JP2004083927A - Method for improving fatigue strength on cut surface of metal plate and high tension steel plate formed product using this method - Google Patents

Method for improving fatigue strength on cut surface of metal plate and high tension steel plate formed product using this method Download PDF

Info

Publication number
JP2004083927A
JP2004083927A JP2002242205A JP2002242205A JP2004083927A JP 2004083927 A JP2004083927 A JP 2004083927A JP 2002242205 A JP2002242205 A JP 2002242205A JP 2002242205 A JP2002242205 A JP 2002242205A JP 2004083927 A JP2004083927 A JP 2004083927A
Authority
JP
Japan
Prior art keywords
cut surface
metal plate
fatigue strength
fatigue
shot peening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002242205A
Other languages
Japanese (ja)
Other versions
JP3802855B2 (en
Inventor
Masao Kinebuchi
杵渕 雅男
Eiichi Tamura
田村 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002242205A priority Critical patent/JP3802855B2/en
Publication of JP2004083927A publication Critical patent/JP2004083927A/en
Application granted granted Critical
Publication of JP3802855B2 publication Critical patent/JP3802855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for further improving a fatigue strength and a high tension steel plate formed product using this method by controlling a burr shape developed on a cut surface when the fatigue strength on the cur surface of the metal plate is improved by shot peening. <P>SOLUTION: In a process for producing a metal plate formed product having a cut surface created by a punching work etc., the shot peening treatment is applied on the cut surface. The injection angle is set in a range of 20° to 45° relative to the direction perpendicular to the cut surface, and other treating conditions, such as injection speed, are controlled. Concerning the burr developed on the cut surface, the ratio the burr height Δt in the plate thickness direction from the metal plate surface to the burr width Δw in the longitudinal direction of the metal plate, Δt/Δw, is made to be ≤0.25. Since the fatigue strength of the cut surface of the metal plate is made greater than that of the base material by ≥ 10% in this way, the development of the fatigue crack from the cut surface in the mechanical structural parts used for automobiles etc., can be suppressed, and the service life and the safety of the parts are improved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、自動車をはじめとする機械構造物などに用いられ、特に繰り返し荷重を負荷する金属板の打抜き加工などによる切断面の疲労強度を向上させる方法およびこの方法を用いた高張力鋼板成形品に関する。
【0002】
【従来の技術】
自動車をはじめとする機械構造物などに高張力鋼板を採用する場合、例えば、軽量化を目的として、繰り返し荷重が支配的に作用する自動車の足回り部品に高張力鋼板を用いる場合には、静的強度や加工性のみならず、高い疲労強度が要求される。一般に、鋼板の疲労強度は、静的強度が1000N/mm程度までは、強度の上昇とともに向上するが、高強度化により切り欠き感受性も高くなるため、応力集中部が存在すれは、疲労強度が向上しない場合がある。
【0003】
鋼板を用いて自動車部品を製造する場合、その外形は、通常、鋼板をプレスによって打抜き加工することによって形成され、この打ち抜いた切断部から疲労破壊が発生することがある。例えば、リアサスペンジョン部品を形成するU字型断面のトーションビームでは、両端面の打抜き切断面に高い繰り返し応力が発生するため、コイニング加工やショットピーニング、端面研磨などによる打抜き切断部の疲労強度向上策が検討されている。
【0004】
これらの向上策の中、コイニング加工による方法では、金属板の厚さなど、端面形状が異なる毎に専用のコイニング型が必要となり、汎用性に欠ける。また、端面研磨による方法では、疲労破壊の起点となり得る表面クラックを除去するだけであるので、母材、即ち金属板内部の疲労強度以上は望めない。
【0005】
