JP2014075700A - フィルタ回路 - Google Patents

フィルタ回路 Download PDF

Info

Publication number
JP2014075700A
JP2014075700A JP2012222205A JP2012222205A JP2014075700A JP 2014075700 A JP2014075700 A JP 2014075700A JP 2012222205 A JP2012222205 A JP 2012222205A JP 2012222205 A JP2012222205 A JP 2012222205A JP 2014075700 A JP2014075700 A JP 2014075700A
Authority
JP
Japan
Prior art keywords
mos transistor
filter
control signal
mos
signal generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012222205A
Other languages
English (en)
Inventor
Toshio Adachi
敏男 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2012222205A priority Critical patent/JP2014075700A/ja
Publication of JP2014075700A publication Critical patent/JP2014075700A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Networks Using Active Elements (AREA)

Abstract

【課題】チップサイズが小さく、設計が容易で、周波数特性の優れたフィルタを実現する。
【解決手段】Gmアンプ及び容量素子を含むGm−Cフィルタ、その特性を制御する制御信号を生成するフィルタ制御信号生成回路、Gmアンプの入力MOSTrに流れる電流を制御する調整手段、でフィルタ回路を構成する。フィルタ制御信号生成回路は、ドレインとゲートが接続される第1導電型第1MOSTrと、第1MOSTrとゲート同士が接続される第1導電型第2MOSTrと、からなるMOSTr対と、第1MOSTrとドレイン同士が接続される第2導電型第3MOSTrと、ドレインとゲートが接続され、第3MOSTrとゲート同士が接続され、第2MOSTrとドレイン同士が接続される第2導電型第4MOSTrと、からなるMOSTr対と、第1〜第4MOSTrのいずれか1つのソースに接続される抵抗素子とを含む。
【選択図】図1

Description

本発明は、フィルタ回路にかかり、特に、チップサイズが従来のものに比べて小さく、かつ周波数特性精度が優れたフィルタ回路に関する。
現在、電気信号から雑音や妨害信号を除去するフィルタ回路は、IC(Integrated Circuit )回路として形成されている。なお、本明細書では、フィルタ回路を適宜フィルタとも記すものとする。
フィルタ回路には、時間連続フィルタと、時間離散系フィルタとがある。時間離散系フィルタには、高速動作には適さない、折り返し(aliasing)歪みが発生するという欠点がある。時間離散系フィルタの代表的なフィルタ回路には、SCF(Switched Capacity Filter:スイッチド・キャパシタ・フィルタ)やデジタルフィルタがある。
一方、時間連続フィルタの周知の例としては、演算増幅器、抵抗、容量から構成されるRCアクティブフィルタが従来からよく知られている。RCアクティブフィルタは、ICとしても手軽に設計することができる。しかし、ICには、ICに含まれる抵抗素子の抵抗値や容量素子の容量値に製造のばらつきがある。さらに、抵抗素子の抵抗値には温度依存性があるため、ICで製造されたRCアクティブフィルタの周波数特性には、±30〜40%のばらつきが生じるという問題があった。
この問題を解消できる時間連続フィルタとして、Gm−Cフィルタがある。Gm−Cフィルタの特性ばらつきは、使用する周波数帯域や素子の大きさ、さらに調整回路であるPLL(Phase Locked Loop)回路等に依存する。ただし、このばらつきの大きさは、概ね±10〜20%と、RCアクティブフィルタの場合に比べて遥かに小さい。このため、Gm−Cフィルタは、特性のばらつきが小さい点で近年注目されているフィルタ回路である。
図9は、一般的なGm−Cフィルタの回路を説明するための図である。Gm−Cフィルタ100は4個のトランスコンダクタンスアンプ101〜104と2個の容量素子105、106から構成されている。また、110は、フィルタ回路の特性を制御するために、トランスコンダクタンスアンプ101〜104へ供給されるフィルタ制御信号である。107は、フィルタ制御信号110を生成するためのフィルタ制御信号生成回路である。Gm−Cフィルタ100は、入力信号線108、出力信号線109を有している。
図9に示したGm−Cフィルタ100の伝達関数H(s)は、式(1)のように表すことができる。
H(s)={Gm1・Gm2/(C1・C2)}/[s2+s(Gm4/C1)+
{(Gm2・Gm3)/(C1・C2)}] …式(1)
上記の式(1)において、Gm1はトランスコンダクタンスアンプ101のgm値(トランスコンダクタンス)、Gm2はトランスコンダクタンスアンプ102のgm値、Gm3はトランスコンダクタンスアンプ103のgm値、Gm4はトランスコンダクタンスアンプ104のgm値である。また、C1は容量素子105の容量値、C2は容量素子106の容量値である。
また、Gm−Cフィルタ100のカットオフ周波数ωoは、式(1)の分母のs0の係数により、式(2)のように表される。
ωo={Gm2・Gm3/(C1・C2)}1/2 …式(2)
となる。
また、Gm−Cフィルタ100のクオリティファクタ(以下、Q値と記す)は、式(3)のように表される。
Q={Gm2・Gm3/(C1・C2)}1/2/(Gm4/C1) …式(3)
ここで、周波数fと角周波数ωについて説明する。角周波数ωと周波数fの関係は、ω=2πfとしてよく知られていて、いずれも信号の周波数の高さを表す用語である。フィルタ回路をはじめとした電気分野において通常は周波数fが好んで用いられるが、伝達関数でその周波数特性を記述する場合は、式(2)のように角周波数ωを使用することによって、式の中で2πまたは4π2といった記号の出現を抑えることができる。
このような理由から、本明細書においても、説明する記述内容によりこれら2通りの語句及び記号のいずれかが用いられる。また、明細書において、ωの後にサフィックスが付けられている記号は角周波数、fの後にサフィックスが付けられている記号は周波数を表している。ただし、周波数、角周波数のいずれもが周波数を表すものであり、本質的に差異がない。
上記した式(1)〜(3)によれば、Gm−Cフィルタの周波数特性が、Gm1〜Gm4及び容量値C1、C2によって決まることが分かる。図9に示したGm−Cフィルタに用いられるトランスコンダクタンスアンプの回路は多種多様であり、その形態によって、色々な特長がある。
図10は、一般的なトランスコンダクタンスアンプの回路例を示すための図である。図10に示した回路例は全差動回路構成であり、図9に示した、例えばトランスコンダクタンスアンプ101に用いられる。図9、図10において、同一の信号の端子には同一の符号を付して示す。図9に示した入力信号線108、出力信号線109は、図10に示したように、正と負の2本設けられている。すなわち、図10においては、入力信号線126および127と、出力信号線128および129が設けられている。 図10において、ゲート端子131を共通にしている一対のMOSトランジスタ124、125は、電流源MOSトランジスタである。また、MOSトランジスタ122、123は、入力MOSトランジスタであり、そのgm値はトランスコンダクタンスアンプ101のgm値と等しい。このgm値は前記したGm1である。Gm1は、次式(4)のように表すことができる。
Gm1=2・(I・K)1/2=μ・Cox・(W/L)・(Vgs−Vth) …式(4)
ここで、μはキャリアの移動度、Coxは単位面積あたりのゲート容量である。
フィルタ回路を調整して所望の特性にするには、Gm1〜Gm4を調整すればよい。式(4)からもわかるように、入力MOSトランジスタに流れる電流を調整することでGm1の値を調整することができる。
また、図10のようなトランスコンダクタンスアンプの場合、電流源MOSトランジスタ121のゲート端子130へ供給する信号B1を調整して電流を制御すればよい。このゲート端子130へ供給される信号B1は、図9に示したフィルタ制御信号生成回路107によって生成される。このようなフィルタ回路及びフィルタ制御信号生成回路の従来技術としては、例えば、非特許文献1がある。
なお、図10において、MOSトランジスタ121、122、123はN型MOSトランジスタ、MOSトランジスタ124、125はP型MOSトランジスタである。ここで、図10において、MOSトランジスタを示すシンボル中の矢印の向きによって、「N型」、「P型」の違いを表現している。本明細書において参照する他の図においても同様である。
図11に示した回路は、図9に示したGm−Cフィルタ100と、図9に示したフィルタ制御信号生成回路107の構成を示した図である。フィルタ制御信号生成回路107は、マスタフィルタ141、位相比較器142、積分器143、コンパレータ144、145から構成されている。積分器143からの出力信号は、マスタフィルタ141のgm値(フィルタ回路のカットオフ周波数:fc)を制御するための端子TFへ供給すると共に、Gm−Cフィルタ100のgm値を制御するための信号をフィルタ制御端子148へ供給する。フィルタ制御信号生成回路107では、フィルタ制御端子148の信号レベルが高いと、フィルタ回路のgm値が大きくなり、カットオフ周波数も高くなるように設定されている。
なお、図11のフィルタ制御信号生成回路107は、Gm−Cフィルタの制御回路としてよく知られているPLL回路である。
次に、フィルタ制御信号生成回路107がマスタフィルタ141、Gm−Cフィルタ100を制御する動作について説明する。フィルタ制御信号生成回路107には、周波数がωrの参照クロック信号が端子147から入力される。参照クロック信号は、マスタフィルタ141及びコンパレータ145に入力する。フィルタ制御信号生成回路107がロックしている場合、マスタフィルタ141に入力された参照クロック信号は、位相が90度遅延して出力される。コンパレータ144、145は、参照クロック信号の2値化を目的としているので、コンパレータ144、145の前後で信号の位相は変化しない。すなわち、端子TA、TB間の位相関係は、端子TD、TCと同じである。
位相比較器142には、排他的論理和回路が用いられている。周波数がωrの信号の位相が90度ずれた信号が排他的論理和回路を通過すると、周波数が2ωrで、デューティ比が50%であるクロック信号が出力される。これらコンパレータ145、144の出力端子に相当する端子TD、TC及び位相比較器142の出力端子に相当する端子TEの出力波形を図12(a)、(b)、(c)に示す。この信号が積分器143を通過しても、信号の「High」の区間と「Low」の区間とが等しいので(積分器143では、プラスの成分とマイナスの成分とで差し引きゼロとなる)、積分器143の出力に変化はない。
すなわち、フィルタ制御信号生成回路107から出力される、Gm−Cフィルタ100のgm値を制御する信号は一定のままであり、マスタフィルタ141のカットオフ周波数ωoは一定の値に維持される。マスタフィルタ141は、2次のLPFのgm素子によって構成されるフィルタ回路であり、その伝達関数は、式(5)によって表される。
H(s)=ωm2/{s2+(ωm/Qm)s+ωm2} …式(5)
式(5)において、ωmはマスタフィルタ141のカットオフ周波数であり、フィルタ制御端子148の信号を制御することで高くなったり低くなったりする。
図13は、図11に示したマスタフィルタ141の位相特性を示した図である。2次LPFの場合、周波数がカットオフ周波数ωmのところでは、式(5)の分母はiωm/Qmと純虚数となる。ただし、式(5)の分子は実数なので、位相が90度遅れていることが示される。
フィルタ制御信号生成回路107がロックしている場合、入力周波数ωrの信号の位相が90度遅延するので、フィルタ回路のカットオフ周波数はωr(=2πfr)となっている。図13に示した曲線bは、マスタフィルタ141のカットオフ周波数ωoがωr(=2πfr)の時の位相特性を示す。このとき、入力クロック信号に対する位相遅延量が90度なので、フィルタ制御信号生成回路107がロックしている。
図13に示した曲線aは、マスタフィルタ141のカットオフ周波数ωoが周波数ωrよりも低い場合の特性を示している。この場合、参照クロック信号周波数ωrにおいて、位相遅れは90度よりも大きい。このとき、位相比較器142の出力のデューティ比は50%より大きくなる。すなわち、位相比較器142から「High」が出力される期間が長くなり、積分器出力は増大する。積分器出力の増加により、マスタフィルタ141のgm値も増加して、マスタフィルタ141のカットオフ周波数ωmが増加する。この結果、図13に示した曲線aは、曲線bに向かってシフトする。
一方、図13に示した曲線cは、マスタフィルタ141のカットオフ周波数ωoがωrよりも高い場合の特性を示している。この場合、参照クロック信号周波数ωrにおける位相遅れは90度よりも小さい。このような場合、位相比較器142の出力のデューティ比は50%より小さくなり、「Low」が出力される期間が長くなる。この結果、積分器143からの積分器出力は低下する。積分器出力低下により、マスタフィルタ141のgm値も減少し、マスタフィルタ141のカットオフ周波数ωmも減少する。この結果、図13に示した曲線cは曲線bに向かってシフトする。
このようにして、マスタフィルタ141の周波数位相が特性bから外れていても、上記した作用により、最終的には特性bに一致する。この場合のフィルタ回路の特性はカットオフ周波数がωrとなっている。一方、PLLがロックしている場合、Gm−Cフィルタ100もマスタフィルタ141と同じ制御信号を受けているので、マスタフィルタ141とGm−Cフィルタ100のカットオフ周波数はいつも比例の関係を保つことができる。
しかしながら、上記のPLL回路を用いたフィルタ制御信号生成回路107は、回路規模が大きくなりチップサイズが大きくなるという問題や、回路が複雑となって設計に時間がかかるという問題がある。例えば、図9のGm−Cフィルタ100の次数が2次の場合、図11に示したマスタフィルタ141の次数も2次である。このことから、フィルタ特性を制御するフィルタ制御信号生成回路107が、Gm−Cフィルタ100よりも大きい回路となる。この点は、チップサイズの点から好ましくないのは明らかであり、その解消が望まれていた。
このような問題を解決するために例えば、特許文献1に記載されているような回路を用いることが知られている。特許文献1に記載されている回路について簡単に説明する。これは、図9のフィルタのフィルタ制御信号生成回路107の代わりに図14に示すようなフィルタ制御信号生成回路を用いるものである。
図14は、図9のフィルタ制御信号生成回路107を説明するための図である。フィルタ制御信号生成回路107は、図10に示したトランスコンダクタンスアンプのゲート端子130に供給されるフィルタ特性を制御するフィルタ制御信号生成回路である。フィルタ制御信号生成回路107は、ドレインとゲートが接続されるMOSトランジスタ33と、MOSトランジスタ33とゲート同士が接続されるMOSトランジスタ32と、からなる第1MOSトランジスタ対と、MOSトランジスタ33とドレイン同士が接続されるMOSトランジスタ31と、ドレインとゲートが接続されると共に、MOSトランジスタ31とゲート同士が接続され、MOSトランジスタ32とドレイン同士が接続されるMOSトランジスタ30と、からなる第2MOSトランジスタ対と、を含んでいる。
また、フィルタ制御信号生成回路17は、MOSトランジスタ31のソースに接続される抵抗素子34、MOSトランジスタ33のドレインに接続される出力端子36、MOSトランジスタ30のドレインに接続される出力端子35の少なくとも一方と、を含んでいる。そして、出力端子35または出力端子36からフィルタ制御信号を出力する。
なお、MOSトランジスタ33、MOSトランジスタ32がP型MOSトランジスタであり、MOSトランジスタ31、MOSトランジスタ30がN型MOSトランジスタである。
すなわち、図14に示したフィルタ制御信号生成回路107では、MOSトランジスタ33のソースが正の電源端子Vddに接続され、ゲートとドレインとが接続され、互いに接続されたゲートとドレインとが、さらに、MOSトランジスタ32のゲートに接続されている。また、MOSトランジスタ32では、ソースが正の電源端子Vddに接続されて、ドレインがMOSトランジスタ30のドレイン及びゲートに接続されている。さらに、MOSトランジスタ32のドレインは、MOSトランジスタ31のゲートに接続されている。
また、MOSトランジスタ30のソースは、負の電源端子Vssに接続されている。MOSトランジスタ31のドレインは、MOSトランジスタ33のドレインと接続され、MOSトランジスタ31のソースは抵抗素子34の一方の端子に接続され、抵抗素子34の他方の端子は負の電源端子Vssに接続されている。抵抗素子34の抵抗値はR1である。
MOSトランジスタ32、33のトランジスタサイズ(チャネル長及びチャネル幅)は等しく、MOSトランジスタ30、31とのトランジスタサイズの比N(以下、トランジスタサイズ比N)は、式(6)のように表される。
N=(W31/L31)/(W30/L30) …式(6)
式(6)に示したW31、L31はMOSトランジスタ31のチャネル幅、チャネル長で、W30、L30はMOSトランジスタ30のチャネル幅、チャネル長である。この場合、MOSトランジスタ30〜33に流れる電流I30は、式(7)のように表される。
I30=(N1/2−1)2/(N・K30・R12) …式(7)
すなわち、カレントミラー回路を構成するMOSトランジスタ32、33のトランジスタサイズが同じであるため、MOSトランジスタ32、33に流れる電流は等しい。それに伴って、MOSトランジスタ30、31に流れる電流も等しくなる。なお、このような原理は、例えば、非特許文献2に記載されているように周知である。このため、この内容についてはこれ以上の説明を省くものとする。
式(7)に示したK30は、式(8)によって与えられる。
K30=(1/2)・μn・Cox・(W30/L30) …式(8)
式(8)のμnはNMOSトランジスタの移動度、CoxはMOSトランジスタのゲート酸化膜の単位容量である。
図14に示したフィルタ制御信号生成回路107の出力端子35は、図10に示したMOSトランジスタ121のゲート端子130に接続される。図14に示したMOSトランジスタ30と図10に示したMOSトランジスタ121とのトランジスタサイズ比が2である場合、MOSトランジスタ121の電流は式(7)によって求められる電流I30の2倍になる。また、図10に示したMOSトランジスタ122、123に流れる電流の電流値I122はその半分、つまり電流I30になる。
図10に示したMOSトランジスタ122、またはMOSトランジスタ123のgm値であるgm1は、以下の式(9)のように表すことができる。
gm1=2(K122・I122)1/2 …式(9)
式(9)のI122は、式(7)によって求められる電流I30に等しい。また、式(9)中のK122は、式(10)によって求められる。
K122=(1/2)・μn・Cox・(W122/L122) …式(10)
式(10)、式(8)、式(7)を式(9)に代入すると、式(11)が得られる。
gm1=(2/R1)・[{(W122/L122)/(W30/L30)}・{(N1/2−1)2/N}]1/2 …式(11)
式(11)に示したように、図10に示したMOSトランジスタ122、またはMOSトランジスタ123のgm値であるgm1は、トランジスタ122と図14に示したMOSトランジスタ30のトランジスタサイズ比、図14に示したMOSトランジスタ30、31のトランジスタサイズ比N、図14に示した抵抗素子34の抵抗値R1のみに依存する。
ここで、抵抗素子34を外付けの抵抗素子とすると、抵抗値R1がばらつきのない一定の値になる。したがって、式(11)によって与えられるgm1は、製造変動や温度変動の影響を充分に低減することができる。
特開2011−101238号公報
Haideh Khorramabadi、Paul R. Gray著 IEEE Journal of Solid State Circuits、 19巻、6号、939〜948ページ。論文タイトル「High-Frequency CMOS Continuous-Time Filters」 ROUBIK GREGORIAN, GABOR C. TEMES著 ANALOG MOS INTEGRATED CIRCUITS FOR SIGNAL PROCESSING,JOHN WILEY & SONS Inc. page 127-128.
以上述べた従来回路によれば、図9のトランスコンダクタンスアンプ101〜104のgm値は、図14に示したフィルタ制御信号生成回路107によって正確に制御することができる。
ただし、Gm−Cフィルタの周波数特性は、式(1)からもわかるようにgm値だけでなく容量値C1、C2に依存する。一般的に、容量値は層間絶縁膜の厚みに依存するが、この厚みの製造変動は5〜20%程度とされている。また図9のトランスコンダクタンスアンプ101〜104のgm値は、式(11)で表すことができるが、実際は素子間のミスマッチ、例えばMOSトランジスタ32、33のペア間の相対精度、MOSトランジスタ30、31のペア間の相対精度、さらには端子35あるいは36からミラーによって形成される電流も電流ミラー回路のミスマッチの影響を受ける。このため、PLLの場合と同様にミスマッチを考慮に入れた場合のgm素子の精度は4.5シグマで5〜10%程度になる。これらgm素子のミスマッチと容量値の製造変動の合計値は10〜30%とかなり大きな誤差となり、高い精度を要求するようなシステムに使用することができないという問題があった。
本発明は、このような点に鑑みてなされたものであり、高速に動作することが可能であり、周波数特性制御するためのフィルタ制御信号生成回路が小規模で設計に要する時間が短時間で済みしかも周波数特性精度が高いフィルタ回路を提供することを目的とする。
以上の課題を解決するため、本発明のある態様によるフィルタ回路は、トランスコンダクタンスアンプと、容量素子と、を含むGm−Cフィルタと、前記Gm−Cフィルタの特性を制御する制御信号を生成するフィルタ制御信号生成回路と、フィルタ特性を調整するための調整手段と、を含み、前記フィルタ制御信号生成回路は、ドレインとゲートが接続される第1導電型の第1MOSトランジスタと、当該第1MOSトランジスタとゲート同士が接続される第1導電型の第2MOSトランジスタと、からなる第1MOSトランジスタ対と、前記第1MOSトランジスタとドレイン同士が接続される第2導電型の第3MOSトランジスタと、ドレインとゲートが接続されると共に、前記第3MOSトランジスタとゲート同士が接続され、前記第2MOSトランジスタとドレイン同士が接続される第2導電型の第4MOSトランジスタと、からなる第2MOSトランジスタ対と、前記第1MOSトランジスタ、前記第2MOSトランジスタ、前記第3MOSトランジスタ、前記第4MOSトランジスタのうちのいずれか1つのソースに接続される抵抗素子と、前記第1MOSトランジスタのドレインに接続される第1出力端子、前記第4MOSトランジスタのドレインに接続される第2出力端子の少なくとも一方と、を含み、前記第1出力端子または前記第2出力端子から、前記フィルタ制御信号が出力されており、前記調整手段は前記Gm−Cフィルタの周波数特性を最適になるように調整されることを特徴とする。このように構成すれば、チップサイズが小さく、さらに設計が容易で、また周波数特性の優れたフィルタ回路を実現することができる。
また、前記調整手段は、前記フィルタ制御信号生成回路の出力信号を入力にして、自身の出力信号を前記Gm−Cフィルタのトランスコンダクタンスアンプへ供給するようにしてもよい。このようにすれば、トランスコンダクタンスアンプの入力MOSトランジスタに流れる電流を容易に制御することができる。
さらに、前記調整手段は、複数のスイッチで制御される複数のMOSトランジスタからなるようにしてもよい。このようにすれば、フィルタ回路全体をMOS製造プロセスによって製造することができる。
前記調整手段は、可変電流増幅器であってもよい。このようにすれば、トランスコンダクタンスアンプの入力MOSトランジスタに流れる電流を容易に制御することができる。
なお、前記フィルタ制御信号生成回路の第1乃至第4MOSトランジスタのいずれかひとつのMOSトランジスタと並列に、複数のスイッチで制御される複数のMOSトランジスタからなる前記調整手段を設けてもよい。このようにすれば、フィルタ回路を調整して所望の特性にすることができる。
本発明によれば、少なくとも4個のMOSトランジスタと1個の抵抗と調整手段と、からなるフィルタ制御信号生成回路を用いているので、チップサイズが小さくて、さらに設計が従来から用いられてきたPLL回路と比べて格段に容易で、また周波数特性の優れたフィルタを実現することができる。
本発明の実施形態1のフィルタ回路である。 図1に示したフィルタ制御信号生成回路を説明するための図である。 図2に示したMOSトランジスタ群を説明するための図である。 図1に示した第二のフィルタ制御信号生成回路を説明するための図である。 図4に示した第二のフィルタ制御信号生成回路に用いる可変電流増幅器を説明するための図である。 図5に示した可変電流増幅器に用いる電圧源を説明するための図である。 図1に示した第三のフィルタ制御信号生成回路を説明するための図である。 図7に用いられるMOSトランジスタ群を説明するための図である。 一般的なGm−Cフィルタの回路を説明するための図である。 一般的なトランスコンダクタンスアンプを説明するための図である。 図9に示したGm−Cフィルタと、図9に示したフィルタ制御信号生成回路の構成を示した図である。 図11に示したコンパレータ及び位相比較器の出力端子の出力波形を示す図である。 図11に示したマスタフィルタの位相特性を示した図である。 図9に示した別のフィルタ制御信号生成回路を説明するための図である。
以下、図を参照して本発明のフィルタ回路の実施形態1、実施形態2、実施形態3を説明する。
(実施形態1)
(1)回路構成
図1は、本発明の実施形態1のフィルタ回路を説明するための回路図である。図1において、11、12、13、14はトランスコンダクタンスアンプ、15、16は容量素子である。これらトランスコンダクタンスアンプ11〜14と容量素子15、16とによってGm−Cフィルタ10が構成される。
また、Gm−Cフィルタ10は、入力端子18から入力信号が入力され、出力端子19から出力信号が出力される。17はフィルタ制御信号20を生成するためのフィルタ制御信号生成回路である。
このような実施形態1のGm−Cフィルタは、フィルタ制御信号生成回路17の構成を除いて、図9に示したGm−Cフィルタと同様に構成されている。このため、図1についての動作の説明を省くものとする。なお、実施形態1のGm−Cフィルタは2次のLPFの例であるが、いかなる形態のフィルタ回路であっても構わない。また、実施形態1では、トランスコンダクタンスアンプ11〜14として、図10に示したトランスコンダクタンスアンプを用いるものとする。ただし、実施形態1は、トランスコンダクタンスアンプ11〜14に図10に示した回路を用いるものに限定されるものでなく、いかなる回路構成のトランスコンダクタンスアンプを用いるものであってもよい。
(2)フィルタ制御信号生成回路
次に、図1のトランスコンダクタンスアンプ11〜14に制御信号を供給するフィルタ制御信号生成回路17について説明する。
図2は、図1に示したフィルタ制御信号生成回路17を説明するための図である。フィルタ制御信号生成回路17は、図10に示したトランスコンダクタンスアンプのゲート端子130に供給されるフィルタ特性を制御するフィルタ制御信号生成回路である。フィルタ制御信号生成回路17は、ドレインとゲートが接続されるMOSトランジスタ33と、MOSトランジスタ33とゲート同士が接続されるMOSトランジスタ32と、からなる第1MOSトランジスタ対と、MOSトランジスタ33とドレイン同士が接続されるMOSトランジスタ31と、ドレインとゲートが接続されると共に、MOSトランジスタ31とゲート同士が接続され、MOSトランジスタ32とドレイン同士が接続されるMOSトランジスタ30と、からなる第2MOSトランジスタ対と、MOSトランジスタ31のソースとアース電源との間に接続されている抵抗、を含んでいるフィルタ制御信号生成回路29とMOSトランジスタ30、31とゲート端子を共通に接続しているMOSトランジスタ群38とからなる。点線で囲まれたフィルタ制御信号生成回路29は図14で説明した従来から知られているフィルタ制御信号生成回路と完全に同じである。従って、MOSトランジスタ30、31、32、33に流れる電流は式(7)で表すことができる。
MOSトランジスタ群38について、図3を用いて説明する。MOSトランジスタ群38は、MOSトランジスタ40、41、42、43、44と、スイッチ45、46、47、48と、各スイッチのオン、オフを制御するスイッチ制御回路52と、からなる。MOSトランジスタ40〜44のソースは共通に端子49に接続され、MOSトランジスタ40〜44のゲートは共通に端子50に接続され、MOSトランジスタ40〜44のドレインは直接あるいはスイッチ45〜48を介して共通に端子51に接続されている。図3のMOSトランジスタ群を図2のMOSトランジスタ群38に用いる場合、端子49、50、51は図2の端子28、36、39にそれぞれ接続する。MOSトランジスタ33とMOSトランジスタ40〜44はソースとゲートを共通にしているので、カレントミラー回路を形成する。従ってMOSトランジスタ40〜44に流れる電流I40〜I44は、式(12)に示すようにMOSトランジスタ33のデバイスサイズに対する比で決まる。
Ii=I33(Wi/Li)/(W33/L33) …式(12)
ここでWはMOSトランジスタのチャネル幅、LはMOSトランジスタのチャネル長でサフィックスiは40,41,42,43,44であり、それぞれMOSトランジスタ40〜44に対応する。
ここで例えば、デバイスサイズ比を式(13)〜式(17)とする。
(W40/L40)/(W33/L33)=A …式(13)
(W41/L41)/(W33/L33)=B …式(14)
(W42/L42)/(W33/L33)=2B …式(15)
(W43/L43)/(W33/L33)=4B …式(16)
(W44/L44)/(W33/L33)=8B …式(17)
ここでスイッチ45〜48が全てオフの場合、MOSトランジスタ群38の電流I38は式(18)のようになる。
I38=A・I33 …式(18)
またスイッチ45〜48が全てオンの場合、MOSトランジスタ群38の電流I38は式(19)のようになる。
I38=(A+15B)・I33 …式(19)
となる。このようにスイッチ45〜48を適当に選択することでMOSトランジスタ群38に流れる電流I38はA・I33から(A+15B)・I33までの範囲をB・I33の間隔で設定することが可能になる。これは式(20)のように表すことができる。
I38=(A+nB)・I33 …式(20)
但し、nは0から15までの任意の整数である。
図1のフィルタ制御信号生成回路17に図2の回路を用いた場合のGm素子のトランスコンダクタンス値について計算する。ここで図1のGm−Cフィルタに用いるトランスコンダクタンスアンプとして図10のトランスコンダクタンスアンプ回路を用いるとする。この場合、フィルタ制御信号生成回路の出力端子39は図10のトランスコンダクタンスアンプのMOSトランジスタ121のゲート端子130に接続している。ここで図2のMOSトランジスタ27と図10のMOSトランジスタ121のサイズ比が2であるとすると、図2のMOSトランジスタ27あるいはMOSトランジスタ群38を流れる電流と図10の入力MOSトランジスタ122あるいは123に流れる電流は等しくなる。またMOSトランジスタ33と32のサイズは等しいのでMOSトランジスタ33に流れる電流I33とMOSトランジスタ30に流れる電流I30は等しい。従って、図10のトランスコンダクタンスアンプの入力MOSトランジスタに流れる電流I122は式(21)で表される。
I122=(A+nB)・I33 =(A+nB)・I30 …式(21)
図10のトランスコンダクタンスアンプのトランスコンダクタンス値gm1は式(9)で表される。従って、トランスコンダクタンス値gm1は、式(9)に式(7)、(8)、(21)を代入することで、式(22)によって求められる。
gm1=(2/R1)・[{(W122/L122)/(W30/L30)}・(A+nB)・{(N1/2−1)2/N}]1/2 …式(22)
ここでnは図3のMOSトランジスタ群のスイッチ45〜48の状態によって設定できる整数である。例えば全てのスイッチがオフであればgm値は式(23)のように最小値に設定できる。
gm1min=(2/R1)・[{(W122/L122)/(W30/L30)}・A・{(N1/2−1)2/N}]1/2 …式(23)
また全てのスイッチがオンであればgm値は式(24)のように最大値に設定できる。
gm1max=(2/R1)・[{(W122/L122)/(W30/L30)}・(A+15B)・{(N1/2−1)2/N}]1/2 …式(24)
となる。図1のGm−Cフィルタの場合、容量の製造変動の大小あるいは、フィルタ本体とフィルタ制御信号生成回路間のgm値のずれをMOSトランジスタ群のスイッチを適当に選択することで、最適なフィルタ特性を実現することができる。gm1minとgm1maxとの比はパラメータAに対するパラメータBの比によって決まる。またより高精度にフィルタを調整する場合、MOSトランジスタ群のMOSトランジスタとスイッチを増やせばよい。図2はMOSトランジスタ群38をスイッチでオン・オフ制御されるMOSトランジスタ群としたが、MOSトランジスタ群38の代わりにMOSトランジスタ27をMOSトランジスタ群としてもよい。
式(22)によるとgm値は抵抗値R1と、MOSトランジスタサイズ比と、パラメータN、A、Bにのみ依存する。ここで温度特性がゼロの抵抗を使用すると、フィルタ制御信号生成回路は一旦調整を決定すると、トランスコンダクタンスアンプのgm値は温度変動の影響を受けることなくいつも一定になる。すなわち温度変動の影響を受けることなくいつも周波数特性が一定のフィルタを実現できる。
またフィルタ特性の調整は、ICの出荷検査のときにスイッチ状態を決定して不揮発性メモリにスイッチ状態を格納してもよいし、レーザートリムあるいはヒューズによるトリムで物理的にスイッチ状態を作り込むことでもよい。さらには、ICの使用者がICの初期時にトレーニング信号を用いて合わせこむことでスイッチ状態をレジスタに格納することもできる。
(実施形態2)
図4は、図1に示したフィルタ制御信号生成回路17の別の実施形態を説明するための図である。図4で示したフィルタ制御信号生成回路17は、図14に示した従来から知られているフィルタ制御信号生成回路29とMOSトランジスタ25、58と可変電流増幅器55からなる。ここでフィルタ制御信号生成回路29から出力端子35への出力信号をゲートに入力したMOSトランジスタ25はドレインを可変電流増幅器55の入力端子56に接続し、可変電流増幅器55の出力端子とMOSトランジスタ回路のゲートとドレインと出力端子57を接続している。すなわち、フィルタ制御信号生成回路29で生成される電流は式(7)で与えられる。MOSトランジスタ30と25はゲート端子とソース端子が共通なのでカレントミラーを構成していて、それぞれのMOSトランジスタのサイズを同じにするとMOSトランジスタ25に流れる電流もまた式(7)で与えられる。可変電流増幅器55の電流増幅率をCとするとMOSトランジスタ58に流れる電流は式(25)になる。
I30=C・(N1/2−1)2/(N・K30・R12) …式(25)
フィルタ制御信号生成回路の出力端子57からの信号は、図1の端子20を介してトランスコンダクタンスアンプへ供給される。ここでトランスコンダクタンスアンプが図10に示すような回路の場合、フィルタ制御信号生成回路の出力端子57からの信号は、図1の端子20から図10の端子130に、信号B1として供給される。ここで図4のMOSトランジスタ58と図10のMOSトランジスタ121はゲート端子とソース端子が共通であるのでカレントミラー回路を構成していて、図10のMOSトランジスタ121のサイズを図4のMOSトランジスタ58のサイズの2倍にすると、図10の入力MOSトランジスタ122,123に流れる電流は図4のMOSトランジスタ58と同じになり、電流値I122は式(25)で表すことができる。すなわち図10のフィルタ制御信号生成回路を用いた場合のトランスコンダクタンスアンプのトランスコンダクタンス値gm1は式(9)で表される。従って、トランスコンダクタンス値gm1は式(9)に式(7)、(8)、(25)を代入することで式(26)が、求められる。
gm1=(2/R1)・[{(W122/L122)/(W30/L30)}・C・{(N1/2−1)2/N}]1/2 …式(26)
すなわち、トランスコンダクタンスアンプのgm値は図4の電流増幅器の増幅率Cに依存し、この電流増幅率を可変にすることにより、所望のgm値を得ることができる。このようにして、Gm−Cフィルタの容量の製造変動の大小あるいは、フィルタ本体とフィルタ制御信号生成回路との間のgm値のずれを電流増幅器の増幅率を適当に選択することで打ち消すことができ、最適なフィルタ特性を実現することができる。
式(26)によるとgm値は抵抗値R1と、MOSトランジスタサイズ比と、パラメータN、Cにのみ依存する。ここで温度特性がゼロの抵抗を使用すると、フィルタ制御信号生成回路は一旦調整を決定すると、トランスコンダクタンスアンプのgm値は温度変動の影響を受けることなくいつも一定になる。すなわち温度変動の影響を受けることなくいつも周波数特性が一定のフィルタを実現できる。
ここで可変電流増幅器55について図5を用いて説明する。可変電流増幅器55は、MOSトランジスタ61、62、63と差動増幅器66と固定電圧源64と可変電圧源65から構成される。ここでMOSトランジスタ61は、ドレインが入力端子67と、差動増幅器の非反転入力端子と接続され、ゲート端子70が固定電圧源64の電圧VC1に接続され、MOSトランジスタ63は、ドレインが出力端子68に接続され、ゲートが差動増幅器66の出力に接続され、ソースが差動増幅器66の反転入力端子とMOSトランジスタ62のドレインと接続され、可変電圧源はMOSトランジスタ62のゲートに接続されている。
MOSトランジスタ61、62は式(27)を満たすようにゲート電圧とドレイン電圧が設定されている。
Vgs−Vth<Vds 式(27)
このような条件のもとでは、MOSトランジスタは線形領域動作を行い、Vgsに対するIdsは式(28)で表すことができる。
Ids=2K(Vgs−Vth−0.5Vds)Vds 式(28)
MOSトランジスタ61,62はP形なので、Vgs,Vth,Vdsは通常いずれも負の値になる。ここでVgs−VthがVdsに比べて十分小さい場合は式(29)のように近似することができる。
Ids=2K(Vgs−Vth)Vds 式(29)
この式によると、電流はVdsに比例し、MOSトランジスタは式(30)で示すような抵抗値Rの抵抗と同じである。
R=1/{2K・(Vgs−Vth)} 式(30)
式(30)からわかるように、抵抗値RはMOSトランジスタのゲートに供給される電圧Vgsによって制御することができる。
次に、可変電流増幅器の動作について説明する。入力電流I67はMOSトランジスタ61から端子67を通して流れる。また出力電流I68はMOSトランジスタ62からMOSトランジスタ63と端子67を通して流れる。
線形領域で動作しているMOSトランジスタ61、62の抵抗値をそれぞれR61、R62とする。この場合、端子67、69の電圧は正の電源端子72を基準にして、それぞれオームの法則より−I67・R61、−I68・R62となる。仮に、端子69の電圧が端子67の電圧より高い場合、差動増幅器66の出力端子73の電圧は低くなるように働き、その結果端子69の電圧も低くなる。逆に、端子69の電圧が端子67の電圧より低い場合、差動増幅器66の出力端子73の電圧は高くなるように働き、その結果端子69の電圧も高くなる。差動増幅器66の利得が十分高い場合は、端子67と端子69の電圧は等しくなる。これは式(31)を用いて表すことができる。
I67・R61=I68・R62 式(31)
式(31)を式(32)のように書き換えると、入力電流I7に対する出力電流I68の比、すなわち電流増幅率Cは式(33)のようになる。
I68=(R61/R62)I67 式(32)
C=R61/R62 式(33)
ここで図5の可変電圧源65の電圧VC2すなわちゲート端子71の電圧VC2を変化させると、式(30)によりMOSトランジスタ62の抵抗値R62が変化する。すなわち、図5において可変電圧源65の電圧を変化させることで、図5に示した回路を可変電流増幅器とすることができる。
尚、図5において固定電圧源64と可変電圧源65を置き換えても可変電流増幅器として動作することができる。この場合は、MOSトランジスタ62のゲート端子は一定電圧が供給されるので抵抗値R62は一定となり、一方MOSトランジスタ61のゲート端子は可変電圧が供給されるので抵抗値R61は可変とすることができ、式(33)より電流増幅率Cを可変とすることができる。可変電圧源の例を図6に示す。図6は正の電源端子と負の電源端子の間にM個(Mは自然数)の抵抗を直接に接続して、抵抗と抵抗との接続部に発生している電圧をマルチプレクサ88に入力している。マルチプレクサでは、制御信号89により選択された信号電圧のみ端子71に出力するようにしている。
(実施形態3)
図7は、図1に示したフィルタ制御信号生成回路17の別の実施形態を説明するための図である。図7で示したフィルタ制御信号生成回路17は、図14に示した従来から知られているフィルタ制御信号生成回路のMOSトランジスタ31をMOSトランジスタ群37に置き換えたこと以外同じである。
MOSトランジスタ群37について、図8を用いて説明する。MOSトランジスタ群37はMOSトランジスタ90、91、92、93、94とスイッチ95、96、97、98とスイッチのオン、オフを制御するスイッチ制御回路152からなる。MOSトランジスタ90〜94のソースは共通に端子99に接続され、MOSトランジスタ90〜94のゲートは共通に端子150に接続され、MOSトランジスタ90〜94のドレインは直接あるいはスイッチ95〜98を介して共通に端子151に接続されている。図8のMOSトランジスタ群を図7のMOSトランジスタ群37に用いる場合、端子99,150,151は図7の端子26、35、36にそれぞれ接続する。すなわち、MOSトランジスタ90〜94はソースとゲートを共通にしているので、カレントミラー回路を形成する。従ってMOSトランジスタ90〜94に流れる電流I90〜I94は、式(34)に示すようにMOSトランジスタ30のデバイスサイズに対する比で決まる。
Ii=I30(Wi/Li)/(W30/L30) …式(34)
ここでWはMOSトランジスタのチャネル幅、LはMOSトランジスタのチャネル長でサフィックスiは90,91,92,93,94であり、それぞれMOSトランジスタ90〜94に対応する。
ここで例えば、デバイスサイズ比を式(35)〜式(39)とする。
(W90/L90)/(W30/L30)=A …式(35)
(W91/L91)/(W30/L30)=B …式(36)
(W92/L92)/(W30/L30)=2B …式(37)
(W93/L93)/(W30/L30)=4B …式(38)
(W94/L94)/(W30/L30)=8B …式(39)
すなわちMOSトランジスタ群37の実質的なデバイスサイズ(W37/L37)は式(40)のように与えられる。
(W37/L37)=(W30/L30)(A+S1・B+S2・2B+S3・4B+S4・8B)…式(40)
ここでS1、S2、S3、S4はスイッチ95〜98のスイッチのオン・オフ状態によって決まるパラメータでスイッチがオンの場合は1に、スイッチがオフの場合は0になる。
例えば全てのスイッチがオフの場合はS1=S2=S3=S4=0となるので、MOSトランジスタ群37の実質的なデバイスサイズ(W37/L37)は式(41)のように与えられる。
(W37/L37)=(W30/L30)A …式(41)
また全てのスイッチがオンの場合はS1=S2=S3=S4=1となるので、MOSトランジスタ群37の実質的なデバイスサイズ(W37/L37)は式(42)のように与えられる。
(W37/L37)=(W30/L30)(A+B+2B+4B+8B) …式(42)
このようにスイッチ95〜98を適当に選択することでMOSトランジスタ群37のデバイスサイズは(W30/L30)Aから(W30/L30)(A+15B)までの範囲を(W30/L30)Bの間隔で設定することが可能になる。これは式(43)のように表すことができる。
(W37/L37)=(A+nB)・(W30/L30) …式(43)
但し、nは0から15までの任意の整数である。従って、MOSトランジスタ30とMOSトランジスタ群37のサイズ比Nは式(44)のようになる。
N=(A+nB) …式(44)
この場合、MOSトランジスタ30、32、33に流れる電流I30は、式(44)を式(7)に代入することで式(45)のように表される。
I30={(A+nB)1/2−1}2/{(A+nB)・K30・R12} …式(45)
図1のフィルタ制御信号生成回路17に図7の回路を用いた場合のGm素子のトランスコンダクタンス値について計算する。
ここで図1のGm−Cフィルタに用いるトランスコンダクタンスアンプとして図10のトランスコンダクタンスアンプを用いるとする。この場合、図7のフィルタ制御信号生成回路の出力端子35は図10のトランスコンダクタンスアンプのMOSトランジスタ121のゲート端子130に接続している。ここで図7のMOSトランジスタ30と図10のMOSトランジスタ121のサイズ比が2であるとすると、図7のMOSトランジスタ30を流れる電流と図10の入力MOSトランジスタ122あるいは123に流れる電流I122は等しくなるので式(45)より式(46)と表すことができる。
I122={(A+nB)1/2−1}2/{(A+nB)・K30・R12} …式(46)
トランスコンダクタンスアンプのトランスコンダクタンス値gm1は式(9)で表される。従って、図10のトランスコンダクタンスアンプのトランスコンダクタンス値gm1は式(9)に式(8)、(46)を代入することで式(47)が、求められる。
gm1=(2/R1)・[{(W122/L122)/(W30/L30)}・{((A+nB)1/2−1)2/(A+nB)}]1/2 …式(47)
ここでnは図8のMOSトランジスタ群のスイッチ95〜98の状態によって設定できる整数である。例えば全てのスイッチがオフであればgm値は式(48)のように最小値に設定できる。
gm1min=(2/R1)・[{(W122/L122)/(W30/L30)}・{(A1/2−1)2/A}]1/2 …式(48)
また全てのスイッチがオンであればgm値は式(49)のように最大値に設定できる。
gm1max=(2/R1)・[{(W122/L122)/(W30/L30)}・{((A+15B)1/2−1)2/(A+15B)}]1/2 …式(49)
となる。図1のGm−Cフィルタの場合、容量の製造変動の大小あるいは、フィルタ本体とフィルタ制御信号生成回路間のgm値のずれをMOSトランジスタ群のスイッチを適当に選択することで、最適なフィルタ特性を実現することができる。gm1minとgm1maxとの比はパラメータAに対するパラメータBの比によって決まる。またより高精度にフィルタを調整する場合、MOSトランジスタ群のMOSトランジスタとスイッチを増やせばよい。
式(47)によるとgm値は抵抗値R1と、MOSトランジスタサイズ比と、パラメータA、Bにのみ依存する。ここで温度特性がゼロの抵抗を使用すると、フィルタ制御信号生成回路は一旦調整を決定すると、温度変動の影響を受けることなくトランスコンダクタンスアンプのgm値は温度変動の影響を受けることなくいつも一定になる。すなわち温度変動の影響を受けることなくいつも周波数特性が一定のフィルタを実現できる。
またトランジスタ群37をMOSトランジスタ30あるいはMOSトランジスタ32、33に適用しても同様の効果が得られる。
(まとめ)
上述したように、フィルタ回路を以下のように構成することにより、高速に動作することが可能であり、周波数特性制御するためのフィルタ制御信号生成回路が小規模で設計に要する時間が短時間で済みしかも周波数特性精度が高いフィルタ回路を実現できる。
すなわち、上記のフィルタ回路は、トランスコンダクタンスアンプ(例えば、図1中のトランスコンダクタンスアンプ11〜14)と、容量素子(例えば、図1中の容量素子15、16)と、を含むGm−Cフィルタ(例えば、図2中のGm−Cフィルタ10)と、上記Gm−Cフィルタの特性を制御する制御信号を生成するフィルタ制御信号生成回路(例えば、図1中のフィルタ制御信号生成回路17)と、上記Gm−Cフィルタ(例えば、図1中のGm−Cフィルタ10)の特性を調整するための調整手段と、を含んでいる。そして、上記フィルタ制御信号生成回路(例えば、図2中のフィルタ制御信号生成回路17)は、ドレインとゲートが接続される第1導電型の第1MOSトランジスタ(例えば、図2中のMOSトランジスタ33)と、この第1MOSトランジスタとゲート同士が接続される第1導電型の第2MOSトランジスタ(例えば、図2中のMOSトランジスタ32)と、からなる第1MOSトランジスタ対と、上記第1MOSトランジスタとドレイン同士が接続される第2導電型の第3MOSトランジスタ(例えば、図2中のMOSトランジスタ31)と、ドレインとゲートが接続されると共に、上記第3MOSトランジスタとゲート同士が接続され、上記第2MOSトランジスタとドレイン同士が接続される第2導電型の第4MOSトランジスタ(例えば、図2中のMOSトランジスタ30)と、からなる第2MOSトランジスタ対と、上記第1MOSトランジスタ、上記第2MOSトランジスタ、上記第3MOSトランジスタ、上記第4MOSトランジスタのうちのいずれか1つのソースに接続される抵抗素子(例えば、図2中の抵抗素子34)と、上記第1MOSトランジスタのドレインに接続される第1出力端子、前記第4MOSトランジスタのドレインに接続される第2出力端子の少なくとも一方と、を含み、上記第1出力端子または上記第2出力端子から、上記フィルタ制御信号が出力されている。さらに、上記調整手段は上記トランスコンダクタンスアンプの入力MOSトランジスタに流れる電流を制御する。
このように構成すれば、チップサイズが小さく、さらに設計が容易で、また周波数特性の優れたフィルタ回路を実現することができる。
また、上記調整手段を、上記フィルタ制御信号生成回路の出力信号を入力にして、自身の出力信号を上記Gm−Cフィルタのトランスコンダクタンスアンプへ供給する構成(例えば、図4)にすることにより、トランスコンダクタンスアンプの入力MOSトランジスタに流れる電流を容易に制御することができる。
さらに、上記調整手段を、複数のスイッチ(例えば、図3中のスイッチ45〜48)で制御される複数のMOSトランジスタ(例えば、図3中のMOSトランジスタ41〜44)を備えた構成にすることにより、フィルタ回路全体をMOS製造プロセスによって製造することができる。
また、上記調整手段が、可変電流増幅器(例えば、図5)であれば、トランスコンダクタンスアンプの入力MOSトランジスタに流れる電流を容易に制御することができる。
なお、上記フィルタ制御信号生成回路の第1乃至第4MOSトランジスタのいずれかひとつのMOSトランジスタと並列に、複数のスイッチ(例えば、図8中のスイッチ95〜98)で制御される複数のMOSトランジスタ(例えば、図8中のMOSトランジスタ91〜94)からなる調整手段を設けることにより、フィルタ回路を調整して所望の特性にすることができる。
なお、本発明の範囲は、図示され記載された例示的な実施形態に限定されるものではなく、本発明が目的とするものと均等な効果をもたらすすべての実施形態をも含む。さらに、本発明の範囲は、請求項により画される発明の特徴の組み合わせに限定されるものではなく、すべての開示されたそれぞれの特徴のうち特定の特徴のあらゆる所望する組み合わせによって画されうる。
10、100 Gm−Cフィルタ
11−14、101−104 トランスコンダクタンスアンプ
25、27、30−33、40−44、58、
61−63、90−94、121−125 MOSトランジスタ
45−48、95−98 スイッチ
15、16、105、106 容量素子
17、29 フィルタ制御信号生成回路
18、67 入力端子
19、35、36、39、57、68、73 出力端子
20、110 フィルタ制御信号
20、26、28、49−51、69、71、99、147、150、151 端子
34 抵抗素子
37、38 トランジスタ群
52 スイッチ制御回路
55 可変電流増幅器
64 固定電圧源
65 可変電圧源
66 差動増幅器
70、71 ゲート端子
72 電源端子
88 マルチプレクサ
89 制御信号
107 フィルタ制御信号生成回路
108、126 入力信号線
109、128 出力信号線
130、131 ゲート端子
141 マスタフィルタ
142 位相比較器
143 積分器
144、145 コンパレータ
148 フィルタ制御端子
152 スイッチ制御回路
TA−TF 端子

Claims (5)

  1. トランスコンダクタンスアンプと、容量素子と、を含むGm−Cフィルタと、
    前記Gm−Cフィルタの特性を制御する制御信号を生成するフィルタ制御信号生成回路と、
    前記Gm−Cフィルタの特性を調整するための調整手段と、
    を含み、
    前記フィルタ制御信号生成回路は、
    ドレインとゲートが接続される第1導電型の第1MOSトランジスタと、当該第1MOSトランジスタとゲート同士が接続される第1導電型の第2MOSトランジスタと、からなる第1MOSトランジスタ対と、
    前記第1MOSトランジスタとドレイン同士が接続される第2導電型の第3MOSトランジスタと、ドレインとゲートが接続されると共に、前記第3MOSトランジスタとゲート同士が接続され、前記第2MOSトランジスタとドレイン同士が接続される第2導電型の第4MOSトランジスタと、からなる第2MOSトランジスタ対と、
    前記第1MOSトランジスタ、前記第2MOSトランジスタ、前記第3MOSトランジスタ、前記第4MOSトランジスタのうちのいずれか1つのソースに接続される抵抗素子と、
    前記第1MOSトランジスタのドレインに接続される第1出力端子、前記第4MOSトランジスタのドレインに接続される第2出力端子の少なくとも一方と、を含み、
    前記第1出力端子または前記第2出力端子から、前記フィルタ制御信号が出力されており、
    前記調整手段は前記トランスコンダクタンスアンプの入力MOSトランジスタに流れる電流を制御することを特徴とするフィルタ回路。
  2. 前記調整手段は、前記フィルタ制御信号生成回路の出力信号を入力にして、自身の出力信号を前記Gm−Cフィルタのトランスコンダクタンスアンプへ供給することを特徴とする請求項1に記載のフィルタ回路。
  3. 前記調整手段は、複数のスイッチで制御される複数のMOSトランジスタからなることを特徴とする請求項2に記載のフィルタ回路。
  4. 前記調整手段は、可変電流増幅器であることを特徴とする請求項2に記載のフィルタ回路。
  5. 前記フィルタ制御信号生成回路の第1乃至第4MOSトランジスタのいずれかひとつのMOSトランジスタと並列に、複数のスイッチで制御される複数のMOSトランジスタからなる前記調整手段を設けることを特徴とする請求項1に記載のフィルタ回路。
JP2012222205A 2012-10-04 2012-10-04 フィルタ回路 Pending JP2014075700A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012222205A JP2014075700A (ja) 2012-10-04 2012-10-04 フィルタ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222205A JP2014075700A (ja) 2012-10-04 2012-10-04 フィルタ回路

Publications (1)

Publication Number Publication Date
JP2014075700A true JP2014075700A (ja) 2014-04-24

Family

ID=50749570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222205A Pending JP2014075700A (ja) 2012-10-04 2012-10-04 フィルタ回路

Country Status (1)

Country Link
JP (1) JP2014075700A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126241A1 (ja) * 2016-01-21 2017-07-27 ソニー株式会社 可変容量回路、発振回路、および、可変容量回路の制御方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126241A1 (ja) * 2016-01-21 2017-07-27 ソニー株式会社 可変容量回路、発振回路、および、可変容量回路の制御方法
US10566954B2 (en) 2016-01-21 2020-02-18 Sony Corporation Variable capacitance circuit, oscillator circuit, and method of controlling variable capacitance circuit

Similar Documents

Publication Publication Date Title
EP3437187B1 (en) System and method for controlling common mode voltage via replica circuit and feedback control
JP2015128236A (ja) 差動信号駆動回路
US9225351B2 (en) Current amplifier circuit, integrator, and ad converter
US9543972B2 (en) Stability controlled high frequency chopper-based oscillator
JP2004530352A (ja) 電圧制御発振器用一定の出力揺れ及び可変時間遅延を有するcmos回路
JP2008537668A (ja) 抵抗に対する温度補償のためのアレンジメント及び方法
JP4652863B2 (ja) フィルタ回路のq補正
KR100891221B1 (ko) 가변이득 증폭기 및 필터회로
CN104079266B (zh) 一种用于晶振温度补偿的模拟高阶幂函数发生电路
JP4855470B2 (ja) トランスコンダクタンスアンプ
CN210137307U (zh) 集成电路和电路
JP2014075700A (ja) フィルタ回路
JP2020109949A (ja) オペアンプ及びオペアンプの出力信号からオフセット電圧を除去する方法
JP5571932B2 (ja) フィルタ回路
Bula et al. Practical considerations for the design of fully differential OTAs with SC-CMFB
KR20220128484A (ko) Vco-adc에서의 전력 및 신호-대-잡음 비율 조정
CN111464149B (zh) 滤波放大器
US9998120B1 (en) Circuit for and method of shifting a high range input common mode voltage
JP5199222B2 (ja) 演算増幅器および演算増幅装置
JP2011101238A (ja) フィルタ回路
CN110048709B (zh) 电流模式逻辑驱动电路
Ab Rahim et al. A wide gain-bandwidth CMOS fully-differential folded cascode amplifier
JP2012085066A (ja) トランスコンダクタンスアンプ及びそれを用いたGm−Cフィルタ
JP2012119835A (ja) アクティブフィルタ
Faraji Baghtash et al. A high CMRR, class AB, fully differential current output stage