピン穴14hを介して内ピン21に好適に伝達できる。
Further, the cross-sectional shape of the inner pin hole 14h is preferably formed in an envelope shape drawn by (the outer edge of) the inner pin 21 when the inner pin 21 swings around with a swing radius of the eccentric amount e. Therefore, for example, when the cross-sectional shape of the inner pin 21 is elliptical, the cross-sectional shape of the inner pin hole 14h is also elliptical as shown in FIG. 5A, and when the cross-sectional shape of the inner pin 21 is oval. As shown in FIG. 5B, it is preferable that the cross-sectional shape of the inner pin hole 14h is also an elliptical shape.
As a result, the rotation component of the external tooth gear 14 that swings eccentrically with the eccentric amount e can be suitably transmitted to the inner pin 21 via the inner pin hole 14h.

また、内ピン穴14hの断面形状は、図6に示すように、最大幅(図の例では接線方向幅a2)を直径とする仮想円の中心14hcから内径側(径方向内側:図中の下側)端部までの径方向の距離c2が、中心14hcから外径側(径方向外側:図中の上側)端部までの径方向の距離d2よりも大きいことが好ましい。この場合、対応する内ピン21の断面形状も同様の形状になる。すなわち、この場合の内ピン21の断面形状は、例えば図3(c)〜(e)に示すように、最大幅を直径とする仮想円の中心21cから内径側端部までの径方向の距離c1が、中心21cから外径側端部までの径方向の距離d1よりも大きくなる。ここで、内径側端部又は外径側端部までの径方向の距離とは、仮想円の中心14hcから内ピン穴14h(又は、仮想円の中心21cから内ピン21)の表面までの該当側の径方向の距離のうち最も大きい距離をいう。
これにより、例えば距離c2が距離d2に等しい場合などに比べ、外歯歯車14における内ピン穴14hから外歯の歯底までの外径側の肉厚をより厚くできる(図2参照)。
Further, as shown in FIG. 6, the cross-sectional shape of the inner pin hole 14h is on the inner diameter side (diameter inside: in the figure) from the center 14hc of the virtual circle having the maximum width (tangential width a2 in the example of the figure) as the diameter. It is preferable that the radial distance c2 to the lower) end is larger than the radial distance d2 from the center 14hc to the outer (radial outer: upper in the figure) end. In this case, the cross-sectional shape of the corresponding inner pin 21 has the same shape. That is, the cross-sectional shape of the inner pin 21 in this case is, for example, as shown in FIGS. 3C to 3E, the radial distance from the center 21c of the virtual circle having the maximum width as the diameter to the inner diameter side end portion. c1 is larger than the radial distance d1 from the center 21c to the outer diameter side end. Here, the radial distance from the inner diameter side end portion or the outer diameter side end portion corresponds to the surface from the center 14hc of the virtual circle to the inner pin hole 14h (or from the center 21c of the virtual circle to the inner pin 21). The largest radial distance on the side.
As a result, the wall thickness on the outer diameter side from the inner pin hole 14h of the outer tooth gear 14 to the tooth bottom of the outer tooth can be made thicker than in the case where the distance c2 is equal to the distance d2, for example (see FIG. 2).

<動作説明>
減速装置1では、外部から動力が伝達されて入力軸12が回転すると、第1偏心体12b及び第2偏心体12cが偏心回転する。すると、これに伴って、2つの外歯歯車14が、例えば180度の位相差で揺動する。2つの外歯歯車14は、内歯歯車18に内接噛合しており、内歯歯車18は第1カバー22及び第2カバー24と連結されている。このため、2つの外歯歯車14は、入力軸12が1回転するごとに、内歯歯車18に対して歯数差分だけ相対回転(自転)する。2つの外歯歯車14の自転成分は、内ピン21を介してキャリア20に伝達される。その結果、入力軸12の回転運動が、1/(2つの外歯歯車14の共通の歯数)の減速比で減速されて、キャリア20の軸部20aに出力される。
<Operation explanation>
In the speed reducer 1, when power is transmitted from the outside and the input shaft 12 rotates, the first eccentric body 12b and the second eccentric body 12c rotate eccentrically. Then, along with this, the two external gears 14 swing with a phase difference of, for example, 180 degrees. The two external gears 14 are inscribed in mesh with the internal gears 18, and the internal gears 18 are connected to the first cover 22 and the second cover 24. Therefore, each time the input shaft 12 rotates, the two external gears 14 rotate relative to the internal gear 18 by the difference in the number of teeth (rotation). The rotation component of the two external gears 14 is transmitted to the carrier 20 via the inner pin 21. As a result, the rotational movement of the input shaft 12 is decelerated at a reduction ratio of 1 / (the number of teeth common to the two external gears 14) and output to the shaft portion 20a of the carrier 20.

このとき、外歯歯車14の自転成分をキャリア20に伝達する内ピン21は、径方向幅b1が接線方向幅a1よりも小さい断面形状に形成されている。すなわち、内ピン21の周方向の幅が径方向の幅よりも大きいので、単純な円形断面の場合などに比べ、内ピン21の周方向の断面係数を大きくできる。これにより、トルク伝達時に内ピン21の根本に生じる周方向の曲げ応力を緩和できる。
またこのとき、外歯歯車14の自転成分を内ピン21に伝達する内ピン穴14hは、外歯歯車14の中心軸O2(自転中心)に垂直な径方向幅b2が、当該径方向に垂直な接線方向幅a2よりも小さい断面形状に形成されている。すなわち、内ピン穴14hの周方向の幅が径方向の幅よりも大きいので、単純な円形断面の場合などに比べ、外歯歯車14における内ピン穴14hから外周の歯底までの外径側の肉厚と、内ピン穴14hから内周面までの内径側の肉厚とを、それぞれ厚くできる。これにより、外歯歯車14において外周の歯車に作用する応力や、偏心体軸受31、32により内周面に作用する応力を緩和できる。
At this time, the inner pin 21 that transmits the rotation component of the external gear 14 to the carrier 20 is formed in a cross-sectional shape in which the radial width b1 is smaller than the tangential width a1. That is, since the width of the inner pin 21 in the circumferential direction is larger than the width in the radial direction, the cross-sectional coefficient of the inner pin 21 in the circumferential direction can be increased as compared with the case of a simple circular cross section. As a result, the bending stress in the circumferential direction generated at the root of the inner pin 21 at the time of torque transmission can be relaxed.
At this time, in the inner pin hole 14h for transmitting the rotation component of the outer gear 14 to the inner pin 21, the radial width b2 perpendicular to the central axis O2 (center of rotation) of the outer gear 14 is perpendicular to the radial direction. It is formed in a cross-sectional shape smaller than the width a2 in the tangential direction. That is, since the width of the inner pin hole 14h in the circumferential direction is larger than the width in the radial direction, the outer diameter side from the inner pin hole 14h to the outer peripheral tooth bottom of the outer gear 14 is compared with the case of a simple circular cross section. And the wall thickness on the inner diameter side from the inner pin hole 14h to the inner peripheral surface can be increased respectively. As a result, the stress acting on the outer peripheral gear of the external gear 14 and the stress acting on the inner peripheral surface of the eccentric bearings 31 and 32 can be relaxed.

<本実施形態の技術的効果>
以上のように、本実施形態の減速装置1によれば、内ピン21の断面形状は、径方向に沿った径方向幅b1が、径方向に垂直な方向に沿った接線方向幅a1よりも小さい。そのため、単純な円形断面の場合に比べ、内ピン21の周方向の断面係数を大きくでき、トルク伝達時に内ピン21の根本に生じる周方向の曲げ応力を緩和できる。
また、内ピン穴14hの断面形状は、外歯歯車14の中心軸O2(自転中心)に対する径方向に沿った径方向幅b2が、当該径方向に垂直な方向に沿った接線方向幅a2よりも小さい。そのため、単純な円形断面の場合に比べ、外歯歯車14における内ピン穴14hから外周の歯底までの外径側の肉厚と、内ピン穴14hから内周面までの内径側の肉厚とを、それぞれ厚くできる。
これらにより、内ピン及び内ピン穴が円形断面であった従来に比べ、内ピン21及び内ピン穴14h(外歯歯車14)の耐荷重を向上させ、より大きな伝達トルクを許容できる。したがって、従来に比べてトルク密度を向上させることができる。
<Technical effect of this embodiment>
As described above, according to the speed reducer 1 of the present embodiment, the cross-sectional shape of the inner pin 21 is such that the radial width b1 along the radial direction is larger than the tangential width a1 along the direction perpendicular to the radial direction. small. Therefore, the cross-sectional coefficient in the circumferential direction of the inner pin 21 can be increased as compared with the case of a simple circular cross section, and the bending stress in the circumferential direction generated at the root of the inner pin 21 at the time of torque transmission can be relaxed.
Further, the cross-sectional shape of the inner pin hole 14h is such that the radial width b2 along the radial direction with respect to the central axis O2 (rotation center) of the external gear 14 is tangential width a2 along the direction perpendicular to the radial direction. Is also small. Therefore, as compared with the case of a simple circular cross section, the wall thickness on the outer diameter side from the inner pin hole 14h to the outer peripheral tooth bottom and the wall thickness on the inner diameter side from the inner pin hole 14h to the inner peripheral surface of the outer tooth gear 14 And can be thickened respectively.
As a result, the load capacity of the inner pin 21 and the inner pin hole 14h (external gear 14) can be improved and a larger transmission torque can be tolerated as compared with the conventional case in which the inner pin and the inner pin hole have a circular cross section. Therefore, the torque density can be improved as compared with the conventional case.

また、内ピン穴14hの断面形状は、その最大幅を直径とする仮想円の中心14hcから内径側端部までの外歯歯車14の径方向の距離c2が、中心14hcから外径側端部までの当該径方向の距離d2よりも大きく構成されてもよい。
これにより、例えば距離c2が距離d2に等しい場合などに比べ、外歯歯車14における内ピン穴14hから外歯の歯底までの外径側の肉厚をより厚くできる。したがって、外歯歯車14において、内周側よりも大きな荷重が作用する外周の歯車に生じる応力をより緩和できる。
The cross-sectional shape of the inner pin hole 14h is such that the radial distance c2 of the external gear 14 from the center 14hc of the virtual circle whose diameter is the maximum width to the inner diameter side end is the outer diameter side end from the center 14hc. It may be configured to be larger than the radial distance d2 up to.
As a result, the wall thickness on the outer diameter side from the inner pin hole 14h of the outer tooth gear 14 to the tooth bottom of the outer tooth can be made thicker than, for example, as compared with the case where the distance c2 is equal to the distance d2. Therefore, in the external gear 14, the stress generated in the outer gear on which a load larger than that on the inner peripheral side acts can be further relaxed.

また、内ピン穴14hの断面形状は、内ピン21が偏心量eの振れ回り半径で振れ回ったときに当該内ピン21が描く包絡線状に形成される部分を有するのが好ましい。
これにより、偏心量eで偏心揺動する外歯歯車14の自転成分を、内ピン穴14hを介して内ピン21に好適に伝達できる。
Further, the cross-sectional shape of the inner pin hole 14h preferably has a portion formed in an envelope shape drawn by the inner pin 21 when the inner pin 21 swings around with a swing radius of the eccentric amount e.
As a result, the rotation component of the external tooth gear 14 that swings eccentrically with the eccentric amount e can be suitably transmitted to the inner pin 21 via the inner pin hole 14h.

また、内ピン21がキャリア20に片持ち状に一体成形されており、その基端部の断面積が、当該基端部から先端側の部分の断面積よりも大きく構成されてもよい。これにより、トルク伝達時に内ピン21の付け根(基端部表面)に生じる応力を緩和できる。
さらにこの場合、内ピン21の基端部21dは、基端側に向かって断面積が段階的に大きくなる段部を有していてもよい。これにより、基端部21dの段部が無い場合に比べてキャリア20と第1外歯歯車15との摺動面(接触面)を小さくしつつ、当該段部を第1外歯歯車15の軸方向負荷側への移動を規制する規制部として利用できる。
Further, the inner pin 21 may be integrally formed with the carrier 20 in a cantilever shape, and the cross-sectional area of the base end portion thereof may be larger than the cross-sectional area of the portion on the tip end side from the base end portion. As a result, the stress generated at the base (base end surface) of the inner pin 21 during torque transmission can be relaxed.
Further, in this case, the base end portion 21d of the inner pin 21 may have a step portion in which the cross-sectional area gradually increases toward the base end side. As a result, the sliding surface (contact surface) between the carrier 20 and the first external gear 15 is made smaller than that in the case where the base end portion 21d does not have a step portion, and the step portion is made of the first external gear 15. It can be used as a regulatory unit that regulates movement to the axial load side.

<その他>
以上、本発明の実施形態について説明した。しかし、本発明は上記の実施形態に限られない。
例えば、上記実施形態では、内ピン21を含むキャリア20が樹脂材料で構成されることとしたが、当該キャリア20は一部又は全部が金属から構成されてもよい。内ピン21だけ樹脂とし、残る部分を金属とするインサート成形を行ってもよい。同様に外歯歯車14も金属から構成されてもよい。金属材料の具体例は上述したものと同様である。樹脂製の方が内ピン21や内ピン穴14hの自由な成形が可能であるが、金属製であっても例えば3Dプリンタの利用などにより対応できる。
<Others>
The embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment.
For example, in the above embodiment, the carrier 20 including the inner pin 21 is made of a resin material, but the carrier 20 may be partially or wholly made of metal. Insert molding may be performed in which only the inner pin 21 is made of resin and the remaining portion is made of metal. Similarly, the external gear 14 may also be made of metal. Specific examples of the metal material are the same as those described above. The resin-made one can freely form the inner pin 21 and the inner pin hole 14h, but even if it is made of metal, it can be dealt with by using, for example, a 3D printer.

また、上記実施形態では、内ピン21がキャリア20と一体成形されることとしたが、内ピン21とキャリア20とは別体に形成されて互いに連結される構成としてもよい。 Further, in the above embodiment, the inner pin 21 is integrally molded with the carrier 20, but the inner pin 21 and the carrier 20 may be formed separately and connected to each other.

また、本発明に係る内ピンは、外歯歯車の自転成分をキャリアに伝達するものであり、この機能を有する構成を含む。したがって、例えばキャリアが入力側と負荷側の両側にあり、ピン状の構成がこれら2つのキャリアを連結している場合、このピン状の構成が外歯歯車からキャリアに動力(トルク)を伝達するものであれば(例えば、特許第5103444号公報に記載のもの)、これは本発明に係る内ピンに含まれる。しかし、これら2つのキャリアを連結するがトルク伝達の機能を有していない連結ピン又はキャリアピン等は(例えば、特許第5791542号公報、特開2019−82255号公報に記載のもの)、本発明に係る内ピンに含まれない。 Further, the inner pin according to the present invention transmits the rotation component of the external gear to the carrier, and includes a configuration having this function. Therefore, for example, when carriers are on both sides of the input side and the load side and a pin-shaped configuration connects these two carriers, this pin-shaped configuration transmits power (torque) from the external gear to the carrier. If (for example, as described in Japanese Patent No. 5103444), this is included in the inner pin according to the present invention. However, a connecting pin or a carrier pin that connects these two carriers but does not have a torque transmission function (for example, those described in Japanese Patent No. 5791542 and Japanese Patent Application Laid-Open No. 2019-82255) is the present invention. It is not included in the inner pin related to.

また、上記実施形態では、センタークランク式の偏心揺動型の減速装置を示したが、本発明に係る減速装置は、偏心揺動型であればその形式は特に限定されず、例えばキャリアの軸心から径方向にオフセットした位置に偏心体を有する軸を配置した、いわゆる振り分け型などを含む。
その他、実施の形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。
Further, in the above embodiment, the center crank type eccentric swing type speed reducer is shown, but the speed reducer according to the present invention is not particularly limited as long as it is an eccentric swing type, for example, a carrier shaft. It includes a so-called distribution type in which an axis having an eccentric body is arranged at a position offset in the radial direction from the center.
In addition, the details shown in the embodiments can be appropriately changed without departing from the spirit of the invention.

1 減速装置
12b 第1偏心体
12c 第2偏心体
14 外歯歯車
14h 内ピン穴
14hc (内ピン穴の仮想円の)中心
15 第1外歯歯車
16 第2外歯歯車
18 内歯歯車
20 キャリア
20a 軸部
21 内ピン
21c (内ピンの仮想円の)中心
21d 基端部
a1 (内ピンの)接線方向幅
b1 (内ピンの)径方向幅
c1 (内ピンの仮想円の中心から内径側端部までの径方向の)距離
d1 (内ピンの仮想円の中心から外径側端部までの径方向の)距離
a2 (内ピン穴の)接線方向幅
b2 (内ピン穴の)径方向幅
c2 (内ピン穴の仮想円の中心から内径側端部までの径方向の)距離
d2 (内ピン穴の仮想円の中心から外径側端部までの径方向の)距離
e 偏心量
O1 回転軸(回転中心線)
O2 (外歯歯車の)中心軸(自転中心)
1 Speed reducer 12b 1st eccentric body 12c 2nd eccentric body 14 External gear 14h Internal pin hole 14hc Center 15 (of virtual circle of internal pin hole) Center 15 1st external gear 16 2nd external gear 18 Internal gear 20 Carrier 20a Shaft 21 Inner pin 21c (inner pin virtual circle) center 21d Base end a1 (inner pin) tangential width b1 (inner pin) radial width c1 (inner pin virtual circle center to inner diameter side Radial distance to the end d1 Radial distance from the center of the virtual circle of the inner pin to the outer peripheral end a2 Tangent width b2 (of the inner pin hole) Radial direction Width c2 (in the radial direction from the center of the virtual circle of the inner pin hole to the inner diameter side end) Distance d2 (in the radial direction from the center of the virtual circle of the inner pin hole to the outer diameter side end) distance e Eccentricity O1 Rotation axis (rotation center line)
O2 (external gear) central axis (rotation center)

Claims (7)

外歯歯車と、前記外歯歯車の自転成分と同期するキャリアと、前記外歯歯車の自転成分を前記キャリアに伝達する内ピンと、を備えた偏心揺動型の減速装置であって、
前記外歯歯車は、前記キャリアの回転中心線からオフセットされた位置に配置されて前記内ピンが挿通される内ピン穴を有し、
前記回転中心線に垂直な面における前記内ピンの断面形状は、前記回転中心線に対する径方向の幅が、当該径方向に垂直な方向の幅よりも小さく、
前記回転中心線に垂直な面における前記内ピン穴の断面形状は、前記外歯歯車の自転中心に対する第2の径方向の幅が、当該第2の径方向に垂直な方向の幅よりも小さい、
減速装置。
An eccentric swing type speed reducer including an external gear, a carrier that synchronizes with the rotation component of the external gear, and an internal pin that transmits the rotation component of the external gear to the carrier.
The external gear has an internal pin hole that is arranged at a position offset from the rotation center line of the carrier and through which the internal pin is inserted.
The cross-sectional shape of the inner pin on the plane perpendicular to the rotation center line has a radial width with respect to the rotation center line smaller than a width in the direction perpendicular to the radial direction.
In the cross-sectional shape of the inner pin hole on the plane perpendicular to the rotation center line, the width in the second radial direction with respect to the rotation center of the external gear is smaller than the width in the direction perpendicular to the second radial direction. ,
Decelerator.
前記内ピンの断面形状は、その最大幅を直径とする仮想円の中心から内径側端部までの前記径方向の距離が、当該仮想円の中心から外径側端部までの前記径方向の距離よりも大きく、
前記内ピン穴の断面形状は、その最大幅を直径とする仮想円の中心から内径側端部までの前記第2の径方向の距離が、当該中心から外径側端部までの前記第2の径方向の距離よりも大きい、
請求項1に記載の減速装置。
The cross-sectional shape of the inner pin is such that the radial distance from the center of the virtual circle whose diameter is the maximum width to the inner diameter side end is the radial distance from the center of the virtual circle to the outer diameter side end. Greater than the distance,
The cross-sectional shape of the inner pin hole has the second radial distance from the center of the virtual circle whose diameter is the maximum width to the inner diameter side end portion, and the second radial distance from the center to the outer diameter side end portion. Greater than the radial distance of
The speed reducer according to claim 1.
前記外歯歯車は、所定の偏心量だけ前記回転中心線から偏心しており、
前記内ピン穴の断面形状は、前記内ピンが前記偏心量の振れ回り半径で振れ回ったときに当該内ピンが描く包絡線状に形成される部分を有する、
請求項1又は請求項2に記載の減速装置。
The external gear is eccentric from the rotation center line by a predetermined amount of eccentricity.
The cross-sectional shape of the inner pin hole has a portion formed in an envelope shape drawn by the inner pin when the inner pin swings around with a swing radius of the eccentric amount.
The speed reducer according to claim 1 or 2.
前記内ピンが樹脂材料で構成されている、
請求項1から請求項3のいずれか一項に記載の減速装置。
The inner pin is made of a resin material.
The speed reducer according to any one of claims 1 to 3.
前記内ピンは、
前記キャリアに片持ち状に一体成形され、
基端部の断面積が、当該基端部から先端側の部分の断面積よりも大きい、
請求項4に記載の減速装置。
The inner pin
It is integrally molded with the carrier in a cantilever shape.
The cross-sectional area of the base end portion is larger than the cross-sectional area of the portion on the tip end side from the base end portion.
The speed reducer according to claim 4.
前記内ピンは、基端側に向かって断面積が段階的に大きくなる段部を有する、
請求項5に記載の減速装置。
The inner pin has a stepped portion in which the cross-sectional area gradually increases toward the proximal end side.
The speed reducer according to claim 5.
前記外歯歯車が樹脂材料で構成されている、
請求項4から請求項6のいずれか一項に記載の減速装置。
The external gear is made of a resin material.
The speed reducer according to any one of claims 4 to 6.
JP2019199784A 2019-11-01 2019-11-01 reduction gear Active JP7450364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019199784A JP7450364B2 (en) 2019-11-01 2019-11-01 reduction gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019199784A JP7450364B2 (en) 2019-11-01 2019-11-01 reduction gear

Publications (2)

Publication Number Publication Date
JP2021071189A true JP2021071189A (en) 2021-05-06
JP7450364B2 JP7450364B2 (en) 2024-03-15

Family

ID=75712774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199784A Active JP7450364B2 (en) 2019-11-01 2019-11-01 reduction gear

Country Status (1)

Country Link
JP (1) JP7450364B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210843A (en) * 1998-01-22 1999-08-03 Teijin Seiki Co Ltd Epicycle reduction gear
JP2014092209A (en) * 2012-11-01 2014-05-19 Sumitomo Heavy Ind Ltd Planetary gear reduction device and fabrication method of the same
JP2019132362A (en) * 2018-02-01 2019-08-08 住友重機械工業株式会社 Eccentric oscillation type speed reducer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3244852B2 (en) 1993-03-30 2002-01-07 キヤノン株式会社 Distance measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11210843A (en) * 1998-01-22 1999-08-03 Teijin Seiki Co Ltd Epicycle reduction gear
JP2014092209A (en) * 2012-11-01 2014-05-19 Sumitomo Heavy Ind Ltd Planetary gear reduction device and fabrication method of the same
JP2019132362A (en) * 2018-02-01 2019-08-08 住友重機械工業株式会社 Eccentric oscillation type speed reducer

Also Published As

Publication number Publication date
JP7450364B2 (en) 2024-03-15

Similar Documents

Publication Publication Date Title
JP2535503Y2 (en) Meshing structure of external teeth and internal teeth in cup-type gear type harmonic transmission
US11365784B2 (en) Eccentric oscillation type speed reducer
JP7022014B2 (en) Decelerator
CN107588177A (en) A kind of cycloidal-pin wheel harmonic drive
WO2013024511A1 (en) Flexible externally toothed gear for wave gear device
JP6941936B2 (en) Decelerator
JP2023184669A (en) gear unit
JP7450776B2 (en) gear system
JP6910904B2 (en) Flexible meshing gear device
JP7365766B2 (en) Eccentric swing type reduction gear
JP2019027519A (en) Wave gear device
JP2021071189A (en) Reduction gear
JP6938395B2 (en) Decelerator
CN207261609U (en) A kind of cycloidal-pin wheel harmonic drive
JP6971872B2 (en) Eccentric swing type speed reducer
US11649887B2 (en) Gear device
JP6970784B2 (en) Eccentric swing type gear device
JP6184546B2 (en) Eccentric oscillating gear unit
JP6275588B2 (en) Planetary gear device and method for manufacturing the internal gear
KR20090087612A (en) Harmonic drive
JP6890563B2 (en) Eccentric swing type speed reducer
US9541164B2 (en) Axial conversion gear device
JP6446101B2 (en) Eccentric oscillating gear unit
CN211820628U (en) Speed reducer with novel transmission structure
JP7221132B2 (en) flexural mesh gearbox

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240305

R150 Certificate of patent or registration of utility model

Ref document number: 7450364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150