JP3897924B2 - Inner meshing planetary gear unit - Google Patents

Inner meshing planetary gear unit Download PDF

Info

Publication number
JP3897924B2
JP3897924B2 JP01607399A JP1607399A JP3897924B2 JP 3897924 B2 JP3897924 B2 JP 3897924B2 JP 01607399 A JP01607399 A JP 01607399A JP 1607399 A JP1607399 A JP 1607399A JP 3897924 B2 JP3897924 B2 JP 3897924B2
Authority
JP
Japan
Prior art keywords
tooth
gear
external
internal
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01607399A
Other languages
Japanese (ja)
Other versions
JP2000213605A (en
Inventor
宏猷 王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nabtesco Corp
Original Assignee
Nabtesco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nabtesco Corp filed Critical Nabtesco Corp
Priority to JP01607399A priority Critical patent/JP3897924B2/en
Publication of JP2000213605A publication Critical patent/JP2000213605A/en
Application granted granted Critical
Publication of JP3897924B2 publication Critical patent/JP3897924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、内接噛合型遊星歯車装置、特に建設機械用の高負荷減速機から産業ロボット用精密減速機までのすべての減速、増速を必要とする分野の内接噛合型遊星歯車装置に関するものである。
【0002】
【従来の技術】
内接噛合型遊星歯車装置としては、例えば特公昭31−3801号公報に記載されるようなものが知られていたが、特に高負荷減速機や精密減速機においては、内歯車の内方にこれとは歯数の異なるトロコイド歯形の外歯車を設け、これを内歯車に内接噛合させるよう複数のクランク軸により偏心回転可能に保持したものが多用されている。
この種の装置では、内歯車に噛み合いながら転動する外歯車の自転運動を、内歯車に対するクランク軸の公転運動として、そのキャリア(出力軸)から取り出すようになっている。
【0003】
また、外歯歯車の歯面やクランク軸穴内壁面の軸受ニードルとの接触面に大きなへルツ応力が発生するので、歯面に十分な強度を持たせるため、歯切り加工後に、浸炭焼入れや高周波焼入れ等の熱処理を行って歯面を硬くしている。さらに、熱処理に起因する変形によって歯車の精度が劣化するため、比較的高精度の歯車を製造する際には、熱処理後に歯面研削等をを行って最終的な歯面仕上げを行っている。
【0004】
【発明が解決しようとする課題】
しかしながら、このような従来の内接噛合型遊星歯車装置にあっては、外歯車を製造するためのリードタイムが長く、装置のコスト高を招いていた。
【0005】
すなわち、大きな動力を伝達する歯車では、上述のように、その歯に十分な強度を持たせるべく表面硬化熱処理を行うことが必要であり、これによってリードタイムが長くなっていた。
【0006】
これに対し、表面硬化の熱処理が省略できれば、場合によっては歯面研削も不要となり、生産性向上に大きく貢献し得る。したがって、動力伝達用の歯車の熱処理を省略することができれば、内接噛合型遊星歯車装置の製造コストの大幅な低減を図ることができる。
【0007】
そこで、本発明は、通常のトルクを負荷しても歯面に従来よりはるかに小さいへルツ応力しか発生しないような歯形を実現することにより、外歯車に表面硬化熱処理を施さなくても従来と同等な性能と耐久性を持ち得る遊星歯車装置を提供するものである。
【0008】
【課題を解決するための手段】
上記課題解決のため、本発明は、内歯車に対し偏心して該内歯車に内接噛合する外歯車を円周方向等ピッチに配置された複数の軸受を介して複数のクランク軸により偏心回転可能に支持するとともに、前記内歯車内での外歯車の自転に伴うクランク軸の公転運動該クランク軸を保持するキヤリアに伝達するようにした内接噛合型遊星歯車装置において、前記内歯車の内歯が、円弧歯形を有し、前記外歯車の外歯が、前記内歯車の内歯に対し接触する接触部と、該接触部の歯形曲線よりも内方に歯面を持つ歯先部とを有し、かつ、前記内歯車に対して偏心噛み合い側に位置する、全歯数のうち2〜8%の外歯のみでトルクを伝達する修正トロコイド歯形であり、前記外歯車の歯面を含む全表面部が、該表面部により取り囲まれた内部と同一の硬さを有し、かつ、前記外歯車と前記複数のクランク軸との間に、前記外歯車より硬質で外歯車に嵌入された筒状体と、該筒状体と前記クランク軸との間に転動可能に介在する複数の転動部材と、を有する軸受を介装したことを特徴とする。
【0009】
この発明では、理論トロコイド歯形と円弧歯形の噛み合い点における総合曲率が大きくなる歯先側での実質的なトルク伝達をなくし、総合曲率の小さくなる歯中部から歯元部にかけての接触部で噛み合いがなされるから、ヘルツ応力を有効に抑えることができ、外歯車に表面硬化の熱処理をすることなく黒鉛鋳鉄等で製造できるようになり、研削しなくても高精度の歯車を得ることができる。したがって、コストを大幅に削減できる。
【0011】
また、外歯車の表面部と内部とが同一の硬さを有しているので、従来のような表面硬化のための熱処理やその後の歯面研磨による仕上げ加工を行う必要がなく、しかも、外歯車より硬質の筒状体を外歯車に嵌入し、これと複数の転動部材とを介してクランク軸に外歯車を回転自在に支持させているので、外歯車を安定して偏心回転させることができ、内歯車と外歯車の所要の噛み合い状態を保つことができる。
【0012】
さらに、前記外歯の歯形上における各内歯との噛み合い位置で、各内歯と該外歯の総合曲率に基づいて前記接触部と前記内歯車との噛み合い歯数を設定することにより、ヘルツ応力をより有効に抑えることができる。また、前記内歯の円弧歯形の曲率を−1/rとし、前記外歯のトロコイド歯形の歯形曲線の曲率を1/ρとするとき、前記内歯と外歯の接触面の総合曲率1/Rが、次式で表わされ、
1/R=−1/r+ 1/ρ =(−ρ+r)/(r・ρ)
かつ、該総合曲率1/Rの絶対値が前記外歯の歯先部側では大きく、前記外歯の歯元部側では小さくなるように、前記所定の歯形曲線が設定され、該総合曲率1/Rの絶対値が所定値以下となる範囲内に、前記接触部が形成されているのがよい。
【0013】
なお、ロボット関節用減速機では高剛性が重要な性能指標であり、シェル型ニードルのシェルでニードルころの軸方向移動を規制し、グリースでニードルころを保持して組み立て性の良い総ころニードル軸受にすることができ、しかも、剛性アップを図ることができる。
【0014】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて具体的に説明する。
【0015】
図1〜図10は、本発明に係る内接噛合型遊星歯車装置の一実施形態を示す図である。
【0016】
まず、その構成を説明すると、図1および図2において、10は環状の内歯車で、環状体11の内周に円弧歯形の複数の内歯12を有している。この内歯12は、例えば環状体11の円弧溝にステンレス鋼等からなる丸ピンを回転可能に収納して形成されている。20は、内歯車10に対して互いに逆方向に偏心して配置され、それぞれ内歯車10の内歯12と噛み合う一対の外歯車である。これら外歯車20は、内歯車10とは歯数の異なる、例えば内歯12よりわずかに(例えば1つ又は2つ)歯数の少ない外歯21を有している。また、外歯車20は、所定半径位置に周方向等ピッチに設けられた複数のクランク穴部22において、それぞれ軸受30を介してクランク軸25に支持されている。
【0017】
クランク軸25は、図1に示すように、内歯車10内で、外歯車20をこの内歯車10の中心O10と外歯車の中心O20との距離である所定偏心量eを保って偏心回転させるようになっている。また、入力軸15から前段減速部を構成する歯車16,17を介してクランク軸25に回転が入力されるとき、外歯車20は、内歯車10に噛み合いつつ所定偏心量eを保って偏心回転(偏心円運動、公転)しながら、両歯車10,20の歯数差(例えば外歯車20の外歯21の歯数が内歯車10の内歯12の歯数より1つ又は2つ少ない)に応じて内歯車10に対して相対的に中心O20回りに回転(自転)する。そして、この外歯車20の自転運動に伴うクランク軸25の中心O10回りの公転運動が出力軸であるキャリア27から取り出され、固定された内歯車10に対して可動側のキャリア27が低速回転するか、若しくは、固定されたキャリア27(固定側)に対して可動側の内歯車10が低速回転するようになっている。なお、18,19はクランク軸をキャリア27に回転自在に支持する一対の軸受で、クランク軸25の軸方向位置決め機能を併せ持つ。
【0018】
図3(a)および図3(b)に示すように、軸受30は、外歯車20のクランク穴部22と複数のクランク軸25との間に介装されており、それぞれ、外歯車20より硬質で外歯車20のクランク穴部22に嵌入された外側シェルとしての筒状体31と、この筒状体31とクランク軸25の各クランクピン部25a,25bとの間に転動可能に介在する複数の転動部材32と、を有している。
【0019】
外歯車20の外歯21は、詳細は後述するが、内歯車10の内歯12に対し実質的に加圧されるよう接触する接触部21aと、その接触部21aの歯形曲線よりも内方(歯車中心O20側)に歯面を持つ歯先部21bとを有しており、その外歯21の歯形は、内歯車10に対して偏心噛み合い側に位置する外歯21(これは全歯数のうち2〜8%の歯数の外歯)のみでトルクを伝達する修正トロコイド歯形となっている。
【0020】
また、外歯車20は、その歯面を含む全表面部が、これにより取り囲まれた内部と同一の硬さ(硬度)を有している。すなわち、外歯車20は、安価な材料、例えば鋼材FCD450やSCM420焼きならし材、黒鉛鋳物、粉末冶金等によって形成され、表面硬化のための熱処理がされていない素材からなる。したがって、前記硬度はほぼ材料の持つ硬度であり、熱処理変形に対する後処理の仕上げ研磨加工等もなされていない。
【0021】
次に、外歯車20の歯形とその製造について説明する。
【0022】
従来、浸炭焼き入れの合金鋼で製造した外歯車は、歯面の許容ヘルツ応力がおよそ1400MPa程度であるが、焼き鈍しのみではおよそ400〜600MPaとなり、1/3.5に低下する。このへルツ応力は、歯面に作用する荷重の平方根に比例するので、従来の外歯車の形状のままで表面硬化熱処理を施さないならば、その歯車装置の伝達能力は1/10以下と大幅に低下してしまう。
【0023】
そこで、本発明では、従来よりはるかに小さいへルツ応力しか発生しないような歯形を実現して、表面硬化の熱処理を省略するようにしている。
【0024】
具体的には、従来の技術では、同時噛み合い歯数が多い方が歯面強度上で有利になるとの考えから、外歯車20の偏心側の歯(図4中の内歯ピンNo.1〜21に近接する約半数の外歯)は、その歯底から歯先までの範囲において内歯12と噛み合い時に近い近接状態を保っている。そのため、外歯21のトロコイド歯形は、歯面の曲率(1/曲率半径)が歯面上に連続的に変化したものとなっている。図2に示すピンNo.1〜21の内歯12が外歯車20の外歯21と噛み合う歯面位置を、外歯21の歯形曲線上に表わすと、図4のようになる。
【0025】
この歯面の曲率の変化を図5に示す。同図に示すように、歯底付近は凹となり(符号はプラスである)、曲率が比較的大きくなる。一方、歯の中央部では曲率が小さくなる。この曲率が0となる変曲点では、歯形が直線状で、曲率半径が無限大である。この変曲点を超えると、歯面が凸面となり、曲率がマイナスとなる。噛み合い相手である内歯12の円弧歯形(半径r)の曲率を−1/rとし、外歯の曲率を1/ρとすると、接触面の総合曲率1/Rは、次式で表わされる。
【0026】
1/R=−1/r+ 1/ρ =(−ρ+r)/(r・ρ) ……(1)
【0027】
歯面における噛み合い点の総合曲率を図6に示す。この図6から分かるように、ピンNo.1〜2に対応する歯底側の位置での総合曲率は 0(ゼロ)に近く、両歯車10,20の歯面曲率の差が大きくなる中部および歯先側になると、総合曲率の絶対値が大きくなる。
【0028】
図7には、トルクがかかったときに歯面にかかる荷重を示し、図8には歯面へルツ応力を示す。歯面へルツ応力σは|1/R|の平方根に比例するので、図7から明らかなように、ピンNo.6の対応位置で最大の歯面荷重が発生するが、図8に示すように、総合曲率の影響で最大ヘルツ応力は総合曲率絶対値の大きいピンNo.位置(No.9,10)にて発生する。ここで、もし− r +ρ ≒ 0となる歯形を設計することができれば、理論上へルツ応力は極小になる。
【0029】
そこで、適切な歯形のパラメータを選択すると、トロコイド歯形の歯底に近い僅かな範囲にその曲率(凹面)が噛み合い相手である内歯12の円弧歯形の曲率に近い歯形を得ることができる。
【0030】
図9に示すように、噛み合い相手の円弧の曲率との差が大きい部分を逃がすように歯形修正を施して、この部分での実質的な負荷伝達をなくし、総合曲率の絶対値が所定値以下となる部分のみで負荷トルクを伝達するようにすれば、同時噛み合い歯数は少ないにもかかわらず、歯面のヘルツ応力を小さい値に抑えることができる。
【0031】
その解析結果を図10に示す。
【0032】
同図に示すように、外歯21の接触部21aに相当するピンNo.1から3の間において、600MPa弱の歯面ヘルツ応力が生じる一方、実質的なトルク伝達がなされないピンNo.4から20の歯先側では、ヘルツ応力が0(ゼロ)になっている。したがって、同時噛み合い歯数が少ないにもかかわらず、歯面に生じるへルツ応力を小さくすることができる。
【0033】
また、外歯車20とクランク軸25の間の軸受を、外側シェル付のニ―ドル軸受としたので、転動部材であるニードルころが直接外歯車20のクランク孔内壁部に接触することがなく、穴内壁部の強度問題がなくなるから、表面の硬化のための熱処理が不要となり、穴の加工も簡単になる。
【0034】
このように、本実施形態においては、理論トロコイド歯形と円弧歯形の噛み合い点における総合曲率が大きくなる歯先側での実質的なトルク伝達をなくし、総合曲率1/Rが所定値以下となる接触部21aでのみ噛み合いがなされるから、ヘルツ応力を有効に抑えることができ、外歯車に表面硬化の熱処理をすることなく黒鉛鋳鉄等で製造できるようになり、歯面仕上げの研削加工等をしなくても高精度の歯車を得ることができる。したがって、外歯車20を複数備えたこの種の遊星歯車装置の製造コストを大幅に削減することができる。
【0035】
また、外歯車20にこれより硬質の筒状体31を嵌入し、その筒状体31とクランク軸25との間に転動可能に介在する複数の転動部材32を設けているので、外歯車20が表面硬化処理をしていないものであるにもかかわらず、転動部材の転動面に所要の強度を確保してクランク軸による支持部分の耐久性を確保することができ、外歯車を安定して偏心回転させることができる。特に、ロボット関節用減速機では、高剛性であることが必要であるが、外側シェル付のニードル軸受30の筒状体31で転動体(ニードルころ)32の軸方向移動を規制し、図示しないグリースでこれらニードルころを保持して、組立て性の良い総ころニードル軸受にすることができる。したがって、剛性アップを図ることができる。
【0036】
さらに、外歯21の歯形上における各内歯12との噛み合い位置(図8中の歯面位置)で、各内歯12と該外歯21の総合曲率1/Rに基づいて、外歯車20(外歯21の接触部21a)と内歯車10との噛み合い歯数を設定しているので、ヘルツ応力をより有効に抑えることができる。
【0037】
【発明の効果】
本発明によれば、内歯車の内歯が円弧歯形を有し、外歯車の外歯が、前記内歯車の内歯に対し実質的に加圧されるよう接触する接触部と、該接触部の歯形曲線よりも内方に歯面を持つ歯先部とを有し、かつ、前記内歯車に対して偏心噛み合い側に位置する、全歯数のうち2〜8%の外歯のみでトルクを伝達する修正トロコイド歯形であるので、理論トロコイド歯形と円弧歯形の噛み合い点における総合曲率が大きくなる歯先側での実質的なトルク伝達をなくし、総合曲率の小さくなる歯中部から歯元部にかけての接触部で噛み合いをなし、ヘルツ応力を有効に抑えることができる。その結果、外歯車に表面硬化の熱処理をすることなく黒鉛鋳鉄等で製造することができ、歯面研削を施すことなく高精度の歯車を製作することができる。したがって、内接噛合型遊星歯車装置の製造コストを大幅に削減することができる。
【0038】
また、前記外歯車の歯面を含む全表面部とこれにより取り囲まれた内部とを同一硬さとしながらも、外歯車とクランク軸との間に外側シェルである筒状体を有する軸受を介装しているので、従来のような表面硬化のための熱処理やその後の歯面研磨による仕上げ加工を行なわなくとも、外歯車を安定して偏心回転させることができ、内歯車と外歯車の所要の噛み合い状態を保つことができる。
【0039】
さらに、前記外歯の歯形上における各内歯との噛み合い位置で、各内歯と該外歯の総合曲率に基づいて前記接触部と前記内歯車との噛み合い歯数を設定しているので、ヘルツ応力をより有効に抑えることができる。
【図面の簡単な説明】
【図1】本発明に係る内接噛合型遊星歯車装置の一実施形態を示すその縦断面図である。
【図2】図1の実施形態の内歯車と外歯車の位置関係を示す横断面図である。
【図3】一実施形態の外歯車とクランク軸の間に設けた軸受の構成を示す縦断面図および横断面図である。
【図4】内歯車とトロコイド歯形を有する外歯との多数の噛み合い位置を示す通常の基本の歯形曲線である。
【図5】図4の外歯の各噛み合い位置における歯面曲率の変化を示すグラフである。
【図6】図5に示した外歯の歯面曲率と内歯の歯面曲率とから求めた総合曲率の変化を外歯の各噛み合い位置について示したグラフである。
【図7】図4の外歯の各噛み合い位置における歯面荷重の相違を示すグラフである。
【図8】図7に示す歯面荷重に対し各噛み合い位置に実際に生じるヘルツ応力の推移を示すグラフである。
【図9】一実施形態の外歯の修正トロコイド歯形の形状を示す歯形曲線図である。
【図10】図9に示した歯形を採用した一実施形態の各噛み合い位置における歯面ヘルツ応力を示すグラフである。
【符号の説明】
10 内歯車
12 内歯
20 外歯車
21 外歯
21a 接触部
21b 歯先部
21c 歯面
25 クランク軸
30 軸受
31 筒状体(外側シェル)
32 転動体(ニードルころ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internally meshed planetary gear device, and more particularly to an internally meshed planetary gear device in a field that requires all speed reduction and speed increase from a high load reducer for construction machinery to a precision reducer for industrial robots . Is.
[0002]
[Prior art]
As an intermeshing type planetary gear device, for example, the one described in Japanese Patent Publication No. 31-3801 has been known, but particularly in a high load reduction gear or a precision reduction gear, the inner gear is arranged inward. A trochoidal external gear having a different number of teeth is provided, which is often used so as to be eccentrically rotatable by a plurality of crankshafts so as to be internally meshed with the internal gear.
In this type of device, the rotation of the external gear that rotates while meshing with the internal gear is extracted from the carrier (output shaft) as the revolution of the crankshaft relative to the internal gear.
[0003]
In addition, since a large Hertzian stress is generated on the tooth surface of the external gear and the contact surface with the bearing needle on the inner wall surface of the crankshaft hole, carburizing quenching and high frequency are performed after gear cutting to provide sufficient strength to the tooth surface. The tooth surface is hardened by heat treatment such as quenching. Further, since the accuracy of the gear is deteriorated due to the deformation caused by the heat treatment, when a relatively high-precision gear is manufactured, tooth surface grinding is performed after the heat treatment to perform final tooth surface finishing.
[0004]
[Problems to be solved by the invention]
However, in such a conventional internally meshing planetary gear device, the lead time for manufacturing the external gear is long, resulting in high cost of the device.
[0005]
That is, in a gear that transmits a large amount of power, as described above, it is necessary to perform a surface hardening heat treatment so that the teeth have sufficient strength, which leads to a long lead time.
[0006]
On the other hand, if the heat treatment for surface hardening can be omitted, in some cases, tooth surface grinding becomes unnecessary, which can greatly contribute to the improvement of productivity. Therefore, if the heat treatment of the power transmission gear can be omitted, the manufacturing cost of the intermeshing planetary gear device can be greatly reduced.
[0007]
Therefore, the present invention realizes a tooth profile that generates a Hertz stress that is much smaller than the conventional one even when a normal torque is applied. It is an object of the present invention to provide a planetary gear device that can have equivalent performance and durability.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention is capable of rotating eccentrically with a plurality of crankshafts via a plurality of bearings arranged at equal pitches in the circumferential direction with an external gear that is eccentric with respect to the internal gear and internally meshed with the internal gear. And an internal meshing planetary gear device in which the revolution movement of the crankshaft accompanying the rotation of the external gear in the internal gear is transmitted to the carrier that holds the crankshaft. teeth, has an arc tooth profile, the external teeth of the external gear, and a contact portion which contacts against the internal teeth of the internal gear, a tooth tip having a tooth surface inward from the tooth profile of the contact portion A modified trochoidal tooth profile that transmits torque with only 2 to 8% of external teeth out of the total number of teeth, and is located on the eccentric meshing side with respect to the internal gear, and the tooth surface of the external gear is The entire surface part including the same as the inside surrounded by the surface part A cylindrical body that is harder than the external gear and fitted in the external gear, and between the cylindrical body and the crankshaft, between the external gear and the plurality of crankshafts. A bearing having a plurality of rolling members interposed so as to be capable of rolling is interposed .
[0009]
In the present invention, substantial torque transmission at the tooth tip side where the total curvature at the meshing point of the theoretical trochoidal tooth profile and the arc tooth profile is increased is eliminated, and meshing occurs at the contact portion from the center portion of the tooth to the root portion where the total curvature decreases. Therefore, the Hertz stress can be effectively suppressed, and the outer gear can be manufactured from graphite cast iron or the like without subjecting the surface hardening to heat treatment, and a highly accurate gear can be obtained without grinding. Therefore, the cost can be greatly reduced.
[0011]
Further, since the surface portion and the inside of the external gear have the same hardness, there is no need to perform heat treatment for surface hardening and subsequent finishing by tooth surface polishing as in the prior art. A cylindrical body that is harder than the gear is fitted into the external gear, and the external gear is rotatably supported by the crankshaft via this and a plurality of rolling members, so that the external gear can be stably rotated eccentrically. The required meshing state of the internal gear and the external gear can be maintained.
[0012]
Furthermore, by setting the number of meshing teeth between the contact portion and the internal gear based on the total curvature of each internal tooth and the external tooth at the meshing position with each internal tooth on the tooth profile of the external tooth, Stress can be suppressed more effectively. Further, when the curvature of the arc tooth profile of the inner tooth is −1 / r and the curvature of the tooth profile curve of the trochoidal tooth profile of the outer tooth is 1 / ρ, the total curvature 1 / of the contact surface of the inner tooth and the outer tooth is 1 / r. R is represented by the following formula:
1 / R = -1 / r + 1 / ρ = (-Ρ + r) / (r · ρ)
The predetermined tooth profile curve is set so that the absolute value of the total curvature 1 / R is large on the tooth tip side of the external tooth and small on the tooth root side of the external tooth, and the total curvature 1 The contact portion may be formed within a range where the absolute value of / R is a predetermined value or less.
[0013]
In addition, high rigidity is an important performance index for a reduction gear for robot joints. A full roller needle bearing is easy to assemble by controlling the axial movement of the needle roller with the shell of the shell type needle and holding the needle roller with grease. In addition, the rigidity can be increased.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings.
[0015]
FIGS. 1-10 is a figure which shows one Embodiment of the internal meshing type planetary gear apparatus which concerns on this invention.
[0016]
First, the configuration will be described. In FIGS. 1 and 2, reference numeral 10 denotes an annular internal gear, which has a plurality of circular teeth 11 on the inner periphery of the annular body 11. The internal teeth 12 are formed by, for example, rotating a round pin made of stainless steel or the like in an arc groove of the annular body 11 so as to be rotatable. Reference numeral 20 denotes a pair of external gears which are arranged eccentrically in opposite directions with respect to the internal gear 10 and mesh with the internal teeth 12 of the internal gear 10 respectively. These external gears 20 have external teeth 21 that have a different number of teeth from the internal gear 10, for example, slightly fewer (for example, one or two) than the internal teeth 12. Further, the external gear 20 is supported by the crankshaft 25 via bearings 30 in a plurality of crank hole portions 22 provided at a predetermined radial position and at a constant circumferential pitch.
[0017]
As shown in FIG. 1, the crankshaft 25 eccentrically rotates the external gear 20 within the internal gear 10 while maintaining a predetermined eccentricity e that is the distance between the center O10 of the internal gear 10 and the center O20 of the external gear. It is like that. Further, when rotation is input from the input shaft 15 to the crankshaft 25 via the gears 16 and 17 constituting the preceding speed reduction unit, the external gear 20 is eccentrically rotated while maintaining the predetermined eccentricity e while meshing with the internal gear 10. (Eccentric circular motion, revolution), the difference in the number of teeth of both gears 10 and 20 (for example, the number of teeth of the external teeth 21 of the external gear 20 is one or two less than the number of teeth of the internal teeth 12 of the internal gear 10) Accordingly, it rotates (rotates) around the center O20 relative to the internal gear 10. Then, the revolution movement around the center O10 of the crankshaft 25 accompanying the rotation movement of the external gear 20 is taken out from the carrier 27 as the output shaft, and the movable carrier 27 rotates at a low speed with respect to the fixed internal gear 10. Alternatively, the movable-side internal gear 10 rotates at a low speed with respect to the fixed carrier 27 (fixed side). Reference numerals 18 and 19 denote a pair of bearings that rotatably support the crankshaft on the carrier 27, and also have an axial positioning function of the crankshaft 25.
[0018]
As shown in FIGS. 3A and 3B, the bearing 30 is interposed between the crank hole portion 22 of the external gear 20 and the plurality of crankshafts 25. A cylindrical body 31 as an outer shell that is hard and fitted in the crank hole portion 22 of the external gear 20, and is interposed between the cylindrical body 31 and the crank pin portions 25 a and 25 b of the crankshaft 25 so as to be able to roll. A plurality of rolling members 32.
[0019]
As will be described in detail later, the external teeth 21 of the external gear 20 are in contact with the internal teeth 12 of the internal gear 10 so as to be substantially pressurized, and are inward of the tooth profile curve of the contact portions 21a. A tooth tip portion 21b having a tooth surface on the gear center O20 side, and the tooth shape of the external tooth 21 is an external tooth 21 (this is all teeth) located on the eccentric meshing side with respect to the internal gear 10. It is a modified trochoidal tooth profile that transmits torque with only 2 to 8% of the external teeth).
[0020]
Further, the outer gear 20 has the same hardness (hardness) as the inner surface surrounded by the entire surface portion including the tooth surface. That is, the external gear 20 is made of an inexpensive material such as a steel material FCD450 or SCM420 normalizing material, graphite casting, powder metallurgy, or the like, and is not subjected to heat treatment for surface hardening. Therefore, the hardness is almost the hardness of the material, and no post-treatment finish polishing or the like for the heat treatment deformation is performed.
[0021]
Next, the tooth profile of the external gear 20 and its manufacture will be described.
[0022]
Conventionally, an external gear manufactured from carburized and hardened alloy steel has a tooth surface allowable Hertz stress of about 1400 MPa. However, annealing alone gives about 400 to 600 MPa, which is reduced to 1 / 3.5. This Hertzian stress is proportional to the square root of the load acting on the tooth surface. Therefore, if the surface hardening heat treatment is not performed with the shape of the conventional external gear, the transmission capacity of the gear device is greatly reduced to 1/10 or less. It will drop to.
[0023]
Therefore, in the present invention, a tooth profile that generates only a Hertz stress much smaller than the conventional one is realized, and the heat treatment for surface hardening is omitted.
[0024]
Specifically, in the prior art, the teeth on the eccentric side of the external gear 20 (internal tooth pins No. 1 to No. 1 in FIG. About half of the external teeth adjacent to 21) are close to each other when engaged with the internal teeth 12 in the range from the root to the tip. Therefore, the trochoidal tooth profile of the external tooth 21 has a curvature (1 / curvature radius) of the tooth surface continuously changed on the tooth surface. The tooth surface position where the internal teeth 12 of the pins No. 1 to 21 shown in FIG. 2 mesh with the external teeth 21 of the external gear 20 is represented on the tooth profile curve of the external teeth 21 as shown in FIG.
[0025]
The change in the curvature of the tooth surface is shown in FIG. As shown in the figure, the vicinity of the tooth bottom is concave (the sign is positive), and the curvature is relatively large. On the other hand, the curvature is small at the center of the tooth. At the inflection point where the curvature is 0, the tooth profile is linear and the curvature radius is infinite. When this inflection point is exceeded, the tooth surface becomes convex and the curvature becomes negative. When the curvature of the arc tooth profile (radius r) of the inner tooth 12 that is the meshing partner is −1 / r and the curvature of the outer tooth is 1 / ρ, the total curvature 1 / R of the contact surface is expressed by the following equation.
[0026]
1 / R = −1 / r + 1 / ρ = (− ρ + r) / (r · ρ) (1)
[0027]
The total curvature of the meshing points on the tooth surface is shown in FIG. As can be seen from FIG. 6, the total curvature at the position on the tooth bottom side corresponding to the pins No. 1 and 2 is close to 0 (zero), and the central portion where the difference in tooth surface curvature between the two gears 10 and 20 is large and On the tooth tip side, the absolute value of the total curvature increases.
[0028]
FIG. 7 shows the load applied to the tooth surface when torque is applied, and FIG. 8 shows the Hertz stress on the tooth surface. Since the Hertzian stress σ is proportional to the square root of | 1 / R |, as shown in FIG. 7, the maximum tooth surface load is generated at the corresponding position of the pin No. 6, but as shown in FIG. In addition, the maximum Hertz stress due to the influence of the overall curvature is pin No. It occurs at the position (No. 9, 10). Here, if a tooth profile satisfying −r + ρ≈0 can be designed, the Hertz stress is theoretically minimized.
[0029]
Therefore, when an appropriate tooth profile parameter is selected, it is possible to obtain a tooth profile whose curvature (concave surface) is close to the curvature of the arc tooth profile of the inner tooth 12 with which the tooth is engaged, in a slight range close to the root of the trochoidal tooth profile.
[0030]
As shown in FIG. 9, the tooth profile is corrected so that a portion having a large difference from the curvature of the arc of the mating counterpart is released, so that substantial load transmission at this portion is eliminated, and the absolute value of the total curvature is less than a predetermined value. If the load torque is transmitted only in the portion, the Hertz stress on the tooth surface can be suppressed to a small value even though the number of simultaneously meshing teeth is small.
[0031]
The analysis result is shown in FIG .
[0032]
As shown in the figure, the pin No. corresponding to the contact portion 21a of the external tooth 21 is shown. Between No.1 and No.3, pin surface No. in which substantial torque transmission is not made while tooth surface hertz stress of 600 MPa is generated. On the tooth tip side from 4 to 20, the Hertz stress is 0 (zero). Therefore, although the number of simultaneously meshing teeth is small, the Hertz stress generated on the tooth surface can be reduced.
[0033]
Further, since the bearing between the external gear 20 and the crankshaft 25 is a needle bearing with an outer shell, the needle roller as a rolling member does not directly contact the crank hole inner wall portion of the external gear 20. Since the problem of strength of the inner wall of the hole is eliminated, the heat treatment for hardening the surface is unnecessary, and the hole processing is simplified.
[0034]
As described above, in the present embodiment, substantial torque transmission at the tooth tip side where the total curvature at the meshing point of the theoretical trochoidal tooth profile and the arc tooth profile becomes large is eliminated, and the total curvature 1 / R becomes a predetermined value or less. Since the meshing is performed only at the portion 21a, the Hertzian stress can be effectively suppressed, and the outer gear can be manufactured with graphite cast iron or the like without subjecting the surface hardening to heat treatment. Without it, a highly accurate gear can be obtained. Therefore, the manufacturing cost of this type of planetary gear device having a plurality of external gears 20 can be greatly reduced.
[0035]
In addition, since the cylindrical body 31 that is harder than this is fitted into the external gear 20 and a plurality of rolling members 32 that are movably interposed between the cylindrical body 31 and the crankshaft 25 are provided, Despite the fact that the gear 20 is not surface hardened, it is possible to ensure the required strength on the rolling surface of the rolling member and ensure the durability of the support portion by the crankshaft. Can be stably rotated eccentrically. In particular, the robot joint speed reducer needs to have high rigidity, but the cylindrical body 31 of the needle bearing 30 with an outer shell restricts the axial movement of the rolling elements (needle rollers) 32, and is not shown. By holding these needle rollers with grease, a full roller needle bearing with good assemblability can be obtained. Therefore, the rigidity can be increased.
[0036]
Furthermore, at the meshing position (tooth surface position in FIG. 8) with each internal tooth 12 on the tooth profile of the external tooth 21, the external gear 20 is based on the total curvature 1 / R of each internal tooth 12 and the external tooth 21. Since the number of meshing teeth between the contact portion 21a of the external tooth 21 and the internal gear 10 is set, the Hertz stress can be more effectively suppressed.
[0037]
【The invention's effect】
According to the present invention, the internal teeth of the internal gear have an arc tooth shape, and the external teeth of the external gear come into contact with the internal teeth of the internal gear so as to be substantially pressurized, and the contact portions And a tooth tip portion having a tooth surface inward from the tooth profile curve, and is located on the eccentric meshing side with respect to the internal gear, and torque is generated only with 2 to 8% of external teeth out of the total number of teeth. Because it is a modified trochoidal tooth profile that transmits torque, it eliminates substantial torque transmission on the tip side where the total curvature at the meshing point of the theoretical trochoidal tooth profile and the arc tooth profile increases, and from the center of the tooth where the total curvature decreases to the root part It is possible to effectively suppress the Hertz stress by meshing at the contact portion. As a result, it is possible to manufacture the outer gear with graphite cast iron or the like without subjecting it to a surface hardening heat treatment, and it is possible to manufacture a highly accurate gear without performing tooth surface grinding. Therefore, the manufacturing cost of the intermeshing planetary gear device can be greatly reduced.
[0038]
In addition, a bearing having a cylindrical body as an outer shell is interposed between the outer gear and the crankshaft, while the entire surface portion including the tooth surface of the outer gear and the inner portion surrounded by the entire surface are made to have the same hardness. Therefore, it is possible to stably rotate the external gear eccentrically without performing heat treatment for surface hardening and subsequent finishing by tooth surface polishing as in the prior art. The meshing state can be maintained.
[0039]
Furthermore, at the meshing position with each internal tooth on the tooth profile of the external tooth, the number of meshing teeth between the contact portion and the internal gear is set based on the total curvature of each internal tooth and the external tooth. Hertz stress can be suppressed more effectively.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of an intermeshing planetary gear device according to the present invention.
FIG. 2 is a cross-sectional view showing the positional relationship between the internal gear and the external gear of the embodiment of FIG.
FIG. 3 is a longitudinal sectional view and a transverse sectional view showing a configuration of a bearing provided between an external gear and a crankshaft according to an embodiment.
FIG. 4 is a normal basic tooth profile curve showing a number of meshing positions of an internal gear and an external tooth having a trochoidal tooth profile.
5 is a graph showing a change in tooth surface curvature at each meshing position of the external teeth in FIG. 4; FIG.
6 is a graph showing a change in total curvature obtained from the tooth surface curvature of the external tooth and the tooth surface curvature of the internal tooth shown in FIG. 5 at each meshing position of the external tooth.
7 is a graph showing a difference in tooth surface load at each meshing position of the external teeth in FIG. 4; FIG.
8 is a graph showing transition of Hertz stress actually generated at each meshing position with respect to the tooth surface load shown in FIG.
FIG. 9 is a tooth profile curve diagram showing the shape of a modified trochoidal tooth profile of an external tooth according to an embodiment;
FIG. 10 is a graph showing tooth surface Hertz stress at each meshing position in one embodiment employing the tooth profile shown in FIG. 9;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Internal gear 12 Internal tooth 20 External gear 21 External tooth 21a Contact part 21b Tooth part 21c Tooth surface 25 Crankshaft 30 Bearing 31 Cylindrical body (outer shell)
32 Rolling elements (needle rollers)

Claims (1)

内歯車に対し偏心して該内歯車に内接噛合する外歯車を、円周方向等ピッチに配置された複数の軸受を介して複数のクランク軸により偏心回転可能に支持するとともに、前記内歯車内での外歯車の自転に伴うクランク軸の公転運動を、該クランク軸を保持するキヤリアに伝達するようにした内接噛合型遊星歯車装置において、
前記内歯車の内歯が、円弧歯形を有し、
前記外歯車の外歯が、所定の歯形曲線に沿って形成され前記内歯車の内歯に対し接触する接触部と、前記歯形曲線よりも内方に歯面を持つ歯先部とを有し、かつ、前記内歯車に対して偏心噛み合い側に位置する、全歯数のうち2〜8%の外歯のみでトルクを伝達する修正トロコイド歯形であり、
前記外歯車の歯面を含む全表面部が、該表面部により取り囲まれた内部と同一の硬さを有し、
前記外歯車と前記複数のクランク軸との間に、前記外歯車より硬質で外歯車に嵌入された筒状体と、該筒状体と前記クランク軸との間に転動可能に介在する複数の転動部材と、を有する軸受介装され、
前記内歯の円弧歯形の曲率を−1/rとし、前記外歯のトロコイド歯形の歯形曲線の曲率を1/ρとするとき、前記内歯と外歯の接触面の総合曲率1/Rが、次式で表わされ、
1/R=−1/r+ 1/ρ =(−ρ+r)/(r・ρ)
かつ、該総合曲率1/Rの絶対値が前記外歯の歯先部側では大きく、前記外歯の歯元部側では小さくなるように、前記所定の歯形曲線が設定され、
該総合曲率1/Rの絶対値が所定値以下となる範囲内に、前記接触部が形成されたことを特徴とする内接噛合型遊星歯車装置。
An external gear that is eccentric with respect to the internal gear and is in mesh with the internal gear is supported by a plurality of crankshafts via a plurality of bearings arranged at equal circumferential circumferential pitches so as to be eccentrically rotatable. In the intermeshing planetary gear device configured to transmit the revolution movement of the crankshaft accompanying the rotation of the external gear to the carrier that holds the crankshaft,
The internal teeth of the internal gear have an arc tooth profile,
The external teeth of the external gear include a contact portion that is formed along a predetermined tooth profile curve and contacts the internal teeth of the internal gear, and a tooth tip portion having a tooth surface inward of the tooth profile curve. And it is a modified trochoidal tooth profile that is located on the eccentric meshing side with respect to the internal gear and transmits torque with only external teeth of 2 to 8% of the total number of teeth,
All surface portion including a tooth surface of the outer gear, have a enclosed internal identical hardness by said surface surface,
Between said external gear of the plurality of crankshaft, a plurality interposed rollably between the and outer gear harder in fitted by a cylindrical body on the outer gear, cylindrical body and said crankshaft A rolling member is interposed ,
When the curvature of the arc tooth profile of the inner tooth is −1 / r and the curvature of the tooth profile curve of the trochoidal tooth profile of the outer tooth is 1 / ρ, the total curvature 1 / R of the contact surface of the inner tooth and the outer tooth is Is represented by the following equation:
1 / R = -1 / r + 1 / ρ = (-Ρ + r) / (r · ρ)
And the predetermined tooth profile curve is set so that the absolute value of the total curvature 1 / R is large on the tooth tip side of the external tooth and small on the tooth root part side of the external tooth,
An intermeshing planetary gear device , wherein the contact portion is formed within a range where the absolute value of the total curvature 1 / R is equal to or less than a predetermined value .
JP01607399A 1999-01-25 1999-01-25 Inner meshing planetary gear unit Expired - Fee Related JP3897924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01607399A JP3897924B2 (en) 1999-01-25 1999-01-25 Inner meshing planetary gear unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01607399A JP3897924B2 (en) 1999-01-25 1999-01-25 Inner meshing planetary gear unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006305092A Division JP4554586B2 (en) 2006-11-10 2006-11-10 Inner meshing planetary gear unit

Publications (2)

Publication Number Publication Date
JP2000213605A JP2000213605A (en) 2000-08-02
JP3897924B2 true JP3897924B2 (en) 2007-03-28

Family

ID=11906404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01607399A Expired - Fee Related JP3897924B2 (en) 1999-01-25 1999-01-25 Inner meshing planetary gear unit

Country Status (1)

Country Link
JP (1) JP3897924B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554586B2 (en) * 2006-11-10 2010-09-29 ナブテスコ株式会社 Inner meshing planetary gear unit
JP5782321B2 (en) 2011-07-15 2015-09-24 ナブテスコ株式会社 Gear device
JP5988424B2 (en) * 2012-07-03 2016-09-07 ナブテスコ株式会社 Eccentric oscillating gear unit
JP6185829B2 (en) * 2013-12-11 2017-08-23 住友重機械工業株式会社 Manufacturing method of crankshaft and external gear of eccentric oscillating speed reducer
JP6539831B2 (en) * 2015-03-31 2019-07-10 株式会社 神崎高級工機製作所 Trochoidal gear
CN106321776B (en) * 2016-09-26 2019-09-17 重庆大学 Helical gear with two point contact tooth curve
JP6446101B2 (en) * 2017-07-25 2018-12-26 ナブテスコ株式会社 Eccentric oscillating gear unit
WO2019188673A1 (en) * 2018-03-30 2019-10-03 日本電産シンポ株式会社 Transmission

Also Published As

Publication number Publication date
JP2000213605A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
JP4746907B2 (en) Planetary gear reducer
WO2008041496A1 (en) Eccentric oscillating reduction gear and stabilizer shaft rotating device using eccentric oscillating reduction gear
JP5156961B2 (en) Reduction gear
US7476174B2 (en) Eccentric oscillating-type planetary gear device
JP5121696B2 (en) Reduction gear
US6269711B1 (en) Transmission device using flexible gear
KR101491679B1 (en) Planetary gear deceleration apparatus and method for manufacturing it
US20180187752A1 (en) Eccentric oscillating speed reducer
KR20060135709A (en) Eccentrically swinging gear device
WO2011027675A1 (en) Reduction gear unit
JP2003088935A (en) Manufacturing method of external gear
JP3897924B2 (en) Inner meshing planetary gear unit
JP3009848B2 (en) Inner roller and outer roller of internal meshing planetary gear structure and method of manufacturing the same
JP4554586B2 (en) Inner meshing planetary gear unit
JPH0627532B2 (en) Planetary gearbox
JP2003172419A (en) Ball type transmission
WO2006077825A1 (en) Swinging inscribed engagement type planetary gear device
TWI404872B (en) Planetary reducer
JP2000130521A (en) Manufacturing method of pin holding ring for internal gear of inscribed intermeshing gear mechanism
JP4265834B2 (en) Inner and outer rollers having an intermeshing planetary gear structure and manufacturing method thereof
JP6890563B2 (en) Eccentric swing type speed reducer
JP6867837B2 (en) Eccentric swing type gear device and its manufacturing method
JP4498816B2 (en) Eccentric oscillation type planetary gear unit
JP2021173299A (en) Gear device
JP3406211B2 (en) Inner roller and outer roller of internal meshing planetary gear structure and method of manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20041015

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Ref document number: 3897924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees