JP2014075571A - Light-emitting device and process of manufacturing the same - Google Patents

Light-emitting device and process of manufacturing the same Download PDF

Info

Publication number
JP2014075571A
JP2014075571A JP2013103263A JP2013103263A JP2014075571A JP 2014075571 A JP2014075571 A JP 2014075571A JP 2013103263 A JP2013103263 A JP 2013103263A JP 2013103263 A JP2013103263 A JP 2013103263A JP 2014075571 A JP2014075571 A JP 2014075571A
Authority
JP
Japan
Prior art keywords
light emitting
resin member
nitride semiconductor
emitting element
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013103263A
Other languages
Japanese (ja)
Inventor
Koki Tanabe
皇紀 田邊
Takeshi Kamikawa
剛 神川
Yufeng Weng
宇峰 翁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2013103263A priority Critical patent/JP2014075571A/en
Publication of JP2014075571A publication Critical patent/JP2014075571A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83909Post-treatment of the layer connector or bonding area
    • H01L2224/83951Forming additional members, e.g. for reinforcing, fillet sealant

Abstract

PROBLEM TO BE SOLVED: To provide a light-emitting device that has suitable heat-radiation characteristics and is improved in light extraction efficiency.SOLUTION: A light-emitting device 1 includes: a nitride semiconductor light-emitting element 20 containing a substrate 21 mounted on a base 2 and a plurality of nitride semiconductor layers; and a first resin member 4, disposed at a side of the nitride semiconductor light-emitting element 20, containing phosphor having a function of converting a wavelength of light to a longer side, and having refractive index equal to or lower than that of the substrate 21.

Description

本発明は、発光装置及びその製造方法に関する。   The present invention relates to a light emitting device and a method for manufacturing the same.

従来照明光源や液晶バックライト光源として使用されてきた蛍光管や発熱電球は省エネルギー、省スペース、長寿命という観点から半導体発光素子を含む発光装置に置き換えられている。半導体発光素子を含む発光装置としては高効率、低コストという利点が得られる窒化ガリウム系半導体発光素子と蛍光体とを組み合わせた白色LED(Light Emitting Diode:発光ダイオード)が用いられることが多い。   Conventional fluorescent tubes and heating bulbs used as illumination light sources and liquid crystal backlight light sources are replaced with light emitting devices including semiconductor light emitting elements from the viewpoint of energy saving, space saving, and long life. As a light-emitting device including a semiconductor light-emitting element, a white LED (Light Emitting Diode) in which a gallium nitride-based semiconductor light-emitting element and a phosphor are combined, which can obtain advantages of high efficiency and low cost, is often used.

特に近年モバイル機器、エッジ型バックライトTVといった機器への搭載が進み、より低コスト、コンパクト、高輝度の発光装置が求められている。このため、発光装置に搭載する発光素子数を増加することより、発光装置からの光取り出し効率を向上させることが望ましい。光取り出し効率は例えば、発光素子内部で発光した光を発光素子外部に取り出す第一の光取り出し効率と、発光素子外部に取り出された光をさらに封止樹脂などを含む発光装置の外部に取り出す第二の光取り出し効率に分けることができる。   In particular, in recent years, mounting on devices such as mobile devices and edge-type backlight TVs has progressed, and there is a demand for light-emitting devices with lower cost, compactness, and high brightness. For this reason, it is desirable to improve the light extraction efficiency from the light emitting device by increasing the number of light emitting elements mounted on the light emitting device. The light extraction efficiency includes, for example, a first light extraction efficiency for extracting light emitted inside the light emitting element to the outside of the light emitting element, and a first light extraction efficiency for extracting light extracted outside the light emitting element to the outside of the light emitting device further including a sealing resin. It can be divided into two light extraction efficiencies.

一般的に、窒化ガリウム系半導体発光素子はサファイア基板の上にn−GaN層、発光層、p−GaN層、ITO層、SiO2層及び電極部(p側電極及びn側電極)が積層されて形成される。基板はSiC、GaNなどでも良い。発光層で発生した光は発光素子の最上面のSiO2層及び各層の側面から出射される。 In general, a gallium nitride based semiconductor light emitting device has an n-GaN layer, a light emitting layer, a p-GaN layer, an ITO layer, a SiO 2 layer and an electrode part (p-side electrode and n-side electrode) stacked on a sapphire substrate. Formed. The substrate may be SiC, GaN, or the like. The light generated in the light emitting layer is emitted from the uppermost SiO 2 layer of the light emitting element and the side surfaces of each layer.

しかしながら、発光素子のいずれの層の屈折率もGaN層で2.5、サファイア基板で1.78と高い。一般的に半導体発光装置で封止樹脂として用いられるシリコーン樹脂(屈折率〜1.4)で発光素子を封止すると、屈折率の差によって界面の全反射臨界角がGaN/シリコーン樹脂界面では34°、サファイア/シリコーン樹脂界面では52°となり、光の大半が閉じ込められる。閉じ込められた光は発光素子内部(発光層、p側電極及びn側電極)若しくは発光素子底面が接する基体表面で再吸収されるため、結果として上記第一の光取り出し効率が低下する。そこで、発光素子を封止した発光装置からの光取り出し効率の向上を図った従来技術が提案され、その技術が特許文献1及び2に開示されている。   However, the refractive index of any layer of the light emitting element is as high as 2.5 for the GaN layer and 1.78 for the sapphire substrate. When a light emitting element is sealed with a silicone resin (refractive index˜1.4) generally used as a sealing resin in a semiconductor light emitting device, the total reflection critical angle of the interface is 34 at the GaN / silicone resin interface due to the difference in refractive index. °, 52 ° at the sapphire / silicone resin interface, and most of the light is confined. Since the confined light is reabsorbed inside the light emitting element (light emitting layer, p-side electrode and n-side electrode) or the substrate surface in contact with the bottom face of the light emitting element, the first light extraction efficiency is lowered as a result. Therefore, a conventional technique for improving the light extraction efficiency from the light emitting device in which the light emitting element is sealed is proposed, and the techniques are disclosed in Patent Documents 1 and 2.

特許文献1に記載された従来の発光装置は発光素子の側面を覆う発光素子の基材よりも屈折率が小さい透光性の第一の封止樹脂と、第一の封止樹脂を覆う第一の封止樹脂よりも屈折率が小さい透光性の第二の封止樹脂とを備えている。これにより、各界面での臨界角を広げて発光素子の側面から出射される上記第二の光取り出し効率の向上を図っている。   The conventional light-emitting device described in Patent Document 1 includes a light-transmitting first sealing resin having a refractive index smaller than that of the light-emitting element substrate covering the side surfaces of the light-emitting element, and a first sealing resin covering the first sealing resin. And a translucent second sealing resin having a refractive index smaller than that of the one sealing resin. Thereby, the critical angle at each interface is widened to improve the second light extraction efficiency emitted from the side surface of the light emitting element.

特許文献2に記載された従来の発光装置は発光素子の周囲の樹脂に蛍光体を含有する蛍光体含有領域を配置している。これにより、発光素子から出射された光が蛍光体で蛍光光に変換される。したがって、発光素子で再吸収されない蛍光光の割合が増加し、発光素子で再吸収される散乱光の割合が減少し、光ロスを低減させて輝度を向上させている。すなわち、上記第一の光取り出し効率の向上を図っている。   In the conventional light emitting device described in Patent Document 2, a phosphor-containing region containing a phosphor is disposed in a resin around the light emitting element. Thereby, the light emitted from the light emitting element is converted into fluorescent light by the phosphor. Therefore, the ratio of fluorescent light that is not reabsorbed by the light emitting element increases, the ratio of scattered light that is reabsorbed by the light emitting element decreases, and light loss is reduced to improve luminance. That is, the first light extraction efficiency is improved.

なお、特許文献3については後述する。   Patent Document 3 will be described later.

特開2010−147040号公報JP 2010-147040 A 特開2010−245481号公報JP 2010-245481 A 特開2002−314142号公報JP 2002-314142 A

しかしながら、特許文献1に記載された従来の発光装置は封止樹脂内の一部の光の、発光装置の基体表面における反射時に吸収ロスを起こし、上記第二の光取り出し効率が低下するという問題があった。例えば、発光装置の基体表面が鏡面状態のAgで構成されている場合、窒化ガリウム系半導体発光素子から出射される波長450nmの光は7%程度吸収される。また、一度発光素子から取り出された一部の光が発光素子に戻り発光層などで再吸収され、上記第一の光取り出し効率が低下するという問題もあった。基体表面で散乱した場合や樹脂間界面で全反射した場合がこれらの光出し効率の低下の要因に該当する。   However, the conventional light emitting device described in Patent Document 1 causes an absorption loss when a part of the light in the sealing resin is reflected on the substrate surface of the light emitting device, and the second light extraction efficiency is reduced. was there. For example, when the substrate surface of the light emitting device is made of Ag in a mirror state, light with a wavelength of 450 nm emitted from the gallium nitride semiconductor light emitting element is absorbed by about 7%. In addition, there is a problem in that part of the light once extracted from the light emitting element returns to the light emitting element and is reabsorbed by the light emitting layer, and the first light extraction efficiency is reduced. The case where the light is scattered on the substrate surface or the case where the light is totally reflected at the interface between the resins corresponds to the cause of the decrease in the light emission efficiency.

また、特許文献2に記載された従来の発光装置は発光素子の底面に蛍光体を含む樹脂が存在する。これにより、放熱の役割を有する発光装置の基体表面と発光素子の底面との間に少なくとも数μmから数十μm程度の間隔が生じる。樹脂は発光素子基板や発光装置表面を構成する金属、セラミックなどの材料と比較して熱伝導性が非常に悪く、その厚みの増加に伴って熱伝導性が一層悪化する。このようにして、発光素子の底面に蛍光体を含む樹脂が存在することは熱的要因から信頼性が低下するという問題があった。   In the conventional light emitting device described in Patent Document 2, a resin containing a phosphor is present on the bottom surface of the light emitting element. As a result, an interval of at least about several μm to several tens of μm is generated between the surface of the base of the light emitting device having the role of heat dissipation and the bottom of the light emitting element. The resin has extremely poor thermal conductivity as compared with materials such as metals and ceramics constituting the light emitting element substrate and the surface of the light emitting device, and the thermal conductivity is further deteriorated as the thickness increases. Thus, the presence of the resin containing the phosphor on the bottom surface of the light emitting element has a problem that the reliability is lowered due to thermal factors.

本発明は、上記の点に鑑みなされたものであり、好適な放熱特性を有するともに、光取り出し効率の向上が図られた発光装置及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide a light-emitting device that has favorable heat dissipation characteristics and improved light extraction efficiency, and a method for manufacturing the same.

上記の課題を解決するため、本発明の発光装置は、基体の上に載置された基板と複数の窒化物半導体層とを含む窒化物半導体発光素子と、前記窒化物半導体発光素子の側方に配置した光の波長を長波側に変換する機能を持つ蛍光体を含む屈折率が前記基板に対して同じまたは低い第一樹脂部材と、を備えることを特徴としている。   In order to solve the above problems, a light emitting device of the present invention includes a nitride semiconductor light emitting element including a substrate placed on a base and a plurality of nitride semiconductor layers, and a side of the nitride semiconductor light emitting element. And a first resin member having a refractive index that is the same as or lower than that of the substrate, including a phosphor having a function of converting the wavelength of light arranged on the long-wave side.

この構成によれば、第一樹脂部材は基板と空気、または基板と後述する封止樹脂に対して中間の屈折率を有する。したがって、第一樹脂部材は基板との屈折率差が小さく、臨界角度が大きくなり、基板から第一樹脂部材への光取り出し効率が向上する。また、第一樹脂部材が蛍光体を含むので、光の出射方向が変更されて光取り出し効率が向上する。さらに、蛍光体によって窒化物半導体発光素子からの出射光の波長が長波側に一度変換されると、窒化物半導体発光素子内部に再入射した場合でも吸収される量が少なくなる。したがって、光取り出し効率がさらに向上する。   According to this configuration, the first resin member has an intermediate refractive index with respect to the substrate and air, or the substrate and the sealing resin described later. Therefore, the first resin member has a small difference in refractive index from the substrate and a critical angle, and the light extraction efficiency from the substrate to the first resin member is improved. In addition, since the first resin member includes the phosphor, the light emission direction is changed and the light extraction efficiency is improved. Furthermore, once the wavelength of the light emitted from the nitride semiconductor light emitting device is once converted to the long wave side by the phosphor, the amount absorbed is reduced even when reentering the nitride semiconductor light emitting device. Therefore, the light extraction efficiency is further improved.

また、上記構成の発光装置において、前記窒化物半導体発光素子がフリップチップ実装により前記基体に電気的に接続されることを特徴としている。   In the light emitting device having the above structure, the nitride semiconductor light emitting element is electrically connected to the base body by flip chip mounting.

この構成によれば、窒化物半導体発光素子と基体との熱伝導性が良くなり放熱性が向上する。また、窒化物半導体発光素子と基体とを電気的に接続する金属線とその金属線を接続するための基板側の電極のスペースが不要になり、発光装置が小型化する。したがって、例えばエッジ型バックライト搭載のテレビを薄型化することができ、製品デザインの自由度が高まる。また、発光装置の小型化に伴ってその製造コストも低減する。   According to this configuration, the thermal conductivity between the nitride semiconductor light emitting element and the substrate is improved, and the heat dissipation is improved. In addition, a metal wire that electrically connects the nitride semiconductor light emitting element and the substrate and a space on the substrate side electrode for connecting the metal wire become unnecessary, and the light emitting device is downsized. Therefore, for example, a television with an edge-type backlight can be reduced in thickness, and the degree of freedom in product design is increased. In addition, as the light emitting device is miniaturized, the manufacturing cost is also reduced.

また、上記構成の発光装置において、前記第一樹脂部材が前記窒化物半導体発光素子の側面に接触することを特徴としている。   In the light emitting device having the above-described configuration, the first resin member is in contact with a side surface of the nitride semiconductor light emitting element.

この構成によれば、窒化物半導体発光素子の側面からの光取り出し効率が向上する。すなわち、窒化物半導体発光素子の側面から光を取り出し難い場合、例えば側面が鏡面状態になっており窒化物半導体発光素子の内部で光が全反射し易い場合に有効である。   According to this configuration, the light extraction efficiency from the side surface of the nitride semiconductor light emitting device is improved. That is, it is effective when it is difficult to extract light from the side surface of the nitride semiconductor light emitting device, for example, when the side surface is in a mirror state and light is easily totally reflected inside the nitride semiconductor light emitting device.

また、上記構成の発光装置において、前記第一樹脂部材が前記窒化物半導体発光素子の側面に対して離隔することを特徴としている。   In the light emitting device having the above structure, the first resin member is separated from a side surface of the nitride semiconductor light emitting element.

この構成によれば、窒化物半導体発光素子からの出射光の波長の変換効率が向上する。すなわち、窒化物半導体発光素子の側面から光を取り出し易い場合、例えば側面が粗面状態になっており窒化物半導体発光素子の内部で光が全反射し難い場合に有効である。   According to this configuration, the wavelength conversion efficiency of the emitted light from the nitride semiconductor light emitting element is improved. That is, it is effective when it is easy to extract light from the side surface of the nitride semiconductor light emitting device, for example, when the side surface is rough and it is difficult for the light to be totally reflected inside the nitride semiconductor light emitting device.

また、上記構成の発光装置において、前記第一樹脂部材が成型体として形成され、前記窒化物半導体発光素子の側面に対して離隔して配置されることを特徴としている。   In the light emitting device having the above-described configuration, the first resin member is formed as a molded body, and is arranged separately from the side surface of the nitride semiconductor light emitting element.

この構成によれば、予め別工程において成型体である第一樹脂部材が作成される。したがって、作業効率が向上する。さらに、第一樹脂部材の形状及び蛍光体含有量が一定に安定するので、窒化物半導体発光素子から受ける光の変換率も安定する。したがって、発光装置の色度歩留まりが向上する。   According to this structure, the 1st resin member which is a molded object in another process is created previously. Therefore, working efficiency is improved. Furthermore, since the shape of the first resin member and the phosphor content are stably stabilized, the conversion rate of light received from the nitride semiconductor light emitting element is also stabilized. Therefore, the chromaticity yield of the light emitting device is improved.

また、上記構成の発光装置において、前記第一樹脂部材は主成分がシリコーン樹脂若しくはエポキシ樹脂からなるとともに、屈折率が前記基板に対して同じまたは高い粒子を含むことを特徴としている。   In the light emitting device having the above-described configuration, the first resin member is mainly composed of a silicone resin or an epoxy resin, and includes particles having the same or higher refractive index than the substrate.

この構成によれば、第一樹脂部材は実質的に基板より高い屈折率となる。したがって、基板と第一樹脂部材との界面において全反射がなくなり、基板内の光が効率良く第一樹脂部材側に出射される。具体的に言えば、粒子は屈折率が1.7〜2.5の直径100μm以下のものが良い。また、第一樹脂部材内に含まれる粒子量は所望の形態に形成できる程度であれば多いほど良い。樹脂量が増えることで基板表面に接する粒子量が増え、基板内での光の全反射がより効率良く抑えられるためである。なお、高い屈折率を持つ第一樹脂部材に閉じ込められた光は蛍光体により散乱される。また、発光装置が後述する第三樹脂部材を備える場合、光は第三樹脂部材により効率良く外部へ取り出される。   According to this configuration, the first resin member has a refractive index substantially higher than that of the substrate. Therefore, there is no total reflection at the interface between the substrate and the first resin member, and the light in the substrate is efficiently emitted to the first resin member side. More specifically, the particles preferably have a refractive index of 1.7 to 2.5 and a diameter of 100 μm or less. Further, the amount of particles contained in the first resin member is preferably as long as it can be formed in a desired form. This is because the amount of particles in contact with the substrate surface increases as the amount of resin increases, and the total reflection of light within the substrate can be more efficiently suppressed. The light confined in the first resin member having a high refractive index is scattered by the phosphor. In addition, when the light emitting device includes a third resin member described later, light is efficiently extracted to the outside by the third resin member.

また、上記構成の発光装置において、前記第一樹脂部材が光を取り出す面と、前記窒化物半導体発光素子の側面に対向する面と、前記基体に対向する面とを有することを特徴としている。   In the light emitting device having the above structure, the first resin member has a surface from which light is extracted, a surface facing the side surface of the nitride semiconductor light emitting element, and a surface facing the base.

また、上記構成の発光装置において、前記第一樹脂部材は前記基体の前記窒化物半導体発光素子の載置面に対して直角をなす断面形状が略三角形状をなすことを特徴としている。   In the light-emitting device having the above-described configuration, the first resin member is characterized in that a cross-sectional shape perpendicular to the mounting surface of the nitride semiconductor light-emitting element of the base is substantially triangular.

これらの構成のように第一樹脂部材の形状を設定することにより、第一樹脂部材から出射される光の角度分布が変化する。   By setting the shape of the first resin member as in these configurations, the angular distribution of the light emitted from the first resin member changes.

また、上記構成の発光装置において、前記窒化物半導体発光素子が前記基体の前記窒化物半導体発光素子の載置面に対向して上方から見た形状が略長方形状をなし、前記第一樹脂部材が前記窒化物半導体発光素子を上方から見た長辺側のみに配置されることを特徴としている。   Further, in the light emitting device having the above-described configuration, the nitride semiconductor light emitting element is opposed to the mounting surface of the nitride semiconductor light emitting element of the base, and the shape viewed from above is substantially rectangular, and the first resin member Is arranged only on the long side of the nitride semiconductor light emitting device as viewed from above.

また、上記構成の発光装置において、前記窒化物半導体発光素子が前記基体と金属線を介して電気的に接続され、前記第一樹脂部材が前記窒化物半導体発光素子を前記基体の前記窒化物半導体発光素子の載置面に対向して上方から見て前記金属線が横切らない前記窒化物半導体発光素子の側方のみに配置されることを特徴としている。   In the light emitting device having the above-described configuration, the nitride semiconductor light emitting element is electrically connected to the base via a metal wire, and the first resin member connects the nitride semiconductor light emitting element to the nitride semiconductor of the base. The light emitting element is disposed only on the side of the nitride semiconductor light emitting element facing the mounting surface of the light emitting element so that the metal wire does not cross when viewed from above.

また、上記構成の発光装置において、前記第一樹脂部材が前記窒化物半導体発光素子の側方のみに配置されることを特徴としている。   In the light emitting device having the above-described configuration, the first resin member is disposed only on a side of the nitride semiconductor light emitting element.

また、上記構成の発光装置において、前記窒化物半導体発光素子の下方であって前記基体と前記窒化物半導体発光素子との間に、蛍光体を含まず、屈折率が前記基板に対して低い第二樹脂部材を配置したことを特徴としている。   Further, in the light emitting device having the above-described configuration, the phosphor is not included between the base and the nitride semiconductor light emitting element below the nitride semiconductor light emitting element, and the refractive index is lower than that of the substrate. Two resin members are arranged.

この構成によれば、第二樹脂部材は基板より屈折率が低いため、基板と第二樹脂部材との界面において全反射が起こり易くなり、基体への光吸収が抑制される。全反射により基体に吸収されなかった光は基板側面から第一樹脂部材を介して外部に取り出されるためより効率が良くなる。さらに、第二樹脂部材の厚みの増加が抑制される。したがって、第二樹脂部材における熱伝導性の悪化が抑制され、放熱特性が改善される。   According to this configuration, since the refractive index of the second resin member is lower than that of the substrate, total reflection is likely to occur at the interface between the substrate and the second resin member, and light absorption into the substrate is suppressed. Light that is not absorbed by the substrate due to total reflection is extracted from the side surface of the substrate to the outside through the first resin member, so that the efficiency is improved. Furthermore, an increase in the thickness of the second resin member is suppressed. Therefore, the deterioration of the thermal conductivity in the second resin member is suppressed, and the heat dissipation characteristics are improved.

また、上記構成の発光装置において、前記第二樹脂部材は前記第一樹脂部材より屈折率が低いことを特徴としている。   In the light emitting device having the above-described configuration, the second resin member has a lower refractive index than the first resin member.

この構成によれば、基板の光はより第一樹脂部材に閉じ込められるようになり、発光の効率が向上する。   According to this configuration, the light of the substrate is more confined in the first resin member, and the light emission efficiency is improved.

また、上記構成の発光装置において、前記窒化物半導体発光素子の側方であって、前記窒化物半導体発光素子と前記第一樹脂部材との間に第三樹脂材料を配置したことを特徴としている。   In the light emitting device having the above structure, a third resin material is disposed on the side of the nitride semiconductor light emitting element and between the nitride semiconductor light emitting element and the first resin member. .

また、上記構成の発光装置において、前記第三樹脂部材は前記第一樹脂部材より屈折率が低いことを特徴としている。   In the light emitting device having the above-described configuration, the third resin member has a lower refractive index than the first resin member.

また、上記構成の発光装置において、前記第三樹脂部材は蛍光体を含まないことを特徴としている。   In the light emitting device having the above-described configuration, the third resin member does not include a phosphor.

また、上記構成の発光装置において、前記第三樹脂部材がシリコーン樹脂からなることを特徴としている。   In the light emitting device having the above-described configuration, the third resin member is made of a silicone resin.

また、上記構成の発光装置において、前記窒化物半導体発光素子はその側面に周囲より表面粗さが粗い部分を備えることを特徴としている。   In the light-emitting device having the above-described configuration, the nitride semiconductor light-emitting element includes a portion having a surface roughness rougher than that of the periphery on a side surface thereof.

この構成によれば、第三樹脂部材は第一樹脂部材と空気、または第一樹脂部材と後述する封止樹脂に対して中間の屈折率を有する。したがって、第一樹脂部材内での光の全反射を抑え、効率良く第三樹脂部材さらに封止樹脂に光を取り出すことができる。   According to this configuration, the third resin member has an intermediate refractive index with respect to the first resin member and air, or the first resin member and the sealing resin described later. Therefore, total reflection of light within the first resin member can be suppressed, and light can be efficiently extracted to the third resin member and further to the sealing resin.

また、上記の課題を解決するため、本発明の発光装置の製造方法は、基体の上に第二樹脂部材を載置する工程と、前記第二樹脂部材の上に窒化物半導体発光素子を載置する工程と、前記第二樹脂部材を硬化させる工程と、前記基体の上に前記窒化物半導体発光素子に接触させて第一樹脂部材を載置する工程と、前記第一樹脂部材を硬化させる工程と、前記基体と前記窒化物半導体発光素子との間に跨る金属線を設ける工程と、を含むことを特徴としている。   In order to solve the above problems, a method for manufacturing a light emitting device according to the present invention includes a step of placing a second resin member on a substrate, and a nitride semiconductor light emitting element on the second resin member. Placing the first resin member on the base, contacting the nitride semiconductor light emitting element, and curing the first resin member. And a step of providing a metal wire straddling between the substrate and the nitride semiconductor light emitting device.

また、上記の課題を解決するため、本発明の発光装置の製造方法は、基体の上に第二樹脂部材を載置する工程と、前記第二樹脂部材の上に窒化物半導体発光素子を載置する工程と、前記基体の上であって前記窒化物半導体発光素子の側面に対して離隔させて成型体からなる第一樹脂部材を配置する工程と、前記第二樹脂部材を硬化させる工程と、前記基体と前記窒化物半導体発光素子との間に跨る金属線を設ける工程と、を含むことを特徴としている。   In order to solve the above problems, a method for manufacturing a light emitting device according to the present invention includes a step of placing a second resin member on a substrate, and a nitride semiconductor light emitting element on the second resin member. Placing the first resin member made of a molded body on the base and spaced apart from the side surface of the nitride semiconductor light emitting element; and curing the second resin member; And a step of providing a metal wire straddling between the base and the nitride semiconductor light emitting device.

また、上記構成の発光装置の製造方法において、前記窒化物半導体発光素子、前記第一樹脂部材、前記第二樹脂部材及び前記金属線を覆うように前記基体の上に封止樹脂を設ける工程を含むことを特徴としている。   In the method for manufacturing a light emitting device having the above-described structure, a step of providing a sealing resin on the base so as to cover the nitride semiconductor light emitting element, the first resin member, the second resin member, and the metal wire. It is characterized by including.

また、上記の課題を解決するため、本発明の発光装置の製造方法は、前記窒化物半導体発光素子をフリップチップ実装により前記基体に電気的に接続して固定する工程と、前記基体の上に前記窒化物半導体発光素子に接触させて第一樹脂部材を載置する工程と、前記第一樹脂部材を硬化させる工程と、を含むことを特徴としている。   In order to solve the above problems, a method of manufacturing a light emitting device according to the present invention includes a step of electrically connecting and fixing the nitride semiconductor light emitting element to the base by flip chip mounting, The method includes a step of placing the first resin member in contact with the nitride semiconductor light emitting element and a step of curing the first resin member.

また、上記の課題を解決するため、本発明の発光装置の製造方法は、前記窒化物半導体発光素子をフリップチップ実装により前記基体に電気的に接続して固定する工程と、前記基体の上であって前記窒化物半導体発光素子の側面に対して離隔させて成型体からなる第一樹脂部材を配置する工程と、を含むことを特徴としている。   In order to solve the above problems, a method for manufacturing a light-emitting device according to the present invention includes a step of electrically connecting and fixing the nitride semiconductor light-emitting element to the base by flip-chip mounting; And a step of disposing a first resin member made of a molded body so as to be separated from a side surface of the nitride semiconductor light emitting element.

また、上記構成の発光装置の製造方法において、前記窒化物半導体発光素子及び前記第一樹脂部材を覆うように前記基体の上に封止樹脂を設ける工程を含むことを特徴としている。   The method for manufacturing a light emitting device having the above-described configuration includes a step of providing a sealing resin on the base so as to cover the nitride semiconductor light emitting element and the first resin member.

また、上記の課題を解決するため、本発明の発光装置の製造方法は、基体の上に第二樹脂部材を載置する工程と、前記第二樹脂部材の上に窒化物半導体発光素子を載置する工程と、前記第二樹脂部材を硬化させる工程と、前記基体の上に前記窒化物半導体発光素子に接触させて第三樹脂部材を載置する工程と、前記第三樹脂部材を硬化させる工程と、前記第三樹脂部材の外側に前記第三樹脂部材に接触させて第一樹脂部材を載置する工程と、前記第一樹脂部材を硬化させる工程と、前記基体と前記窒化物半導体発光素子との間に跨る金属線を設ける工程と、を含むことを特徴としている。   In order to solve the above problems, a method for manufacturing a light emitting device according to the present invention includes a step of placing a second resin member on a substrate, and a nitride semiconductor light emitting element on the second resin member. A step of placing, a step of curing the second resin member, a step of placing the third resin member in contact with the nitride semiconductor light emitting element on the base, and curing the third resin member A step of placing the first resin member in contact with the third resin member outside the third resin member, a step of curing the first resin member, the base and the nitride semiconductor light emitting And a step of providing a metal wire straddling the element.

また、上記構成の発光装置の製造方法において、前記窒化物半導体発光素子、前記第一樹脂部材、前記第二樹脂部材、前記第三樹脂部材及び前記金属線を覆うように前記基体の上に封止樹脂を設ける工程を含むことを特徴としている。   Further, in the method of manufacturing the light emitting device having the above configuration, the nitride semiconductor light emitting element, the first resin member, the second resin member, the third resin member, and the metal wire are sealed on the base so as to cover. It includes a step of providing a stop resin.

また、上記の課題を解決するため、本発明の発光装置の製造方法は、前記窒化物半導体発光素子をフリップチップ実装により前記基体に電気的に接続して固定する工程と、前記基体の上に前記窒化物半導体発光素子に接触させて第三樹脂部材を載置する工程と、前記第三樹脂部材を硬化させる工程と、前記第三樹脂部材の外側に前記第三樹脂部材に接触させて第一樹脂部材を載置する工程と、前記第一樹脂部材を硬化させる工程と、を含むことを特徴としている。   In order to solve the above problems, a method of manufacturing a light emitting device according to the present invention includes a step of electrically connecting and fixing the nitride semiconductor light emitting element to the base by flip chip mounting, Placing the third resin member in contact with the nitride semiconductor light emitting device; curing the third resin member; contacting the third resin member outside the third resin member; The method includes a step of placing one resin member and a step of curing the first resin member.

また、上記構成の発光装置の製造方法において、前記窒化物半導体発光素子、前記第一樹脂部材及び前記第三樹脂部材を覆うように前記基体の上に封止樹脂を設ける工程を含むことを特徴としている。   The method of manufacturing a light emitting device having the above-described structure includes a step of providing a sealing resin on the base so as to cover the nitride semiconductor light emitting element, the first resin member, and the third resin member. It is said.

本発明の構成によれば、好適な放熱特性を有するともに、光取り出し効率の向上が図られた発光装置及びその製造方法を提供することができる。   According to the configuration of the present invention, it is possible to provide a light emitting device and a method for manufacturing the same that have favorable heat dissipation characteristics and improved light extraction efficiency.

本発明の第1実施形態の発光装置の断面図である。It is sectional drawing of the light-emitting device of 1st Embodiment of this invention. 本発明の第1実施形態の発光装置の発光素子の断面図である。It is sectional drawing of the light emitting element of the light-emitting device of 1st Embodiment of this invention. 本発明の第1実施形態の発光装置の発光素子及び第一樹脂部材の平面図である。It is a top view of the light emitting element and 1st resin member of the light-emitting device of 1st Embodiment of this invention. 本発明の第1実施形態の発光装置の発光素子及び第一樹脂部材の斜視図である。It is a perspective view of the light emitting element and 1st resin member of the light-emitting device of 1st Embodiment of this invention. 本発明の第3実施形態の発光装置の発光素子及び第一樹脂部材の平面図である。It is a top view of the light emitting element and 1st resin member of the light-emitting device of 3rd Embodiment of this invention. 本発明の第4実施形態の発光装置の断面図である。It is sectional drawing of the light-emitting device of 4th Embodiment of this invention. 本発明の第4実施形態の発光装置の発光素子及び第一樹脂部材の平面図である。It is a top view of the light emitting element and 1st resin member of the light-emitting device of 4th Embodiment of this invention. 本発明の第5実施形態の発光装置の断面図である。It is sectional drawing of the light-emitting device of 5th Embodiment of this invention. 本発明の第6実施形態の発光装置の断面図である。It is sectional drawing of the light-emitting device of 6th Embodiment of this invention. 本発明の第7実施形態の発光装置の断面図である。It is sectional drawing of the light-emitting device of 7th Embodiment of this invention. 本発明の第7実施形態の発光装置の発光素子の断面図である。It is sectional drawing of the light emitting element of the light-emitting device of 7th Embodiment of this invention. 本発明の第8実施形態の発光装置の断面図である。It is sectional drawing of the light-emitting device of 8th Embodiment of this invention. 本発明の第9実施形態の発光装置の断面図である。It is sectional drawing of the light-emitting device of 9th Embodiment of this invention.

以下、本発明の実施形態を図1〜図13に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

<第1実施形態>
最初に、本発明の第1実施形態の発光装置について、図1〜図4を用いてその構成を説明する。図1は発光装置の断面図、図2は発光装置の発光素子の断面図、図3は発光装置の発光素子及び第一樹脂部材の平面図、図4は発光装置の発光素子及び第一樹脂部材の斜視図である。
<First Embodiment>
First, the configuration of the light emitting device according to the first embodiment of the present invention will be described with reference to FIGS. 1 is a cross-sectional view of the light-emitting device, FIG. 2 is a cross-sectional view of the light-emitting element of the light-emitting device, FIG. 3 is a plan view of the light-emitting element and the first resin member of the light-emitting device, and FIG. It is a perspective view of a member.

発光装置1は、図1に示すように基体2の上に載置された窒化物半導体発光素子20を備える。窒化物半導体発光素子20は、上方から見た形状が図3に示すように長方形状をなす直方体形状で構成されている。   The light emitting device 1 includes a nitride semiconductor light emitting element 20 mounted on a base 2 as shown in FIG. The nitride semiconductor light emitting element 20 has a rectangular parallelepiped shape as viewed from above as shown in FIG.

窒化物半導体発光素子20は、図2に示すように例えばサファイア基板、GaN基板またはSiC基板からなる基板21の成長主面上に複数の窒化物半導体層を積層した窒化物半導体積層部30を備える。窒化物半導体積層部30としては基板21側から順にn型GaN層からなるn型窒化物半導体層31、発光層32及びp型GaN層からなるp型窒化物半導体層33を結晶成長させている。基板21上の窒化物半導体積層部30はMOCVD(Metal Organic Chemical Vapor Deposition)法などのエピタキシャル成長法を用いて成長させる。   As shown in FIG. 2, the nitride semiconductor light emitting element 20 includes a nitride semiconductor stacked unit 30 in which a plurality of nitride semiconductor layers are stacked on a main growth surface of a substrate 21 made of, for example, a sapphire substrate, a GaN substrate, or a SiC substrate. . As the nitride semiconductor laminated portion 30, an n-type nitride semiconductor layer 31 composed of an n-type GaN layer, a light emitting layer 32, and a p-type nitride semiconductor layer 33 composed of a p-type GaN layer are grown in order from the substrate 21 side. . The nitride semiconductor laminated portion 30 on the substrate 21 is grown using an epitaxial growth method such as a MOCVD (Metal Organic Chemical Vapor Deposition) method.

窒化物半導体積層部30の上面にはITO層22が形成される。さらに、ITO層22の上面にはSiO2層23が形成される。SiO2層23はITO層22の全面に形成されていない。電極の接続部分はSiO2層23が除去され、ITO層22若しくはn型窒化物半導体層31及びn側電極が露出している。また、窒化物半導体積層部30の上層には電極部25(図4参照)が形成される。窒化物半導体発光素子20は、図1及び図4に示すように金属線3により、その表面に設けた電極部25が基体2に設けた不図示の電極部に電気的に接続される。 An ITO layer 22 is formed on the upper surface of the nitride semiconductor multilayer portion 30. Further, a SiO 2 layer 23 is formed on the upper surface of the ITO layer 22. The SiO 2 layer 23 is not formed on the entire surface of the ITO layer 22. In the electrode connection portion, the SiO 2 layer 23 is removed, and the ITO layer 22 or the n-type nitride semiconductor layer 31 and the n-side electrode are exposed. In addition, an electrode portion 25 (see FIG. 4) is formed in the upper layer of the nitride semiconductor multilayer portion 30. As shown in FIGS. 1 and 4, the nitride semiconductor light emitting device 20 is electrically connected to an electrode portion (not shown) provided on the base 2 by an electrode portion 25 provided on the surface of the nitride semiconductor light emitting device 20.

発光層32で発生した光は窒化物半導体発光素子20の最上面であるSiO2層23及び各層の側面24(図1及び図2における左右方向の両端面及び紙面奥行き方向の両端面)から出射される。 The light generated in the light emitting layer 32 is emitted from the SiO 2 layer 23 that is the uppermost surface of the nitride semiconductor light emitting element 20 and the side surfaces 24 of each layer (both end surfaces in the left and right direction and both end surfaces in the depth direction of the paper in FIGS. 1 and 2). Is done.

このような窒化物半導体発光素子20は側面24のほとんどが屈折率が比較的高いサファイア基板、GaN基板またはSiC基板からなる基板21で構成されている。そして、発光装置1は、図1及び図3に示すようにこの窒化物半導体発光素子20の側方に第一樹脂部材4を備えている。第一樹脂部材4は上方から見て長方形状をなす窒化物半導体発光素子20の2箇所の長辺側の側方に設けられる(図3参照)。   Such a nitride semiconductor light emitting device 20 is constituted by a substrate 21 made of a sapphire substrate, a GaN substrate, or a SiC substrate, which has a relatively high refractive index on the side surface 24. And the light-emitting device 1 is provided with the 1st resin member 4 in the side of this nitride semiconductor light-emitting element 20, as shown in FIG.1 and FIG.3. The first resin member 4 is provided on two long side sides of the nitride semiconductor light emitting element 20 having a rectangular shape when viewed from above (see FIG. 3).

窒化物半導体発光素子20が長方形状である場合、一般に長辺側の側面は短辺側の側面より光取り出し効率が低い。これは相対する長辺側の二つの側面間の距離(光路)が短く、長辺側の側面では臨界角以上の光の入射で全反射される確率が大きいためである。これにより、長辺側の側面のみ光取り出し効率を高くしたい場合、長辺側の側面のみに第一樹脂部材4を載置すると良い。   When the nitride semiconductor light emitting element 20 is rectangular, generally the side surface on the long side has lower light extraction efficiency than the side surface on the short side. This is because the distance (optical path) between the two opposite long side surfaces is short, and the long side surface has a high probability of being totally reflected by the incidence of light having a critical angle or more. Thereby, when it is desired to increase the light extraction efficiency only on the side surface on the long side, the first resin member 4 may be placed only on the side surface on the long side.

窒化物半導体発光素子20は、前述のように上面に電極部25を有する構成の場合、外部との電気的接続を行うために、Auワイヤなどの金属線3を介して基体2と電気的に接続される。窒化物半導体発光素子20及び基体2に対して金属線3を接続した後に第一樹脂部材4を載置しようとすると、金属線3が邪魔になり第一樹脂部材4の載置が難しい。したがって、窒化物半導体発光素子20を基体2の窒化物半導体発光素子20の載置面に対向して上方から見て金属線3が横切る側面24には第一樹脂部材4を配置せず、金属線3が横切らない側面24のみに第一樹脂部材4を配置することにより(図4参照)、上記問題を解決することができる。また、第一樹脂部材4を設けるときの位置ずれ等の理由により、金属線3を接続するための基体2の電極部分に第一樹脂部材4が付着して金属線3が接続不良を起こすことを防止することができる。   In the case where the nitride semiconductor light emitting element 20 has the electrode portion 25 on the upper surface as described above, the nitride semiconductor light emitting element 20 is electrically connected to the substrate 2 via the metal wire 3 such as an Au wire in order to make an electrical connection with the outside. Connected. If the first resin member 4 is to be placed after the metal wire 3 is connected to the nitride semiconductor light emitting element 20 and the base 2, the metal wire 3 becomes an obstacle and it is difficult to place the first resin member 4. Therefore, the first resin member 4 is not disposed on the side surface 24 where the metal wire 3 crosses when the nitride semiconductor light emitting element 20 is opposed to the mounting surface of the nitride semiconductor light emitting element 20 of the base 2 and viewed from above. By disposing the first resin member 4 only on the side surface 24 where the line 3 does not cross (see FIG. 4), the above problem can be solved. Further, due to misalignment when the first resin member 4 is provided, the first resin member 4 adheres to the electrode portion of the base 2 for connecting the metal wire 3 and the metal wire 3 causes poor connection. Can be prevented.

第一樹脂部材4は窒化物半導体発光素子20の側面24に接触させた屈折率が比較的高いシリコーン樹脂若しくはエポキシ樹脂からなる。さらに、第一樹脂部材4は蛍光体を含んでいる。   The first resin member 4 is made of a silicone resin or an epoxy resin having a relatively high refractive index in contact with the side surface 24 of the nitride semiconductor light emitting element 20. Further, the first resin member 4 includes a phosphor.

第一樹脂部材4は基体2の窒化物半導体発光素子20の載置面に対して直角をなす断面形状、すなわち図1の紙面奥行き方向から見た断面形状が略三角形状をなす。これにより、第一樹脂部材4は光を取り出す面4aと、窒化物半導体発光素子20の側面24に対向する面4bと、基体2に対向する面4cとを有する。   The first resin member 4 has a substantially triangular cross-sectional shape perpendicular to the mounting surface of the nitride semiconductor light-emitting element 20 of the base 2, that is, the cross-sectional shape viewed from the depth direction of FIG. Thereby, the first resin member 4 has a surface 4 a for extracting light, a surface 4 b that faces the side surface 24 of the nitride semiconductor light emitting element 20, and a surface 4 c that faces the base 2.

窒化物半導体発光素子20の下方であって、基体2との間には第二樹脂部材5が配置される。第二樹脂部材5は蛍光体を含まず、基板21及び第一樹脂部材4と比較して屈折率が低い。   The second resin member 5 is disposed below the nitride semiconductor light emitting element 20 and between the base 2. The second resin member 5 does not contain a phosphor and has a lower refractive index than the substrate 21 and the first resin member 4.

窒化物半導体発光素子20、金属線3、第一樹脂部材4及び第二樹脂部材5は、図1に示すようにそれらの周囲が封止樹脂6によって覆われている。封止樹脂6は基体2上において外面が略半球面に形成されたドーム形状をなしている。封止樹脂6は例えば熱硬化性のシリコーン樹脂若しくはエポキシ樹脂からなる。また、封止樹脂6には例えば蛍光体や拡散剤等の添加物が含まれていても良い。また、封止樹脂6は第一樹脂部材4と比較して屈折率が低い。   The nitride semiconductor light emitting element 20, the metal wire 3, the first resin member 4, and the second resin member 5 are covered with a sealing resin 6 as shown in FIG. 1. The sealing resin 6 has a dome shape with an outer surface formed in a substantially hemispherical shape on the base 2. The sealing resin 6 is made of, for example, a thermosetting silicone resin or an epoxy resin. Further, the sealing resin 6 may contain additives such as a phosphor and a diffusing agent. Further, the sealing resin 6 has a lower refractive index than the first resin member 4.

次に、上記構成の発光装置1の製造方法について説明する。   Next, a method for manufacturing the light emitting device 1 having the above configuration will be described.

まず、基体2の表面に第二樹脂部材5を載置する。そして、基体2の表面の電極と対面する基板21の下面全面が第二樹脂部材5に接触するよう窒化物半導体発光素子20を接着する。第二樹脂部材5は放熱特性を損なわないようになるべく薄く載置することが望ましい。   First, the second resin member 5 is placed on the surface of the base 2. Then, the nitride semiconductor light emitting element 20 is bonded so that the entire lower surface of the substrate 21 facing the electrode on the surface of the base 2 is in contact with the second resin member 5. It is desirable to place the second resin member 5 as thin as possible so as not to impair the heat dissipation characteristics.

第二樹脂部材5にはその屈折率を制御するため、屈折率が1.7〜2.5の直径100μm以下の粒子、例えば酸化ジルコニウム粒子や酸化チタン粒子を混合する。これらの粒子の屈折率は第二樹脂部材5の主材料(例えばシリコーン樹脂)の誘電率によって決まり、混合後の第二樹脂部材5の屈折率は粒子と主材料との配合比によって決まる。   In order to control the refractive index of the second resin member 5, particles having a refractive index of 1.7 to 2.5 and a diameter of 100 μm or less, for example, zirconium oxide particles or titanium oxide particles are mixed. The refractive index of these particles is determined by the dielectric constant of the main material (for example, silicone resin) of the second resin member 5, and the refractive index of the second resin member 5 after mixing is determined by the mixing ratio of the particles and the main material.

続いて、第二樹脂部材5に対して熱硬化工程を実行する。硬化条件としては、第二樹脂部材5の透光性が失われず、密着性を損なわない程度の温度、時間が望ましい。   Subsequently, a thermosetting process is performed on the second resin member 5. As curing conditions, the temperature and the time are preferred so that the translucency of the second resin member 5 is not lost and the adhesion is not impaired.

続いて、窒化物半導体発光素子20の側面を覆うよう第一樹脂部材4を載置する。なお、第一樹脂部材4は上方から見て長方形状をなす窒化物半導体発光素子20の2箇所の長辺側の側方に載置する。   Subsequently, the first resin member 4 is placed so as to cover the side surface of the nitride semiconductor light emitting element 20. The first resin member 4 is placed on the two long side sides of the nitride semiconductor light emitting element 20 having a rectangular shape when viewed from above.

第一樹脂部材4を載置すべきではない領域をマスキングすることで、部分的に第一樹脂部材4を載置することができる。窒化物半導体発光素子20の電極部を含む天面には第一樹脂部材4が接触しないようにする。第一樹脂部材4の粘性を利用した這い上がりを用いることで図1の紙面奥行き方向から見た断面形状を略三角形状にすることができる。このようにして、第一樹脂部材4を窒化物半導体発光素子20の側方のみに配置するようにする。   By masking a region where the first resin member 4 should not be placed, the first resin member 4 can be partially placed. The first resin member 4 is prevented from contacting the top surface including the electrode portion of the nitride semiconductor light emitting device 20. By using scooping up that utilizes the viscosity of the first resin member 4, the cross-sectional shape viewed from the depth direction in FIG. In this way, the first resin member 4 is disposed only on the side of the nitride semiconductor light emitting element 20.

第一樹脂部材4は窒化物半導体発光素子20の基板21の屈折率と同程度或いは低い屈折率の例えばシリコーン樹脂を用いる。第一樹脂部材4及び第二樹脂部材5には従来半導体発光素子のダイボンドペーストとして用いられているシリコーン樹脂、エポキシ樹脂、アクリル樹脂、イミド樹脂などの熱硬化性樹脂を用いることができる。特に、シリコーン樹脂は青色から紫外領域の短波長の光に対する透過性が高く、半導体発光素子を封止する封止剤として用いる方法が知られており好ましい(特許文献3参照)。   For the first resin member 4, for example, a silicone resin having a refractive index that is the same as or lower than the refractive index of the substrate 21 of the nitride semiconductor light emitting element 20 is used. For the first resin member 4 and the second resin member 5, thermosetting resins such as silicone resins, epoxy resins, acrylic resins, and imide resins that are conventionally used as die bond pastes for semiconductor light emitting devices can be used. In particular, a silicone resin has a high transmittance with respect to light having a short wavelength in a blue to ultraviolet region, and a method of using it as a sealing agent for sealing a semiconductor light emitting element is known (see Patent Document 3).

そして、第一樹脂部材4には光の波長を長波側に変換する機能を持つ蛍光体を予め撹拌混合しておく。従来一般的に知られている蛍光体は白色LEDでよく使用されているYAG(イットリウム・アルミ・ガーネット)蛍光体などがある。現在では100nm程度の粒径の蛍光体が得られており、例えばこの様な蛍光体を第一樹脂部材4に含ませることができる。   The first resin member 4 is previously mixed with a phosphor having a function of converting the wavelength of light to the long wave side. Conventionally known phosphors include YAG (yttrium, aluminum, garnet) phosphors that are often used in white LEDs. Currently, a phosphor having a particle diameter of about 100 nm is obtained. For example, such a phosphor can be included in the first resin member 4.

さらに、第一樹脂部材4が含む蛍光体としては、例えばCe:YAG(セリウム賦活イットリウム・アルミニウム・ガーネット)蛍光体(Y3Al5O12:Ce,(Y,Gd)3Al5O12:Ceなど)、Eu:BOSE(ユーロピウム賦活バリウム・ストロンチウム・オルソシリケート)蛍光体、Eu:SOSE(ユーロピウム賦活ストロンチウム・バリウム・オルソシリケート)蛍光体、ユーロピウム賦活αサイアロン蛍光体、Ce:TAG(セリウム附活テルビウム・アルミニウム・ガーネット)蛍光体(Tb3Al5O12:Ceなど)、アルカリ土類(Eu附活M2Si5N8:Eu,MSi12O2N2:Euなど、Ce附活Ca3SC2Si3O12)、カズンーEu(Eu附活CaAlSi3N3)、La酸窒化物−Ce Ce附活LaAl(Si6−zAl2)N10−z0、βサイアロン系などが適用できる。(Sr,Ba,Mg)2SiO4:Eu、Ca3(Sc,Mg)2Si3O12:Ceなどからなる緑色蛍光体、(Sr,Ca)AlSiN3:Eu、CaAlSiN3:Euなどからなる赤色蛍光体、(Si,Al)6(O,N)8:Eu、(Ba,Sr)2SiO4:Euなどからなる黄色蛍光体など、蛍光体とともに拡散剤を含有させるようにしても良い。   Further, as the phosphor included in the first resin member 4, for example, Ce: YAG (cerium activated yttrium / aluminum / garnet) phosphor (Y3Al5O12: Ce, (Y, Gd) 3Al5O12: Ce, etc.), Eu: BOSE (europium) Activated barium, strontium, orthosilicate) phosphor, Eu: SOSE (europium activated strontium, barium, orthosilicate) phosphor, europium activated α sialon phosphor, Ce: TAG (cerium activated terbium, aluminum, garnet) phosphor ( Tb3Al5O12: Ce, etc.), alkaline earth (Eu-activated M2Si5N8: Eu, MSi12O2N2: Eu, etc., Ce-activated Ca3SC2Si3O12), Casun-Eu (Eu-activated CaAlSi3N3), La oxynitride-C Ce Fukatsu LaAl (Si6-zAl2) N10-z0, can be applied, such as β-sialon-based. (Sr, Ba, Mg) 2SiO4: Eu, green phosphor made of Ca3 (Sc, Mg) 2Si3O12: Ce, red phosphor made of (Sr, Ca) AlSiN3: Eu, CaAlSiN3: Eu, etc. ) A diffusing agent may be included together with the phosphor, such as a yellow phosphor composed of 6 (O, N) 8: Eu, (Ba, Sr) 2SiO4: Eu, and the like.

拡散剤としては特に制限されるものではないが、例えばチタン酸バリウム、酸化チタン、酸化アルミニウム、酸化珪素、炭酸カルシウム、二酸化珪素などを好適に用いることができ、粒径の比較的小さいものが好ましい。   Although it does not restrict | limit especially as a diffusing agent, For example, a barium titanate, a titanium oxide, an aluminum oxide, a silicon oxide, a calcium carbonate, silicon dioxide etc. can be used conveniently, and the thing with a comparatively small particle size is preferable. .

続いて、第一樹脂部材4に対して熱硬化工程を実行する。   Subsequently, a thermosetting process is performed on the first resin member 4.

そして、n極、p極それぞれについて、窒化物半導体発光素子20の電極部と基体2の表面の電極部との間に跨る金属線3を設けて電気的に接続する。接続には熱、ガス劣化の少ないAuワイヤを金属線3として使用することが望ましい。また、金属線3による光の吸収ロスを低減させるため、Auワイヤは窒化物半導体発光素子20から見て立体角がなるべく小さくなるよう設けることが望ましい。   Then, for each of the n-pole and the p-pole, a metal wire 3 is provided between the electrode portion of the nitride semiconductor light emitting element 20 and the electrode portion on the surface of the base 2 to be electrically connected. For the connection, it is desirable to use an Au wire with little heat and gas deterioration as the metal wire 3. Further, in order to reduce the light absorption loss due to the metal wire 3, it is desirable that the Au wire is provided so that the solid angle is as small as possible when viewed from the nitride semiconductor light emitting element 20.

続いて、第一樹脂部材4と比較して屈折率が低い封止樹脂6を用いて基体2上に設けた窒化物半導体発光素子20、金属線3、第一樹脂部材4及び第二樹脂部材5を樹脂封止する。封止樹脂6には第一樹脂部材4及び第二樹脂部材5同様、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、イミド樹脂などの熱硬化性樹脂を用いることができる。   Subsequently, the nitride semiconductor light emitting element 20, the metal wire 3, the first resin member 4, and the second resin member provided on the base 2 using the sealing resin 6 having a lower refractive index than that of the first resin member 4. 5 is resin-sealed. As the first resin member 4 and the second resin member 5, a thermosetting resin such as a silicone resin, an epoxy resin, an acrylic resin, and an imide resin can be used for the sealing resin 6.

封止樹脂6は例えばディスペンサ等を利用して基体2の上面に向けて滴下される。例えば窒化物半導体発光素子20を点灯することなどによって、滴下された封止樹脂6は滴下後直ちに加熱硬化される。窒化物半導体発光素子20の発光による熱がその周囲に放射状に伝導するので、窒化物半導体発光素子20に向けて滴下された封止樹脂6は図1に示す断面が略半円状をなす略半球状のドーム形状に形成される。   The sealing resin 6 is dropped toward the upper surface of the base 2 using, for example, a dispenser. For example, when the nitride semiconductor light emitting element 20 is turned on, the dropped sealing resin 6 is heated and cured immediately after the dropping. Since the heat generated by light emission of the nitride semiconductor light emitting element 20 is conducted radially around the nitride semiconductor light emitting element 20, the sealing resin 6 dropped toward the nitride semiconductor light emitting element 20 has a substantially semicircular cross section shown in FIG. It is formed in a hemispherical dome shape.

封止樹脂6には第一樹脂部材4同様の蛍光体を予め撹拌混合しておく。また、封止樹脂6に拡散剤を用いても良い。   A phosphor similar to the first resin member 4 is agitated and mixed in the sealing resin 6 in advance. Further, a diffusing agent may be used for the sealing resin 6.

上記のように、発光装置1は基体2の上に載置された基板21と複数の窒化物半導体層とを含む窒化物半導体発光素子20と、窒化物半導体発光素子20の側方に配置した光の波長を長波側に変換する機能を持つ蛍光体を含む屈折率が基板21に対して同じまたは低い第一樹脂部材4とを備える。これにより、第一樹脂部材4は基板21と空気、または基板21と封止樹脂6に対して中間の屈折率を有する。したがって、第一樹脂部材4は基板21との屈折率差が小さく、臨界角度が大きくなり、基板21から第一樹脂部材4への光取り出し効率、すなわち窒化物半導体発光素子20の側面24からの光取り出し効率が向上する。   As described above, the light emitting device 1 is disposed on the side of the nitride semiconductor light emitting element 20 including the nitride semiconductor light emitting element 20 including the substrate 21 and the plurality of nitride semiconductor layers placed on the base 2. A first resin member 4 having a refractive index that is the same as or lower than that of the substrate 21 is included. Thereby, the first resin member 4 has an intermediate refractive index with respect to the substrate 21 and air or between the substrate 21 and the sealing resin 6. Therefore, the first resin member 4 has a small refractive index difference from the substrate 21 and a critical angle, and the light extraction efficiency from the substrate 21 to the first resin member 4, that is, from the side surface 24 of the nitride semiconductor light emitting element 20. The light extraction efficiency is improved.

ここで、側面24から出射される光のほとんどは発光層32から下方に放射される光である。窒化物半導体発光素子20で生成される光の一部は素子内部で大きく散乱されない限り多重反射して素子外部に出射されることがなく、光の強度が低下する。また、窒化物半導体発光素子20の外部に散乱体がない場合は基体2と衝突して吸収される。   Here, most of the light emitted from the side surface 24 is light emitted downward from the light emitting layer 32. A part of the light generated by the nitride semiconductor light emitting device 20 is not multiple-reflected and emitted outside the device unless it is greatly scattered inside the device, and the light intensity is reduced. Further, when there is no scatterer outside the nitride semiconductor light emitting device 20, it collides with the substrate 2 and is absorbed.

この効果は窒化物半導体発光素子20から出射される光の波長が紫外領域であると顕著になる。例えば、紫外線に対して効率的な反射材とされるAlのメッキが基板表面に施されているとき、光の波長が320nm〜390nmの場合であれば基体2による吸収率がおよそ10%軽減でき、光の波長が約100nmの場合であれば基体2による吸収率がおよそ80%軽減できる。   This effect becomes significant when the wavelength of light emitted from the nitride semiconductor light emitting device 20 is in the ultraviolet region. For example, when Al plating, which is an efficient reflector for ultraviolet rays, is applied to the substrate surface, the absorption rate by the substrate 2 can be reduced by about 10% if the light wavelength is 320 nm to 390 nm. If the wavelength of light is about 100 nm, the absorption rate by the substrate 2 can be reduced by about 80%.

これに対して、第一樹脂部材4が蛍光体を含むことで、光の出射方向を変更して光取り出し効率を向上させることができる。さらに、蛍光体によって窒化物半導体発光素子20からの出射光の波長が長波側に一度変換されると、窒化物半導体発光素子20内部に再入射した場合でも吸収される量が少なくなる。したがって、光取り出し効率をより一層向上させることができる。   On the other hand, when the first resin member 4 includes the phosphor, the light extraction efficiency can be improved by changing the light emission direction. Furthermore, once the wavelength of the emitted light from the nitride semiconductor light emitting device 20 is once converted to the long wave side by the phosphor, the amount absorbed is reduced even when reentering the nitride semiconductor light emitting device 20. Therefore, the light extraction efficiency can be further improved.

また、第一樹脂部材4が窒化物半導体発光素子20の側面24に接触するので、窒化物半導体発光素子20の側面24からの光取り出し効率が向上する。特に、窒化物半導体発光素子20の側面24から光を取り出し難い場合に有効である。   In addition, since the first resin member 4 contacts the side surface 24 of the nitride semiconductor light emitting element 20, the light extraction efficiency from the side surface 24 of the nitride semiconductor light emitting element 20 is improved. This is particularly effective when it is difficult to extract light from the side surface 24 of the nitride semiconductor light emitting device 20.

また、第一樹脂部材4が光を取り出す面4aと、窒化物半導体発光素子20の側面24に対向する面4bと、基体2に対向する面4cとを有し、基体2の窒化物半導体発光素子20の載置面に対して直角をなす断面形状が略三角形状をなしている。これにより、第一樹脂部材4から出射される光の角度分布を変化させることができる。フレネル反射の性質から、反射率が角度依存性を持つためである。例えば、第一樹脂部材4の外側に高反射率のリフレクターが存在するパッケージに発光装置1を搭載する場合、リフレクターを有効に利用できる角度に合うように第一樹脂部材4の表面形状を変更することで光取り出し効率をさらに向上させることができる。   The first resin member 4 has a surface 4 a for extracting light, a surface 4 b that faces the side surface 24 of the nitride semiconductor light emitting element 20, and a surface 4 c that faces the base 2, and the nitride semiconductor light emission of the base 2 The cross-sectional shape perpendicular to the mounting surface of the element 20 has a substantially triangular shape. Thereby, the angular distribution of the light emitted from the first resin member 4 can be changed. This is because the reflectivity has angle dependency due to the nature of Fresnel reflection. For example, when the light emitting device 1 is mounted on a package having a reflector having a high reflectance outside the first resin member 4, the surface shape of the first resin member 4 is changed so as to match an angle at which the reflector can be effectively used. Thus, the light extraction efficiency can be further improved.

また、窒化物半導体発光素子20が基体2の窒化物半導体発光素子20の載置面に対向して上方から見た形状が略長方形状をなし、第一樹脂部材4が窒化物半導体発光素子20を上方から見た長辺側のみに配置されている。第一樹脂部材4は窒化物半導体発光素子20の側面24の全域にわたって覆うように載置するのが望ましいが、量産効率やコスト面を考えると長方形状の長辺側のみでも充分効果を発揮すると考えられる。   Further, the shape of the nitride semiconductor light emitting element 20 facing the mounting surface of the nitride semiconductor light emitting element 20 of the base 2 as viewed from above is substantially rectangular, and the first resin member 4 is the nitride semiconductor light emitting element 20. Is disposed only on the long side when viewed from above. The first resin member 4 is preferably placed so as to cover the entire side surface 24 of the nitride semiconductor light emitting element 20, but considering the mass production efficiency and cost, it is sufficient to exhibit a sufficient effect only on the long side of the rectangular shape. Conceivable.

また、第一樹脂部材4が窒化物半導体発光素子20を基体2の窒化物半導体発光素子20の載置面に対向して上方から見て金属線3が横切らない窒化物半導体発光素子20の側方のみに配置されている。これにより、第一樹脂部材4を載置する際、金属線3が邪魔にならず、第一樹脂部材4の載置が容易になる。   In addition, the first resin member 4 faces the nitride semiconductor light emitting element 20 on the base 2 on the mounting surface of the nitride semiconductor light emitting element 20 so that the metal wire 3 does not cross when viewed from above. It is arranged only in the direction. Thereby, when mounting the 1st resin member 4, the metal wire 3 does not become obstructive, and mounting of the 1st resin member 4 becomes easy.

また、窒化物半導体発光素子20の下方であって基体2と窒化物半導体発光素子20との間に、蛍光体を含まず、屈折率が基板21に対して低い第二樹脂部材5を配置した。第二樹脂部材5は基板21より屈折率が低いため、基板21と第二樹脂部材5との界面において全反射が起こり易くなり、基体2への光吸収が抑制される。全反射により基体2に吸収されなかった光は基板21の側面から第一樹脂部材4を介して外部に取り出されるためより効率が良くなる。さらに、第二樹脂部材5の厚みの増加を抑制することができる。したがって、第二樹脂部材5における熱伝導性の悪化が抑制され、放熱特性を改善することが可能である。   Further, the second resin member 5 which does not include a phosphor and has a lower refractive index than the substrate 21 is disposed below the nitride semiconductor light emitting element 20 and between the base 2 and the nitride semiconductor light emitting element 20. . Since the second resin member 5 has a lower refractive index than the substrate 21, total reflection is likely to occur at the interface between the substrate 21 and the second resin member 5, and light absorption into the base 2 is suppressed. Light that is not absorbed by the base 2 due to total reflection is extracted from the side surface of the substrate 21 to the outside through the first resin member 4, so that the efficiency is improved. Furthermore, an increase in the thickness of the second resin member 5 can be suppressed. Therefore, the deterioration of the thermal conductivity in the second resin member 5 is suppressed, and the heat dissipation characteristics can be improved.

また、第二樹脂部材5は第一樹脂部材4より屈折率が低いので、基板21の光はより第一樹脂部材4に閉じ込められるようになる。したがって、発光装置1は発光の効率が向上する。   Further, since the second resin member 5 has a lower refractive index than the first resin member 4, the light of the substrate 21 is more confined in the first resin member 4. Therefore, the light emitting device 1 improves the light emission efficiency.

このようにして、本発明の上記実施形態の構成によれば、好適な放熱特性を有するともに、光取り出し効率の向上が図られた発光装置1及びその製造方法を提供することができる。   As described above, according to the configuration of the above embodiment of the present invention, it is possible to provide the light emitting device 1 having a preferable heat dissipation characteristic and improving the light extraction efficiency and a method for manufacturing the same.

<第2実施形態>
次に、本発明の第2実施形態に係る発光装置について、図1を参照しつつ説明する。この実施形態の基本的な構成は図1〜図4を用いて説明した前記第1実施形態と同じであるので、第1実施形態と共通する構成要素には前と同じ符号を付し、図面の記載及びその詳細な説明を省略するものとする。
Second Embodiment
Next, a light emitting device according to a second embodiment of the invention will be described with reference to FIG. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 to 4, the same components as those of the first embodiment are denoted by the same reference numerals as before, and the drawings. And the detailed description thereof will be omitted.

第2実施形態に係る発光装置1は、第一樹脂部材4が窒化物半導体発光素子20の側面24に接触させた屈折率が比較的高い樹脂からなる(図1参照)。第一樹脂部材4は屈折率を制御するため、屈折率が1.7〜2.5の直径100μm以下の粒子、例えばジルコニウム粒子や酸化チタン粒子などを含むシリコーン樹脂若しくはエポキシ樹脂からなる。これらの粒子の屈折率は第一樹脂部材4の主材料(例えばシリコーン樹脂)の誘電率によって決まり、混合後の第一樹脂部材4の屈折率は粒子と主材料との配合比によって決まる。   The light emitting device 1 according to the second embodiment is made of a resin having a relatively high refractive index in which the first resin member 4 is in contact with the side surface 24 of the nitride semiconductor light emitting element 20 (see FIG. 1). In order to control the refractive index, the first resin member 4 is made of a silicone resin or an epoxy resin containing particles having a refractive index of 1.7 to 2.5 and a diameter of 100 μm or less, such as zirconium particles and titanium oxide particles. The refractive index of these particles is determined by the dielectric constant of the main material (for example, silicone resin) of the first resin member 4, and the refractive index of the first resin member 4 after mixing is determined by the blending ratio of the particles and the main material.

この構成によれば、第一樹脂部材4は実質的に基板21より高い屈折率となる。したがって、基板21と第一樹脂部材4との界面において全反射がなくなり、基板21内の光が効率良く第一樹脂部材4側に出射される。具体的に言えば、粒子は屈折率が1.7〜2.5の直径100μm以下のものが良い。また、第一樹脂部材4内に含まれる粒子量は所望の形態に形成できる程度であれば多いほど良い。樹脂量が増えることで基板21の表面に接する粒子量が増え、基板21内での光の全反射がより効率良く抑えられるためである。なお、高い屈折率を持つ第一樹脂部材4に閉じ込められた光は蛍光体により散乱される。また、発光装置1が後述する第三樹脂部材8を備える場合、光は第三樹脂部材8により効率良く外部へ取り出される。   According to this configuration, the first resin member 4 has a refractive index substantially higher than that of the substrate 21. Accordingly, there is no total reflection at the interface between the substrate 21 and the first resin member 4, and the light in the substrate 21 is efficiently emitted to the first resin member 4 side. More specifically, the particles preferably have a refractive index of 1.7 to 2.5 and a diameter of 100 μm or less. Further, the amount of particles contained in the first resin member 4 is preferably as long as it can be formed in a desired form. This is because the amount of particles in contact with the surface of the substrate 21 increases as the amount of resin increases, and the total reflection of light within the substrate 21 can be more efficiently suppressed. The light confined in the first resin member 4 having a high refractive index is scattered by the phosphor. In addition, when the light emitting device 1 includes a third resin member 8 described later, the light is efficiently extracted to the outside by the third resin member 8.

<第3実施形態>
次に、本発明の第3実施形態に係る発光装置について、図5を用いて説明する。図5は発光装置の発光素子及び第一樹脂部材の平面図である。なお、この実施形態の基本的な構成は図1〜図3を用いて説明した前記第1実施形態と同じであるので、第1実施形態と共通する構成要素には前と同じ符号を付し、その詳細な説明を省略するものとする。
<Third Embodiment>
Next, a light emitting device according to a third embodiment of the invention will be described with reference to FIG. FIG. 5 is a plan view of the light emitting element and the first resin member of the light emitting device. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 to 3, the same reference numerals are assigned to the same components as those of the first embodiment. Detailed description thereof will be omitted.

第3実施形態に係る発光装置1は、図5に示すように窒化物半導体発光素子20の側方に第一樹脂部材4を備えている。第一樹脂部材4は上方から見て長方形状をなす窒化物半導体発光素子20の周囲全域にわたって窒化物半導体発光素子20の側面24に接触させて設けられる。この構成によれば、光取り出し効率をより一層向上させることができる。   The light emitting device 1 according to the third embodiment includes a first resin member 4 on the side of the nitride semiconductor light emitting element 20 as shown in FIG. The first resin member 4 is provided in contact with the side surface 24 of the nitride semiconductor light emitting element 20 over the entire periphery of the nitride semiconductor light emitting element 20 having a rectangular shape when viewed from above. According to this configuration, the light extraction efficiency can be further improved.

<第4実施形態>
次に、本発明の第4実施形態に係る発光装置について、図6及び図7を用いて説明する。図6は発光装置の断面図、図7は発光装置の発光素子及び第一樹脂部材の平面図である。なお、この実施形態の基本的な構成は図1〜図3を用いて説明した前記第1実施形態と同じであるので、第1実施形態と共通する構成要素には前と同じ符号を付し、その詳細な説明を省略するものとする。なお、図6では金属線3及び封止樹脂6の描画を省略している。
<Fourth embodiment>
Next, a light emitting device according to a fourth embodiment of the invention will be described with reference to FIGS. FIG. 6 is a cross-sectional view of the light emitting device, and FIG. 7 is a plan view of the light emitting element and the first resin member of the light emitting device. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 to 3, the same reference numerals are assigned to the same components as those of the first embodiment. Detailed description thereof will be omitted. In FIG. 6, drawing of the metal wire 3 and the sealing resin 6 is omitted.

第4実施形態に係る発光装置1は、図6及び図7に示すように窒化物半導体発光素子20の側方に第一樹脂部材7を備えている。第一樹脂部材7は窒化物半導体発光素子20の側面24に対して離隔して配置される。さらに、第一樹脂部材7は基体2の窒化物半導体発光素子20の載置面に対して直角をなす断面形状が略三角形状をなす成型体として予め形成され、配置される。   The light emitting device 1 according to the fourth embodiment includes the first resin member 7 on the side of the nitride semiconductor light emitting element 20 as shown in FIGS. 6 and 7. The first resin member 7 is spaced apart from the side surface 24 of the nitride semiconductor light emitting element 20. Further, the first resin member 7 is formed and arranged in advance as a molded body in which a cross-sectional shape perpendicular to the mounting surface of the nitride semiconductor light emitting element 20 of the base 2 is a substantially triangular shape.

次に、上記構成の発光装置1の製造方法について説明する。   Next, a method for manufacturing the light emitting device 1 having the above configuration will be described.

まず、基体2の表面に第二樹脂部材5を載置する。そして、基体2の表面の電極と対面する基板21の下面全面が第二樹脂部材5に接触するよう窒化物半導体発光素子20を接着する。   First, the second resin member 5 is placed on the surface of the base 2. Then, the nitride semiconductor light emitting element 20 is bonded so that the entire lower surface of the substrate 21 facing the electrode on the surface of the base 2 is in contact with the second resin member 5.

続いて、基体2の上であって窒化物半導体発光素子20の側面24に対して離隔させて成型体からなる第一樹脂部材7を配置する。なお、第一樹脂部材7は上方から見て長方形状をなす窒化物半導体発光素子20の2箇所の長辺側の側方に載置する。   Subsequently, the first resin member 7 made of a molded body is disposed on the base 2 and spaced from the side surface 24 of the nitride semiconductor light emitting element 20. The first resin member 7 is placed on the two long side sides of the nitride semiconductor light emitting element 20 having a rectangular shape when viewed from above.

続いて、第二樹脂部材5に対して熱硬化工程を実行する。そして、基体2と窒化物半導体発光素子20との間に跨る金属線3を設け、それらを電気的に接続する。   Subsequently, a thermosetting process is performed on the second resin member 5. And the metal wire 3 straddling between the base | substrate 2 and the nitride semiconductor light-emitting device 20 is provided, and they are electrically connected.

最後に、封止樹脂6を用いて基体2上に設けた窒化物半導体発光素子20、金属線3、第一樹脂部材7及び第二樹脂部材5を樹脂封止する。   Finally, the nitride semiconductor light emitting element 20, the metal wire 3, the first resin member 7, and the second resin member 5 provided on the base 2 are sealed with the sealing resin 6.

上記のように、第一樹脂部材7が窒化物半導体発光素子20の側面24に対して離隔するので、窒化物半導体発光素子20からの出射光の波長の変換効率が向上する。すなわち、窒化物半導体発光素子20の側面24から光を取り出し易い場合に有効である。   As described above, since the first resin member 7 is separated from the side surface 24 of the nitride semiconductor light emitting element 20, the wavelength conversion efficiency of the light emitted from the nitride semiconductor light emitting element 20 is improved. That is, it is effective when it is easy to extract light from the side surface 24 of the nitride semiconductor light emitting device 20.

また、この構成によれば、予め別工程において成型体である第一樹脂部材7が作成される。したがって、作業効率を向上させることができる。さらに、第一樹脂部材7の形状及び蛍光体含有量が一定に安定するので、窒化物半導体発光素子20から受ける光の変換率を安定させることができる。したがって、発光装置1の色度歩留まりを向上させることが可能である。   Moreover, according to this structure, the 1st resin member 7 which is a molded object is produced in another process previously. Therefore, working efficiency can be improved. Furthermore, since the shape of the first resin member 7 and the phosphor content are constantly stabilized, the conversion rate of light received from the nitride semiconductor light emitting element 20 can be stabilized. Therefore, the chromaticity yield of the light emitting device 1 can be improved.

<第5実施形態>
次に、本発明の第5実施形態に係る発光装置について、図8を用いて説明する。図8は発光装置の断面図である。なお、この実施形態の基本的な構成は図1〜図3を用いて説明した前記第1実施形態と同じであるので、第1実施形態と共通する構成要素には前と同じ符号を付し、その詳細な説明を省略するものとする。なお、図8では金属線3及び封止樹脂6の描画を省略している。
<Fifth Embodiment>
Next, a light emitting device according to a fifth embodiment of the invention will be described with reference to FIG. FIG. 8 is a cross-sectional view of the light emitting device. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 to 3, the same reference numerals are assigned to the same components as those of the first embodiment. Detailed description thereof will be omitted. In FIG. 8, drawing of the metal wire 3 and the sealing resin 6 is omitted.

第5実施形態に係る発光装置1は、図8に示すように窒化物半導体発光素子20の側方に第一樹脂部材4と、第三樹脂部材8とを備えている。第三樹脂部材8は窒化物半導体発光素子20と第一樹脂部材4との間に配置される。したがって、第一樹脂部材4は窒化物半導体発光素子20の側面24に対して離隔して配置される。第三樹脂部材8は例えばシリコーン樹脂からなり、蛍光体を含まない。また、第三樹脂部材8は第一樹脂部材4と比較して屈折率が低い。   The light emitting device 1 according to the fifth embodiment includes a first resin member 4 and a third resin member 8 on the side of the nitride semiconductor light emitting element 20 as shown in FIG. The third resin member 8 is disposed between the nitride semiconductor light emitting element 20 and the first resin member 4. Therefore, the first resin member 4 is disposed away from the side surface 24 of the nitride semiconductor light emitting element 20. The third resin member 8 is made of, for example, a silicone resin and does not include a phosphor. Further, the third resin member 8 has a lower refractive index than the first resin member 4.

次に、上記構成の発光装置1の製造方法について説明する。   Next, a method for manufacturing the light emitting device 1 having the above configuration will be described.

まず、基体2の表面に第二樹脂部材5を載置する。そして、基体2の表面の電極と対面する基板21の下面全面が第二樹脂部材5に接触するよう窒化物半導体発光素子20を接着する。その後、第二樹脂部材5に対して熱硬化工程を実行する。   First, the second resin member 5 is placed on the surface of the base 2. Then, the nitride semiconductor light emitting element 20 is bonded so that the entire lower surface of the substrate 21 facing the electrode on the surface of the base 2 is in contact with the second resin member 5. Thereafter, a thermosetting process is performed on the second resin member 5.

続いて、窒化物半導体発光素子20の側面24を覆うよう第三樹脂部材8を載置し、第三樹脂部材8に対して熱硬化工程を実行する。続いて、第三樹脂部材8の外側に第三樹脂部材8に接触させて第一樹脂部材4を載置し、第一樹脂部材4に対して熱硬化工程を実行する。   Subsequently, the third resin member 8 is placed so as to cover the side surface 24 of the nitride semiconductor light emitting element 20, and a thermosetting process is performed on the third resin member 8. Subsequently, the first resin member 4 is placed outside the third resin member 8 in contact with the third resin member 8, and a thermosetting process is performed on the first resin member 4.

そして、基体2と窒化物半導体発光素子20との間に跨る金属線3を設け、それらを電気的に接続する。   And the metal wire 3 straddling between the base | substrate 2 and the nitride semiconductor light-emitting device 20 is provided, and they are electrically connected.

最後に、封止樹脂6を用いて基体2上に設けた窒化物半導体発光素子20、金属線3、第一樹脂部材4、第二樹脂部材5及び第三樹脂部材8を樹脂封止する。   Finally, the nitride semiconductor light emitting element 20, the metal wire 3, the first resin member 4, the second resin member 5, and the third resin member 8 provided on the substrate 2 are sealed with the sealing resin 6.

この構成によれば、第一樹脂部材4よりも屈折率が低い第三樹脂部材8が窒化物半導体発光素子20と第一樹脂部材4との間に介在する。これにより、第一樹脂部材4の内部への光の閉じ込めを増加させ、第一樹脂部材4が含有する蛍光体による光の波長の長波側への変換効率を高めることができる。光の波長の変換効率が高まると蛍光体の使用量を削減することができ、低コスト化を図ることができる。   According to this configuration, the third resin member 8 having a refractive index lower than that of the first resin member 4 is interposed between the nitride semiconductor light emitting element 20 and the first resin member 4. Thereby, the confinement of the light inside the 1st resin member 4 can be increased, and the conversion efficiency to the long wave side of the wavelength of the light by the fluorescent substance which the 1st resin member 4 contains can be improved. When the conversion efficiency of the wavelength of light increases, the amount of phosphor used can be reduced, and the cost can be reduced.

また、この実施形態において、第一樹脂部材4と基体2との接触面積は少ない方が望ましい。これは、第一樹脂部材4とその外部との界面で多重反射を起こす光が基体2によって吸収される頻度を抑制させるためである。   In this embodiment, it is desirable that the contact area between the first resin member 4 and the base 2 is small. This is to suppress the frequency with which light that causes multiple reflection at the interface between the first resin member 4 and the outside thereof is absorbed by the base 2.

<第6実施形態>
次に、本発明の第6実施形態に係る発光装置について、図9を用いて説明する。図9は発光装置の断面図である。なお、この実施形態の基本的な構成は図1〜図3を用いて説明した前記第1実施形態と同じであるので、第1実施形態と共通する構成要素には前と同じ符号を付し、その詳細な説明を省略するものとする。なお、図9では金属線3及び封止樹脂6の描画を省略している。
<Sixth Embodiment>
Next, a light emitting device according to a sixth embodiment of the invention will be described with reference to FIG. FIG. 9 is a cross-sectional view of the light emitting device. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 to 3, the same reference numerals are assigned to the same components as those of the first embodiment. Detailed description thereof will be omitted. In FIG. 9, drawing of the metal wire 3 and the sealing resin 6 is omitted.

第6実施形態に係る発光装置1は、図9に示すように窒化物半導体発光素子20の側方に第一樹脂部材4と、第三樹脂部材8とを備えている。窒化物半導体発光素子20はその側面24に周囲より表面粗さが粗い部分である粗面部24aを備えている。粗面部24aを形成する方法としては、例えばパルスレーザー加工のほか、ステルスダイシング法やエッチング法などを用いることができる。   The light emitting device 1 according to the sixth embodiment includes a first resin member 4 and a third resin member 8 on the side of the nitride semiconductor light emitting element 20 as shown in FIG. The nitride semiconductor light emitting device 20 includes a rough surface portion 24a that is a portion having a surface roughness rougher than that of the periphery on the side surface 24 thereof. As a method of forming the rough surface portion 24a, for example, a stealth dicing method or an etching method can be used in addition to the pulse laser processing.

この構成によれば、第三樹脂部材8は第一樹脂部材4と空気、または第一樹脂部材4と封止樹脂6に対して中間の屈折率を有する。したがって、第一樹脂部材4内での光の全反射を抑え、効率良く第三樹脂部材8さらに封止樹脂6に光を取り出すことができる。
<第7実施形態>
次に、本発明の第7実施形態に係る発光装置について、図10及び図11を用いて説明する。図10は発光装置の断面図、図11は発光装置の発光素子の断面図である。なお、この実施形態の基本的な構成は先に説明した第1実施形態及び第3実施形態と同じであるので、それらの実施形態と共通する構成要素には前と同じ符号を付し、図面の記載及びその詳細な説明を省略するものとする。
According to this configuration, the third resin member 8 has an intermediate refractive index with respect to the first resin member 4 and air or the first resin member 4 and the sealing resin 6. Therefore, total reflection of light in the first resin member 4 can be suppressed, and light can be efficiently extracted to the third resin member 8 and the sealing resin 6.
<Seventh embodiment>
Next, a light emitting device according to a seventh embodiment of the invention will be described with reference to FIGS. 10 is a cross-sectional view of the light-emitting device, and FIG. 11 is a cross-sectional view of a light-emitting element of the light-emitting device. Since the basic configuration of this embodiment is the same as that of the first embodiment and the third embodiment described above, the same reference numerals are given to the same components as those of the previous embodiment, and the drawings And the detailed description thereof will be omitted.

第7実施形態に係る発光装置1は、図10に示すように窒化物半導体発光素子20がフリップチップ実装により基体2に電気的に接続されて固定される。   In the light emitting device 1 according to the seventh embodiment, as shown in FIG. 10, a nitride semiconductor light emitting element 20 is electrically connected and fixed to the base 2 by flip chip mounting.

窒化物半導体発光素子20は、図11に示すように図2を用いて第1実施形態で説明した窒化物半導体発光素子20の上下を逆にした形態をなす。窒化物半導体発光素子20は最上層から順に基板21、n型窒化物半導体層31、発光層32、p型窒化物半導体層33、ITO・IZOなどの透明電極層22及びSiO2・SiNなどの保護膜層23を有する。電極部25は窒化物半導体発光素子20の底面部に配置される。電極部25は、p型窒化物半導体層33に電気的に接続するp電極25pと、n型窒化物半導体層31に電気的に接続するn電極25nと、からなる。 As shown in FIG. 11, the nitride semiconductor light emitting device 20 has a configuration in which the nitride semiconductor light emitting device 20 described in the first embodiment with reference to FIG. 2 is turned upside down. The nitride semiconductor light emitting device 20 includes a substrate 21, an n-type nitride semiconductor layer 31, a light emitting layer 32, a p-type nitride semiconductor layer 33, a transparent electrode layer 22 such as ITO / IZO, and SiO 2 / SiN in order from the top layer. A protective film layer 23 is provided. The electrode portion 25 is disposed on the bottom surface portion of the nitride semiconductor light emitting element 20. The electrode portion 25 includes a p-electrode 25 p that is electrically connected to the p-type nitride semiconductor layer 33 and an n-electrode 25 n that is electrically connected to the n-type nitride semiconductor layer 31.

フリップチップ実装では、窒化物半導体発光素子20の底面部の電極部25に対応して設けたAuなどからなるバンプ9を超音波振動等を利用して溶融させて基体2の電極に接合させる。   In flip chip mounting, bumps 9 made of Au or the like provided corresponding to the electrode portions 25 on the bottom surface of the nitride semiconductor light emitting element 20 are melted using ultrasonic vibration or the like and bonded to the electrodes of the substrate 2.

また、発光装置1は、図10に示すように窒化物半導体発光素子20の側方に第一樹脂部材4を備える。第一樹脂部材4は窒化物半導体発光素子20の側面24に接触させて設けられる。第一樹脂部材4は上方から見て長方形状をなす窒化物半導体発光素子20の2箇所の長辺側の側方に設けても良いし(図3参照)、窒化物半導体発光素子20の周囲全域にわたって設けても良い(図5参照)。第一樹脂部材4を窒化物半導体発光素子20の周囲全域にわたって側面24に接触させて設けると、光取り出し効率をより一層向上させることができる。   In addition, the light emitting device 1 includes a first resin member 4 on the side of the nitride semiconductor light emitting element 20 as shown in FIG. The first resin member 4 is provided in contact with the side surface 24 of the nitride semiconductor light emitting element 20. The first resin member 4 may be provided on two long side sides of the nitride semiconductor light emitting element 20 having a rectangular shape when viewed from above (see FIG. 3), or around the nitride semiconductor light emitting element 20. It may be provided over the entire area (see FIG. 5). If the first resin member 4 is provided in contact with the side surface 24 over the entire periphery of the nitride semiconductor light emitting element 20, the light extraction efficiency can be further improved.

次に、上記構成の発光装置1の製造方法について説明する。   Next, a method for manufacturing the light emitting device 1 having the above configuration will be described.

まず、基体2の表面の電極に対応する窒化物半導体発光素子20の底面部の電極部25がバンプ9を介して基体2の電極に接触するよう窒化物半導体発光素子20を基体2に載置する。そして、超音波振動等を利用してバンプ9を溶融させ、窒化物半導体発光素子20と基体2とを電気的に接合して固定する。   First, the nitride semiconductor light emitting element 20 is mounted on the base 2 so that the electrode portion 25 on the bottom surface of the nitride semiconductor light emitting element 20 corresponding to the electrode on the surface of the base 2 is in contact with the electrode of the base 2 via the bump 9. To do. Then, the bump 9 is melted using ultrasonic vibration or the like, and the nitride semiconductor light emitting element 20 and the base 2 are electrically joined and fixed.

続いて、窒化物半導体発光素子20の側面24を覆うよう第一樹脂部材4を載置する。そして、第一樹脂部材4に対して熱硬化工程を実行する。   Subsequently, the first resin member 4 is placed so as to cover the side surface 24 of the nitride semiconductor light emitting device 20. Then, a thermosetting process is performed on the first resin member 4.

最後に、第一樹脂部材4と比較して屈折率が低い封止樹脂6を用いて基体2上に設けた窒化物半導体発光素子20及び第一樹脂部材4を樹脂封止する。   Finally, the nitride semiconductor light emitting element 20 and the first resin member 4 provided on the substrate 2 are resin-sealed using a sealing resin 6 having a lower refractive index than that of the first resin member 4.

この構成によれば、窒化物半導体発光素子20と基体2との熱伝導性が良くなり放熱性が向上する。また、窒化物半導体発光素子20と基体2とを電気的に接続する金属線3とその金属線3を接続するための基板側の電極のスペースが不要になり、発光装置1が小型化する。したがって、例えばエッジ型バックライト搭載のテレビを薄型化することができ、製品デザインの自由度を高めることが可能である。また、発光装置1の小型化に伴ってその製造コストを低減させることも可能である。   According to this configuration, the thermal conductivity between the nitride semiconductor light emitting element 20 and the base 2 is improved, and the heat dissipation is improved. Further, the metal wire 3 that electrically connects the nitride semiconductor light emitting element 20 and the base 2 and the space of the electrode on the substrate side for connecting the metal wire 3 become unnecessary, and the light emitting device 1 is downsized. Therefore, for example, a television with an edge-type backlight can be reduced in thickness, and the degree of freedom in product design can be increased. Further, it is possible to reduce the manufacturing cost as the light emitting device 1 is downsized.

<第8実施形態>
次に、本発明の第8実施形態に係る発光装置について、図12を用いて説明する。図12は発光装置の断面図である。なお、この実施形態の基本的な構成は先に説明した第1実施形態、第4実施形態及び第7実施形態と同じであるので、それらの実施形態と共通する構成要素には前と同じ符号を付し、その詳細な説明を省略するものとする。また、図12では封止樹脂6の描画を省略している。
<Eighth Embodiment>
Next, a light emitting device according to an eighth embodiment of the invention will be described with reference to FIG. FIG. 12 is a cross-sectional view of the light emitting device. Since the basic configuration of this embodiment is the same as that of the first embodiment, the fourth embodiment, and the seventh embodiment described above, the same reference numerals are used for the components common to those embodiments. The detailed description thereof will be omitted. In FIG. 12, drawing of the sealing resin 6 is omitted.

第8実施形態に係る発光装置1は、図12に示すように窒化物半導体発光素子20がフリップチップ実装により基体2に電気的に接続されて固定される。フリップチップ実装では、窒化物半導体発光素子20の底面部の電極部25に対応して設けたAuなどからなるバンプ9を超音波振動等を利用して溶融させて基体2の電極に接合させる。   In the light emitting device 1 according to the eighth embodiment, as shown in FIG. 12, the nitride semiconductor light emitting element 20 is electrically connected and fixed to the base 2 by flip chip mounting. In flip chip mounting, bumps 9 made of Au or the like provided corresponding to the electrode portions 25 on the bottom surface of the nitride semiconductor light emitting element 20 are melted using ultrasonic vibration or the like and bonded to the electrodes of the substrate 2.

また、発光装置1は窒化物半導体発光素子20の側方に第一樹脂部材7を備える。第一樹脂部材7は窒化物半導体発光素子20の側面24に対して離隔して配置される。第一樹脂部材7は基体2の窒化物半導体発光素子20の載置面に対して直角をなす断面形状が略三角形状をなす成型体として予め形成され、配置される。   In addition, the light emitting device 1 includes the first resin member 7 on the side of the nitride semiconductor light emitting element 20. The first resin member 7 is spaced apart from the side surface 24 of the nitride semiconductor light emitting element 20. The first resin member 7 is formed and arranged in advance as a molded body having a substantially triangular cross-sectional shape perpendicular to the mounting surface of the nitride semiconductor light emitting element 20 of the base 2.

次に、上記構成の発光装置1の製造方法について説明する。   Next, a method for manufacturing the light emitting device 1 having the above configuration will be described.

まず、基体2の表面の電極に対応する窒化物半導体発光素子20の底面部の電極部25がバンプ9を介して基体2の電極に接触するよう窒化物半導体発光素子20を基体2に載置する。そして、超音波振動等を利用してバンプ9を溶融させ、窒化物半導体発光素子20と基体2とを電気的に接合して固定する。   First, the nitride semiconductor light emitting element 20 is mounted on the base 2 so that the electrode portion 25 on the bottom surface of the nitride semiconductor light emitting element 20 corresponding to the electrode on the surface of the base 2 is in contact with the electrode of the base 2 via the bump 9. To do. Then, the bump 9 is melted using ultrasonic vibration or the like, and the nitride semiconductor light emitting element 20 and the base 2 are electrically joined and fixed.

続いて、基体2の上であって窒化物半導体発光素子20の側面24に対して離隔させて成型体からなる第一樹脂部材7を配置する。第一樹脂部材7は上方から見て長方形状をなす窒化物半導体発光素子20の2箇所の長辺側の側方に載置しても良いし、窒化物半導体発光素子20の周囲全域にわたって載置しても良い。   Subsequently, the first resin member 7 made of a molded body is disposed on the base 2 and spaced from the side surface 24 of the nitride semiconductor light emitting element 20. The first resin member 7 may be placed on two long side sides of the nitride semiconductor light emitting element 20 having a rectangular shape when viewed from above, or over the entire periphery of the nitride semiconductor light emitting element 20. May be placed.

最後に、封止樹脂6を用いて基体2上に設けた窒化物半導体発光素子20及び第一樹脂部材7を樹脂封止する。   Finally, the nitride semiconductor light emitting element 20 and the first resin member 7 provided on the base 2 are sealed with a sealing resin 6.

上記のように、第一樹脂部材7が窒化物半導体発光素子20の側面24に対して離隔するので、窒化物半導体発光素子20からの出射光の波長の変換効率が向上する。すなわち、窒化物半導体発光素子20の側面24から光を取り出し易い場合に有効である。さらに、窒化物半導体発光素子20と基体2との熱伝導性が良くなり放熱性が向上する。また、発光装置1の小型化、製造コストの低減を図ることが可能である。   As described above, since the first resin member 7 is separated from the side surface 24 of the nitride semiconductor light emitting element 20, the wavelength conversion efficiency of the light emitted from the nitride semiconductor light emitting element 20 is improved. That is, it is effective when it is easy to extract light from the side surface 24 of the nitride semiconductor light emitting device 20. Furthermore, the thermal conductivity between the nitride semiconductor light emitting element 20 and the base 2 is improved, and the heat dissipation is improved. Further, the light emitting device 1 can be downsized and the manufacturing cost can be reduced.

<第9実施形態>
次に、本発明の第9実施形態に係る発光装置について、図13を用いて説明する。図13は発光装置の断面図である。なお、この実施形態の基本的な構成は先に説明した第1実施形態、第5実施形態及び第7実施形態と同じであるので、それらの実施形態と共通する構成要素には前と同じ符号を付し、その詳細な説明を省略するものとする。また、図13では封止樹脂6の描画を省略している。
<Ninth Embodiment>
Next, a light emitting device according to a ninth embodiment of the invention will be described with reference to FIG. FIG. 13 is a cross-sectional view of the light emitting device. Since the basic configuration of this embodiment is the same as that of the first embodiment, the fifth embodiment, and the seventh embodiment described above, the same reference numerals are used for the components common to those embodiments. The detailed description thereof will be omitted. In FIG. 13, the drawing of the sealing resin 6 is omitted.

第9実施形態に係る発光装置1は、図13に示すように窒化物半導体発光素子20がフリップチップ実装により基体2に電気的に接続されて固定される。フリップチップ実装では、窒化物半導体発光素子20の底面部の電極部25に対応して設けたAuなどからなるバンプ9を超音波振動等を利用して溶融させて基体2の電極に接合させる。   In the light emitting device 1 according to the ninth embodiment, as shown in FIG. 13, the nitride semiconductor light emitting element 20 is electrically connected and fixed to the substrate 2 by flip chip mounting. In flip chip mounting, bumps 9 made of Au or the like provided corresponding to the electrode portions 25 on the bottom surface of the nitride semiconductor light emitting element 20 are melted using ultrasonic vibration or the like and bonded to the electrodes of the substrate 2.

また、発光装置1は窒化物半導体発光素子20の側方に第一樹脂部材4と、第三樹脂部材8とを備えている。第三樹脂部材8は窒化物半導体発光素子20と第一樹脂部材4との間に配置される。したがって、第一樹脂部材4は窒化物半導体発光素子20の側面24に対して離隔して配置される。第三樹脂部材8は例えばシリコーン樹脂からなり、蛍光体を含まない。また、第三樹脂部材8は第一樹脂部材4と比較して屈折率が低い。   The light emitting device 1 includes a first resin member 4 and a third resin member 8 on the side of the nitride semiconductor light emitting element 20. The third resin member 8 is disposed between the nitride semiconductor light emitting element 20 and the first resin member 4. Therefore, the first resin member 4 is disposed away from the side surface 24 of the nitride semiconductor light emitting element 20. The third resin member 8 is made of, for example, a silicone resin and does not include a phosphor. Further, the third resin member 8 has a lower refractive index than the first resin member 4.

次に、上記構成の発光装置1の製造方法について説明する。   Next, a method for manufacturing the light emitting device 1 having the above configuration will be described.

まず、基体2の表面の電極に対応する窒化物半導体発光素子20の底面部の電極部25がバンプ9を介して基体2の電極に接触するよう窒化物半導体発光素子20を基体2に載置する。そして、超音波振動等を利用してバンプ9を溶融させ、窒化物半導体発光素子20と基体2とを電気的に接合して固定する。   First, the nitride semiconductor light emitting element 20 is mounted on the base 2 so that the electrode portion 25 on the bottom surface of the nitride semiconductor light emitting element 20 corresponding to the electrode on the surface of the base 2 is in contact with the electrode of the base 2 via the bump 9. To do. Then, the bump 9 is melted using ultrasonic vibration or the like, and the nitride semiconductor light emitting element 20 and the base 2 are electrically joined and fixed.

続いて、窒化物半導体発光素子20の側面24を覆うよう第三樹脂部材8を載置し、第三樹脂部材8に対して熱硬化工程を実行する。続いて、第三樹脂部材8の外側に第三樹脂部材8に接触させて第一樹脂部材4を載置し、第一樹脂部材4に対して熱硬化工程を実行する。   Subsequently, the third resin member 8 is placed so as to cover the side surface 24 of the nitride semiconductor light emitting element 20, and a thermosetting process is performed on the third resin member 8. Subsequently, the first resin member 4 is placed outside the third resin member 8 in contact with the third resin member 8, and a thermosetting process is performed on the first resin member 4.

最後に、封止樹脂6を用いて基体2上に設けた窒化物半導体発光素子20、第一樹脂部材4及び第三樹脂部材8を樹脂封止する。   Finally, the nitride semiconductor light emitting element 20, the first resin member 4, and the third resin member 8 provided on the base 2 are sealed with the sealing resin 6.

この構成によれば、第一樹脂部材4の内部への光の閉じ込めを増加させ、第一樹脂部材4が含有する蛍光体による光の波長の長波側への変換効率を高めることができる。光の波長の変換効率が高まると蛍光体の使用量を削減することができ、低コスト化を図ることができる。さらに、窒化物半導体発光素子20と基体2との熱伝導性が良くなり放熱性が向上する。また、発光装置1の小型化、製造コストの低減を図ることが可能である。   According to this structure, the confinement of the light inside the 1st resin member 4 can be increased, and the conversion efficiency to the long wave side of the wavelength of the light by the fluorescent substance which the 1st resin member 4 contains can be improved. When the conversion efficiency of the wavelength of light increases, the amount of phosphor used can be reduced, and the cost can be reduced. Furthermore, the thermal conductivity between the nitride semiconductor light emitting element 20 and the base 2 is improved, and the heat dissipation is improved. Further, the light emitting device 1 can be downsized and the manufacturing cost can be reduced.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

本発明は、発光装置及びその製造方法において利用可能である。   The present invention can be used in a light emitting device and a manufacturing method thereof.

1 発光装置
2 基体
3 金属線
4、7 第一樹脂部材
5 第二樹脂部材
6 封止樹脂
8 第三樹脂部材
9 バンプ
20 窒化物半導体発光素子
21 基板
24 側面
24a 粗面部(周囲より表面粗さが粗い部分)
25 電極部
25n n電極
25p p電極
30 窒化物半導体積層部
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 Base | substrate 3 Metal wire 4, 7 1st resin member 5 2nd resin member 6 Sealing resin 8 3rd resin member 9 Bump 20 Nitride semiconductor light emitting element 21 Board | substrate 24 Side surface 24a Rough surface part (surface roughness from circumference | surroundings) Is rough)
25 electrode part 25n n electrode 25p p electrode 30 nitride semiconductor laminated part

Claims (28)

基体の上に載置された基板と複数の窒化物半導体層とを含む窒化物半導体発光素子と、
前記窒化物半導体発光素子の側方に配置した光の波長を長波側に変換する機能を持つ蛍光体を含む屈折率が前記基板に対して同じまたは低い第一樹脂部材と、
を備えることを特徴とする発光装置。
A nitride semiconductor light emitting device including a substrate placed on a substrate and a plurality of nitride semiconductor layers;
A first resin member having a refractive index equal to or lower than that of the substrate, including a phosphor having a function of converting a wavelength of light disposed on a side of the nitride semiconductor light emitting element to a long wave side;
A light emitting device comprising:
前記窒化物半導体発光素子がフリップチップ実装により前記基体に電気的に接続されることを特徴とする請求項1に記載の発光装置。   The light-emitting device according to claim 1, wherein the nitride semiconductor light-emitting element is electrically connected to the base body by flip-chip mounting. 前記第一樹脂部材が前記窒化物半導体発光素子の側面に接触することを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the first resin member is in contact with a side surface of the nitride semiconductor light emitting element. 前記第一樹脂部材が前記窒化物半導体発光素子の側面に対して離隔することを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the first resin member is separated from a side surface of the nitride semiconductor light emitting element. 前記第一樹脂部材が成型体として形成され、前記窒化物半導体発光素子の側面に対して離隔して配置されることを特徴とする請求項4に記載の発光装置。   5. The light emitting device according to claim 4, wherein the first resin member is formed as a molded body and is spaced apart from a side surface of the nitride semiconductor light emitting element. 前記第一樹脂部材は主成分がシリコーン樹脂若しくはエポキシ樹脂からなるとともに、屈折率が前記基板に対して同じまたは高い粒子を含むことを特徴とする請求項1に記載の発光装置。   2. The light emitting device according to claim 1, wherein the first resin member is made of a silicone resin or an epoxy resin as a main component and includes particles having a refractive index equal to or higher than that of the substrate. 前記第一樹脂部材が光を取り出す面と、前記窒化物半導体発光素子の側面に対向する面と、前記基体に対向する面とを有することを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the first resin member has a surface for extracting light, a surface facing a side surface of the nitride semiconductor light emitting element, and a surface facing the base. 前記第一樹脂部材は前記基体の前記窒化物半導体発光素子の載置面に対して直角をなす断面形状が略三角形状をなすことを特徴とする請求項1に記載の発光装置。   2. The light emitting device according to claim 1, wherein the first resin member has a substantially triangular cross-sectional shape perpendicular to a mounting surface of the nitride semiconductor light emitting element of the base. 前記窒化物半導体発光素子が前記基体の前記窒化物半導体発光素子の載置面に対向して上方から見た形状が略長方形状をなし、
前記第一樹脂部材が前記窒化物半導体発光素子を上方から見た長辺側のみに配置されることを特徴とする請求項1に記載の発光装置。
The shape of the nitride semiconductor light emitting element viewed from above facing the mounting surface of the nitride semiconductor light emitting element of the base body is substantially rectangular,
The light emitting device according to claim 1, wherein the first resin member is disposed only on a long side when the nitride semiconductor light emitting element is viewed from above.
前記窒化物半導体発光素子が前記基体と金属線を介して電気的に接続され、
前記第一樹脂部材が前記窒化物半導体発光素子を前記基体の前記窒化物半導体発光素子の載置面に対向して上方から見て前記金属線が横切らない前記窒化物半導体発光素子の側方のみに配置されることを特徴とする請求項1に記載の発光装置。
The nitride semiconductor light emitting device is electrically connected to the base via a metal wire,
The first resin member faces the nitride semiconductor light emitting element mounting surface of the base of the nitride semiconductor light emitting element so that the metal wire does not cross when viewed from above only on the side of the nitride semiconductor light emitting element. The light-emitting device according to claim 1, wherein
前記第一樹脂部材が前記窒化物半導体発光素子の側方のみに配置されることを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein the first resin member is disposed only on a side of the nitride semiconductor light emitting element. 前記窒化物半導体発光素子の下方であって前記基体と前記窒化物半導体発光素子との間に、蛍光体を含まず、屈折率が前記基板に対して低い第二樹脂部材を配置したことを特徴とする請求項1に記載の発光装置。   A second resin member is disposed below the nitride semiconductor light emitting element and between the base and the nitride semiconductor light emitting element, the second resin member not including a phosphor and having a low refractive index relative to the substrate. The light-emitting device according to claim 1. 前記第二樹脂部材は前記第一樹脂部材より屈折率が低いことを特徴とする請求項12に記載の発光装置。   The light emitting device according to claim 12, wherein the second resin member has a lower refractive index than the first resin member. 前記窒化物半導体発光素子の側方であって、前記窒化物半導体発光素子と前記第一樹脂部材との間に第三樹脂材料を配置したことを特徴とする請求項1に記載の発光装置。   The light emitting device according to claim 1, wherein a third resin material is disposed on a side of the nitride semiconductor light emitting element and between the nitride semiconductor light emitting element and the first resin member. 前記第三樹脂部材は前記第一樹脂部材より屈折率が低いことを特徴とする請求項14に記載の発光装置。   The light emitting device according to claim 14, wherein the third resin member has a lower refractive index than the first resin member. 前記第三樹脂部材は蛍光体を含まないことを特徴とする請求項14に記載の発光装置。   The light emitting device according to claim 14, wherein the third resin member does not include a phosphor. 前記第三樹脂部材がシリコーン樹脂からなることを特徴とする請求項14に記載の発光装置。   The light emitting device according to claim 14, wherein the third resin member is made of a silicone resin. 前記窒化物半導体発光素子はその側面に周囲より表面粗さが粗い部分を備えることを特徴とする請求項1に記載の発光装置。   The light-emitting device according to claim 1, wherein the nitride semiconductor light-emitting element includes a portion having a surface roughness rougher than that of a periphery on a side surface thereof. 基体の上に第二樹脂部材を載置する工程と、
前記第二樹脂部材の上に窒化物半導体発光素子を載置する工程と、
前記第二樹脂部材を硬化させる工程と、
前記基体の上に前記窒化物半導体発光素子に接触させて第一樹脂部材を載置する工程と、
前記第一樹脂部材を硬化させる工程と、
前記基体と前記窒化物半導体発光素子との間に跨る金属線を設ける工程と、
を含むことを特徴とする発光装置の製造方法。
Placing the second resin member on the substrate;
Placing the nitride semiconductor light emitting element on the second resin member;
Curing the second resin member;
Placing the first resin member in contact with the nitride semiconductor light emitting element on the substrate;
Curing the first resin member;
Providing a metal wire straddling between the base and the nitride semiconductor light emitting device;
A method for manufacturing a light-emitting device, comprising:
基体の上に第二樹脂部材を載置する工程と、
前記第二樹脂部材の上に窒化物半導体発光素子を載置する工程と、
前記基体の上であって前記窒化物半導体発光素子の側面に対して離隔させて成型体からなる第一樹脂部材を配置する工程と、
前記第二樹脂部材を硬化させる工程と、
前記基体と前記窒化物半導体発光素子との間に跨る金属線を設ける工程と、
を含むことを特徴とする発光装置の製造方法。
Placing the second resin member on the substrate;
Placing the nitride semiconductor light emitting element on the second resin member;
Disposing a first resin member made of a molded body on the base and spaced apart from the side surface of the nitride semiconductor light emitting element; and
Curing the second resin member;
Providing a metal wire straddling between the base and the nitride semiconductor light emitting device;
A method for manufacturing a light-emitting device, comprising:
前記窒化物半導体発光素子、前記第一樹脂部材、前記第二樹脂部材及び前記金属線を覆うように前記基体の上に封止樹脂を設ける工程を含むことを特徴とする請求項19または請求項20に記載の発光装置の製造方法。   20. The method according to claim 19, further comprising a step of providing a sealing resin on the base so as to cover the nitride semiconductor light emitting element, the first resin member, the second resin member, and the metal wire. 20. A method for manufacturing a light emitting device according to 20. 前記窒化物半導体発光素子をフリップチップ実装により前記基体に電気的に接続して固定する工程と、
前記基体の上に前記窒化物半導体発光素子に接触させて第一樹脂部材を載置する工程と、
前記第一樹脂部材を硬化させる工程と、
を含むことを特徴とする発光装置の製造方法。
Electrically connecting and fixing the nitride semiconductor light emitting element to the substrate by flip chip mounting;
Placing the first resin member in contact with the nitride semiconductor light emitting element on the substrate;
Curing the first resin member;
A method for manufacturing a light-emitting device, comprising:
前記窒化物半導体発光素子をフリップチップ実装により前記基体に電気的に接続して固定する工程と、
前記基体の上であって前記窒化物半導体発光素子の側面に対して離隔させて成型体からなる第一樹脂部材を配置する工程と、
を含むことを特徴とする発光装置の製造方法。
Electrically connecting and fixing the nitride semiconductor light emitting element to the substrate by flip chip mounting;
Disposing a first resin member made of a molded body on the base and spaced apart from the side surface of the nitride semiconductor light emitting element; and
A method for manufacturing a light-emitting device, comprising:
前記窒化物半導体発光素子及び前記第一樹脂部材を覆うように前記基体の上に封止樹脂を設ける工程を含むことを特徴とする請求項22または請求項23に記載の発光装置の製造方法。   24. The method for manufacturing a light emitting device according to claim 22, further comprising a step of providing a sealing resin on the base so as to cover the nitride semiconductor light emitting element and the first resin member. 基体の上に第二樹脂部材を載置する工程と、
前記第二樹脂部材の上に窒化物半導体発光素子を載置する工程と、
前記第二樹脂部材を硬化させる工程と、
前記基体の上に前記窒化物半導体発光素子に接触させて第三樹脂部材を載置する工程と、
前記第三樹脂部材を硬化させる工程と、
前記第三樹脂部材の外側に前記第三樹脂部材に接触させて第一樹脂部材を載置する工程と、
前記第一樹脂部材を硬化させる工程と、
前記基体と前記窒化物半導体発光素子との間に跨る金属線を設ける工程と、
を含むことを特徴とする発光装置の製造方法。
Placing the second resin member on the substrate;
Placing the nitride semiconductor light emitting element on the second resin member;
Curing the second resin member;
Placing the third resin member on the substrate in contact with the nitride semiconductor light emitting element; and
Curing the third resin member;
Placing the first resin member in contact with the third resin member on the outside of the third resin member;
Curing the first resin member;
Providing a metal wire straddling between the base and the nitride semiconductor light emitting device;
A method for manufacturing a light-emitting device, comprising:
前記窒化物半導体発光素子、前記第一樹脂部材、前記第二樹脂部材、前記第三樹脂部材及び前記金属線を覆うように前記基体の上に封止樹脂を設ける工程を含むことを特徴とする請求項25に記載の発光装置の製造方法。   Including a step of providing a sealing resin on the base so as to cover the nitride semiconductor light emitting element, the first resin member, the second resin member, the third resin member, and the metal wire. The method for manufacturing a light emitting device according to claim 25. 前記窒化物半導体発光素子をフリップチップ実装により前記基体に電気的に接続して固定する工程と、
前記基体の上に前記窒化物半導体発光素子に接触させて第三樹脂部材を載置する工程と、
前記第三樹脂部材を硬化させる工程と、
前記第三樹脂部材の外側に前記第三樹脂部材に接触させて第一樹脂部材を載置する工程と、
前記第一樹脂部材を硬化させる工程と、
を含むことを特徴とする発光装置の製造方法。
Electrically connecting and fixing the nitride semiconductor light emitting element to the substrate by flip chip mounting;
Placing the third resin member on the substrate in contact with the nitride semiconductor light emitting element; and
Curing the third resin member;
Placing the first resin member in contact with the third resin member on the outside of the third resin member;
Curing the first resin member;
A method for manufacturing a light-emitting device, comprising:
前記窒化物半導体発光素子、前記第一樹脂部材及び前記第三樹脂部材を覆うように前記基体の上に封止樹脂を設ける工程を含むことを特徴とする請求項27に記載の発光装置の製造方法。   28. The method of manufacturing a light emitting device according to claim 27, further comprising a step of providing a sealing resin on the base so as to cover the nitride semiconductor light emitting element, the first resin member, and the third resin member. Method.
JP2013103263A 2012-09-12 2013-05-15 Light-emitting device and process of manufacturing the same Pending JP2014075571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013103263A JP2014075571A (en) 2012-09-12 2013-05-15 Light-emitting device and process of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012200579 2012-09-12
JP2012200579 2012-09-12
JP2013103263A JP2014075571A (en) 2012-09-12 2013-05-15 Light-emitting device and process of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014075571A true JP2014075571A (en) 2014-04-24

Family

ID=50749499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013103263A Pending JP2014075571A (en) 2012-09-12 2013-05-15 Light-emitting device and process of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014075571A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216326A (en) * 2016-05-31 2017-12-07 日亜化学工業株式会社 Light emitting device
JP2018093097A (en) * 2016-12-06 2018-06-14 日亜化学工業株式会社 Light-emitting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245481A (en) * 2009-04-10 2010-10-28 Sharp Corp Light emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245481A (en) * 2009-04-10 2010-10-28 Sharp Corp Light emitting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017216326A (en) * 2016-05-31 2017-12-07 日亜化学工業株式会社 Light emitting device
US10720552B2 (en) 2016-05-31 2020-07-21 Nichia Corporation Light emitting device
US11171261B2 (en) 2016-05-31 2021-11-09 Nichia Corporation Light emitting device
JP2018093097A (en) * 2016-12-06 2018-06-14 日亜化学工業株式会社 Light-emitting device
US11329201B2 (en) 2016-12-06 2022-05-10 Nichia Corporation Light-emitting device

Similar Documents

Publication Publication Date Title
US10777715B2 (en) Semiconductor light emitting device
JP4747726B2 (en) Light emitting device
JP5689225B2 (en) Light emitting device
TWI712181B (en) Light-emitting device, integrated light-emitting device, and light-emitting module
JP5558665B2 (en) Light emitting device
US9420642B2 (en) Light emitting apparatus and lighting apparatus
JP2017117858A (en) Light-emitting device
JP2010062427A (en) Light emitting device
JP2019176081A (en) Light-emitting device and method for manufacturing the same
JP2015099940A (en) Light-emitting device
JP2013175759A (en) Manufacturing method of light emitting device
JP2018107418A (en) Light-emitting device
JP6627316B2 (en) Light emitting device manufacturing method
JP6665143B2 (en) Light emitting device manufacturing method
JP4534513B2 (en) Light emitting device
KR102401828B1 (en) Light emitting device package
JP5931006B2 (en) Light emitting device
JP2014075571A (en) Light-emitting device and process of manufacturing the same
JP6326830B2 (en) Light emitting device and lighting device including the same
JP2019165237A (en) Light-emitting device
JP2008166311A (en) Semiconductor light-emitting element and semiconductor light-emitting device
JP6825636B2 (en) Light emitting device
JP6680302B2 (en) Light emitting device
JP6274240B2 (en) Light emitting device
JP7299537B2 (en) light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170704