JP2014082378A - Manufacturing method of reverse blocking mos semiconductor device - Google Patents

Manufacturing method of reverse blocking mos semiconductor device Download PDF

Info

Publication number
JP2014082378A
JP2014082378A JP2012229972A JP2012229972A JP2014082378A JP 2014082378 A JP2014082378 A JP 2014082378A JP 2012229972 A JP2012229972 A JP 2012229972A JP 2012229972 A JP2012229972 A JP 2012229972A JP 2014082378 A JP2014082378 A JP 2014082378A
Authority
JP
Japan
Prior art keywords
temperature
hours
reverse blocking
diffusion
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012229972A
Other languages
Japanese (ja)
Inventor
Mitsuyasu Kakefu
光泰 掛布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2012229972A priority Critical patent/JP2014082378A/en
Priority to CN201310478856.5A priority patent/CN103779231A/en
Publication of JP2014082378A publication Critical patent/JP2014082378A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a reverse blocking MOS semiconductor device which can reduce decrease in resistance of a semiconductor substrate, and suppresses decrease in on-state voltage, and reduce reverse leakage current and decrease in breakdown voltage even having high voltage of 1200 V and over.SOLUTION: The manufacturing method of a reverse blocking MOS semiconductor device comprises: a first step of forming an annular p-type isolation diffusion layer by ion implantation on an outer periphery of each region to be a device chip of an n-type semiconductor substrate by heat treatment at a diffusion temperature of 1280°C-1320°C for 300 hours-330 hours; and a second step of forming a MOS gate structure and a breakdown voltage structure, which become a semiconductor functional region on an inner periphery surrounded by the annular isolation diffusion layer. In the first step, when lowering the temperature after completion of the heat treatment at the diffusion temperature of 1280°C-1320°C for 300 hours-330 hours, a diffusion temperature-time program is executed for lowering the temperature to a temperature range of not less than 1000°C and not more than 1200°C and subsequently keeping the temperature within the temperature range for 25 hours and over.

Description

本発明は、高温長時間拡散を伴う深い不純物拡散層の形成工程を有する逆阻止MOS型半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a reverse blocking MOS semiconductor device having a step of forming a deep impurity diffusion layer accompanied by high temperature and long time diffusion.

近年、半導体素子を用い、AC(交流)/AC変換や、AC/DC(直流)変換、DC/AC変換などを行うための電力変換回路では、電解コンデンサや直流リアクトルなどで構成される直流平滑回路を不要にできる直接リンク形変換回路として、マトリクスコンバータが知られている。このマトリクスコンバータは交流電圧下で使用されるため、マトリクスコンバータを構成する複数のスイッチングデバイスには、順、逆方向に電流制御可能な双方向スイッチングデバイスを必要とする。   In recent years, in a power conversion circuit for performing AC (alternating current) / AC conversion, AC / DC (direct current) conversion, DC / AC conversion, etc. using a semiconductor element, direct current smoothing composed of an electrolytic capacitor, a direct current reactor, etc. A matrix converter is known as a direct link type conversion circuit that can eliminate the need for a circuit. Since this matrix converter is used under an alternating voltage, a plurality of switching devices constituting the matrix converter require bidirectional switching devices capable of current control in the forward and reverse directions.

最近、回路の小型化、軽量化、高効率化、高速応答化および低コスト化等の観点から、前記双方向スイッチングデバイスを、図6の等価回路図に示すように2個の逆阻止IGBTを逆並列接続構成としたものが着目されている。このような逆阻止IGBTの逆並列接続構成の双方向スイッチングデバイスには、逆方向電圧を阻止するためのダイオードを不要にできるメリットがある。前記逆阻止IGBTは、逆耐圧を順耐圧と同程度の耐圧にすると共に耐圧信頼性も高めた特性を有するデバイスを言う。一方、従来の電力変換回路に使用される通常のIGBTでは、逆耐圧を有しない通常のトランジスタやMOSFETと同様に、有効な逆耐圧は不要とされていたので、逆耐圧が順耐圧に比べて低く耐圧信頼性も低い性能のIGBTで充分であったのである。   Recently, from the viewpoint of circuit miniaturization, weight reduction, high efficiency, high speed response and low cost, the bidirectional switching device is replaced with two reverse blocking IGBTs as shown in the equivalent circuit diagram of FIG. An antiparallel connection configuration has attracted attention. Such a bidirectional switching device having a reverse-blocking IGBT with an anti-parallel connection has an advantage that a diode for blocking a reverse voltage can be eliminated. The reverse blocking IGBT is a device having a characteristic that the reverse breakdown voltage is set to a breakdown voltage comparable to the forward breakdown voltage and the breakdown voltage reliability is also improved. On the other hand, in a normal IGBT used in a conventional power conversion circuit, an effective reverse breakdown voltage is unnecessary as in a normal transistor or MOSFET that does not have a reverse breakdown voltage. An IGBT having a low performance and a low withstand voltage reliability was sufficient.

図5は、そのような逆阻止IGBTを示す断面模式図であり、下記特許文献1に記載されている。この逆阻止IGBTは、デバイスチップの中央に活性領域110があり、この活性領域110を取り巻く外周側に、耐圧構造領域120を挟んで、さらにその外側を取り囲むp型分離拡散層31を有する構造を特徴とする。このp型分離拡散層31をn型シリコン基板1の一方の主面からの熱拡散のみにより形成するためには、p型分離拡散層31の深さを基板の厚さ以上にする必要があるので、高温長時間の熱拡散ドライブを伴う。図5に示す逆阻止IGBTの活性領域110は、n型ドリフト層1、p型ベース領域2、n型エミッタ領域3、ゲート絶縁膜4、ゲート電極5、層間絶縁膜6、エミッタ電極9およびp型コレクタ層10、コレクタ電極11などを備える縦型のIGBTの主電流の経路となる領域である。前記p型分離拡散層31は、n型シリコン基板の表面から、ボロンの熱拡散により裏面側のp型コレクタ層10に達する深さに形成されるp型の領域である。このp型分離拡散層31によって、逆耐圧接合であるp型コレクタ層10とn型ドリフト層1の間のpn接合面の終端部がチップ化の際の切断面となるチップ側端面12に露出せず、絶縁膜で保護された耐圧構造領域120の表面13に露出するので、逆耐圧信頼性を高くすることができる。   FIG. 5 is a schematic cross-sectional view showing such a reverse blocking IGBT, which is described in Patent Document 1 below. This reverse blocking IGBT has an active region 110 in the center of the device chip, and has a structure having a p-type isolation diffusion layer 31 surrounding the outer side of the active region 110 with a breakdown voltage structure region 120 therebetween. Features. In order to form the p-type isolation / diffusion layer 31 only by thermal diffusion from one main surface of the n-type silicon substrate 1, the depth of the p-type isolation / diffusion layer 31 needs to be greater than the thickness of the substrate. So with high temperature long time thermal diffusion drive. The active region 110 of the reverse blocking IGBT shown in FIG. 5 includes an n-type drift layer 1, a p-type base region 2, an n-type emitter region 3, a gate insulating film 4, a gate electrode 5, an interlayer insulating film 6, an emitter electrode 9 and p. This is a region serving as a main current path of a vertical IGBT including the type collector layer 10 and the collector electrode 11. The p-type isolation diffusion layer 31 is a p-type region formed at a depth reaching the p-type collector layer 10 on the back surface side by thermal diffusion of boron from the surface of the n-type silicon substrate. By this p-type isolation diffusion layer 31, the end portion of the pn junction surface between the p-type collector layer 10 and the n-type drift layer 1, which is a reverse breakdown voltage junction, is exposed on the chip side end surface 12 that becomes a cut surface when chipping. Without being exposed to the surface 13 of the breakdown voltage structure region 120 protected by the insulating film, the reverse breakdown voltage reliability can be increased.

図4((a)〜(d))は、そのような逆阻止IGBTにかかるp型分離拡散層104をボロンのイオン注入と熱拡散によって形成する従来の不純物拡散プロセスを工程順に示す製造工程断面図である。まず、600μm以上の厚いシリコン半導体基板100の表面側に膜厚がおおよそ0.8μm〜2.5μm程度の熱酸化膜101をドーパントマスクとして形成する(図4(a))。この酸化膜101をパターニングして分離拡散層を形成する不純物を導入するための開口部102を形成する(図4(b))。つぎに、開口部102から不純物となるボロンをイオン注入103する(図4(c))。ボロンの選択拡散(p型分離拡散層用)のためのドーパントマスクとして用いた熱酸化膜101を除去する。高温(1300℃)、長時間(100時間〜200時間)の熱処理を行い、100μm〜200μm程度の深さのp型の拡散層104を形成する(図4(d))。このp型の拡散層104を分離拡散層として利用する。その後、p型の拡散層104により取り囲まれたシリコン半導体基板100の表面に再度酸化膜を形成しMOSゲート構造および必要な表面側機能領域を形成するプロセス(図示せず)を施す。シリコン半導体基板100の裏面から前記p型の拡散層104の底部に達するまで破線で示すように研削し除去してシリコン半導体基板100を薄くする(図4(d))。この裏面研削面に図示しないpコレクタ層とコレクタ電極で構成される裏面構造を形成し、拡散層104の中心部に位置するスクライブライン105でシリコン半導体基板100を切断する。この切断によりチップ化された逆阻止IGBTが前記図5の断面図となる。   4 (a) to 4 (d) are cross-sectional views of a manufacturing process showing a conventional impurity diffusion process in which the p-type isolation diffusion layer 104 according to such reverse blocking IGBT is formed by boron ion implantation and thermal diffusion in the order of steps. FIG. First, a thermal oxide film 101 having a thickness of about 0.8 μm to 2.5 μm is formed as a dopant mask on the surface side of a thick silicon semiconductor substrate 100 having a thickness of 600 μm or more (FIG. 4A). The oxide film 101 is patterned to form an opening 102 for introducing an impurity for forming an isolation diffusion layer (FIG. 4B). Next, boron which becomes an impurity is ion-implanted 103 from the opening 102 (FIG. 4C). The thermal oxide film 101 used as a dopant mask for selective diffusion of boron (for the p-type isolation diffusion layer) is removed. Heat treatment is performed at a high temperature (1300 ° C.) for a long time (100 hours to 200 hours) to form a p-type diffusion layer 104 having a depth of about 100 μm to 200 μm (FIG. 4D). This p-type diffusion layer 104 is used as a separation diffusion layer. Thereafter, an oxide film is formed again on the surface of the silicon semiconductor substrate 100 surrounded by the p-type diffusion layer 104, and a process (not shown) for forming a MOS gate structure and a necessary surface side functional region is performed. The silicon semiconductor substrate 100 is thinned by grinding and removing from the back surface of the silicon semiconductor substrate 100 until it reaches the bottom of the p-type diffusion layer 104 (FIG. 4D). A back surface structure composed of a p collector layer and a collector electrode (not shown) is formed on this back ground surface, and the silicon semiconductor substrate 100 is cut by a scribe line 105 located at the center of the diffusion layer 104. The reverse blocking IGBT formed into a chip by this cutting is the cross-sectional view of FIG.

しかし、前記図5に示すように、p型分離拡散層31をイオン注入によって形成する逆阻止IGBTでは、前述のように深いp型分離拡散層31の形成のために高温長時間の熱拡散ドライブが行われる。その結果、この高温長時間の熱拡散ドライブ中に、シリコン基板内に格子間酸素が導入され、酸素析出物や酸素ドナー化現象、結晶欠陥などが導入される。これらの結晶欠陥が導入されると、シリコン基板中のpn接合でリーク電流が高くなることやシリコン基板上に形成された絶縁膜の耐圧、信頼性が大幅に劣化する惧れが大きい。   However, as shown in FIG. 5, in the reverse blocking IGBT in which the p-type isolation diffusion layer 31 is formed by ion implantation, as described above, a high-temperature long-time thermal diffusion drive is performed to form the deep p-type isolation diffusion layer 31. Is done. As a result, interstitial oxygen is introduced into the silicon substrate during this high-temperature and long-time thermal diffusion drive, and oxygen precipitates, an oxygen donor phenomenon, crystal defects, and the like are introduced. When these crystal defects are introduced, there is a high possibility that the leakage current becomes high at the pn junction in the silicon substrate and that the withstand voltage and reliability of the insulating film formed on the silicon substrate are greatly deteriorated.

図7は逆阻止IGBTの逆耐圧波形を示す電流I−電圧V波形特性図である。シリコン基板内に結晶欠陥がほとんど存在しない場合には、図7(a)に示すような電流の立ち上がりが角張ったハード波形を示すが、前述の窒素析出物等に起因して結晶欠陥が多い領域を含むと、同図(b)のように電流の立ち上がりがなだらかなソフト波形になる。図7に示した規格耐圧(一点鎖線)で、(a)と(b)のI−V波形における逆方向電流を比較すると、(b)のソフト波形は(a)のハード波形に比べて逆方向電流、すなわち逆漏れ電流が多いことが分かる。逆漏れ電流が所定の基準値より多いデバイスは逆耐圧不良となる。   FIG. 7 is a current I-voltage V waveform characteristic diagram showing a reverse breakdown voltage waveform of the reverse blocking IGBT. When there are almost no crystal defects in the silicon substrate, a hard waveform with a sharp rise in current as shown in FIG. 7A is shown, but there are many crystal defects due to the aforementioned nitrogen precipitates and the like. Is included, a soft waveform in which the current rises gently as shown in FIG. When the reverse currents in the IV waveforms of (a) and (b) are compared at the standard breakdown voltage (dashed line) shown in FIG. 7, the soft waveform of (b) is the reverse of the hard waveform of (a). It can be seen that the direction current, that is, the reverse leakage current is large. A device having a reverse leakage current larger than a predetermined reference value has a reverse breakdown voltage failure.

また、前述のような逆阻止IGBTで高温長時間の熱拡散ドライブにより導入される酸素のドナー化に起因する結晶欠陥による影響を抑える目的のゲッタリング技術が知られている。そのようなゲッタリングのために、高温長時間の熱拡散ドライブ条件として、1300℃で100時間以上の熱処理および1100℃で200分、1150℃で120分、1000℃で、30分の熱処理も併せて行われることが記述されている(特許文献2、3)。   In addition, a gettering technique for the purpose of suppressing the influence of crystal defects caused by donor formation of oxygen introduced by a high-temperature long-time thermal diffusion drive in the reverse blocking IGBT as described above is known. For such gettering, high-temperature and long-time thermal diffusion drive conditions include heat treatment at 1300 ° C. for 100 hours or more, heat treatment at 1100 ° C. for 200 minutes, 1150 ° C. for 120 minutes, and 1000 ° C. for 30 minutes. (Patent Documents 2 and 3).

特開2006−80269号公報(図7)Japanese Patent Laying-Open No. 2006-80269 (FIG. 7) 特許第4892825号公報(段落0011)Japanese Patent No. 489825 (paragraph 0011) 特許第4951872号公報(段落0010)Japanese Patent No. 4995172 (paragraph 0010)

しかしながら、逆阻止IGBTは、前述のようにシリコン基板の一方の主面からの不純物拡散によって、両主面を前記基板とは異なる導電型の拡散層で繋げるように形成する分離拡散を必要とする。例えば、n型シリコン基板では、分離拡散層はp型となる。このような分離拡散では、シリコン基板の厚さが厚くなるほど、分離拡散中にシリコン基板が高温に晒される時間が必然的に長くなるので、高温長時間拡散の影響もあって、高温逆漏れ電流が大きくなり、逆耐圧が順耐圧より小さくなり易いなどの現象が見られるようになる。特に1200V以上の高耐圧逆阻止IGBTでは、逆耐圧が伸びにくくなる傾向が見られる。この対策として、あらかじめ、基板の抵抗率を通常より高く、基板厚を通常より厚くする設計が必要になる。ところが、基板の抵抗率を通常より高く、基板を厚くすることは拡散時間が長くなって、半導体特性を低下させる一因にもなるので、高耐圧にすればするほど、次第に実質的な対策が困難になるという問題が生じる。   However, the reverse blocking IGBT requires separation diffusion in which both main surfaces are connected by a diffusion layer having a conductivity type different from that of the substrate by impurity diffusion from one main surface of the silicon substrate as described above. . For example, in an n-type silicon substrate, the separation diffusion layer is p-type. In such separation diffusion, as the thickness of the silicon substrate increases, the time during which the silicon substrate is exposed to a high temperature is inevitably increased during the separation diffusion. And the reverse breakdown voltage tends to be smaller than the forward breakdown voltage. In particular, in the high breakdown voltage reverse blocking IGBT of 1200 V or higher, the reverse breakdown voltage tends to be difficult to extend. As a countermeasure, it is necessary to design in advance that the resistivity of the substrate is higher than usual and the thickness of the substrate is thicker than usual. However, since the resistivity of the substrate is higher than usual and the thickness of the substrate is increased, the diffusion time becomes longer and the semiconductor characteristics are deteriorated. The problem becomes difficult.

前述のように、特許文献2、3に記載の発明にかかる拡散熱処理条件によれば、高耐圧の逆阻止IGBTに必要な深い分離拡散層の形成の際にも、結晶欠陥の発生はある程度抑えられるが、酸素ドナーによるシリコン基板(高抵抗ドリフト層)の抵抗率の低下を防ぐには未だ不充分であることが分かった。また、シリコン基板(高抵抗ドリフト層)の抵抗率の低下は、逆阻止IGBTの順耐圧および逆耐圧を低下させるため、素子設計の際に、予想される抵抗率低下分を、予め見込んでおき、その分投入基板の抵抗率を高くかつ基板厚さを厚くしておく必要があった。その結果、デバイスのオン電圧を増大させ、オン電圧とターンオフ電圧のトレードオフ関係を悪化させることが避けられない。また、高温長時間拡散に伴って導入される高い酸素濃度に起因して、シリコン基板内に酸素析出物を多く析出させ、逆漏れ電流の増大、逆耐圧の低下の原因ともなり、デバイス特性に大きな影響を及ぼしていた。従って、その上さらに、基板の厚さを厚くすると、p型分離拡散層の拡散時間がさらに長くなり、前述の問題がさらに悪化するという悪循環に陥るとことも問題となる。   As described above, according to the diffusion heat treatment conditions according to the inventions described in Patent Documents 2 and 3, even when a deep isolation diffusion layer necessary for a high breakdown voltage reverse blocking IGBT is formed, generation of crystal defects is suppressed to some extent. However, it has been found that it is still insufficient to prevent the resistivity of the silicon substrate (high resistance drift layer) from being lowered by the oxygen donor. In addition, since the decrease in resistivity of the silicon substrate (high resistance drift layer) decreases the forward breakdown voltage and reverse breakdown voltage of the reverse blocking IGBT, an expected decrease in resistivity is anticipated in advance when designing the element. Therefore, it is necessary to increase the resistivity of the input substrate and increase the substrate thickness accordingly. As a result, it is inevitable to increase the on-voltage of the device and deteriorate the trade-off relationship between the on-voltage and the turn-off voltage. In addition, due to the high oxygen concentration introduced with high temperature and long time diffusion, a large amount of oxygen precipitates are deposited in the silicon substrate, which increases the reverse leakage current and decreases the reverse breakdown voltage. It had a great influence. Therefore, when the thickness of the substrate is further increased, the diffusion time of the p-type separation diffusion layer is further increased, and the above-described problem is further deteriorated.

本発明は、以上説明した問題点を解消するためになされたものであり、本発明の目的は、1200V以上の高耐圧であっても、半導体基板の低抵抗化を小さくし、オン電圧、逆漏れ電流、耐圧低下を小さくすることのできる逆阻止MOS型半導体装置の製造方法を提供することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to reduce the resistance of the semiconductor substrate even when the withstand voltage is 1200 V or higher, and to reduce the on-voltage and reverse voltage. An object of the present invention is to provide a reverse blocking MOS semiconductor device manufacturing method capable of reducing leakage current and breakdown voltage reduction.

本発明は、前記課題を解消して発明の目的を達成するために、n型半導体基板の各デバイスチップとなる領域の外周部にイオン注入により環状のp型分離拡散層を、拡散温度1280℃〜1320℃、300時間〜330時間の熱処理で形成する第1工程、該環状の分離拡散層に取り巻かれる内周部に半導体機能領域となるMOSゲート構造および耐圧構造を形成する第2工程を有する逆阻止MOS型半導体装置の製造方法において、前記第1工程で、前記拡散温度1280℃〜1320℃、300時間〜330時間の熱処理の終了後、降温する際に、1000℃以上1200℃以下の温度範囲にまで降温させた後、該温度範囲内の温度に25時間以上保持する拡散温度―時間プログラムを有する逆阻止MOS型半導体装置の製造方法とする。   In order to solve the above-described problems and achieve the object of the present invention, an annular p-type separation diffusion layer is formed by ion implantation at the outer peripheral portion of each device chip region of an n-type semiconductor substrate, with a diffusion temperature of 1280 ° C. A first step of forming by heat treatment at ˜1320 ° C. for 300 hours to 330 hours, and a second step of forming a MOS gate structure and a breakdown voltage structure as a semiconductor functional region in the inner periphery surrounded by the annular isolation diffusion layer In the reverse blocking MOS type semiconductor device manufacturing method, in the first step, the temperature is 1000 ° C. or more and 1200 ° C. or less when the temperature is lowered after the heat treatment of the diffusion temperature of 1280 ° C. to 1320 ° C. and 300 hours to 330 hours. A method of manufacturing a reverse blocking MOS semiconductor device having a diffusion temperature-time program in which a temperature is lowered to a range and then maintained at a temperature within the temperature range for 25 hours or more.

また、本発明は、前記課題を解消して発明の目的を達成するために、n型半導体基板の各デバイスチップとなる領域の外周部にイオン注入により環状のp型分離拡散層を、拡散温度1280℃〜1320℃、300時間〜330時間の熱処理条件で形成する第1工程、該環状の分離拡散層に取り巻かれる内周部に半導体機能領域となるMOSゲート構造および耐圧構造を形成する第2工程を有する逆阻止MOS型半導体装置の製造方法において、前記第1工程で、前記拡散温度1280℃〜1320℃、300時間〜330時間の熱処理を行うために、昇温する際に、1000℃以上1200℃以下の温度範囲にまで昇温させた後、該温度範囲内の温度に25時間以上保持する拡散温度―時間プログラムを有する逆阻止MOS型半導体装置の製造方法とする。前記25時間以上、前記1000μm以上1200μm以下の温度範囲内に保持する温度が一定温度であることが好ましい。また、前記第1工程で熱処理される半導体基板の厚さが100μm〜200μmの範囲にあることをも好ましい。さらに、順耐圧、逆耐圧が1200V以上であることが望ましい。またさらに、逆阻止MOS型半導体装置としては、逆阻止IGBTが望ましい。   In order to solve the above-described problems and achieve the object of the present invention, an annular p-type separation diffusion layer is formed by ion implantation at the outer peripheral portion of the region to be each device chip of the n-type semiconductor substrate. A first step of forming under a heat treatment condition of 1280 ° C. to 1320 ° C. for 300 hours to 330 hours; a second step of forming a MOS gate structure and a breakdown voltage structure as a semiconductor functional region in the inner periphery surrounded by the annular isolation diffusion layer In the manufacturing method of the reverse blocking MOS semiconductor device having the steps, in the first step, the heat treatment is performed at a diffusion temperature of 1280 ° C. to 1320 ° C. for 300 hours to 330 hours. A reverse-blocking MOS type semiconductor device having a diffusion temperature-time program in which a temperature is raised to a temperature range of 1200 ° C. or lower and held at a temperature within the temperature range for 25 hours or more. The production method. It is preferable that the temperature maintained within the temperature range of 1000 μm or more and 1200 μm or less for the 25 hours or more is a constant temperature. Moreover, it is also preferable that the thickness of the semiconductor substrate heat-treated in the first step is in the range of 100 μm to 200 μm. Furthermore, it is desirable that the forward withstand voltage and the reverse withstand voltage are 1200 V or more. Furthermore, a reverse blocking IGBT is desirable as the reverse blocking MOS semiconductor device.

本発明によれば、1200V以上の高耐圧であっても、半導体基板の低抵抗化を小さくし、オン電圧、逆漏れ電流、耐圧低下の小さい逆阻止MOS型半導体装置の製造方法を提供することができる。   According to the present invention, there is provided a method for manufacturing a reverse blocking MOS semiconductor device in which the reduction in resistance of a semiconductor substrate is reduced even when the breakdown voltage is 1200 V or higher, and the ON voltage, reverse leakage current, and breakdown voltage drop are small. Can do.

本発明にかかるp型分離拡散層形成時の拡散温度−時間プログラム図である。It is a diffusion temperature-time program figure at the time of p-type isolation | separation diffusion layer formation concerning this invention. 従来のp型分離拡散層形成時の拡散温度―時間プログラム図である。It is a diffusion temperature-time program figure at the time of the conventional p-type isolation | separation diffusion layer formation. 本発明と従来の逆阻止IGBTのシリコン基板の表面からの酸素濃度分布を示す酸素濃度プロファイル図である。It is an oxygen concentration profile figure which shows oxygen concentration distribution from the surface of the silicon substrate of this invention and the conventional reverse block IGBT. 従来のイオン注入による分離拡散層形成方法を示す製造工程断面図である。It is manufacturing process sectional drawing which shows the isolation | separation diffused layer formation method by the conventional ion implantation. 逆阻止IGBTの断面図である。It is sectional drawing of reverse prevention IGBT. 逆阻止IGBTを用いた双方向スイッチングデバイスの等価回路図である。It is an equivalent circuit diagram of a bidirectional switching device using a reverse blocking IGBT. 逆阻止IGBTの逆耐圧波形を示す電流I−電圧V波形特性図である。It is a current I-voltage V waveform characteristic view showing a reverse breakdown voltage waveform of a reverse blocking IGBT. 本発明の実施例にかかる逆阻止IGBTの製造方法を工程順に示した要部断面図である(その1)。It is principal part sectional drawing which showed the manufacturing method of the reverse blocking IGBT concerning the Example of this invention in order of the process (the 1). 本発明の実施例にかかる逆阻止IGBTの製造方法を工程順に示した要部断面図である(その2)。It is principal part sectional drawing which showed the manufacturing method of reverse blocking IGBT concerning the Example of this invention in order of the process (the 2). 本発明の実施例にかかる逆阻止IGBTの製造方法を工程順に示した要部断面図である(その3)。It is principal part sectional drawing which showed the manufacturing method of reverse blocking IGBT concerning the Example of this invention in order of the process (the 3). 本発明の実施例にかかる逆阻止IGBTの製造方法を工程順に示した要部断面図である(その4)。It is principal part sectional drawing which showed the manufacturing method of reverse blocking IGBT concerning the Example of this invention in order of the process (the 4). 本発明の実施例にかかる逆阻止IGBTの製造方法を工程順に示した要部断面図である(その5)。It is principal part sectional drawing which showed the manufacturing method of reverse blocking IGBT concerning the Example of this invention in order of the process (the 5).

以下、本発明の逆阻止MOS型半導体装置の製造方法にかかる実施例について、図面を参照して詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および−は、それぞれ相対的に不純物濃度が高いまたは低いことを意味する。なお、以下の実施例の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、実施例で説明される添付図面は、見易くまたは理解し易くするために正確なスケール、寸法比で描かれていないことにご留意されたい。   Embodiments according to a method of manufacturing a reverse blocking MOS semiconductor device of the present invention will be described below in detail with reference to the drawings. In the present specification and the accompanying drawings, it means that electrons or holes are majority carriers in layers and regions with n or p, respectively. Further, + and − attached to n and p mean that the impurity concentration is relatively high or low, respectively. In the following description of the embodiments and the accompanying drawings, the same reference numerals are given to the same components, and duplicate descriptions are omitted. It should be noted that the accompanying drawings described in the embodiments are not drawn to scale or dimensional ratios for the sake of easy understanding or understanding.

以下の実施例では、本発明にかかる逆阻止MOS型半導体装置の製造方法として、逆阻止IGBTの製造方法を採りあげて説明する。しかし、本発明は、逆阻止IGBTの製造方法に限定されるものではない。   In the following embodiments, a reverse blocking IGBT manufacturing method will be described as a method for manufacturing a reverse blocking MOS semiconductor device according to the present invention. However, the present invention is not limited to the manufacturing method of the reverse blocking IGBT.

本発明にかかる逆阻止IGBTの製造方法の一実施例について、その特徴部分を中心に詳細に説明する。
図8から図12は、本発明の実施例にかかる逆阻止IGBTの製造方法を工程順に示した要部断面図である。耐圧1200Vの逆阻止IGBTの製造方法について説明する。図8に示すように、厚さ600μm以上で比抵抗80ΩcmのFZシリコン基板1の表面に、0.8μm〜2.5μm程度の初期酸化膜を形成する。後工程で、シリコン基板1内の各デバイスチップ領域の中央部の半導体機能領域にかかる活性領域の外周を取り囲む環状のパターンで、選択的に初期酸化膜をエッチングして、幅170μmの分離拡散用の開口部20を形成する。つぎに、図9に示すように、初期酸化膜をマスクとして開口部20からp型不純物であるボロンをイオン注入する。ボロンのン注入後、ドーパントマスクとして用いた初期酸化膜を除去する。酸化雰囲気中で高温(1300℃)、長時間(300時間〜330時間)の熱処理を行い、220〜230μm程度の深さのp型の拡散層を形成する(図9)。このp型の拡散層を分離拡散層31として利用する。本発明はこの分離拡散層31を形成するための温度と時間のプログラムに特徴がある。この温度と時間のプログラムについては後程、詳細に説明する。
An embodiment of a method for manufacturing a reverse blocking IGBT according to the present invention will be described in detail with a focus on its characteristic part.
FIG. 8 to FIG. 12 are cross-sectional views of relevant parts showing the reverse blocking IGBT manufacturing method according to the embodiment of the present invention in the order of steps. A method for manufacturing a reverse blocking IGBT having a breakdown voltage of 1200 V will be described. As shown in FIG. 8, an initial oxide film of about 0.8 μm to 2.5 μm is formed on the surface of the FZ silicon substrate 1 having a thickness of 600 μm or more and a specific resistance of 80 Ωcm. In the subsequent process, the initial oxide film is selectively etched in an annular pattern surrounding the outer periphery of the active region over the semiconductor functional region at the center of each device chip region in the silicon substrate 1 for separation and diffusion with a width of 170 μm. The opening 20 is formed. Next, as shown in FIG. 9, boron, which is a p-type impurity, is ion-implanted from the opening 20 using the initial oxide film as a mask. After the boron implantation, the initial oxide film used as the dopant mask is removed. Heat treatment is performed in an oxidizing atmosphere at a high temperature (1300 ° C.) for a long time (300 hours to 330 hours) to form a p-type diffusion layer having a depth of about 220 to 230 μm (FIG. 9). This p-type diffusion layer is used as the separation diffusion layer 31. The present invention is characterized by a temperature and time program for forming the separation diffusion layer 31. This temperature and time program will be described in detail later.

つぎに、図10に示すように、分離拡散層31の形成中に基板表面に形成された酸化膜を除去後、酸化膜を付け直し、この酸化膜およびまたは堆積したポリシリコン膜を用いて、所定のパターンのpベース領域2、n型エミッタ領域3、ゲート酸化膜4、ゲート電極5、層間絶縁膜6およびエミッタ電極9等を通常のプレーナゲート型IGBTと同様の方法で形成する。図示しないが、トレンチ型の表面構造としてもよい。さらに、高速化を図るために、ライフタイムキラーとして電子線照射やヘリウム照射を行うこともある。つぎに、図11に示すように、裏面を削り、FZシリコン基板1の厚さを200μm程度にし、削り面21にp型分離拡散層31を露出させる。   Next, as shown in FIG. 10, after removing the oxide film formed on the substrate surface during the formation of the separation diffusion layer 31, the oxide film is reattached, and this oxide film and / or the deposited polysilicon film are used. A p base region 2, an n-type emitter region 3, a gate oxide film 4, a gate electrode 5, an interlayer insulating film 6, an emitter electrode 9 and the like having a predetermined pattern are formed by a method similar to that of a normal planar gate IGBT. Although not shown, a trench-type surface structure may be used. Furthermore, in order to increase the speed, electron beam irradiation or helium irradiation may be performed as a lifetime killer. Next, as shown in FIG. 11, the back surface is shaved so that the thickness of the FZ silicon substrate 1 is about 200 μm, and the p-type separation diffusion layer 31 is exposed on the shaving surface 21.

つぎに、図12に示すように、裏面20に、ドーズ量1×1013cm-2のボロンをイオン注入して350℃程度で1時間程度の低温アニールを行い、活性化したボロンのピーク濃度が1×1017cm-3程度で、厚みが1μm程度の裏面のp型コレクタ層10を形成する。この裏面のp型コレクタ層10と前記のp型分離拡散層31は導電接続される。コレクタ電極11を形成した後、シリコン基板1を各デバイスチップに切断すると、図12のような逆阻止IGBTができあがる。 Next, as shown in FIG. 12, boron having a dose amount of 1 × 10 13 cm −2 is ion-implanted into the back surface 20 and subjected to low-temperature annealing at about 350 ° C. for about 1 hour, thereby activating the peak concentration of boron. Is formed on the back side p-type collector layer 10 having a thickness of about 1 × 10 17 cm −3 and a thickness of about 1 μm. The p-type collector layer 10 on the back surface and the p-type isolation diffusion layer 31 are conductively connected. When the silicon substrate 1 is cut into device chips after the collector electrode 11 is formed, a reverse blocking IGBT as shown in FIG. 12 is completed.

本発明にかかる分離拡散層の形成方法が、前記図4を参照して説明した従来の逆阻止IGBTの分離拡散層の形成方法と異なる点は次の点である。それ以外の工程については、従来の逆阻止IGBTの製造方法と同様とすることができる。すなわち、本発明にかかる逆阻止IGBTの製造方法では、イオン注入によりp型分離拡散層を形成する工程を、拡散温度1280℃〜1320℃、300時間〜330時間の熱処理の終了後、降温する際に、1000℃以上1200℃以下の温度範囲にまで、一旦降温させた後、該温度範囲内の温度に25時間以上保持する拡散温度―時間プログラムとする点が従来と異なる。   The separation diffusion layer forming method according to the present invention is different from the conventional reverse blocking IGBT formation diffusion layer forming method described with reference to FIG. 4 in the following points. About other processes, it can be made to be the same as that of the manufacturing method of the conventional reverse blocking IGBT. That is, in the reverse blocking IGBT manufacturing method according to the present invention, when the temperature of the step of forming the p-type separation diffusion layer by ion implantation is lowered after the end of the heat treatment at the diffusion temperature of 1280 ° C to 1320 ° C for 300 hours to 330 hours. In addition, the temperature is once lowered to a temperature range of 1000 ° C. or higher and 1200 ° C. or lower, and then a diffusion temperature-time program is maintained for 25 hours or longer at a temperature within the temperature range.

または、イオン注入によりp型分離拡散層を形成する工程を、拡散温度1280℃〜1320℃、300時間〜330時間の熱処理を行うために昇温する際に、1000℃以上1200℃以下の温度範囲にまで昇温させた後、該温度範囲内の温度に、一旦25時間以上保持し、その後、目的の拡散温度1280℃〜1320℃、300時間〜330時間の熱処理を行う、拡散温度―時間プログラムとする点が従来と異なる。   Alternatively, when the temperature of the step of forming the p-type separation diffusion layer by ion implantation is increased in order to perform a heat treatment at a diffusion temperature of 1280 ° C. to 1320 ° C. for 300 hours to 330 hours, a temperature range of 1000 ° C. to 1200 ° C. A diffusion temperature-time program in which the temperature is temporarily maintained at a temperature within the above temperature range for 25 hours or longer and then heat treatment is performed at a desired diffusion temperature of 1280 ° C to 1320 ° C for 300 hours to 330 hours. Is different from the conventional point.

そのような本発明にかかる拡散温度―時間プログラムについて、さらに以下説明する。図1は本発明にかかるp型分離拡散層形成時の拡散温度−時間プログラム図である。図2は比較のために示す従来のp型分離拡散層形成時の拡散温度−時間プログラム図である。いずれも縦軸に拡散炉温度、横軸にタイムスケジュールを示す。ただし、図1、2の縦軸の間隔および横軸の間隔について、いずれも、それぞれ拡散炉温度および時間とは正確な比例関係を示してはいない。図の左端がプログラムの開始時間すなわちシリコン基板の炉入れ、右端が終了時間すなわちシリコン基板の炉出しとなる。   Such a diffusion temperature-time program according to the present invention will be further described below. FIG. 1 is a diffusion temperature-time program diagram when forming a p-type isolation diffusion layer according to the present invention. FIG. 2 is a diffusion temperature-time program diagram when forming a conventional p-type isolation diffusion layer for comparison. In either case, the vertical axis represents the diffusion furnace temperature, and the horizontal axis represents the time schedule. However, neither the vertical axis interval nor the horizontal axis interval in FIGS. 1 and 2 shows an accurate proportional relationship with the diffusion furnace temperature and time, respectively. The left end of the figure is the start time of the program, that is, the furnace loading of the silicon substrate, and the right end is the end time, that is, the furnace starting of the silicon substrate.

前記図8の工程で、シリコン基板1の各逆阻止IGBTチップパターン内の表面の外周部に形成した環状の分離拡散層用の開口部20にイオン注入を終えた後、前記図9の工程に入る。具体的な処理条件および作業としては、キャリアガスとして酸素(O2)ガス1.6リッター/分、アルゴン(Ar)ガス4.6リッター/分を流しながら、750℃の拡散炉中に、ボロンのイオン注入を終えたシリコン基板1をセットし、図1に示すように、60分間保持する。その後、拡散炉を1.0℃/分の昇温速度で炉温度を上げ、1250℃に到達したら、昇温速度を0.5℃/分に下げ、1300℃まで炉温度を上げる。炉温度1300℃で300時間保持して拡散深さ200μm以上の分離拡散層31を形成する。1300℃の拡散熱処理の終了後、0.5℃/分の降温速度で1200℃まで炉温度を下げる。1200℃に到達後、1200℃で25時間保持する。その後、1.0℃/分の降温速度で1000℃まで炉温度を下げ、さらに、2.5℃/分の降温速度で750℃まで炉温度を下げ、750℃で60分保持後、シリコン基板1を拡散炉から取り出すと図9に示す状態になる。本発明と従来の拡散温度−時間プログラム図である図1と図2の違いは1200℃での保持時間の有無である。 After completing the ion implantation into the annular separation diffusion layer opening 20 formed in the outer peripheral portion of the surface in each reverse blocking IGBT chip pattern of the silicon substrate 1 in the process of FIG. 8, the process of FIG. enter. As specific processing conditions and work, boron (1.6 2 liters / minute) of oxygen (O 2 ) gas and 4.6 liters / minute of argon (Ar) gas are flown as carrier gas in a diffusion furnace at 750 ° C. After completion of the ion implantation, the silicon substrate 1 is set and held for 60 minutes as shown in FIG. Thereafter, the furnace temperature of the diffusion furnace is increased at a heating rate of 1.0 ° C./min. When reaching 1250 ° C., the heating rate is decreased to 0.5 ° C./min and the furnace temperature is increased to 1300 ° C. The separation diffusion layer 31 having a diffusion depth of 200 μm or more is formed by holding at a furnace temperature of 1300 ° C. for 300 hours. After completion of the diffusion heat treatment at 1300 ° C., the furnace temperature is lowered to 1200 ° C. at a temperature lowering rate of 0.5 ° C./min. After reaching 1200 ° C., hold at 1200 ° C. for 25 hours. Thereafter, the furnace temperature is lowered to 1000 ° C. at a temperature lowering rate of 1.0 ° C./min. Further, the furnace temperature is lowered to 750 ° C. at a temperature lowering rate of 2.5 ° C./min, and held at 750 ° C. for 60 minutes. When 1 is taken out from the diffusion furnace, the state shown in FIG. 9 is obtained. The difference between the present invention and the conventional diffusion temperature-time program diagram of FIG. 1 and FIG. 2 is the presence or absence of a holding time at 1200 ° C.

一方、拡散炉から取り出したシリコン基板1は、前記図10を参照して説明したように、分離拡散層31で取り囲まれる中央部の活性領域に半導体機能領域、その周囲に耐圧構造領域が形成される。その後、図11のようにイオン注入面とは反対側のシリコン基板1の裏面から、分離拡散層の深さが220μm程度の場合、基板の残り厚さが200μm程度になるように削る。図12のように基板の裏面にp型コレクタ層およびコレクタ電極を形成すれば、本発明にかかる逆阻止IGBTができる。   On the other hand, as described with reference to FIG. 10, the silicon substrate 1 taken out from the diffusion furnace is formed with the semiconductor functional region in the central active region surrounded by the isolation diffusion layer 31 and the breakdown voltage structure region around it. The After that, when the depth of the separation diffusion layer is about 220 μm, the remaining thickness of the substrate is cut to about 200 μm from the back surface of the silicon substrate 1 opposite to the ion implantation surface as shown in FIG. If a p-type collector layer and a collector electrode are formed on the back surface of the substrate as shown in FIG. 12, the reverse blocking IGBT according to the present invention can be obtained.

前述のように、本発明にかかる耐圧1200Vの逆阻止IGBTでは、分離拡散層31を形成する際に、1300℃で300時間〜330時間からなる高温長時間の拡散ドライブ処理の前後に、1000℃から1200℃の温度範囲に25時間保持されるプロセスを有することが特徴である。   As described above, in the reverse blocking IGBT with a withstand voltage of 1200 V according to the present invention, when forming the isolation diffusion layer 31, before and after the high-temperature long-time diffusion drive process consisting of 300 hours to 330 hours at 1300 ° C., 1000 ° C. It is characterized by having a process that is held in the temperature range of from 1 to 1200 ° C. for 25 hours.

一方、図3は、縦軸に酸素濃度、横軸にシリコン基板表面からの酸素ドナー層の深さを表す酸素濃度プロファイル図である。また、図3は、前述の分離拡散層31を形成する際と同じ拡散ドライブ条件と1000℃から1200℃の温度範囲での保持時間をパラメーターとする処理条件を有する場合の基板表面からの酸素濃度分布を示している。   On the other hand, FIG. 3 is an oxygen concentration profile diagram in which the vertical axis represents the oxygen concentration and the horizontal axis represents the depth of the oxygen donor layer from the surface of the silicon substrate. FIG. 3 shows the oxygen concentration from the substrate surface in the case of having the same diffusion drive conditions as those for forming the separation diffusion layer 31 and the processing conditions with the holding time in the temperature range of 1000 ° C. to 1200 ° C. as parameters. Distribution is shown.

前述の1000℃から1200℃の温度範囲での保持時間は、無し、15時間、25時間の3種類である。保持時間無しでは、表面から深さ50μm以降の深い領域では、酸素濃度はほぼ1.2×1018/cm-3で一定であり、50μmより浅い領域では、表面の1.5×1017/cm-3の低酸素濃度に向かって酸素濃度が低下する傾斜勾配となっている。保持時間15時間では、100μm以降の深い領域では、酸素濃度はほぼ1.2×1018/cm-3で一定となり、100μmより浅い領域では前述と同様に低酸素濃度表面に向かう傾斜勾配となっている。保持時間25時間では、150μm以降の深い領域では、酸素濃度はほぼ1.2×1018/cm-3で一定となり、150μmより浅い領域では前述と同様に低酸素濃度表面に向かう傾斜勾配となっている。 There are three types of holding time in the above-described temperature range of 1000 ° C. to 1200 ° C .: none, 15 hours, and 25 hours. Without the holding time, the oxygen concentration is constant at about 1.2 × 10 18 / cm −3 in a deep region after the depth of 50 μm from the surface, and 1.5 × 10 17 / of the surface in the region shallower than 50 μm. The gradient is such that the oxygen concentration decreases toward a low oxygen concentration of cm −3 . When the holding time is 15 hours, the oxygen concentration is constant at about 1.2 × 10 18 / cm −3 in a deep region after 100 μm, and in the region shallower than 100 μm, the slope is inclined toward the low oxygen concentration surface as described above. ing. When the holding time is 25 hours, the oxygen concentration is constant at about 1.2 × 10 18 / cm −3 in a deep region after 150 μm, and in the region shallower than 150 μm, the gradient is inclined toward the low oxygen concentration surface as described above. ing.

図3より、前記保持時間が25時間の場合、表面から150μmより浅い領域は酸素濃度が低くなっているので、酸素ドナーによるn型シリコン基板の低抵抗化の影響が小さくなることが分かる。1200V耐圧の逆阻止IGBTを80Ωcmの抵抗率のシリコン基板を用いて製造する場合、空乏層は約170μm程度拡がるので、そのうち150μmについては、低酸素濃度になり酸素ドナーによる基板濃度の上昇が抑制される。その結果、基板の低抵抗化の影響が小さくなるので、デバイスの耐圧低下への影響が小さくなる。このように、以上説明した実施例によれば、酸素ドナーによる基板抵抗率の低下を抑制することにより、シリコン基板の抵抗率を予め高く、厚さを厚く設計しておく必要がなくなり、オン電圧の低減が図られる。また、シリコン基板が酸素雰囲気中での高温長時間拡散処理を経ても、基板表面が高酸素濃度になることが避けられるため、基板表面に酸素析出が起きず無欠陥層が得られるため、逆漏れ電流が小さくなり、耐圧低下が少なくなる。その結果、良品率が向上する。   FIG. 3 shows that when the holding time is 25 hours, the oxygen concentration is low in the region shallower than 150 μm from the surface, so that the influence of the resistance reduction of the n-type silicon substrate by the oxygen donor is reduced. When manufacturing a reverse blocking IGBT with a withstand voltage of 1200 V using a silicon substrate having a resistivity of 80 Ωcm, the depletion layer expands by about 170 μm, and about 150 μm of that, the oxygen concentration becomes low and the increase in the substrate concentration by the oxygen donor is suppressed. The As a result, the effect of lowering the resistance of the substrate is reduced, so that the effect on the breakdown voltage of the device is reduced. As described above, according to the embodiment described above, by suppressing the decrease in the substrate resistivity due to the oxygen donor, it is not necessary to design the silicon substrate with a high resistivity and a large thickness in advance. Can be reduced. In addition, even if the silicon substrate is subjected to a high-temperature long-time diffusion treatment in an oxygen atmosphere, the substrate surface is prevented from having a high oxygen concentration, so that no oxygen precipitation occurs on the substrate surface and a defect-free layer is obtained. Leakage current is reduced and the breakdown voltage is reduced. As a result, the yield rate is improved.

1 シリコン基板、ドリフト層
2 p型ベース領域
3 n型のエミッタ領域
4 ゲート絶縁膜
5 ゲート電極
6 層間絶縁膜
9 エミッタ電極
10 p型コレクタ層
11 コレクタ電極
12 チップ側端面
13 耐圧構造領域の表面
20 開口部
21 削り面
31 分離拡散層
DESCRIPTION OF SYMBOLS 1 Silicon substrate, drift layer 2 p-type base region 3 n-type emitter region 4 Gate insulating film 5 Gate electrode 6 Interlayer insulating film 9 Emitter electrode 10 p-type collector layer 11 Collector electrode 12 Chip side end surface 13 Surface of breakdown voltage structure region 20 Opening 21 Cutting surface 31 Separation diffusion layer

Claims (6)

第1導電型半導体基板の各デバイスチップとなる領域の外周部にイオン注入により環状の第2導電型分離拡散層を、拡散温度1280℃〜1320℃、300時間〜330時間の熱処理条件で形成する第1工程、該環状の分離拡散層に取り巻かれる内周部に半導体機能領域となるMOSゲート構造および耐圧構造を形成する第2工程を有する逆阻止MOS型半導体装置の製造方法において、前記第1工程で、前記拡散温度1280℃〜1320℃、300時間〜330時間の熱処理の終了後、降温する際に、1000℃以上1200℃以下の温度範囲にまで降温させた後、該温度範囲内の温度に25時間以上保持する拡散温度―時間プログラムを有することを特徴とする逆阻止MOS型半導体装置の製造方法。 An annular second conductivity type separation diffusion layer is formed by ion implantation on the outer periphery of the region to be each device chip of the first conductivity type semiconductor substrate under a heat treatment condition of a diffusion temperature of 1280 ° C. to 1320 ° C. for 300 hours to 330 hours. In the manufacturing method of the reverse blocking MOS type semiconductor device, which has a first step, a second step of forming a MOS gate structure and a breakdown voltage structure serving as a semiconductor functional region in an inner periphery surrounded by the annular isolation diffusion layer. In the step, after the heat treatment at the diffusion temperature of 1280 to 1320 ° C. and 300 to 330 hours, the temperature is lowered to a temperature range of 1000 ° C. to 1200 ° C., and then the temperature within the temperature range. And a diffusion temperature-time program for holding for at least 25 hours. 第1導電型半導体基板の各デバイスチップとなる領域の外周部にイオン注入により環状の第2導電型分離拡散層を、拡散温度1280℃〜1320℃、300時間〜330時間の熱処理条件で形成する第1工程、該環状の分離拡散層に取り巻かれる内周部に半導体機能領域となるMOSゲート構造および耐圧構造を形成する第2工程を有する逆阻止MOS型半導体装置の製造方法において、前記第1工程で、前記拡散温度1280℃〜1320℃、300時間〜330時間の熱処理を行うために、昇温する際に、1000℃以上1200℃以下の温度範囲にまで昇温させた後、該温度範囲内の温度に25時間以上保持する拡散温度―時間プログラムを有することを特徴とする逆阻止MOS型半導体装置の製造方法。 An annular second conductivity type separation diffusion layer is formed by ion implantation on the outer periphery of the region to be each device chip of the first conductivity type semiconductor substrate under a heat treatment condition of a diffusion temperature of 1280 ° C. to 1320 ° C. for 300 hours to 330 hours. In the manufacturing method of the reverse blocking MOS type semiconductor device, which has a first step, a second step of forming a MOS gate structure and a breakdown voltage structure serving as a semiconductor functional region in an inner periphery surrounded by the annular isolation diffusion layer. In the process, in order to perform the heat treatment at the diffusion temperature of 1280 to 1320 ° C. and 300 to 330 hours, the temperature is raised to a temperature range of 1000 ° C. to 1200 ° C. A method of manufacturing a reverse blocking MOS semiconductor device, comprising a diffusion temperature-time program for holding at a temperature within 25 hours or more. 前記25時間以上、前記1000℃以上1200℃以下の温度範囲内に保持する温度が一定温度であることを特徴とする請求項1または2記載の逆阻止MOS型半導体装置の製造方法。 3. The method of manufacturing a reverse blocking MOS semiconductor device according to claim 1, wherein the temperature maintained in the temperature range of 1000 ° C. or more and 1200 ° C. or less for the 25 hours or more is a constant temperature. 前記第1工程で熱処理される半導体基板の厚さが100μm〜200μmの範囲にあることを特徴とする請求項1または2記載の逆阻止MOS型半導体装置の製造方法。 3. The method of manufacturing a reverse blocking MOS semiconductor device according to claim 1, wherein the thickness of the semiconductor substrate heat-treated in the first step is in the range of 100 [mu] m to 200 [mu] m. 順耐圧、逆耐圧が1200V以上であることを特徴とする請求項1または2記載の逆阻止MOS型半導体装置の製造方法。 3. The method of manufacturing a reverse blocking MOS semiconductor device according to claim 1, wherein a forward breakdown voltage and a reverse breakdown voltage are 1200 V or more. 前記逆阻止MOS型半導体装置が逆阻止IGBTであることを特徴とする請求項1記載の逆阻止MOS型半導体装置の製造方法。 2. The method of manufacturing a reverse blocking MOS semiconductor device according to claim 1, wherein the reverse blocking MOS semiconductor device is a reverse blocking IGBT.
JP2012229972A 2012-10-17 2012-10-17 Manufacturing method of reverse blocking mos semiconductor device Pending JP2014082378A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012229972A JP2014082378A (en) 2012-10-17 2012-10-17 Manufacturing method of reverse blocking mos semiconductor device
CN201310478856.5A CN103779231A (en) 2012-10-17 2013-10-14 Method for manufacturing reverse blocking MOS type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012229972A JP2014082378A (en) 2012-10-17 2012-10-17 Manufacturing method of reverse blocking mos semiconductor device

Publications (1)

Publication Number Publication Date
JP2014082378A true JP2014082378A (en) 2014-05-08

Family

ID=50571346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012229972A Pending JP2014082378A (en) 2012-10-17 2012-10-17 Manufacturing method of reverse blocking mos semiconductor device

Country Status (2)

Country Link
JP (1) JP2014082378A (en)
CN (1) CN103779231A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105845739A (en) * 2016-05-17 2016-08-10 天津理工大学 Two-dimensional nano sheet layer transition metal sulfide bidirectional switch device

Also Published As

Publication number Publication date
CN103779231A (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP7147891B2 (en) semiconductor equipment
EP2320451B1 (en) Fast recovery Diode
JP5641055B2 (en) Semiconductor device and manufacturing method thereof
WO2013141181A1 (en) Semiconductor device and semiconductor device manufacturing method
US20150014742A1 (en) Semiconductor device and production method for semiconductor device
US7282781B2 (en) Semiconductor device with a short-lifetime region and manufacturing method thereof
JP5915756B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2016120999A1 (en) Semiconductor device
CN106601826B (en) Fast recovery diode and manufacturing method thereof
JP2004336008A (en) Reverse blocking insulated gate type bipolar transistor and its fabrication method
JP4123913B2 (en) Manufacturing method of semiconductor device
JP2014090072A (en) Reverse-blocking mos type semiconductor device and method for manufacturing the same
JP5248741B2 (en) Reverse blocking insulated gate semiconductor device and method for manufacturing the same
JP5600985B2 (en) Method for manufacturing power semiconductor device
JP2002261281A (en) Manufacturing method of insulated gate bipolar transistor
JP6268117B2 (en) Semiconductor device, manufacturing method thereof, and power conversion system
JP5867609B2 (en) Manufacturing method of semiconductor device
JP2018056220A (en) Semiconductor device and method of manufacturing the same, and power conversion system
JP5179703B2 (en) Method of manufacturing reverse blocking insulated gate bipolar transistor
JP4892825B2 (en) Manufacturing method of semiconductor device
JP2014082378A (en) Manufacturing method of reverse blocking mos semiconductor device
JP6268948B2 (en) Method for manufacturing MOS type semiconductor device
JP4951872B2 (en) Manufacturing method of semiconductor device
JP2003218354A (en) Semiconductor device and its manufacturing method
JP2017188569A (en) Semiconductor device and manufacturing method of the same