一方、ショットピーニングによる方法では、金属粒などのショットを前記切断面に投射して、端面付近に圧縮残留応力を発生させて疲労強度を向上させ、母材以上の疲労強度の向上が可能であり、また、コイニング加工のように端面形状の影響を受けないなどの利点を有する優れた方法であり、既に歯車など、高負荷が作用する部品に適用されている。このショットピーニングを、打抜き切断部の疲労強度向上策として用いる場合には、表面粗さが大きくなり過ぎないように、ショットの粒度や投射速度などのショットピーニング条件を調整する必要がある。また、歯車などの高負荷部品では、ショットピーニングにより発生した端面近傍の圧縮残留応力が減衰しない程度に、仕上げ表面加工をすることが一般的である。
【0006】
【発明が解決しようとする課題】
一般に、ショットピーニングを金属部品に施すと、その加工面付近には、塑性変形により、降伏応力の80%程度の圧縮残留応力を容易に導入することができる。そこで、打抜き加工などによる切断面を有する金属板の場合に、この切断面にショットピーニングを施すことにより疲労強度がどの程度向上するかを確認するために、まず、図1に示すように、鋼板から、試験機への取付け部G間の円弧状部(R30)Cを打抜き加工によって形成し、円弧状部C以外の部分を機械加工して疲労試験片を作製した。そして、円弧状部Cの形状に打抜いた切断面Sにショットピーニングを施した場合とショットピーニングを施さない場合について、共振型疲労試験機を用いて繰り返し疲労試験を行なった。
【0007】
その結果、前記切断面Sにショットピーニングを施さない場合の疲労強度は、母材、即ち鋼板内部域の60%程度に低下していたが、切断面Sにショットピーニングを施すことにより、母材の疲労強度以上に向上することが確認された。このときの疲労破面の観察結果から、破壊の起点は打抜いた切断面Sにはなく、ショットの投射により、この切断面が塑性変形し、張り出して形成したバリの付け根から疲労亀裂が発生することが判明した。一般に、打抜き切断面にショットピーニングを施す場合には、歯車などの場合のように、仕上げ表面加工を行なわないため、このようなバリが存在すると応力集中源となり、疲労強度の向上に悪影響を与える。
【0008】
そこで、この発明の課題は、ショットピーニングを用いて金属板の打抜き加工などによる切断面の疲労強度を向上させる場合に、前記切断面から張り出すバリの形状を制御することにより、疲労強度をより向上させる方法およびこの方法を用いた高張力鋼板成形品を提供することである
【0009】
【課題を解決するための手段】
前記の課題を解決するために、この発明では以下の構成を採用したのである。
【0010】
即ち、切断面を有する金属板成形品の製造過程で、前記切断面にショットピーニング処理を施し、このショットピーニング処理時に前記切断面に発生するバリを、その金属板表面からの板厚方向の高さΔtと、その金属板板幅方向の幅Δwとの比Δt/Δwが0.25以下に収まるように制御したのである。
【0011】
前述のように、バリが存在すると応力集中源となり、疲労強度の向上に悪影響を与えると考えられる。そこで、厚さ3.2mmの高張力鋼板(強度616MPa)から、図1に示した疲労試験片を作成し、打ち抜き加工によって形成した円弧状部Cの打抜き加工面、即ち、打抜いたそれぞれの切断面Sに、ショット粒径、投射速度、投射角度等の処理条件を変化させてショットピーニング処理を行ない、発生するバリの大きさを異ならせ、前述の場合と同様の共振型疲労試験機を用いて、繰り返し疲労試験を実施した。その結果、前記切断面Sにショットピーニング処理を施すことにより、疲労強度は、いずれのショットピーニング条件でも、母材の疲労強度よりも上昇したが、発生したバリの大きさによって、疲労強度は、最大で母材疲労強度の10%程度変化することがわかった。また、同じ処理条件でも、即ち圧縮残留応力が同程度であっても、バリを付けたままの試験片とバリを削り落とした試験片とでは、疲労強度が異なることがわかった。これらの結果はいずれも、金属板の打抜き加工などによる切断面に発生するバリの大きさが疲労強度に影響することを裏付けている。
【0012】
金属板1の打抜き加工などによる切断面2に、前記のショットピーニング処理を施した場合に発生するバリ3の形状を表すパラメータとして、図2に示すように、その金属板1の表面からの板厚方向の高さΔtとその金属板板幅方向の幅Δwとの比、即ちアスペクト比Δt/Δwを定義する。
【0013】
処理条件を変化させて、ショットピーニング処理を、疲労試験片(図1参照)の打抜きにより形成した円弧状部Cの切断面Sに施し、この疲労試験片を用いて実施した前記疲労試験の試験結果について、この切断面Sの疲労強度σ を、引張り強度TSに対する比、即ち疲労限度比(σ /TS)で表し、前記アスペクト比Δt/Δwと対応づけて整理すると、図3に示すようになる。ここで、金属板表面からの板厚方向の高さΔtと、金属板の長手方向の幅Δwとは、例えば、工具顕微鏡等により、拡大して測定することができる。
【0014】
図3から、疲労限度比、従って疲労強度は、アスペクト比Δt/Δwが0.25以下の場合に最大となることがわかる。このように、ショットピーニング処理条件を変化させて、バリ3の形状(Δt/Δw)を制御することにより、切断面の疲労強度が最も向上し、疲労限度比で母材に対して10%以上向上する。
【0015】
さらに前記バリを、その金属板表面からの板厚方向の高さΔtと板厚tとの比Δt/tが、0.02以下に収まるように制御することが望ましい。
【0016】
前記アスペクト比Δt/Δwと同様に、バリ3の大きさを表すパラメータとして、前記の板厚方向の高さΔtと、金属板の板厚tとの比、即ち張り出し比Δt/tを定義する。処理条件を変化させて、このショットピーニング処理を施した前記疲労試験片を用いて実施した前記疲労試験の試験結果について、切断面Sの疲労強度σを、疲労限度比(σ/TS)で表し、この張り出し比Δt/tと対応づけて整理すると図4に示すようになる。
【0017】
図4から、疲労限度比、従って疲労強度は、張り出し比Δt/tが0.02以下の場合に最大となることがわかる。このように、ショットピーニング条件を変化させて、バリ3の大きさ、すなわち張り出し量(Δt)を制御することによって、切断面の疲労強度が最も向上するため、前記アスペクト比Δt/Δwが0.25以下であり、かつ、張り出し比Δt/tが0.02以下となるようにバリ3を制御することがより好ましい。
【0018】
前記張り出し比Δt/tと同種のパラメータとして、バリ3の金属板1の板幅方向の幅ΔWと板幅Wとの比ΔW/Wも考えられるが、板幅W自体は疲労強度に対する相関が小さく、また、実部品に、このパラメータΔW/Wを適用するに際し、板幅自体の定義ができなくなる場合も考えられるため、金属板1の全体形状に対する比率としては、張り出し比Δt/tの方を用いた。
【0019】
なお、金属板1の切断面2に、ショットピーニング処理を施した際に発生するバリには、図5(a)、(b)、(c)に示す形状のもの見られるが、これらのバリ3a〜3dの場合の金属板1の板幅方向の幅Δw、前記板厚方向の高さΔtは、それぞれ、図中に示した通りである。また、図5(a)のように、前記切断面の両側で、バリ3a、3bの形状が異なる場合には、いずれのバリ3a、3bについても、それらのアスペクト比Δt/Δwや張り出し比Δt/tが前記の所要の値を満たす必要がある。
【0020】
前記ショットピーニング処理時のショットを、前記切断面に垂直な方向に対して、それぞれ20°〜45°の角度範囲で、両側の方向から交互に投射するようにすることが望ましい。
【0021】
前記切断面の片側の方向のみからショットを投射すると、切断面の、投射側と反対側の部位に大きなバリが形成されるため、このように両側の方向から、ショットが干渉しないように、交互に投射することにより、バリの発生を抑制することができる。
【0022】
一方、投射方向が、切断面に垂直方向から45°以上になると、投射方向が切断面に対して傾きすぎて十分な圧縮残留応力が導入できない。また、投射方向が、切断面に垂直な方向から20°よりも小さくなると、切断面に垂直な方向に近づき、バリが発生しやすくなるためである。
【0023】
このように、ショットの投射角度を適正範囲に保ち、かつ、切断面に対して両側の方向から、ショットが干渉しないように交互に投射するようにすれば、特殊なショットピーニング条件を必要とせず、ショット粒径、投射速度、投射密度等の処理条件を適切に選択するだけで、切断面のバリの発生を抑制することができる。
【0024】
上述のいずれかの疲労強度向上方法を用いることにより、切断面の疲労強度を母材疲労強度よりも10%程度高めた高張力鋼板成形品を製造することができる。
【0025】
【発明の実施の形態】
以下に、この発明の実施形態を添付の図1、図6および図7に基づいて説明する。
【0026】
打抜き加工などにより所要の寸法に切断された、高張力鋼板などの金属板が、例えば、空気式ピーニング機械のピーニング室にセットされる。そして、ショット加速装置により、通常、30〜100m/sの範囲の所定の投射速度が得られるように加速された、粒径が0.1〜1mmの鋼系またはセラミックス系の硬質粒子からなるショットが、図6に示すように、両側に設けた投射ノズル4、4から、金属板1の切断面2に、20°〜45°の角度範囲の投射角度θで、切断面2がショットの痕で覆い尽くされるフルカバレージ状態となるまで、ショットが干渉しないように、交互に投射される。その際に、切断面2に発生するバリ3のアスペクト比Δt/Δwが0.25以下であり、かつ、望ましくは、張り出し比Δt/tが0.02以下となるように、金属板1の厚さや目標処理時間などに基づいて、ショット粒径、投射速度、投射密度等の処理条件が適切に選択される。
【0027】
【実施例】
高張力熱延鋼板(引張り強さ616MPa、板厚3.2mm)から、打ち抜き加工および機械加工により図1に示した疲労試験片を作製し、円弧状部Cの打抜いた切断面Sにショットピーニング処理を施した後、繰り返し疲労試験を行なった。
【0028】
前記ショットピーニング処理は、直径0.6mmまたは同0.3mmのショットを投射速度73m/s、投射密度200kg/m、投射角度θ(図5参照)を0°、即ち切断面に垂直方向、または30°として実施した。このショットピーニング処理では投射方向は一方向のみであり、図5に示した両側からの投射と実質的に同等となるように、試験片のセッティング角度を変えて、2回に分けて1回当たり30秒間投射した。投射角度θが0°の条件については、発生したバリを研磨により取り除いた試験片(試験No.3)についても繰り返し疲労試験を実施した。
また、比較として、切断面Sにショットピーニング処理を施さない試験片(試験No.5)、および母材の疲労強度を評価するために、機械加工のみによって仕上げ、切断面を含まない試験片(試験No.6)についても疲労試験を実施した。
【0029】
前記疲労試験は、電気共振型疲労試験機を用い、実部品に要求される疲労強度に基づいて応力条件を設定し、応力比−1、繰返し速度20Hzの試験条件で行なった。試験結果を表1に示す。
【0030】
【表1】

Figure 2004083927
【0031】
表1から、切断面の疲労強度(σ)は、ショットピーニング処理を施すことによりいずれの場合も、ショットピーニング処理を施さない場合の180MPaから母材の310MPa以上に向上する。中でも、前記のバリの形状比Δt/ΔWが0.25以下、かつ張り出し比Δt/tが0.02以下の要件を満たした場合(実験No.2)、最も高い疲労強度350MPa(疲労限度比0.57)が得られていることがわかる。
【0032】
また、投射角度θが0°で、処理後に研磨によりバリを取り除いた場合(実験No.3)についても、見掛け上、前記形状比および張り出し比の要件を満たし、実験No.2の場合と同様に、最も高い疲労強度350MPa(疲労限度0.57)が得られている。このように、ショットを切断面に垂直に投射し、発生したバリを研磨により除去した場合にも高い疲労強度を示すのは、主に、研磨により、切断面の形状の不連続部がなくなること、即ち応力集中部がなくなることによるものと考えられる。また、この場合は、ショットピーニング後にバリが発生した金属板1のコーナー部を研磨するだけで、高い疲労強度を得ることができるため、歯車等のショットピーニング後の仕上げ加工のようにショット投射面全体を研磨する必要はなく、仕上げ加工が簡略化される。
【0033】
図7(a)および(b)は他の実施形態を示したもので、金属板1の打抜き加工などによる切断面2に、投射角度θで一方向に配置した投射ノズル4、4a、4bからショットを投射することもできる。この場合は、ショットを投射中に、金属板1を図7(a)に示す状態から、図7(b)に示すように表裏反転させ、投射ノズル4aからのショットにより、バリ3を鋼板表面に押し付け、バリ3のアスペクト比および張り出し比を小さくすることができる。このようにすれば、バリ3の発生を抑制し、かつ、このバリ3の近傍の金属板1の表面にもショットピーニングの効果が及ぶため、疲労強度をより向上させることができる。なお、この金属板1の表裏反転は、その切断面2がショットの痕で覆い尽くされるフルカバレージとなるまで、複数回行なうようにしてもよい。なお、この一方向からショットを投射する場合にも、投射角度θは、20°〜45°の範囲にあることが望ましい。
【0034】
なお、本発明を適用する金属板の切断面は、必ずしも打抜き加工による切断面に限定するものでなく、シャー切断面や、また、機械加工による切断面にも適用することができる。特に、打抜き加工による切断面やシャー切断面などの、せん断加工による切断面に本発明を適用すると、疲労強度の向上に大きく寄与する。
【0035】
【発明の効果】
以上のように、この発明によれば、高張力鋼板などの金属板を用いた成形品の切断面の疲労強度を、ショットピーニング処理を施すことにより向上させるにあたり、疲労強度は切断面に発生するバリの形状比などの影響を受けることを見出し、バリの発生形態を制御するようにしたので、母材の疲労強度を超えて、切断面の最も高い疲労強度を実現することができる。それにより、自動車などに使用される機械構造部品の切断面からの疲労亀裂の発生を抑制でき、部品寿命や安全性などの向上に寄与できる。
【図面の簡単な説明】
【図1】疲労強度の評価に用いた疲労試験片の正面図
【図2】ショットピーニング処理後の切断面のバリの形状および大きさを定義するための要部を拡大した説明図
【図3】ショットピーニング処理後の切断面のバリのアスペクト比と疲労限度との関係を示す説明図。
【図4】ショットピーニング処理後の切断面のバリの張り出し比と疲労限度比との関係を示す説明図。
【図5】(a)ショットピーニング処理後の切断面の他の形態のバリの形状および大きさを定義するための説明図
(b)同上
(c)同上
【図6】実施形態のショットピーニング処理時のショットの投射角度を示す説明図
【図7】(a)他の実施形態のショットピーニング処理時の金属板の表裏反転を示す説明図
(b)同上
【符号の説明】
1:金属板      2:切断面    3、3a〜3d:バリ
4、4a、4b:投射ノズル    G:固定部     C:円弧状部
S:切断面[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is used for automobiles and other mechanical structures and the like, and in particular, a method for improving the fatigue strength of a cut surface by punching a metal plate subjected to repeated loads, and a high-tensile steel sheet molded product using this method About.
[0002]
[Prior art]
When using high-tensile steel sheets for mechanical structures such as automobiles, for example, when using high-tensile steel sheets for undercarriage parts of automobiles where repeated loads dominantly act for the purpose of weight reduction, static High fatigue strength is required in addition to the mechanical strength and workability. In general, the fatigue strength of a steel sheet increases with increasing strength up to a static strength of about 1000 N / mm 2 , but the notch sensitivity increases with the increase in strength. May not improve.
[0003]
When manufacturing an automobile part using a steel plate, its outer shape is usually formed by stamping a steel plate by a press, and fatigue breakage may occur from the punched cut portion. For example, in the case of a torsion beam having a U-shaped cross section that forms a rear suspension part, high repetitive stress is generated on the punched cut surfaces on both end surfaces. Therefore, measures to improve the fatigue strength of the punched cut portion by coining, shot peening, end surface polishing, etc. Is being considered.
[0004]
Among these improvement measures, the method based on coining processing requires a dedicated coining mold every time the end face shape is different, such as the thickness of a metal plate, and thus lacks versatility. In addition, the method using end face polishing only removes a surface crack that can be a starting point of fatigue failure, and therefore cannot expect a strength higher than the fatigue strength of the base material, that is, the inside of the metal plate.
[0005]
On the other hand, in the method by shot peening, a shot such as a metal grain is projected on the cut surface, a compressive residual stress is generated in the vicinity of the end face to improve the fatigue strength, and it is possible to improve the fatigue strength more than the base metal. Moreover, this is an excellent method having an advantage that it is not affected by the shape of the end face unlike coining, and has already been applied to parts on which a high load acts, such as gears. When this shot peening is used as a measure for improving the fatigue strength of the punched cut portion, it is necessary to adjust shot peening conditions such as shot grain size and projection speed so that the surface roughness does not become too large. Further, in the case of a high-load component such as a gear, it is general to perform a finishing surface processing to such an extent that the compressive residual stress in the vicinity of the end face generated by shot peening does not attenuate.
[0006]
[Problems to be solved by the invention]
In general, when shot peening is applied to a metal part, a compressive residual stress of about 80% of the yield stress can be easily introduced into the vicinity of the processed surface by plastic deformation. Therefore, in the case of a metal plate having a cut surface by punching or the like, in order to confirm how much fatigue strength is improved by performing shot peening on the cut surface, first, as shown in FIG. Then, an arc-shaped portion (R30) C between the mounting portions G to the testing machine was formed by punching, and a portion other than the arc-shaped portion C was machined to produce a fatigue test piece. Then, a fatigue test was repeatedly performed using a resonance type fatigue tester in a case where shot peening was performed on the cut surface S punched into the shape of the arc-shaped portion C and a case where shot peening was not performed.
[0007]
As a result, the fatigue strength when shot peening was not performed on the cut surface S was reduced to about 60% of the base material, that is, about 60% of the inner region of the steel sheet. It was confirmed that the fatigue strength was improved more than the fatigue strength. From the observation result of the fatigue fracture surface at this time, the starting point of the fracture was not at the punched cut surface S, but this cut surface was plastically deformed by the shot projection, and a fatigue crack was generated from the base of the burr formed by overhang It turned out to be. In general, when shot peening is performed on a punched cut surface, as in the case of a gear or the like, the finish surface processing is not performed, so if such burrs are present, they become a source of stress concentration and adversely affect the improvement of fatigue strength. .
[0008]
Therefore, an object of the present invention is to improve the fatigue strength of a cut surface by punching a metal plate or the like using shot peening. It is an object of the present invention to provide a method for improving and a high-tensile steel sheet molded product using the method.
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following configuration.
[0010]
That is, in the process of manufacturing a metal sheet molded product having a cut surface, the cut surface is subjected to shot peening, and burrs generated on the cut surface during the shot peening are increased in height in the thickness direction from the metal plate surface. The ratio Δt / Δw between the height Δt and the width Δw in the width direction of the metal plate is controlled to be 0.25 or less.
[0011]
As described above, the presence of burrs is considered to be a source of stress concentration and adversely affect the improvement of fatigue strength. Therefore, a fatigue test piece shown in FIG. 1 was prepared from a 3.2 mm-thick high-strength steel sheet (strength 616 MPa), and a punched surface of an arc-shaped portion C formed by punching, that is, each punched surface was formed. On the cut surface S, a shot peening process is performed by changing processing conditions such as a shot grain size, a projection speed, and a projection angle to vary the size of a generated burr, and a resonance type fatigue tester similar to that described above is used. , And a repeated fatigue test was performed. As a result, by performing the shot peening process on the cut surface S, the fatigue strength was higher than the fatigue strength of the base material under any of the shot peening conditions. It was found that the maximum change was about 10% of the base metal fatigue strength. Further, it was found that even under the same processing conditions, that is, even when the compressive residual stress was almost the same, the fatigue strength was different between the test piece with the burr attached and the test piece with the burr removed. These results all support that the size of the burr generated on the cut surface due to the punching of the metal plate affects the fatigue strength.
[0012]
As a parameter representing the shape of the burr 3 generated when the shot peening process is performed on the cut surface 2 of the metal plate 1 by punching or the like, as shown in FIG. The ratio between the height Δt in the thickness direction and the width Δw in the width direction of the metal plate, that is, the aspect ratio Δt / Δw is defined.
[0013]
By changing the processing conditions, a shot peening treatment was performed on the cut surface S of the arc-shaped portion C formed by punching out the fatigue test piece (see FIG. 1), and the test of the fatigue test performed using this fatigue test piece Regarding the results, the fatigue strength σ W of the cut surface S is expressed as a ratio to the tensile strength TS, that is, a fatigue limit ratio (σ W / TS), and is arranged in association with the aspect ratio Δt / Δw, as shown in FIG. Become like Here, the height Δt in the thickness direction from the surface of the metal plate and the width Δw in the longitudinal direction of the metal plate can be enlarged and measured by, for example, a tool microscope.
[0014]
From FIG. 3, it can be seen that the fatigue limit ratio, and thus the fatigue strength, is maximum when the aspect ratio Δt / Δw is 0.25 or less. By controlling the shape (Δt / Δw) of the burr 3 by changing the conditions of the shot peening process, the fatigue strength of the cut surface is most improved, and the fatigue limit ratio is 10% or more with respect to the base material. improves.
[0015]
Further, it is desirable to control the burrs so that the ratio Δt / t of the height Δt in the thickness direction from the surface of the metal plate to the thickness t falls within 0.02 or less.
[0016]
Similarly to the aspect ratio Δt / Δw, the ratio between the height Δt in the thickness direction and the thickness t of the metal plate, that is, the overhang ratio Δt / t is defined as a parameter representing the size of the burr 3. . Regarding the test results of the fatigue test performed using the fatigue test piece subjected to the shot peening process while changing the processing conditions, the fatigue strength σ W of the cut surface S was calculated by using the fatigue limit ratio (σ W / TS) FIG. 4 shows the relationship between the overhang ratio Δt / t and the arrangement.
[0017]
From FIG. 4, it can be seen that the fatigue limit ratio, and thus the fatigue strength, is maximized when the overhang ratio Δt / t is 0.02 or less. As described above, by changing the shot peening conditions and controlling the size of the burrs 3, that is, the overhang amount (Δt), the fatigue strength of the cut surface is most improved, so that the aspect ratio Δt / Δw is set to 0.1. It is more preferable to control the burr 3 so that it is 25 or less and the overhang ratio Δt / t is 0.02 or less.
[0018]
As a parameter of the same kind as the overhang ratio Δt / t, a ratio ΔW / W between the width ΔW of the metal plate 1 of the burr 3 in the plate width direction and the plate width W can be considered, but the plate width W itself has a correlation with the fatigue strength. When the parameter ΔW / W is applied to an actual part, it may be impossible to define the plate width itself. Therefore, the ratio of the overhang ratio Δt / t to the overall shape of the metal plate 1 Was used.
[0019]
The burrs generated when the cut surface 2 of the metal plate 1 is subjected to the shot peening treatment include those having the shapes shown in FIGS. In the case of 3a to 3d, the width Δw of the metal plate 1 in the plate width direction and the height Δt in the plate thickness direction are as shown in the drawing. In addition, as shown in FIG. 5A, when the burrs 3a and 3b have different shapes on both sides of the cut surface, any of the burrs 3a and 3b has their aspect ratio Δt / Δw and overhang ratio Δt. / T must satisfy the required value described above.
[0020]
It is preferable that the shots at the time of the shot peening are alternately projected from both sides in an angle range of 20 ° to 45 ° with respect to a direction perpendicular to the cut surface.
[0021]
When a shot is projected from only one direction of the cut surface, a large burr is formed at a portion of the cut surface opposite to the projection side. Burrs can be prevented from being generated.
[0022]
On the other hand, if the projection direction is 45 ° or more from the direction perpendicular to the cut surface, the projection direction is too inclined with respect to the cut surface, and sufficient compressive residual stress cannot be introduced. Further, when the projection direction is smaller than 20 ° from the direction perpendicular to the cut surface, the direction approaches the direction perpendicular to the cut surface, and burrs are likely to occur.
[0023]
In this way, if the shot projection angle is kept in an appropriate range, and the shots are alternately projected from both sides with respect to the cut surface so that the shots do not interfere, no special shot peening condition is required. Only by appropriately selecting processing conditions such as shot particle size, projection speed, and projection density, it is possible to suppress the occurrence of burrs on the cut surface.
[0024]
By using any of the above-described methods for improving fatigue strength, it is possible to manufacture a high-strength steel sheet molded article in which the fatigue strength of the cut surface is increased by about 10% from the base material fatigue strength.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the attached FIGS. 1, 6 and 7. FIG.
[0026]
A metal plate such as a high-strength steel plate cut to a required size by a punching process or the like is set in, for example, a peening chamber of a pneumatic peening machine. A shot made of steel-based or ceramic-based hard particles having a particle size of 0.1 to 1 mm accelerated by a shot accelerating device so as to obtain a predetermined projection velocity in a range of usually 30 to 100 m / s. However, as shown in FIG. 6, from the projection nozzles 4 and 4 provided on both sides, the cut surface 2 is projected onto the cut surface 2 of the metal plate 1 at a projection angle θ in an angle range of 20 ° to 45 °. The shots are alternately projected so that the shots do not interfere until a full coverage state is reached, which is covered by. At this time, the metal plate 1 is formed so that the aspect ratio Δt / Δw of the burr 3 generated on the cut surface 2 is 0.25 or less, and desirably, the overhang ratio Δt / t is 0.02 or less. Processing conditions such as shot particle diameter, projection speed, and projection density are appropriately selected based on the thickness, target processing time, and the like.
[0027]
【Example】
A fatigue test specimen shown in FIG. 1 was prepared from a high-strength hot-rolled steel sheet (tensile strength: 616 MPa, plate thickness: 3.2 mm) by punching and machining. After the peening treatment, a repeated fatigue test was performed.
[0028]
In the shot peening process, a shot having a diameter of 0.6 mm or 0.3 mm is projected at a projection speed of 73 m / s, a projection density of 200 kg / m 2 , and a projection angle θ (see FIG. 5) at 0 °, that is, in a direction perpendicular to the cut surface, Alternatively, it was performed at 30 °. In this shot peening process, the projection direction is only one direction, and the setting angle of the test piece is changed so as to be substantially equal to the projection from both sides shown in FIG. Projected for 30 seconds. Under the condition that the projection angle θ was 0 °, the test piece (test No. 3) from which the generated burrs were removed by polishing was repeatedly subjected to the fatigue test.
In addition, as a comparison, a test piece (test No. 5) in which shot peening was not performed on the cut surface S and a test piece that was finished only by machining and did not include the cut surface (evaluation of the fatigue strength of the base material). The fatigue test was also performed for Test No. 6).
[0029]
The fatigue test was performed by using an electric resonance type fatigue tester, setting stress conditions based on the fatigue strength required for actual parts, and performing a test at a stress ratio of −1 and a repetition rate of 20 Hz. Table 1 shows the test results.
[0030]
[Table 1]
Figure 2004083927
[0031]
From Table 1, the fatigue strength (σ W ) of the cut surface is improved by performing shot peening from 180 MPa in the case where the shot peening is not performed to 310 MPa or more of the base material in any case. In particular, when the above-mentioned burr shape ratio Δt / ΔW satisfies the requirement of 0.25 or less and the overhang ratio Δt / t of 0.02 or less (Experiment No. 2), the highest fatigue strength 350 MPa (fatigue limit ratio) 0.57) is obtained.
[0032]
Also, when the projection angle θ was 0 ° and the burr was removed by polishing after the processing (Experiment No. 3), the requirements of the shape ratio and the overhang ratio were apparently satisfied. As in the case of No. 2, the highest fatigue strength of 350 MPa (fatigue limit 0.57) was obtained. In this way, even when the shot is projected perpendicularly to the cut surface and the generated burrs are removed by polishing, the high fatigue strength is exhibited mainly because the discontinuity of the shape of the cut surface is eliminated by polishing. That is, it is considered that the stress concentration portion disappears. Further, in this case, since high fatigue strength can be obtained only by polishing the corners of the metal plate 1 on which burrs have occurred after shot peening, the shot projection surface can be obtained as in the case of finishing after shot peening of gears and the like. There is no need to polish the whole, and the finishing process is simplified.
[0033]
FIGS. 7A and 7B show another embodiment, in which the projection nozzles 4, 4 a, and 4 b arranged in one direction at a projection angle θ on a cut surface 2 formed by punching a metal plate 1. Shots can also be projected. In this case, while projecting the shot, the metal plate 1 is turned over from the state shown in FIG. 7A as shown in FIG. , And the aspect ratio and the overhang ratio of the burr 3 can be reduced. By doing so, the generation of burrs 3 is suppressed, and the effect of shot peening extends to the surface of the metal plate 1 in the vicinity of the burrs 3, so that the fatigue strength can be further improved. Note that the metal plate 1 may be turned over a plurality of times until the cut surface 2 has full coverage covered by the shot marks. In addition, when projecting a shot from this one direction, it is desirable that the projection angle θ is in the range of 20 ° to 45 °.
[0034]
In addition, the cut surface of the metal plate to which the present invention is applied is not necessarily limited to the cut surface formed by the punching process, but may be applied to a shear cut surface or a cut surface formed by machining. In particular, when the present invention is applied to a cut surface obtained by a shearing process, such as a cut surface obtained by a punching process or a shear cut surface, it greatly contributes to an improvement in fatigue strength.
[0035]
【The invention's effect】
As described above, according to the present invention, in improving the fatigue strength of the cut surface of a molded product using a metal plate such as a high-tensile steel plate by performing shot peening, the fatigue strength occurs on the cut surface. Since it is found that the burrs are affected by the shape ratio of the burrs and the like, and the burrs are formed, the highest fatigue strength of the cut surface can be realized, exceeding the fatigue strength of the base material. As a result, it is possible to suppress the occurrence of fatigue cracks from cut surfaces of mechanical structural components used in automobiles and the like, thereby contributing to improvements in component life, safety, and the like.
[Brief description of the drawings]
FIG. 1 is a front view of a fatigue test piece used for evaluation of fatigue strength. FIG. 2 is an enlarged explanatory view of a main part for defining the shape and size of burrs on a cut surface after shot peening. Explanatory drawing showing the relationship between the aspect ratio of burrs on the cut surface after shot peening and the fatigue limit.
FIG. 4 is an explanatory diagram showing a relationship between a burr extension ratio and a fatigue limit ratio of a cut surface after a shot peening process.
5 (a) is an explanatory view for defining the shape and size of a burr in another form of a cut surface after shot peening; FIG. 5 (b) is the same as FIG. 6 (c); FIG. 6 is the shot peening according to the embodiment; FIG. 7A is an explanatory view showing a projection angle of a shot at the time. FIG. 7A is an explanatory view showing the reverse of a metal plate during a shot peening process of another embodiment.
1: metal plate 2: cut surface 3, 3a to 3d: burr 4, 4a, 4b: projection nozzle G: fixed portion C: arc-shaped portion S: cut surface

Claims (4)

切断面を有する金属板成形品の製造過程で、前記切断面にショットピーニング処理を施し、このショットピーニング処理時に前記切断面に発生するバリを、その金属板表面からの板厚方向の高さΔtと、その金属板板幅方向の幅Δwとの比Δt/Δwが、0.25以下に収まるように制御する金属板切断面の疲労強度向上方法。In the process of manufacturing a metal sheet molded product having a cut surface, the cut surface is subjected to shot peening, and burrs generated on the cut surface during the shot peening are removed from the metal plate surface in a thickness direction Δt. And a method for improving the fatigue strength of the cut surface of the metal plate, in which a ratio Δt / Δw of the width Δw in the width direction of the metal plate to 0.25 or less. さらに前記バリを、その金属板表面からの板厚方向の高さΔtと金属板の板厚tとの比Δt/tが、0.02以下に収まるように制御する請求項1に記載の金属板切断面の疲労強度向上方法。The metal according to claim 1, wherein the burr is controlled such that a ratio Δt / t of a height Δt of the metal plate from the surface of the metal plate in the thickness direction to a thickness t of the metal plate is 0.02 or less. A method for improving the fatigue strength of the cut surface. 前記ショットピーニング処理のショットを、前記切断面に垂直な方向に対してそれぞれ20°〜45°の角度範囲で、両側から交互に投射するようにした請求項1または2に記載の金属板切断面の疲労強度向上方法。The cut surface of the metal plate according to claim 1 or 2, wherein the shots of the shot peening process are alternately projected from both sides in an angle range of 20 ° to 45 ° with respect to a direction perpendicular to the cut surface. Method of improving fatigue strength. 請求項1から3のいずれかに記載した疲労強度向上方法を用いることにより、切断面の疲労限度を母材疲労限度よりも高めた高張力鋼板成形品。A high-strength steel sheet molded article having a fatigue limit of a cut surface higher than a base material fatigue limit by using the fatigue strength improving method according to any one of claims 1 to 3.
JP2002242205A 2002-08-22 2002-08-22 Method for improving fatigue strength of cut surface of high-tensile steel sheet and high-tensile steel sheet molded product using it Expired - Fee Related JP3802855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242205A JP3802855B2 (en) 2002-08-22 2002-08-22 Method for improving fatigue strength of cut surface of high-tensile steel sheet and high-tensile steel sheet molded product using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242205A JP3802855B2 (en) 2002-08-22 2002-08-22 Method for improving fatigue strength of cut surface of high-tensile steel sheet and high-tensile steel sheet molded product using it

Publications (2)

Publication Number Publication Date
JP2004083927A true JP2004083927A (en) 2004-03-18
JP3802855B2 JP3802855B2 (en) 2006-07-26

Family

ID=32051358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242205A Expired - Fee Related JP3802855B2 (en) 2002-08-22 2002-08-22 Method for improving fatigue strength of cut surface of high-tensile steel sheet and high-tensile steel sheet molded product using it

Country Status (1)

Country Link
JP (1) JP3802855B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030971A1 (en) * 2004-09-15 2006-03-23 Nippon Steel Corporation High-strength part and process for producing the same
JP2006082099A (en) * 2004-09-15 2006-03-30 Nippon Steel Corp Method for manufacturing high strength component, and high strength component
JP2006281343A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Warm shot peening method for thick steel plate
JP2014092209A (en) * 2012-11-01 2014-05-19 Sumitomo Heavy Ind Ltd Planetary gear reduction device and fabrication method of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006030971A1 (en) * 2004-09-15 2006-03-23 Nippon Steel Corporation High-strength part and process for producing the same
JP2006082099A (en) * 2004-09-15 2006-03-30 Nippon Steel Corp Method for manufacturing high strength component, and high strength component
JP4551169B2 (en) * 2004-09-15 2010-09-22 新日本製鐵株式会社 Manufacturing method of high strength parts
US7842142B1 (en) 2004-09-15 2010-11-30 Nippon Steel Corporation High strength part and method for producing the same
KR101136142B1 (en) * 2004-09-15 2012-04-17 신닛뽄세이테쯔 카부시키카이샤 Process for producing high-strength part
JP2006281343A (en) * 2005-03-31 2006-10-19 Jfe Steel Kk Warm shot peening method for thick steel plate
JP2014092209A (en) * 2012-11-01 2014-05-19 Sumitomo Heavy Ind Ltd Planetary gear reduction device and fabrication method of the same
CN103807420A (en) * 2012-11-01 2014-05-21 住友重机械工业株式会社 Planetary Gear Deceleration Apparatus And Method For Manufacturing It

Also Published As

Publication number Publication date
JP3802855B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
KR101532856B1 (en) Method for bending sheet metal and product of sheet metal
US7159425B2 (en) Method and apparatus for providing a layer of compressive residual stress in the surface of a part
JP5008306B2 (en) Doweling method for buckle base member
JP2006320960A (en) Metal member and metal structure excellent in fatigue crack development and propagation suppressing characteristics, and its manufacturing method
Qutaba et al. A review on peening processes and its effect on surfaces
JP2010030036A (en) Material of projecting material for shot-peening, and method of manufacturing projecting material for shot-peening
KR102173928B1 (en) Method of surface treatment of metal products and metal products
KR100676333B1 (en) Method of increasing strength of cold worked part by ultrasonic shock treatment, and metal product with high fracture toughness and fatigue strength
JP2006224121A (en) Steel sheet punching tool, and punching method using the same
JP3802855B2 (en) Method for improving fatigue strength of cut surface of high-tensile steel sheet and high-tensile steel sheet molded product using it
JP4959245B2 (en) Method for producing high-strength metal member
KR102604480B1 (en) Blanks and structural members
JP3830119B2 (en) Cut-wire iron shot for blasting
JP2020104143A (en) Punching method of punching workpiece, and punching die for punching workpiece
JP2006051540A (en) Impact plastic forming method
JP4833615B2 (en) Ultrasonic impact plastic processing method for metals with excellent fatigue strength improvement
JP2005095980A (en) Steel plate punching tool, and method for punching the same
JP2007307616A (en) Method and tool for shearing metal sheet, and metal sheet product obtained by shearing
Denkena et al. Mechanical finishing of wire arc additive manufactured aluminum parts
EP3936276B1 (en) Needle peening method
JP2005095960A (en) Method for preventing stress corrosion cracking of metal
WO2023112390A1 (en) Method for suppressing fatigue crack progression in bent section of metal plate and automobile component
JP3620329B2 (en) Punching method for high silicon steel sheet
WO2023079800A1 (en) Method for suppressing fatigue crack progression in bent section of metal plate and automobile component
JP2006231425A (en) Shearing blade for reducing cutting face crack, shearing method, and shearing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3802855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees