JP2014090408A - パケット光ネットワークの宛先ノードに外部の光データパケットを提供する方法及びシステム - Google Patents

パケット光ネットワークの宛先ノードに外部の光データパケットを提供する方法及びシステム Download PDF

Info

Publication number
JP2014090408A
JP2014090408A JP2013199339A JP2013199339A JP2014090408A JP 2014090408 A JP2014090408 A JP 2014090408A JP 2013199339 A JP2013199339 A JP 2013199339A JP 2013199339 A JP2013199339 A JP 2013199339A JP 2014090408 A JP2014090408 A JP 2014090408A
Authority
JP
Japan
Prior art keywords
packet
optical
network
optical data
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013199339A
Other languages
English (en)
Other versions
JP5739960B2 (ja
Inventor
Qing Wei
キン・ウェイ
Kazuyuki Kozu
和志 神津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of JP2014090408A publication Critical patent/JP2014090408A/ja
Application granted granted Critical
Publication of JP5739960B2 publication Critical patent/JP5739960B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0269Optical signaling or routing using tables for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0066Provisions for optical burst or packet networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0283WDM ring architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0284WDM mesh architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0286WDM hierarchical architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0077Labelling aspects, e.g. multiprotocol label switching [MPLS], G-MPLS, MPAS

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Optical Communication System (AREA)

Abstract

【課題】パケット光ネットワーク内の宛先ノードに外部の光データパケットを提供する。
【解決手段】パケット光ネットワーク202は、複数のノード210〜216と、該複数のノード210〜216間でローカル光データパケットを光学的に伝える第1の光データチャネル224とを有し、外部の光データパケット222は、第1の光データチャネル224とは独立の第2の光データチャネル226を通じて宛先ノードへと送信できるように光学的に変換され、パケット光ネットワーク202に光学的に転送され、第2の光データチャネル226を通じて宛先ノードに送信される。
【選択図】図6

Description

本発明の実施形態は、パケット光ネットワークに光パケットを光学的に提供できるようにするための手法、例えば、2つ以上のパケット光ネットワーク間で光通信できるようにし、2つ以上のパケット光ネットワーク、例えば、2つ以上のパケット光モバイル通信ネットワークの間を光学的にバイパスできるようにするための手法に関する。
図1は、光ネットワークが互いに通信する例を示している。図1(a)は、信号あるいはメッセージをやりとりする2つのパケット光ネットワーク(パケット・オプティカル・ネットワーク)の概要を示している。図1(b)は、それらのネットワークがモバイルコアネットワーク及びモバイルメトロ/アクセスネットワークである場合を更に詳細に示している。図1(c)は、図1(b)を基にしたモバイルネットワークの取り得る実施態様を更に詳細に示している。
図1(a)には、第1のパケット光ネットワーク100と第2のパケット光ネットワーク102とを示している。ネットワーク100、102のそれぞれにおいて、矢印104及び106によって表しているようにローカルトラフィックが生じる。このローカルトラフィックはそれぞれのネットワーク100及び102内でのみ生じる。さらに、クロストラフィック108として示しているように、ネットワーク100と102との間で情報をやりとりすることが望ましい場合がある。ネットワーク100及び102は光ネットワークであり、ローカルトラフィック104、106は光信号に基づいて生じるものである。ネットワーク100と102との間で通信するときには、クロストラフィック108は、2つのネットワーク100及び102の間で信号又はメッセージを送る必要がある。
図1(b)は、図1(a)に示した構成の一例を示している。ネットワーク100は、複数のノード、例えば、パケットデータネットワークゲートウェイ(packet data network gateway)(P−GW)110と、サービスゲートウェイ(service gateway)(S−GW)112と、モバイル管理エンティティ(mobile management entity)(MME)114とを有する、モバイル通信システムのモバイルコアネットワークである。これらはモバイルコアネットワーク100内のそれぞれのノードとして概略的にのみ示している。第2のパケット光ネットワーク102は、図1(b)においては、基地局116a〜116cによって概略的に示している複数のモバイルアクセスエリアを有するモバイルメトロ/アクセスネットワーク102である。各アクセスエリアは複数のモバイルユーザにサービスを提供し、基地局はX2プロトコルに基づいて互いに通信し、それにより、X2トラフィック106が生成される。モバイルメトロ/アクセスネットワーク102とモバイルコアネットワーク100とは互いに通信する必要がある。例えば、モバイルメトロ/アクセスネットワーク102の各基地局116a〜116cと、サービスゲートウェイ112との間で通信を行う必要がある(S1トラフィック108を参照)。
図1(c)は、図1(b)の更なる詳細を示している。モバイルコアネットワーク100とモバイルメトロ/アクセスネットワーク102とに関する更なる細部を特に示している。モバイルコアネットワーク100は、HOPR(Hybrid Optoelectronic Router, ハイブリッド光電子ルータ)のメッシュを有することができる。モバイルメトロ/アクセスネットワーク102は、複数のPOADM(Packet Optical Add/Drop Multiplex, パケット光アド/ドロップ多重化)リングを有することができる。ネットワーク100は、図1(b)を参照して説明したノード110〜114を有し、各ノードは必要なリソース110a、112a、114a、例えば、CPU、メモリ素子等を有している。さらに、各ノードは、ノード間で光信号をやりとりし、かつその光信号を各々のリソースにより扱われる電気信号へと変換する光電子ルータ110b、112b、114bを有している。図1(c)のネットワーク100には、ノード110と112との間と、ノード112と114との間とにおける代替的な接続を提供するか、又はネットワーク100の更なるアクセスポイントを提供する別の光電子ルータ118及び120を示している。
モバイルメトロ/アクセスネットワーク102は、いくつかのPOADMリング、例えば、122a〜122cを有している。第1のPOADMリングは、例えばX2プロトコルを用いて互いに通信し、それにより、ローカルトラフィック106aを生成する3つの基地局124a〜124cを有している。ローカルトラフィック106aは光信号に基づいたものである。POADMリング122bは、X2プロトコルに従って互いに通信し、それにより、ローカルトラフィック106bを生成する4つの基地局126a〜126dを有している。同様に、POADMリング122cは、X2プロトコルに従って互いに通信し、それにより、ローカルトラフィック106cを生成する4つの基地局128a〜128dを有している。リング122b及び122c内の基地局間の通信は、リング122aと同様、それぞれの基地局間でやりとりされる光信号に基づいている。各リングにおいて、基地局のうちの1つ、例えば、基地局124aと126aと128aとが、各リングをコアネットワークエンティティに接続する、モバイルコアネットワークとのインターフェースとなるハブノードと定められる。第1のリング122a内の基地局124aは、第2のリング122b内の第1の基地局126aと同様、サービスゲートウェイノード112に接続される。このインターフェースを通じて、サービスゲートウェイ112と、第1のリング122a及び第2のリング122bの各々との間に、クロストラフィック108a及び108bが生じる。第3のリング122cは、コアネットワーク100の別のアクセスノード118を通じて図示の各ゲートウェイに接続され、モバイルコアネットワークと第3のリング122cとの間に各クロストラフィック108cが生成される。クロストラフィック108a〜108cはS1トラフィックを含みうる。
上記の光ネットワーク100、102においては光ルータ又は光スイッチが用いられており、この光ルータ又は光スイッチは、電気的スイッチ又は電気的ルータに比べて、エネルギー消費が小さく、容量が大きいため有利である。図2は、電気的ルータ又は電気的スイッチと光ルータ又は光スイッチとにおけるエネルギー消費の比較を示している。図から明らかなように、ルータ及びイーサネット(登録商標)スイッチ(図2の上から2つを参照)はエネルギー消費が最も大きい。光学的な構成要素を用いてスイッチを実装するとエネルギー消費は徐々に減少し、全光スイッチ(all optical switch)を用いた場合(OOOスイッチ, Optical-Optical-Optical switch)にはエネルギー消費が最も小さくなる。ネットワーク内のデータトラフィックが増加すると、例えば、スマートフォンの急激な普及及びLTEサービスの商用化に起因してモバイルデータトラフィックが増加すると、コアネットワークとメトロ/アクセスネットワークとの間のネットワーク転送技術も電気的なパケットのスイッチングから光学的なパケットのスイッチングへと変更する必要がある。ネットワーク全体において、その部分によっては要件も異なるため、各ネットワーク(例えば、上記のコアネットワーク100とメトロ/アクセスネットワーク102)において別々の光スイッチング技術が用いられる場合がある。これらのネットワークは、コスト、ネットワークの耐性(network resilience)、データ速度、データ集約等に関して要件が異なる場合があり、各ネットワーク内で別々の光スイッチング技法が用いられる場合がある。
したがって、各ネットワーク内の光通信についてはある解決策が既に存在するものの、現時点で、別々のパケット光ネットワークを効率的に相互接続するための解決策はない。むしろ、現在のところ、別々のパケット光ネットワークの相互接続は電気的に行われている。すなわち、上記のクロストラフィック108、108a〜108cは電気的に行われる。異なったパケット光ネットワーク間のクロストラフィックは常に電気的領域に変換され、例えば、IP又はイーサネット層において電気的に処理され、例えば電気的バッファ内に電気的に保存され、その後、対象となるパケット光ネットワークが認識できるような光学的領域へと再び変換される。このOEO(Optical-Electrical-Optical)変換及び電気的処理は、相当の時間を要し、結果としてエネルギー消費が大きくなる。さらに、このような相互接続ポイントは、異なったパケット光ネットワーク間のトラフィック転送に関してボトルネックも形成することになる。
外部のパケットプロバイダが光学的領域において生成することのできる外部のパケットデータを受信する必要がある単一の光ネットワークについても同様の問題が生じる。このような状況では、上記のように、外部の光データパケットを電気的領域へと変換し、それを電気的に処理し、それを、外部のデータパケットを受信する必要のあるネットワークの光学的領域へと再び変換する必要があるため、OEO変換及び電気的処理に関する上記と同様の問題につながる。
本発明の目的は、ある光ネットワークに外部の光データパケットを提供するための改善された手法を提供することにある。
上記目的は、請求項1に記載の方法、請求項13に記載のコンピュータプログラム製品、請求項14に記載のシステムによって達成される。
本発明によれば、パケット光ネットワーク内の宛先ノードに外部の光データパケットを提供する方法が提供される。前記パケット光ネットワークは、複数のノードと、該複数のノード間でローカル光データパケットを光学的に伝えるための第1の光データチャネルとを有する。本方法は、前記パケット光ネットワーク内の、前記第1の光データチャネルとは別の第2の光データチャネルを通じた前記宛先ノードへの送信に際し、前記外部の光データパケットを光学的に変換するステップと、変換された外部の光データパケットを前記パケット光ネットワークに光学的に送るステップと、前記変換された外部の光データパケットを、前記第2の光データチャネルを通じて前記宛先ノードに送信するステップとを含む。
本発明によれば、コンピュータ可読媒体に記憶された命令を有するコンピュータプログラム製品が提供される。前記命令は本発明の方法をコンピュータに実行させるものである。
本発明によれば、宛先ノードに外部の光データパッケージを提供するシステムが提供される。本システムは、複数のノードと、該複数のノード間でローカル光データパケットを光学的に伝えるための第1の光データチャネルと、該複数のノード間で外部の光データパケットを光学的に伝えるための第2の光データチャネルとを有し、前記第1のデータチャネルと前記第2の光データチャネルとは互いに独立しており、前記複数のノードには前記宛先ノードが含まれる、パケット光ネットワークと、前記パケット光ネットワークに光学的に接続し、前記外部の光データパケットを受信し、前記パケット光ネットワークの前記第2の光データチャネルを通じた前記宛先ノードへの送信に際し、受信した前記外部の光データパケットを光学的に変換し、変換された外部の光データパケットを前記パケット光ネットワークに光学的に送る外部ノードとを有する。
一実施形態によれば、前記第1の光データチャネルと前記第2の光データチャネルとには別々の波長が割り当てられ、前記外部の光データパケットを光学的に変換する前記ステップは、前記第2の光データチャネルを通じて送信できるように、前記宛先ノードに割り当てられた波長に変換された外部の光データパケットを得る波長変換ステップを含む。前記波長変換ステップは、前記パケット光ネットワーク内のノードの宛先アドレスを、前記第2の光データチャネルを通じて送信するための、前記パケット光ネットワーク内のノードに割り当てられた波長とマッピングするテーブルに基づくものとすることができる。前記第1の光データチャネル及び第2の光データチャネルを通じて送信するために用いられる波長は、動的に又は事前に割り当てることができる。
一実施形態によれば、上記方法は、前記外部の光データパケットを受信すると、前記パケット光ネットワークに通知を送るステップを更に含み、該通知は前記宛先ノードについてのアドレス情報を含む。前記パケット光ネットワークは前記複数のノード間で制御チャネル情報を伝えるための制御チャネルを更に有することができる。上記方法は、受信した前記通知に基づいて前記外部の光データパケットの制御ヘッダを準備するステップと、前記第2のデータチャネルを通じて前記変換された外部の光データパケットを送信する際に、前記制御チャネルを通じて前記制御ヘッダを送るステップとを更に含むことができる。前記通知は、前記パケットのQoSといった、前記外部の光データパケットについての更なる情報を含むことができ、前記制御ヘッダは前記更なる情報にも基づいて準備される。
一実施形態によれば、前記パケット光ネットワークはスロット式のパケット光ネットワークである。上記方法は、前記変換された外部の光データパケットを次のタイムスロットにおいて送信するために、該変換された外部の光データパケットを光学的に遅延させるステップを含み、該遅延は前記スロット式のパケット光ネットワーク内の単一のタイムスロットの期間(duration)以下である。
一実施形態によれば、前記外部の光データパケットは、前記パケット光ネットワークに光学的に接続した外部ノードにより受信され、前記外部データパケットは前記外部ノードにより光学的に変換される。前記外部ノードは、別の光データチャネルを通じて通信する複数のノードを有する別のパケット光ネットワーク内のノードとすることができる。前記パケット光ネットワークは、第1の技術に従って動作するモバイルアクセスネットワークを含むことができ、前記別のパケット光ネットワークは、前記第1の技術とは異なる第2の技術に従って動作するモバイルコアネットワークを含むことができ、前記ローカル光データパケットは、前記モバイルアクセスネットワークの基地局間で送信されるパケットを含むことができ、前記外部の光データパケットは、前記モバイルコアネットワークのゲートウェイと前記モバイルアクセスネットワークの基地局との間で送られるパケットを含む。
一実施形態によれば、前記パケット光ネットワークは光ファイバを有し、前記第1のデータチャネル及び前記第2のデータチャネルの光パケットは同じ光ファイバ内で送信される。
したがって、本発明の実施形態によれば、パケット光ネットワークに光パケットを送信できるようにする有利な方法が提供される。本方法は、従来技術の手法が抱える上記の問題を回避し、特に、光学的領域において動作する受信側の光ネットワークに光信号を送信する前に、主にバッファリング及び処理のために、従来の手法が光信号から電気的領域への変換を行う必要があり、それにより電気的領域から光学的領域に再変換する必要があることに起因した長いレイテンシ、遅延、大きなエネルギー消費量に関する問題を回避する。光パケットは、光学的フォーマットにおいてデータパケットを生成するデータ処理ユニットのような外部のパケット源から来るものとすることができ、データパケットは、光ネットワークが取り扱うことができるようにした上で光ネットワークに提供される必要がある。あるいは、光パケットは別のパケット光ネットワークから生じるものとすることができ、受信側の光ネットワークが認識することができるフォーマットにおいてターゲットとなるパケット光ネットワークと通信できるように、そのターゲットとなるパケット光ネットワークに送る必要がある。
本発明の実施形態によれば、従来技術の手法に関連した問題が、ローカルトラフィックを送信する第1の光データチャネルと、それに加えて、外部のパケットを送信する第2の光データチャネルとを有するパケット光ネットワークに対して、外部の光パケットを提供することによって回避される。外部のパケットを所望のノードに送信できるようにするために、例えば、外部のパケットにおいて用いられる光信号の波長が、第2の光データチャネルを通じて送信できるように宛先ノードに割り当てられた波長に対応するものとなるように波長を変更することによって、光学的領域のみにおいて外部のパケットの変換が必要となる。
本発明の実施形態によれば、別々のパケット光ネットワーク間でパケットを光学的に送り、それにより、「光バイパス(optical bypass)」を提供する方法が更に提供される。一実施形態によれば、クロストラフィック専用のデータチャネルとローカルトラフィック専用のデータチャネルとが設けられ、それにより、別々のデータ光ネットワークの相互接続を改善できるようにする。
本発明の手法によれば、ローカルトラフィックに影響を及ぼすことなく、別々のパケット光ネットワーク間でパケットをやりとりするためのエネルギー消費量を削減し、かつレイテンシを短縮できるようにするため、有利である。例えば、実験により、エネルギー消費量を90%程度削減することができ、レイテンシは99%程度短縮することができる。結果として、運用上の支出(operational expenditure, OPEX)が減少し、資本的な支出(capital expenditure, CAPEX)が減少するものと予想することができる。例えば、モバイルネットワークの分野では、高速かつエネルギー効率の良い光転送が最大限に活用されるため、結果として、OEO変換が少ないことと、電気的プロセスの減少とに起因した、より効率的な転送によって上記の低いOPEXがもたらされ、また、必要となる電気的バッファが減り、必要となる冷却システムの要件が緩和され、更には、大きなネットワーク容量及び広い帯域幅が提供されるため、上記の低いCAPEXももたらされる。さらに、転送遅延が少ないことに起因して、高い顧客満足度が予想され、エネルギー消費量が少ないことにより、CO放出量が減少することになる。
したがって、一実施形態によれば、別々のパケット光転送ネットワーク間の光学的接続を実現する装置及び方法が提供される。本実施形態によれば、データトラフィックはクロストラフィックとローカルトラフィックとに分離され、両方のタイプのトラフィックが別々のデータチャネルにおいて転送される。別々のパケット光ネットワーク間でパケットをやりとりする対応した手順は、制御情報をやりとりし、その制御情報を変換し、時間同期を実施し、必要なリソースを割り当てる新規な手法を含む。
本発明の実施形態を、添付の図面に基づいて更に詳細に説明する。
互いに通信する光ネットワークの例を示す説明図である。図1(a)は、信号又はメッセージをやりとりする2つのパケット光ネットワークの概略図である。図1(b)は、ネットワークがモバイルコアネットワーク及びモバイルメトロ/アクセスネットワークである更に詳細な説明図である。 互いに通信する光ネットワークの例を示す説明図である。図1(c)は、図1(b)を基にしたモバイルネットワークのとり得る実施態様の更に詳細な説明図である。 電気的スイッチ/ルータ及び光スイッチ/ルータのエネルギー消費を比較した表である。 外部ノードから外部の光データパケットを受信する光ネットワークの説明図である。 リソース予約を行わずに光パケットを転送する際に、図3のネットワークのエッジノード間でやりとりされる光パケット及びメッセージの処理を示す説明図である。 リソース予約を行って光パケットを転送する際にやりとりされる光パケット及びメッセージの処理を示す、図4と同様の説明図である。 本発明の一実施形態において、宛先ノードに外部の光データパッケージを提供するシステムの説明図である。 ローカルトラフィック及びクロストラフィックに別々のデータチャネルを提供する本発明の手法を実施する際に、各ネットワーク及びネットワーク間で行われる処理を示す、図4及び図5と同様の説明図である。 図6に示したシナリオにおける各要素間の信号伝達の説明図である。
以下、外部ノード、例えば第1の光ネットワーク内のノードから、受信側のパケット光ネットワークへと光パケットを光学的に通過させる光バイパスを実施する本発明の実施形態について説明する。これまで、従来の手法では、光パケットを電気的領域に変換し、それを処理し、これを光学的領域へと再び変換する必要があった。このような問題を回避するために、本発明によれば、上記のような光バイパスが提供されるが、そのようなバイパスを実現するにあたり幾つかの課題がある。
1.制御プレーンにおける変換
相互に接続される2つのパケット光ネットワークは異なった制御機構を有する場合があり、例えば、異なるアドレス指定方式、異なったQoS処理方法等が存在する場合がある。さらに、一方のパケット光ネットワークが帯域内制御チャネルを有し、他方の光ネットワークが専用の制御チャネルを有する場合がある。
2.ユーザプレーンにおける変換
相互に接続されたパケット光ネットワーク内のデータ転送システムは互いに独立している。そのため、一方のネットワークが同期送信を使用する場合があり、それにより固定されたタイムスロットにおいて光パケットが送られるのに対し、他方のネットワークが非同期送信を使用する場合がある。リソースのアクセス又は割当てのメカニズム(波長、タイムスロット)が全く異なる場合もある。
3.さらに、ネットワークにおいては、ローカルトラフィック、すなわち同一のパケット光ネットワーク内のトラフィックと、クロストラフィックとの両方が存在するが、クロストラフィックはローカルトラフィックの転送に影響を及ぼすべきではなく、その逆も同様である。
図3は、外部ノードから外部の光データパケットを受信する光ネットワークの概略を示している。図3は、モバイルコアネットワーク200の一部と、モバイルメトロ/アクセスネットワーク202の概略とを示している。コアネットワーク200は、図1(c)を参照して説明したような構造を有するネットワークとすることができ、HOPRのメッシュを有することができる。コアノード204、例えば、コアネットワークのサービスゲートウェイ(service gateway, S−GW)を実現するコアノードが示されている。ノード204は、例えばCPUコア、メモリ素子等の形をとり、所望の機能、この場合にはサービスゲートウェイを実現するために必要なリソース204aを有している。さらに、ノード204は光電子ルータ204bを有する。この光電子ルータ204bはリソース204aに接続され、更には、上記の図1(c)を参照して説明したものと同様、光学的領域において別のコアへの接続をもたらすためにコアネットワーク200のそれぞれの光伝送線206a、206bにも接続されている。光伝送線206a、206bにより、ネットワーク200内のローカルトラフィックがその異なったノード間で通信される。
モバイルネットワーク/アクセスネットワーク202は、基地局などの複数のノード210〜216を有している。図示した例では、各ノードはモバイルアクセスネットワークの基地局である。各ノードは光電子ルータ210a〜216aと、各基地局210〜216からサービスの提供を受けるモバイルユーザと通信するそれぞれの無線装置210b〜216bとを有している。基地局210〜216は、光伝送線218a〜218dによって概略的に示しているような光パケットリング218により接続されている。光パケットリング218内で光パケットをやりとりするために、それぞれのノード210〜216に別々の波長が割り当てられ、ネットワーク202内で宛先ノードに送信されることになるパケットは、該宛先ノードに割り当てられた波長に従って生成される。そして、光パケットリング218を通じてソースとなるノードからターゲットとなるノードへとパケットを送信できる。
図3において、基地局210はネットワーク202のハブノードを構成する。このノードは、破線220によって概略的に示しているように、ネットワーク202をコアネットワーク200に接続するノード、すなわち接続220を通じて送信されることになるネットワーク200、202間のクロストラフィック用のノードである。
図3は、ノード204をコアネットワーク200の一部として示しているが、別の実施形態では、光パケットが外部のノードから送られる必要のあるネットワーク202のみが設けられる。そのような場合、ノード204はいかなるネットワークにも接続されていない外部のノードとすることができる。ノード204はモバイルネットワーク202のユーザに特定のサービスを提供するサービスノードとすることができ、必要なデータパケットは、そのノードにおいて光パケットとして生成することができ、そのパケットは、本発明に従って、電気的領域に変換することなく、光バイパスによりネットワーク202に送信されることになる。図3の環境を考慮し、かつノード204をコアネットワークの一部であると仮定すると、本発明の目的は、2つのパケット光ネットワーク200と202との間の接続220を通じて光バイパスを実現することにある。しかし、制御機構が異なること、例えば、アドレス指定の要件及びサービス品質の要件等に関して異なっていることに起因して、かつデータ転送プレーンが独立しており、結果として、リソース割当て又は媒体アクセス方式が異なり、波長の割当てが異なり、タイムスロットの同期が異なることを考慮すると、これは容易なことではない。
一般性を失うことなく、ここで図3の状況を説明すると、図3は、HOPRのメッシュを有するモバイルコアネットワーク200と、POADMリング218を有するモバイルメトロ/アクセスネットワーク202とを有するモバイルパケット光ネットワークの一例を示している。HOPRの技術は、本願出願人が有する既知のパケットスイッチング技術であり、この技術では光パケットをスイッチングするために、MPLS(Multi-Protocol Label Switching, マルチプロトコルラベルスイッチング)技術を用いる。制御情報は、パケットヘッダにMPLSラベルとして含まれる。モバイルメトロ/アクセスネットワークは、POADMの手法(パケット光アド/ドロップ多重化。参考文献[1]を参照)を使用し、この手法は、光パケットを転送するために同期がとられたタイムスロットのリング構造に基づいて動作する別のパケットスイッチング技術である。この技術では、制御情報は別の制御チャネルに含まれることになる。
図3に示しているように、コアネットワーク200とメトロ/アクセスネットワーク202とは、コアネットワーク側にあるコアノード204とメトロ/アクセスネットワーク側にあるハブノード210とを通じて相互に接続されている(符号220)。メトロ/アクセスネットワーク202内のローカルトラフィックは、3GPPの定義づけによる、各基地局間のX2トラフィックとすることができる。クロストラフィック220は、3GPPの定義づけによる、モバイルネットワーク全体におけるゲートウェイと基地局との間のS1トラフィックとすることができる。コアネットワーク200からのトラフィックはダウンストリームS1と呼ばれ、ローカルトラフィックすなわちX2トラフィックに影響を及ぼすことなく、メトロ/アクセスネットワーク202へと光学的に提供する必要がある。
このプロセスの更に詳細な理解を与えるために、ここで、情報のやりとり及び処理を更に詳細に説明する。
コアネットワーク又はコアノードからメトロ/アクセスネットワーク202へと送信されることになる光パケット222が、コアノード204における光伝送線206aを通じて到着したと仮定する。コアノード204は、光パケットの宛先アドレスを解釈し、光パケットリング218内のハブノード210にある通知を送信することができる。この通知は、受信した光パケット222から取得した宛先アドレスを含んでいる。光パケットはヘッダ222aと、ペイロードセクション222bとを含むことができる。宛先アドレスは、光パケット222内のヘッダ222aにおいて与えられている情報からコアノード204が取得することができる。
ハブノード210は、宛先アドレスに基づき、所望の宛先アドレスに要求される波長を用いるタイムスロットが利用可能である時点を判断し、この情報をコアノード204に提供する。その後、コアノードは、光パケット222に必要な波長変換を行い、ハブノード210に光学的にデータグラムを送る。ハブノード210は制御ヘッダを準備(prepare)し、データペイロードとともに該制御ヘッダをパケット光リング218に提供する。
しかし、このリソースアクセス手法は、上記のタスクをほとんど適時に実行できないことがわかっている。
より具体的には、日和見的(opportunistic)なリソースアクセスを考えると、これは、ハブノード210が、通過するタイムスロットを調べ、空のタイムスロットを見つけるたびに、コアノード204に光パケット222を送るように指示することを意味する。言い換えると、POADMネットワーク202上でリソース、例えばタイムスロットが利用可能となるたびに、HOPRコアネットワーク200は、POADMネットワーク202に光パケット222を送る。これを図4に示している。時刻tにおいて、パケット222がHOPRネットワーク200に到着したとする。このとき、コアノード204からネットワーク202内のハブノード210へとメッセージS1が送信される。このメッセージは、パケット222の宛先アドレス(destination address)を含んでいる。時刻tから間もなく、ネットワーク202内のハブノード210がメッセージS1を受信し、このとき、第1のタイムスロットであるスロット1がハブノード210を通過(pass)する。各タイムスロットの長さは100nsであるとする。図4に示した状況において、次のタイムスロットにあたるスロット2が利用可能であることをハブノード210が認識し、ハブノード210がコアノード204に対し、このスロットつまりスロット2が利用可能であることと、パケット222の宛先アドレスが指し示す宛先ノードに送ることができるようにするためにこのスロットにおける光パケットが必要とする波長とを知らせることを更に仮定する。この情報はコアノード204が受信し、コアノードにおいて、波長変換及びパケットスイッチングが行われる。しかし、これは一定の長さの時間、図示した例では318nsが必要であり、この時間は、ネットワーク202内の各タイムスロットの期間(time duration)よりも長い。コアノード204における処理が完了した時点で、ネットワーク202内で利用可能なタイムスロットつまりスロット2は既に過ぎており、すなわち、ネットワーク202からネットワーク200へと通知された利用可能なタイムスロットを逃している。このようにして利用可能なタイムスロットを逃すことを回避するために、両方のネットワークのノード処理時間が厳密にマッピングされるべきであるが、ノード間の更なるシグナリング、並びに信号の伝搬遅延及び信号処理を考慮すると、貴重なタイムスロットを逃さないようにするために必要とされる時間のマッピングは基本的に不可能である。したがって、ネットワーク202における波長変換及びパケットスイッチングの後に、波長変換がされたパケットをネットワーク202に転送するためにS3をシグナリングしても、そのパケットのタイムスロットは既に経過している。したがって、変更後のパケットを含むメッセージS3を受信した際に、ネットワーク202においてそのタイムスロットが実際に存在する場所がもはやわからないため、図4を参照して説明した日和見的なリソースアクセス手法は実現不可能である。
図4を参照して先に説明した問題に対処するための1つの可能性は、例えば参考文献[1]のように、クロストラフィックを取り扱う要求の受信に応じて、ネットワーク202内のリソースの何らかの予約を行うことである。図5は、SWING(Simple Wdm rING。参考文献[3]を参照。)の分散予約プロトコル(distributed reservation protocol)を用いるときにやりとりされるパケット及びメッセージの取り扱いを図4と同様にして示している。このシナリオでは、POADMネットワーク202は、コアノード204から要求を受信した後にタイムスロット及び波長を予約する。図5において、時刻tにて、パケット222がコアノード200に到着し、コアノードが宛先アドレスの通知を含むメッセージS1を送り、そのメッセージをネットワーク202内のハブノード210が受信するものとする。ハブノードは、パケットを送信するために、現在のタイムスロットである「スロット1」を予約する。その後、ハブノード210は、メッセージS2により、タイムスロットとして「スロット1」が予約されたことと、2ms後に再び現れることとを知らせる。メッセージS2は、ネットワーク202内の宛先ノードに到達するために必要な波長の情報も更に含んでいる。コアノード204がメッセージS2を受信した後に、必要な波長変換及びパケットスイッチングが実行され、その実行に再びある時間、例えば380nsを要し、その後、変換されたパケットが、メッセージS3によりネットワーク202へと送信される必要がある。しかし、波長変換及びパケットスイッチングが完了し、メッセージS3がネットワーク202に到達した時点で、そのパケットのために予約されたタイムスロットである「スロット1」の次回の受領(receipt)までの2msという時間のうちのごくわずかしか経過していないため、結果として、予約されたスロットがハブノードを再び通過するまでに数ミリ秒程度の待ち時間が生じ、その時間になってようやく、変換されたパケットをネットワーク202内に提供できるようになる。結果的に、POADMネットワーク202又はHOPRネットワーク200のいずれかにおいて、変換されたパケットのバッファリングをする必要がある。しかし、光遅延線(optical delay line)は、数ミリ秒の幅の待ち時間には対処できず、むしろ、百ナノ秒〜数百ナノ秒の待ち時間にしか対処できないため、図5のシナリオでは、変換されたパケットのバッファリングをするのに電気的バッファが必要となり、OEO変換が再び必要となるため望ましくない。
つまり、図5に示したシナリオでは、変換された光パケットは、ターゲットとなる光ネットワークすなわち図5の例において示したPOADMネットワーク202のエッジノードであるハブノードか、又はソースとなる光ネットワークすなわち図5に示した例におけるHOPRネットワークのエッジノードであるコアノード204かにおいて、予約されたタイムスロットが到来するまで待つ必要がある。上記のように、この待ち時間は数ミリ秒程度になるが、光学的なバッファリングは非常にコストがかかり、現時点では数百ナノ秒程度の遅延に対処することができる光遅延線によってしか実現できないため、その光パケットを電気的領域に変換し、電気的バッファに記憶し、予約されたタイムスロットが到来したときに光学的領域に再び変換する必要がある。必然的に、これはエネルギー消費量を増加させる上に、更なる遅延を引き起こすことになるため、望ましくない。
そこで、本発明の実施形態では、別々のパケット光ネットワークを相互に接続するための、クロストラフィックとローカルトラフィックとのそれぞれに専用のデータチャネルの概念を提供する。情報のやりとり及びデータグラムのやりとりに対応した新たな手順を以下に更に詳細に説明する。
図6は、本発明の一実施形態による、宛先ノードに対し外部の光データパッケージを提供するシステムの概略を示している。図6は、図3と同様のシナリオを示している。図6では、光パケットリング218を概略的に示しているが、本発明の手法によれば、光パケットリング218は、それぞれのノード210〜216を接続し、これらノード210〜216の間においてネットワーク202内でやりとりされるローカルトラフィックのためにのみ用いられる第1のデータチャネル224を有している。光パケットリング218はさらに、クロストラフィック220からの光パケットを各ノード210〜216に送るための専用のデータチャネル226を有している。したがって、本発明の手法によれば、ネットワーク202において、2つの独立したデータチャネル224、226が設けられる。第1のデータチャネル224はローカルトラフィックのために用いられ、第2のデータチャネル226はクロストラフィック220のために用いられる。このような独立したデータチャネルの一例は、別々の波長が関連付けられたデータチャネルを使用することであり、WDMの技術により、別々の波長により搬送されるトラフィックは、互いに干渉することなく同じファイバ内で転送することができる。したがって、光パケットリング218は単一のファイバによって構成することができ、データチャネル224及び226はそれぞれ、異なる波長の集合によって定められる。図6の例では、ローカルトラフィックデータチャネルは、図示しているように、ノード210〜216に割り当てられている波長λ〜λにより構成されるものとしている。したがって、宛先に応じて、ネットワーク202内のその宛先ノードに割り当てられた波長によりローカルトラフィックパケットが提供される。さらに、各ノードには別の波長λ〜λが割り当てられており、これらの波長によりクロストラフィックのデータチャネル226が定められる。そして、例えば、コアネットワーク200からメトロ/アクセスネットワーク202内のノード214へと送信されるデータパケット222は、リング218、例えば単一のファイバを通じてノード214へと送信できるように、波長λを有するものとなるように波長変換される。POADMリング218内の各ノード210〜216は2つの受信機を有している。一方の受信機はローカルトラフィックに割り当てられた波長を受信し、他方の受信機はローカルトラフィックに割り当てられた波長を受信する。さらに、別のローカル基地局又はコアネットワークにパケットを送るために、それぞれに送信機を設けることもできる。
コアネットワーク200も、ネットワーク202と同じような構成とすることができ、すなわち2つのデータチャネルを有するものとすることができる。一方はローカルチャネル用であり、他方は、コアノード204を通じてコアネットワーク内の別のノードに送信する必要があり、かつネットワーク202から生じるクロストラフィック用であることに留意されたい。メトロ/アクセスネットワークに関して説明したように、コアネットワークにおいても、信号が別々波長によって分離されるため、2つのデータチャネルの送信を単一のファイバによって行うことができる。
2つの独立したデータチャネル224及び226の実際のリソースについては、実施形態によれば、これらのデータチャネル用の波長は動的に、又は統計データに基づいて事前に割り当てることができることに留意されたい。
制御情報、例えば波長と宛先アドレスとをマッピングするテーブルは、クロストラフィックの発生とは無関係に事前にやりとりすることができる。このようにして、ソースとなるパケット光ネットワーク(図6の実施形態ではコアネットワーク200)は、ターゲットとなるパケット光ネットワーク(図6の実施形態ではメトロ/アクセスネットワーク202)とインタラクトすることなく、波長変換を行うことができる。ターゲットとなるパケット光ネットワーク200は、アドレス情報及び可能なQoS情報を有する、ソースとなるパケット光ネットワークからの到着パケットに関する短い通知(short notice)を受けた後に、ソースとなるパケット光ネットワークによる処理と並行して制御ヘッダを準備することができる。クロスデータトラフィックが生じるか否かとは無関係に、定期的に時間同期を行うことができる。
図7は、ローカルトラフィックとクロストラフィックとに別々のデータチャネルを設けることにより、クロストラフィックにおけるリソースの利用可能性を保証する本発明の手法を実施する際に、各ネットワーク及びネットワーク間で行われる処理を図4及び図5と同様にして示している。基本的に、POADMネットワーク202内の各タイムスロットにおいて、別々のチャネルを同時に送信できることにより、ネットワーク200から受信したクロストラフィックの光パケットを送信することができる。本発明の実施形態によれば、ある時点において、ネットワーク200と202との間で、より具体的には、コアネットワーク200内のコアノード204と、メトロ/アクセスネットワーク202内のハブノード210との間でメッセージS1がやりとりされる。メッセージS1は、第2のデータチャネルに関連付けられており、かつネットワーク202内の各ノードに割り当てられている波長のリストを含んでいる。ネットワーク間の時間同期も行うことができ、その後、所定の間隔で時間同期を繰り返し行うことができる。時刻tにおいてパケット222が到着し、ネットワーク間で別のシグナリングを行うことなく、それよりも前の時点においてメッセージS1により得られた波長のリスト(λ-list)の情報に基づいて、コアノード204が波長変換及びパケットスイッチングを行うものとする。そのため、この処理が完了した後、例えば必要な380nsの経過後に、変換されたパケットがメッセージS2又はメッセージS3によりネットワーク202へと送信される。メッセージS2を用いる場合には、変換されたパケットは変換完了後に送信され、受信した信号を次のタイムスロット、例えばスロットnの開始まで遅延させるために、ネットワーク202に光遅延線を設けることができる。あるいは、同期により、ネットワーク200は、ネットワーク202内の各タイムスロットがハブノード210において発生する時刻についての情報を有するため、メッセージS3を通じてメッセージを送信する際に、そのメッセージが所望のタイムスロットである「スロットn」の開始時に受信されるようにメッセージS3の送信を遅延させる光遅延線が、コアノード204又はコアネットワーク200に存在していてもよい。
したがって、本発明の手法によれば、電気的バッファは不要であり、結果としてOEO変換も不要である。
図8は、図6に示したシナリオにおける各要素間のシグナリングを示している。図8においては、HOPRノード204と、POADMハブ210と、POADMファイバ218とのシグナリングを示している。指定された時刻、例えば2つのネットワーク200及び202を設定する時刻、あるいは別の時刻において、2つのネットワークの時間基準を同期をとるためにメッセージS1がやりとりされ、ネットワーク202における宛先アドレスをコアトラフィックデータチャネルの特定の波長とマッピングするテーブルもコアノード204に送信される。コアノード204が、ネットワーク202に転送されるべきパケットを受信すると、ハブ210に短い通知(short notice)S2が送られ、符号230において、ノード204は、予めわかっている波長の割当てに基づいて、受信したパケットの必要な変換、例えば波長の変換を行う。この処理230の後にメッセージS3が送られ、このメッセージは、利用可能な次のタイムスロットに合わせるために、ノード204又はハブ210において遅延させることができる。これと並行して、符号232において、ハブ210は必要な制御チャネル情報を準備し、その情報を、ハブ210からの情報とノード204からの情報とがファイバ210に同時に、より具体的には同じタイムスロットにおいて到着するように、メッセージS4によりファイバ218に送る。したがって、上記の手法と比べると、異なったパケット光ネットワーク間の信号のやりとりが削減され、パケット光ネットワークの接続ノード又はエッジノードにおける処理が分離され、例えば、ノード204が波長変換を実行する処理230と、ノード232がチャネル制御情報を準備する処理232とは、並行して行うことができる。結果として、ターゲット又はソースとなるパケット光ネットワークにおける光パケットの待ち時間は、図7から明らかなように、100ns未満、より一般的には、ファイバ218におけるタイムスロットの期間(duration)未満に短縮され、このような待ち時間は光遅延線を用いて容易に実現することができるため、不要かつ望ましくない電気的バッファ及びそれに関連する光・電気間の変換を回避することができる。
上記の本発明の手法に関して、実施形態は光通信ネットワークにおいてデータを送信するために用いられるデータチャネルの波長を単に変更することに関するものではなく、上記のように、本発明の手法は1つ以上のパケット光ネットワークに関し、光データパケットをそのネットワークへ、外部のノード又は外部のネットワークから提供するためのものである。パケット光ネットワークは、ネットワークを通じて送信されるパケットがヘッダ及びペイロードを有し、ヘッダがパケットを宛先にルーティングするために必要な情報を有するという点で、光以外のパケットスイッチングネットワークに似ている。したがって、新たな光ネットワークと光データパケットのやりとりをするときには、受信側の光ネットワークの必要条件を考慮してデータペイロードの波長変換を提供する必要があり、それに加えて、制御情報、特に宛先ノードのアドレスも入手可能となり、宛先ネットワークにおいて使用可能となるように、パケット内のヘッダの制御情報を変換する必要がある。
そのため、例えば、図8を参照して説明したように、外部の光データパケット222を光学的に変換することは、データペイロードを波長変換すること(符号230)と、外部の光データパケット222内の制御情報に基づいて制御ヘッダ又は制御情報を準備すること(符号232)との2つのステップを含む。これに続いて、変換された外部の光データパケットをパケット光ネットワーク202へと光学的に送ることは、波長変換がされたデータペイロードと、準備された制御ヘッダ又は制御情報とをパケット光ネットワーク202に向けて送信すること(メッセージS3及びS4を参照)を含む。
これまで述べたように、上記のステップは光データパケットを受信側のネットワークに向けて光学的に送るために行われ、本発明の手法によれば、電気的領域への中間的な変換を行う必要性を回避するために、宛先ネットワーク内に更なる制御チャネルが設けられる。それにより、データの変換及び制御情報の生成の完了後に、これを受信側ネットワーク内の指定された制御チャネルに転送し、受信側ネットワークについて生成された制御情報を用いて宛先へとルーティングすることができる。
幾つかの態様を装置との関連で説明してきたが、これらの態様は、対応する方法の記述も表していることは明らかであり、この対応する方法では、ブロック又はデバイスが、方法ステップ又は方法ステップの特徴に対応する。同様に、方法ステップとの関連で説明した態様も、対応する装置の対応するブロック又は項目又は特徴の記述を表している。
ある特定の実施態様の要件に応じて、本発明の実施形態はハードウェア又はソフトウェアにおいて実施することができる。実施態様は、電子的に読取り可能な制御信号が記憶されたデジタル記憶媒体、例えばフロッピー(登録商標)ディスク、DVD、CD、ROM、PROM、EPROM、EEPROM、又はフラッシュメモリを用いて実行することができ、それらは、それぞれの方法が実行されるようにプログラム可能なコンピュータシステムと連携する(又は連携可能である)。
本発明による幾つかの実施形態は、本明細書に記載した方法のうちの1つが実行されるようにプログラム可能なコンピュータシステムと連携可能な、電子的に読取り可能な制御信号を有する非一時的(non-transitory)なデータキャリアを含む。
概して、本発明の実施形態は、プログラムコードを有するコンピュータプログラム製品として実装することができる。このプログラムコードは、コンピュータプログラム製品がコンピュータ上で実行されると、方法のうちの1つを実行するように動作可能である。プログラムコードは、例えば機械可読キャリア上に記憶することができる。
他の実施形態は、機械可読キャリア上に記憶された、本明細書に記載された方法のうちの1つを実行するコンピュータプログラムを含む。
したがって、換言すれば、本発明の方法の一実施形態は、コンピュータプログラムがコンピュータ上で実行されるときに本明細書に記載された方法のうちの1つを実行するプログラムコードを有するコンピュータプログラムである。
したがって、本発明の方法の更なる実施形態は、データキャリア(又はデジタル記憶媒体若しくはコンピュータ可読媒体)であって、該データキャリア上に記録された、本明細書に記載された方法のうちの1つを実行するコンピュータプログラムを含む、データキャリアである。
したがって、本発明の方法の更なる実施形態は、本明細書に記載された方法のうちの1つを実行するコンピュータプログラムを表すデータストリーム又は信号シーケンスである。データストリーム又は信号シーケンスは、例えば、データ通信接続を通じて、例えばインターネットを通じて転送されるように構成することができる。
更なる実施形態は、本明細書に記載された方法のうちの1つを実行するように構成又は適合された処理手段、例えばコンピュータ又はプログラム可能な論理デバイスを含む。
更なる実施形態は、本明細書に記載された方法のうちの1つを実行するコンピュータプログラムがインストールされたコンピュータを含む。
幾つかの実施形態では、プログラム可能な論理デバイス(例えばフィールドプログラマブルゲートアレイ)を用いて、本明細書に記載された方法の機能のうちの幾つか又は全てを実行することができる。幾つかの実施形態では、フィールドプログラマブルゲートアレイは、本明細書に記載された方法のうちの1つを実行するためにマイクロプロセッサと連携することができる。概して、本方法は任意のハードウェア装置によって実行されることが好ましい。
上述した実施形態は、本発明の原理を単に例示したものに過ぎない。本明細書に記載した構成並びに詳細の変更及び変形は当業者には明らかであることが理解される。したがって、添付の特許請求の範囲によってのみ限定され、本明細書における実施形態の説明及び説明のために提示した特定の詳細によって限定されるものではないことが意図される。
[参考文献]
[1]Dominique Chiaroni, Gema Buforn Santamaria, Christian Simonneau, Sophie Etienne, Jean-Christophe Antona, Sebastien Bigo, Jesse Simsarian: Packet OADMs for the next generation of ring networks. Bell Labs Technical Journal 14(4): 265-283 (2010)
[2]Thomas Bonald, Raluca-Maria Indre, Sara Oueslati, Chloe Rolland: Throughput-Delay Trade-Offs in Slotted WDM Ring Networks. BROADNETS 2010: 314-327
[3]T. Bonald, S. Oueslati, J. Roberts, C. Roger, SWING: Traffic capacity of a simple WDM ring network, Proc. of ITC 21, 2009

Claims (15)

  1. 複数のノード(210〜216)と、該複数のノード(210〜216)間でローカル光データパケットを光学的に伝える第1の光データチャネル(224)とを有するパケット光ネットワーク(202)内の宛先ノードに対し、外部の光データパケット(222)を提供する方法であって、
    前記パケット光ネットワーク(202)内の、前記第1の光データチャネル(224)とは別の第2の光データチャネル(226)を通じて前記宛先ノードへの送信を行うために前記外部の光データパケット(222)を光学的に変換するステップ(230)と、
    変換された外部の光データパケット(222)を前記パケット光ネットワーク(202)へと光学的に送るステップと、
    前記変換された外部の光データパケット(222)を前記第2の光データチャネル(226)を通じて前記宛先ノードへと送るステップと
    を含み、
    前記外部の光データパケットは、ヘッダ(222a)とペイロードセクション(222b)とを有し、前記ヘッダ(222a)は制御情報を有し、前記ペイロードセクション(222b)はデータペイロードを有するものである、方法。
  2. 前記外部の光データパケット(222)を光学的に変換する前記ステップ(230)が、前記データペイロードの波長変換ステップ(230)と、前記外部の光データパケット(222)内の制御情報に基づいて制御ヘッダ又は制御情報を準備するステップ(232)とを含み、
    前記変換された外部の光データパケット(222)を前記パケット光ネットワーク(202)へと光学的に送る前記ステップが、波長変換がなされたデータペイロードと準備された前記制御ヘッダ又は制御情報とを前記パケット光ネットワーク(202)に向けて送信するステップ(S3、S4)を含む、請求項1に記載の方法。
  3. 前記第1の光データチャネル(224)と前記第2の光データチャネル(226)とには別々の波長が割り当てられ、
    前記外部の光データパケット(222)を光学的に変換する前記ステップが、前記第2の光データチャネル(226)を通じての送信に際し、前記宛先ノードに割り当てられた波長に変換された外部の光データパケット(222)を得る波長変換ステップを含むものである、請求項1に記載の方法。
  4. 前記波長変換ステップは、前記パケット光ネットワーク(202)内の前記ノード(210〜216)の宛先アドレスを、前記第2の光データチャネル(226)を通じた送信のための、前記パケット光ネットワーク(202)内の前記ノード(210〜216)に割り当てられた波長とマッピングするテーブルに基づくものである、請求項3に記載の方法。
  5. 前記第1の光データチャネル(224)及び第2の光データチャネル(226)を通じた送信に用いられる波長が動的に又は事前に割り当てられるものである、請求項3又は4に記載の方法。
  6. 前記外部の光データパケット(222)を受信すると、前記パケット光ネットワーク(202)に通知を送るステップ(S2)を更に含み、該通知が前記宛先ノードに関するアドレス情報を含むものである、請求項1〜5のいずれか一項に記載の方法。
  7. 前記パケット光ネットワーク(202)が前記複数のノード(210〜216)間で制御チャネル情報を伝えるための制御チャネルを更に有し、
    受信した前記通知に基づいて前記外部の光データパケット(222)のための制御ヘッダを準備するステップ(232)と、
    前記第2のデータチャネルを通じて前記変換された外部の光データパケットを送る際に、前記制御チャネルを通じて前記制御ヘッダを送るステップと
    を含む請求項6に記載の方法。
  8. 前記通知は、前記パケットのQoSといった、前記外部の光データパケット(222)についての更なる情報を含んでおり、前記制御ヘッダが前記更なる情報にも基づいて準備されるものである、請求項6に記載の方法。
  9. 前記パケット光ネットワーク(202)がスロット式のパケット光ネットワーク(202)であり、
    前記変換された外部の光データパケット(222)を次のタイムスロットにおいて送信するために、該変換された外部の光データパケット(222)を光学的に遅延させるステップを含み、該遅延が前記スロット式のパケット光ネットワーク(202)の単一のタイムスロットの期間以下である、請求項1〜8のいずれか一項に記載の方法。
  10. 前記外部の光データパケット(222)が、前記パケット光ネットワーク(202)に光学的に接続した外部ノード(204)により受信され、前記外部のデータパケット(222)が前記外部ノード(204)により光学的に変換されるものである、請求項1〜9のいずれか一項に記載の方法。
  11. 前記外部ノード(204)が、別の光データチャネル(226a、206b)を通じて通信する複数のノードを有する別のパケット光ネットワーク(200)内のノードである、請求項10に記載の方法。
  12. 前記パケット光ネットワーク(202)は、第1の技術に従って動作するモバイルアクセスネットワークを含み、
    前記別のパケット光ネットワーク(200)は、前記第1の技術とは異なる第2の技術に従って動作するモバイルコアネットワークを含み、
    前記ローカル光データパケットは、前記モバイルアクセスネットワーク内の基地局間で送信されるパケットを含み、
    前記外部の光データパケット(222)は、前記モバイルコアネットワークのゲートウェイと前記モバイルアクセスネットワークの基地局との間で送られるパケットを含む、請求項11に記載の方法。
  13. 前記パケット光ネットワーク(202)が光ファイバを有し、前記第1のデータチャネル(224)及び前記第2のデータチャネル(226)の光データパケットが同じ光ファイバ内で送信されるものである、請求項1〜12のいずれか一項に記載の方法。
  14. コンピュータ可読媒体に記憶された命令を有するコンピュータプログラム製品であって、前記命令は請求項1〜13のいずれか一項に記載の方法をコンピュータに実行させるものである、コンピュータプログラム製品。
  15. 宛先ノードに外部の光データパッケージを提供するシステムであって、
    複数のノード(210〜216)と、該複数のノード(210〜216)間でローカル光データパケットを光学的に伝えるための第1の光データチャネル(224)と、該複数のノード(210〜216)間で外部の光データパケット(222)を光学的に伝えるための第2の光データチャネル(226)とを有し、前記第1のデータチャネルと前記第2のデータチャネルとは互いに独立しており、前記複数のノード(210〜216)に前記宛先ノードが含まれる、パケット光ネットワーク(202)と、
    前記パケット光ネットワーク(202)に光学的に接続し、前記外部の光データパケット(222)を受信し、前記パケット光ネットワーク(202)の前記第2の光データチャネル(226)を通じて前記宛先ノードへの送信を行うために、受信した前記外部の光データパケット(222)を光学的に変換し、変換された外部の光データパケットを前記パケット光ネットワーク(202)に向けて光学的に送る外部ノード(204)と
    を有し、
    前記外部の光データパケットは、ヘッダ(222a)と、ペイロードセクション(222b)とを有し、前記ヘッダ(222a)は制御情報を有し、前記ペイロードセクション(222b)はデータペイロードを有するものである、システム。
JP2013199339A 2012-10-01 2013-09-26 パケット光ネットワークの宛先ノードに外部の光データパケットを提供する方法及びシステム Expired - Fee Related JP5739960B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20120186801 EP2713626A1 (en) 2012-10-01 2012-10-01 Method and system for providing an external optical data packet to a destination node of a packet optical network
EP12186801.2 2012-10-01

Publications (2)

Publication Number Publication Date
JP2014090408A true JP2014090408A (ja) 2014-05-15
JP5739960B2 JP5739960B2 (ja) 2015-06-24

Family

ID=46980826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013199339A Expired - Fee Related JP5739960B2 (ja) 2012-10-01 2013-09-26 パケット光ネットワークの宛先ノードに外部の光データパケットを提供する方法及びシステム

Country Status (4)

Country Link
US (1) US9438367B2 (ja)
EP (1) EP2713626A1 (ja)
JP (1) JP5739960B2 (ja)
CN (1) CN103716721B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531370A (ja) * 2014-08-25 2017-10-19 華為技術有限公司Huawei Technologies Co.,Ltd. エネルギーセービング制御方法、管理サーバ及びネットワークデバイス

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008411A1 (ja) * 2013-07-19 2015-01-22 日本電気株式会社 パケット転送システム、制御装置、制御方法、および非一時的なコンピュータ可読媒体
US9712339B2 (en) * 2014-04-24 2017-07-18 Infineon Technologies Ag Bus architecture and access method for plastic waveguide
CN103957477B (zh) * 2014-05-14 2018-07-27 东南大学 一种面向电网业务的光交换方法及网络
CN104852767B (zh) * 2015-05-26 2019-02-15 国网智能电网研究院 一种面向变电站内采样值业务的光网络系统及传输方法
CN106330590B (zh) * 2015-06-30 2020-02-11 中兴通讯股份有限公司 分组光传送网单板的测试方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179560A (ja) * 2001-12-10 2003-06-27 Fujitsu Ltd ノード及び波長分割多重リングネットワーク
JP2007020017A (ja) * 2005-07-08 2007-01-25 Tokyo Institute Of Technology 光パケットルータ、光シリアル−パラレル変換器及び光ビット抽出器
JP2007535269A (ja) * 2004-04-27 2007-11-29 サイバートロン カンパニー リミテッド リングタイプ光伝送システム
US7327955B2 (en) * 2002-01-03 2008-02-05 Alcatel Device and method for switching optical data for optical communication networks
WO2011145218A1 (ja) * 2010-05-21 2011-11-24 三菱電機株式会社 光通信システムおよび通信装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100363884B1 (ko) * 1999-12-27 2002-12-11 한국전자통신연구원 파장분할다중 기반 인터넷 프로토콜 망 구조와, 이러한 망구조에서의 패킷 송수신 시스템 및 방법
KR100450404B1 (ko) * 2002-07-03 2004-09-30 한국전자통신연구원 파장식별 코드방식의 무선 액세스 망 패킷 전달방법
US7200331B2 (en) * 2002-07-15 2007-04-03 Lucent Technologies Inc. Wavelength routing on an optical metro network subtended off an agile core optical network
CN1316798C (zh) 2003-09-25 2007-05-16 电子科技大学 一种多控制分组汇聚交换调度方法
JP4969507B2 (ja) * 2008-04-25 2012-07-04 株式会社日立製作所 パケット転送装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003179560A (ja) * 2001-12-10 2003-06-27 Fujitsu Ltd ノード及び波長分割多重リングネットワーク
US7327955B2 (en) * 2002-01-03 2008-02-05 Alcatel Device and method for switching optical data for optical communication networks
JP2007535269A (ja) * 2004-04-27 2007-11-29 サイバートロン カンパニー リミテッド リングタイプ光伝送システム
JP2007020017A (ja) * 2005-07-08 2007-01-25 Tokyo Institute Of Technology 光パケットルータ、光シリアル−パラレル変換器及び光ビット抽出器
WO2011145218A1 (ja) * 2010-05-21 2011-11-24 三菱電機株式会社 光通信システムおよび通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017531370A (ja) * 2014-08-25 2017-10-19 華為技術有限公司Huawei Technologies Co.,Ltd. エネルギーセービング制御方法、管理サーバ及びネットワークデバイス

Also Published As

Publication number Publication date
US20140093241A1 (en) 2014-04-03
CN103716721A (zh) 2014-04-09
US9438367B2 (en) 2016-09-06
EP2713626A1 (en) 2014-04-02
JP5739960B2 (ja) 2015-06-24
CN103716721B (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
US10856058B2 (en) Switching data signals of at least two types for transmission over a transport network providing both backhaul and fronthaul (Xhaul) connectivity
US10554542B2 (en) Label distribution method and device
CN114080789B (zh) 用于应用工作负载的网络定义的边缘路由
JP5739960B2 (ja) パケット光ネットワークの宛先ノードに外部の光データパケットを提供する方法及びシステム
Szymanski Supporting consumer services in a deterministic industrial internet core network
US20140178066A1 (en) QoS-aware united control protocol for optical burst switching in software defined optical netoworks
US10305785B2 (en) Adaptive traffic routing in communication networks
WO2011140945A1 (zh) 一种业务数据传输方法及装置
US20140185607A1 (en) Communication system, communication path establishing method and management server
US20030137983A1 (en) Traffic-engineering scheduling device for multi protocol label switching
EP3038279B1 (en) Bandwidth map update method and device
Qiao et al. Extending generalized multiprotocol label switching (GMPLS) for polymorphous, agile, and transparent optical networks (PATON)
KR100653626B1 (ko) 동기 및 비동기 통합 프레임 기반 맞춤 품질 전달망 구성장치 및 방법
CN101860769A (zh) 一种ip与光融合的方法、装置和系统
WO2012109860A1 (zh) 建立标签交换路径的方法、设备和系统
US20180167257A1 (en) Methods and systems for forming network connections
CN109698982B (zh) 控制通道实现方法、装置、设备、存储介质和处理方法
Remondo et al. Integration of optical and wireless technologies in the metro-access: QoS support and mobility aspects
CN118337784B (zh) 用于全连接工厂的确定性cpe及构建方法
Waqar et al. QoS assurance for PON-based fronthaul and backhaul systems of 5G cloud radio access networks
JP2012104886A (ja) 転送制御装置
WO2012126410A2 (zh) 数据传送方法、节点及系统
Nakagawa et al. Cost-effective control plane design for optical sub-wavelength switched ring network
Chu et al. Analysis of Switching Control Channels in Ason
WO2006094430A1 (fr) Systeme d'echange de circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150424

R150 Certificate of patent or registration of utility model

Ref document number: 5739960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees