JP2014091766A - バイオガス利用システムおよびバイオガス除湿方法 - Google Patents

バイオガス利用システムおよびバイオガス除湿方法 Download PDF

Info

Publication number
JP2014091766A
JP2014091766A JP2012242056A JP2012242056A JP2014091766A JP 2014091766 A JP2014091766 A JP 2014091766A JP 2012242056 A JP2012242056 A JP 2012242056A JP 2012242056 A JP2012242056 A JP 2012242056A JP 2014091766 A JP2014091766 A JP 2014091766A
Authority
JP
Japan
Prior art keywords
biogas
separation membrane
dew point
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012242056A
Other languages
English (en)
Inventor
Tomohide Nakamura
智英 中村
Nobuhiko Fukuda
叙彦 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2012242056A priority Critical patent/JP2014091766A/ja
Publication of JP2014091766A publication Critical patent/JP2014091766A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane

Landscapes

  • Drying Of Gases (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】エネルギー効率良く除湿を行うことが可能なバイオガス利用システム等を提供する。
【解決手段】本発明の一形態のバイオガス利用システムは、バイオガスを昇圧する圧縮手段と、昇圧したバイオガスを除湿するための分離膜式除湿装置と、その分離膜式除湿装置で発生した乾燥バイオガスを利用する少なくとも1つのガス利用設備とを備える。このバイオガス利用システムは、(a)前記圧縮手段で昇圧したバイオガスを、圧力の増減操作なしに前記ガス利用設備に供給し、(b)前記分離膜式除湿装置でバイオガスの露点(加圧露点)を5℃以上低下させることを特徴とする。
【選択図】図1

Description

本発明は、バイオガス利用システムおよびバイオガス除湿方法に関し、特には、エネルギー効率良く除湿を行うことが可能なバイオガス利用システムおよびバイオガス除湿方法に関する。
近年、環境保全の観点等から、バイオガスを例えば燃料として活用することが種々提案されている。バイオガスは、有機質肥料、生物の排泄物、生分解性物質などの発酵により発生するガスであって、主な成分はメタン(約60%)と二酸化炭素(約40%)である。
例えば特許文献1には、バイオガスをガスタービンやマイクロガスタービン等で消費するシステムにおいて、除湿装置を用いてバイオガス中の水分を取り除くことが開示されている。
特許3939509号
しかしながら、特許文献1では具体的にどのような除湿装置を用い、どのような条件で除湿を行うかについては詳細に開示されていない。一方、ガスの除湿方法としては、「加圧−減圧法」とよばれる方式、PSAに代表される吸着法、またはガス分離膜を利用する方式等が知られている。
ここで、加圧−減圧法(すなわち、実際に必要とされる圧力を超える程度にまで一旦ガスを昇圧して除湿を行い、その後、該ガスを減圧する方式)では、ガス昇圧時に過剰なエネルギーが必要となる。他方、吸着法では、吸着した水分を脱着するために加温するエネルギーが別途必要であったり、乾燥ガスでの排気をするために有用なガスのロスが生じたりすることから、エネルギー効率の点で改善の余地が残されている。
そこで本発明の目的は、エネルギー効率良く除湿を行うことが可能なバイオガス利用システムおよびバイオガス除湿方法を提供することにある。
本出願は、下記の発明を開示する:
1.バイオガスを昇圧する圧縮手段と、
昇圧したバイオガスを除湿するための分離膜式除湿装置と、
その分離膜式除湿装置で発生した乾燥バイオガスを利用する少なくとも1つのガス利用手段と、
を備えるバイオガス利用システムであって、
(a)前記圧縮手段で昇圧したバイオガスを、圧力の増減操作なしに前記ガス利用手段に供給し、
(b)前記分離膜式除湿装置でバイオガスの露点(加圧露点)を5℃以上低下させる
ことを特徴とするバイオガス利用システム。
2.前記分離膜式除湿装置において、バイオガス中のメタンロスが1%以下である
ことを特徴とする上記記載のバイオガス利用システム。
3.前記分離膜式除湿装置の透過側圧力が、大気圧以下に減圧される
ことを特徴とする上記記載のバイオガス利用システム。
4.さらに、前記乾燥バイオガスの露点を計測する露点計測手段と、制御手段と、を備え、
前記制御手段は、
前記露点計測手段の検出結果に基づき、乾燥バイオガス量および/または透過側の圧力を制御可能である
ことを特徴とする上記記載のバイオガス利用システム。
5.前記分離膜式除湿装置の後段に二酸化炭素除去装置を設置し、バイオガスを精製して前記ガス利用手段に送ることを特徴とする、上記記載のバイオガス利用システム。
6.前記分離膜式除湿装置からのラインが分岐しており、
一方のラインを通じて、前記乾燥バイオガスが第1の前記ガス利用手段に供給され、
他方のラインには二酸化炭素除去装置を設置し、該装置により精製したバイオガスを第2の前記ガス利用手段に供給する
ことを特徴とする上記記載のバイオガス利用システム。
7.さらに、
前記分離膜式除湿装置の前段に、硫化水素除去装置、シロキサン除去装置、および二酸化炭素除去装置のうち少なくとも1つが設置されている
ことを特徴とする上記記載のバイオガス利用システム。
8.バイオガスを除湿する方法であって、
(a)バイオガスを昇圧するステップと、
(b)昇圧したバイオガスを分離膜式除湿装置で除湿するステップと、
(c)前記(b)のステップにより発生した乾燥バイオガスを少なくとも1つのガス利用手段に供給するステップと、
を含み、
少なくとも前記(b)、(c)のステップでは、
(i)昇圧したバイオガスを、圧力の増減操作なしに前記ガス利用手段に供給し、
(ii)前記分離膜式除湿装置でバイオガスの露点(加圧露点)を5℃以上低下させる
ことを特徴とするバイオガス除湿方法。
第1の実施形態のバイオガス利用システムの一例を示す図である。 第2の実施形態のバイオガス利用システムの一例を示す図である。 第3の実施形態のバイオガス利用システムの一例を示す図である。 第4の実施形態のバイオガス利用システムの一例を示す図である。 第5の実施形態のバイオガス利用システムの他の例を示す図である。
以下、本発明の実施の形態について図面を参照しながら説明する。
(第1の実施形態)
図1のバイオガス利用システム201Aは、バイオガス発生源203からのバイオガス中の硫化水素やシロキサン等の有害物質を除去する除害装置205と、ライン241を介してその除害装置205に接続されたガス分離膜モジュール211と、ライン243を介してガス分離膜モジュール211に接続されたバイオガス利用設備230とを備えている。
なお、以下の説明では、バイオガス発生源側を「上流(側)」、バイオガス利用設備側を「下流(側)」と表現することがある。「ライン」とは、基本的にはガス流路と同義である。
バイオガス発生源203としては、限定されるものではないが、食品工場、ビール製造工場、下水処理場などの有機性廃棄物からバイオガスを発生させるものが挙げられる。また、下水汚泥等を嫌気性消化(メタン発酵)させて得た消化ガスや、ごみ埋立処分場から発生するランドフィルガス(Landfill Gas)等も利用可能である。
除害装置205は、この種のバイオガス利用システムにおいて一般に備えられる従来公知のものを利用可能であり、硫化水素除去装置またはシロキサン除去装置などが挙げられる。これらの装置のうち1つが設けられていてもよいし、または複数が設けられていてもよい。
ライン241上には、バイオガスを昇圧する圧縮機213と、バイオガスを冷却するクーラ215と、バイオガス中の余分な水分であるドレンを分離し排除するためのドレンセパレータ217とが設けられている。
圧縮機213は、バイオガスを、バイオガス利用設備230で必要とされる圧力(例えば50kPaG〜1000kPaGの範囲、好ましくは50kPaG〜600kPaGの範囲)以上に昇圧する性能を有するものであれば、どのようなものであっても構わない。クーラ215およびドレンセパレータ217についても、特に限定されるものではなく、従来公知のものを利用可能である。
ガス分離膜モジュール211としては、例えば、数百本から数十万本の中空糸膜からなる中空糸束が容器内に収容されたものを利用することができる。中空糸膜は、水分を効率よく選択的に透過できればいずれかの材料に限定されるものではないが、例えば、芳香族ポリイミド、芳香族ポリアミド、ポリスルホン、フッ素樹脂などで形成されたものが耐久性や機械的強度が優れるので好適である。また、ガス分離膜としては、バイオガス中のメタンロスを1%以下(メタン回収率が99%以上)にできるようなものが好ましい。
水蒸気を含有するバイオガスを、ガス分離膜モジュール211の中空糸膜の内側または外側に接する空間へ供給することにより、水蒸気が選択的に膜の透過側へと透過し、これにより除湿されたバイオガス(「乾燥バイオガス」という)が非透過ガスとして得られる。乾燥バイオガスは、ライン243経由でバイオガス利用設備230に供給される。
バイオガス利用設備230としては、限定されるものではないが、ガスエンジンや、ガスタービンやマイクロガスタービン等の発電装置が挙げられる。
本実施形態のバイオガス利用システム201Aでは、
(i)圧縮機213で昇圧したバイオガスを、圧力の増減操作なしにバイオガス利用設備230へと供給し、かつ、
(ii)ガス分離膜モジュール211では、バイオガスの露点(加圧露点)を5℃以上低下させる除湿を行う。
「圧力の増減操作なしに」とは、圧縮機によって昇圧したバイオガスの圧力を、その後ガス利用設備に供給するまでの間に、他の昇圧手段または減圧手段を用いて昇圧したり減圧したりしないことをいう。
以上説明したような本実施形態のバイオガス利用システム201Aは、ガス分離膜モジュール211を用いてバイオガスの除湿を行うものであって、しかも、一旦昇圧したバイオガスをその後の工程で一定圧力まで低下させる等の運転を行うものではない。したがって、加圧−減圧法と比較してエネルギー効率のよい除湿を行うことができる(実施例も参照)。また、バイオガスの加圧露点を5℃以上低下させるものであるので、凝縮水によってバイオガス利用設備230等が損傷することも防止される。
また、吸着法と比較しても効率のよい除湿が可能となる。この理由は、吸着法の場合(i)吸着材の再生のための、バイオガス(特に有用なメタン)のロスが発生し、また(ii)吸着・再生には電気制御や熱を必要とするため、昇圧以外にも相当量のエネルギー消費が必要であるためである。加えて、吸着法では大型の装置が必要であるので、除湿装置のコンパクト化の観点からは、分離膜式が有利である。
除湿効率を上げるために、ガス分離膜モジュール211の透過側を大気圧以下に減圧するようにしてもよい。このために、ガス分離膜モジュール211の透過側に真空ポンプなどの減圧手段が配置されていてもよい。
(第2の実施形態)
図2は、第2の実施形態のバイオガス利用システムの一例を示す図である。バイオガス利用システム201Bでは、ガス分離膜モジュール211からの非透過ガスをバイオガス利用設備230に供給するためのライン243上に、乾燥バイオガスの露点を検出する露点検出器226と、ライン243を流れるガス流量を調整するための調整弁225とが配置されている。露点検出器226と調整弁225には制御部220が接続されており、この制御部220は、露点検出器226の検出結果に基いて、調整弁225の開度を変更してガス流量を調整する。
具体的には、乾燥バイオガスの露点が一定値以上の場合には、露点が下がるようにガス流量を減少させ、露点が一定値未満の場合には増加させる。
非透過ガスの露点(加圧露点)は、バイオガス利用設備への供給圧力における飽和温度よりも3℃以上、好ましくは5℃以上低いことが好適である。
他にも、ガス分離膜モジュール211の透過側に減圧手段が設けられている場合、制御部220は、露点検出器226の検出結果に基いて、その減圧手段の動作を変更して透過側ガスの減圧度を調整する制御を行ってもよい。例えば、露点が所定の基準値を超えており下げる必要があると判定した場合には、減圧度を高める制御を行う。
上記したバイオガス流量の調整、および透過側の減圧度の調整は、それらの全て実施されてもよいし、一部のみが実施されてもよい。
(第3の実施形態)
図3は、第3の実施形態のバイオガス利用システムの一例を示す図である。このバイオガス利用システム201Cでは、ガス分離膜モジュール211の後段に、乾燥バイオガスから二酸化炭素を除去する二酸化炭素除去装置212が設けられている。このような構成によれば、ガス分離膜モジュール211で除湿されたバイオガスに対して、二酸化炭素除去装置212で二酸化炭素の除去を行い、精製したバイオガスをバイオガス利用設備230に供給することができる。
なお、二酸化炭素除去装置212としては、分離膜式のものであってもよいしPSA方式のものであってもよい。分離膜式の場合、二酸化炭素を選択的に透過する中空糸膜を有するガス分離膜モジュール等を利用可能である。
(第4の実施形態)
図4は、第4の実施形態のバイオガス利用システムの一例を示す図である。このバイオガスシステム201Dでは、ガス分離膜モジュール211からのライン243が途中で分岐した構成となっている。一方のライン243−1が第1のバイオガス利用設備230にバイオガスを供給し、他方のライン243−2が第2のバイオガス利用設備231にバイオガスを供給する。
本実施形態では、一方のライン243−1には二酸化炭素除去装置212が設けられている。これにより、ライン243−1側においては、二酸化炭素除去装置212で二酸化炭素が除去されたバイオガスを第1のバイオガス利用設備230に供給することができる。また、ライン243−2側においては、ガス分離膜モジュール211からの乾燥バイオガスをそのまま第2のガス利用設備231に供給することができる。
このように、ガス分離膜モジュール211からのライン243が途中で分岐した構成
の場合、さらに、図5のような構成としてもよい。図5のバイオガス利用システム201Eは、基本的には図4のシステムと同様の構成であるが、分岐したライン243−1上に昇圧装置219が配置されている点で異なっている。このような構成によれば、ガス分離膜モジュール211の運転圧力よりも二酸化炭素除去装置212の運転圧力を高くして、乾燥バイオガスからの二酸化炭素の除去を行うことができる。
なお、以上、図1〜図5を参照して幾つかの実施形態について説明したが、本発明は上記に説明したものに限定されるものではなく、種々変更可能である。例えば、除外装置205は圧縮機213の上流側に限らず、下流側に配置してもよい。
実施例および比較例について以下説明する。
(実施例)
実施例として、宇部興産社製の除湿用のガス分離膜モジュール(UMM−BD2)を2本用意し、これを除湿装置として用いた。原料のバイオガスを0.6MPaG、40℃でガス分離膜モジュールに供給し、露点を35℃以下とするように除湿を行った。
Figure 2014091766
(a)表1に示すように、ガス分離膜モジュールに対し50Nm/hでバイオガスを供給したところ、非透過ガスとして得られた乾燥バイオガスは48Nm/hであった。
(b)乾燥バイオガスは、二酸化炭素の濃度が40mol%から37.5mol%に低下し、一方、メタン濃度は60%から62.5%に上昇していた。
(c)加圧露点は40℃から35℃以下である34.5℃に低下していた。
(d)メタンの回収率は99.7%であった。
(e)供給ガスを0.6MPaGまで昇圧するのに必要な動力は7.5kWであった。
(比較例)
表2は、加圧−減圧法と呼ばれる方法を用いてバイオガスの加圧露点を40℃から35℃まで低下させた比較例である。具体的には、原料ガスを0.8MPaGに圧縮し40℃に冷却して発生した水滴を除去し、その後に0.6MPaGに減圧したものである。
Figure 2014091766
(a)50Nm/hのバイオガスを0.8MPaGまで昇圧するのに必要な動力は11kWであった。一方、上記の通り、ガス分離膜モジュールでの除湿では7.5kWである。
したがって、ガス分離膜モジュールでの除湿と加圧−減圧法による除湿とを対比すると、30%以上の省エネルギー化が実現されることが確認された。また、ガス分離膜モジュールによる除湿では、除湿と同時にメタンの濃縮も行うことができるという利点もある。
201A〜201E バイオガス利用システム
203 バイオガス発生源
205 除害装置
211 ガス分離膜モジュール
212 二酸化炭素除去装置
213 圧縮機
215 クーラ
217 ドレンセパレータ
219 昇圧装置
220 制御部
225 調整弁
226 検出器
230、231 バイオガス利用設備
241、243、243−1、243−2 ライン

Claims (8)

  1. バイオガスを昇圧する圧縮手段と、
    昇圧したバイオガスを除湿するための分離膜式除湿装置と、
    その分離膜式除湿装置で発生した乾燥バイオガスを利用する少なくとも1つのガス利用手段と、
    を備えるバイオガス利用システムであって、
    (a)前記圧縮手段で昇圧したバイオガスを、圧力の増減操作なしに前記ガス利用手段に供給し、
    (b)前記分離膜式除湿装置でバイオガスの露点(加圧露点)を5℃以上低下させる
    ことを特徴とするバイオガス利用システム。
  2. 前記分離膜式除湿装置において、バイオガス中のメタンロスが1%以下である
    ことを特徴とする請求項1に記載のバイオガス利用システム。
  3. 前記分離膜式除湿装置の透過側圧力が、大気圧以下に減圧される
    ことを特徴とする請求項1または2に記載のバイオガス利用システム。
  4. さらに、前記乾燥バイオガスの露点を計測する露点計測手段と、制御手段と、を備え、
    前記制御手段は、
    前記露点計測手段の検出結果に基づき、乾燥バイオガス量および/または透過側の圧力を制御可能である
    ことを特徴とする請求項1〜3のいずれか一項に記載のバイオガス利用システム。
  5. 前記分離膜式除湿装置の後段に二酸化炭素除去装置を設置し、バイオガスを精製して前記ガス利用手段に送ることを特徴とする、請求項1〜4のいずれか一項に記載のバイオガス利用システム。
  6. 前記分離膜式除湿装置からのラインが分岐しており、
    一方のラインを通じて、前記乾燥バイオガスが第1の前記ガス利用手段に供給され、
    他方のラインには二酸化炭素除去装置を設置し、該装置により精製したバイオガスを第2の前記ガス利用手段に供給する
    ことを特徴とする請求項1〜5のいずれか一項に記載のバイオガス利用システム。
  7. さらに、
    前記分離膜式除湿装置の前段に、硫化水素除去装置、シロキサン除去装置、および二酸化炭素除去装置のうち少なくとも1つが設置されている
    ことを特徴とする請求項1〜6のいずれか一項に記載のバイオガス利用システム。
  8. バイオガスを除湿する方法であって、
    (a)バイオガスを昇圧するステップと、
    (b)昇圧したバイオガスを分離膜式除湿装置で除湿するステップと、
    (c)前記(b)のステップにより発生した乾燥バイオガスを少なくとも1つのガス利用手段に供給するステップと、
    を含み、
    少なくとも前記(b)、(c)のステップでは、
    (i)昇圧したバイオガスを、圧力の増減操作なしに前記ガス利用手段に供給し、
    (ii)前記分離膜式除湿装置でバイオガスの露点(加圧露点)を5℃以上低下させる
    ことを特徴とするバイオガス除湿方法。
JP2012242056A 2012-11-01 2012-11-01 バイオガス利用システムおよびバイオガス除湿方法 Pending JP2014091766A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012242056A JP2014091766A (ja) 2012-11-01 2012-11-01 バイオガス利用システムおよびバイオガス除湿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012242056A JP2014091766A (ja) 2012-11-01 2012-11-01 バイオガス利用システムおよびバイオガス除湿方法

Publications (1)

Publication Number Publication Date
JP2014091766A true JP2014091766A (ja) 2014-05-19

Family

ID=50936104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012242056A Pending JP2014091766A (ja) 2012-11-01 2012-11-01 バイオガス利用システムおよびバイオガス除湿方法

Country Status (1)

Country Link
JP (1) JP2014091766A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154519A1 (ja) * 2016-03-09 2017-09-14 株式会社ルネッサンス・エナジー・リサーチ 燃焼システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242723A (ja) * 1985-08-20 1987-02-24 Ube Ind Ltd 混合ガスの除湿方法
JPH06218220A (ja) * 1992-11-25 1994-08-09 Andrew Corp 脱湿システムのための装置及び方法
JP2005023211A (ja) * 2003-07-03 2005-01-27 Tokyo Gas Chemicals Co Ltd バイオガスからのメタンガスの分離回収方法
JP2005206661A (ja) * 2004-01-21 2005-08-04 Osaka Gas Co Ltd 脱湿装置
JP2012149138A (ja) * 2011-01-17 2012-08-09 Sumitomo Seika Chem Co Ltd メタン回収方法およびメタン回収装置
JP2012232274A (ja) * 2011-05-09 2012-11-29 Hitachi Zosen Corp Co2のゼオライト膜分離回収システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6242723A (ja) * 1985-08-20 1987-02-24 Ube Ind Ltd 混合ガスの除湿方法
JPH06218220A (ja) * 1992-11-25 1994-08-09 Andrew Corp 脱湿システムのための装置及び方法
JP2005023211A (ja) * 2003-07-03 2005-01-27 Tokyo Gas Chemicals Co Ltd バイオガスからのメタンガスの分離回収方法
JP2005206661A (ja) * 2004-01-21 2005-08-04 Osaka Gas Co Ltd 脱湿装置
JP2012149138A (ja) * 2011-01-17 2012-08-09 Sumitomo Seika Chem Co Ltd メタン回収方法およびメタン回収装置
JP2012232274A (ja) * 2011-05-09 2012-11-29 Hitachi Zosen Corp Co2のゼオライト膜分離回収システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154519A1 (ja) * 2016-03-09 2017-09-14 株式会社ルネッサンス・エナジー・リサーチ 燃焼システム
TWI675990B (zh) * 2016-03-09 2019-11-01 日商新生能源研究股份有限公司 燃燒系統
US11247169B2 (en) 2016-03-09 2022-02-15 Renaissance Energy Research Corporation Combustion system

Similar Documents

Publication Publication Date Title
CN106687195B (zh) 用于分离高纯度甲烷气体的多段膜分离提纯工序及装置
US20130032029A1 (en) Gas purification configurations and methods
JP2022502241A (ja) メタン、二酸化炭素および硫化水素を含有するガス混合物からメタンを分離するための装置および方法
US20110244555A1 (en) Method and system for purifying raw gases, particularly biogas, for obtaining methane
Žák et al. Single-step purification of raw biogas to biomethane quality by hollow fiber membranes without any pretreatment–An innovation in biogas upgrading
US9005337B2 (en) System for the treatment and purification of biogas
CN104587804B (zh) 运用气体分离膜进行提纯的装置系统
JP2011523671A (ja) メタン抽出のためのバイオガス精製方法およびシステム
KR101529130B1 (ko) 저온 저압의 운전조건을 특징으로 하는 고순도 메탄가스의 분리를 위한 다단계 막분리 정제공정 및 장치
JP2008255209A (ja) メタンガスの濃縮方法および装置
US20210060486A1 (en) Facility For Producing Gaseous Biomethane By Purifying Biogas From Landfill Combining Membranes, Cryodistillation And Deoxo
CN116322952A (zh) 从气体料流中分离甲烷和二氧化碳的设施和膜方法
CN107278340B (zh) 燃料电池系统
KR20200125851A (ko) 연소배가스를 이용한 질소농축공기의 제조방법
Vogler et al. Biogas conditioning using hollow fiber membrane contactors
KR101531605B1 (ko) 고순도 메탄가스의 분리를 위한 저온, 저압의 운전조건을 가진 2 단 막분리 정제공정 및 장치
JP2014091766A (ja) バイオガス利用システムおよびバイオガス除湿方法
JP6102130B2 (ja) 二酸化炭素回収システムおよび二酸化炭素回収方法
JP2002363581A (ja) メタン濃縮装置
US20230347277A1 (en) Biogas processing systems and methods
CN212327831U (zh) 一种火驱尾气环保资源化处理系统
JP5893990B2 (ja) メタン発酵ガス精製システム及びメタン発酵ガス精製方法
US10047310B2 (en) Multistage membrane separation and purification process and apparatus for separating high purity methane gas
CN113731098A (zh) 一种火驱尾气环保资源化处理系统及工艺流程
Molino et al. Biomethane production by biogas with polymeric membrane module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170221