JP2014065077A - Method of manufacturing hot rolled steel plate - Google Patents

Method of manufacturing hot rolled steel plate Download PDF

Info

Publication number
JP2014065077A
JP2014065077A JP2013179000A JP2013179000A JP2014065077A JP 2014065077 A JP2014065077 A JP 2014065077A JP 2013179000 A JP2013179000 A JP 2013179000A JP 2013179000 A JP2013179000 A JP 2013179000A JP 2014065077 A JP2014065077 A JP 2014065077A
Authority
JP
Japan
Prior art keywords
hot
rolled steel
steel sheet
cooling
coiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013179000A
Other languages
Japanese (ja)
Other versions
JP6015953B2 (en
JP2014065077A5 (en
Inventor
Sei Hiramatsu
成 平松
Hirokazu Sugihara
広和 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013179000A priority Critical patent/JP6015953B2/en
Publication of JP2014065077A publication Critical patent/JP2014065077A/en
Publication of JP2014065077A5 publication Critical patent/JP2014065077A5/ja
Application granted granted Critical
Publication of JP6015953B2 publication Critical patent/JP6015953B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a hot rolled steel plate whereby productivity of the hot rolled steel plate can be enhanced by fully suppressing collapse of a coil.SOLUTION: A method for manufacturing a hot rolled steel plate comprises the steps of hot-rolling a steel plate to be hot-rolled with use of a hot rolling mill, then cooling the hot-rolled steel plate on a hot run table and taking up the plate by a coiler thereby manufacturing the hot rolled steel plate of coil form. According to this method, after the hot rolled steel plate is so cooled during hot-rolling that the temperature of the plate immediately after delivery thereof from the hot rolling mill becomes constant along the longitudinal direction of the steel plate, the hot rolled steel plate is delivered onto the hot run table from the hot rolling mill at a constant velocity, and the hot rolled steel plate is so cooled on the hot run table that the cooling velocity and the cooling time become constant along the longitudinal direction of the steel plate during the period from the delivery of the plate from the hot rolling mill to taking up thereof by the coiler.

Description

本発明は、熱間圧延鋼板を熱間圧延機で熱間圧延した後に、これをホットランテーブル上で冷却し、コイラーで巻き取ってコイル状熱間圧延(熱延)鋼板を製造する際に、そのコイル状熱延鋼板がコイラー内で自重によりつぶれるのを抑制する熱延鋼板の製造方法に関するものである。   The present invention, after hot-rolling a hot-rolled steel sheet with a hot rolling mill, cooling it on a hot run table and winding it with a coiler to produce a coiled hot-rolled (hot-rolled) steel sheet, The present invention relates to a method for producing a hot-rolled steel sheet that suppresses the coiled hot-rolled steel sheet from being crushed by its own weight in a coiler.

図1に示すように、熱延鋼板を製造するには、加熱炉1においてスラブを所定温度に加熱し、加熱したスラブを熱間圧延機としての粗圧延機2で圧延して粗バーとなし、次いでこの粗バーをこれも熱間圧延機としての、複数基の圧延スタンドからなる連続熱間仕上圧延機3で圧延して所定の厚みの熱延鋼板4とする。そしてこの熱延鋼板4を、ホットランテーブル(HRT)に設置した冷却装置5で上方および下方から供給する冷却水によって冷却した後、長手方向に張力を付与しながらコイラー6で巻き取り、コイル状熱延鋼板(以下、単に「コイル」と呼ぶ場合もある)7とする。   As shown in FIG. 1, in order to manufacture a hot-rolled steel sheet, a slab is heated to a predetermined temperature in a heating furnace 1, and the heated slab is rolled by a rough rolling machine 2 as a hot rolling mill to form a rough bar. Then, this rough bar is rolled by a continuous hot finish rolling mill 3 composed of a plurality of rolling stands, which is also a hot rolling mill, to obtain a hot rolled steel sheet 4 having a predetermined thickness. The hot-rolled steel sheet 4 is cooled by cooling water supplied from above and below by a cooling device 5 installed on a hot run table (HRT), and then wound by a coiler 6 while applying tension in the longitudinal direction, and coiled heat A rolled steel plate (hereinafter sometimes simply referred to as “coil”) 7 is used.

コイラー6によって熱延鋼板4を巻き取る際に、熱延鋼板4にその長手方向に付与する張力は、巻取後のコイル状熱延鋼板(コイル)7内では半径方向の面圧として作用し、鋼板層間に摩擦力を発生させる。それにより、鋼板のすべりを抑制し、コイル7の剛性を高めている。   When the hot-rolled steel sheet 4 is wound by the coiler 6, the tension applied to the hot-rolled steel sheet 4 in the longitudinal direction acts as a radial surface pressure in the coiled hot-rolled steel sheet (coil) 7 after winding. A frictional force is generated between the steel plate layers. Thereby, the slip of a steel plate is suppressed and the rigidity of the coil 7 is improved.

ところでコイラー6内では、ダウンエンド状態(巻取軸穴が横に向いた状態)のコイル7が自重でつぶれる、いわゆる「コイルつぶれ」と呼ばれる現象が生じることがあり、場合によっては巻取軸穴の変形が過大になって、コイル7が次工程のマンドレルに装入できず、その場合には、コイル7を巻き直す工程が追加され、生産能率が低下する。   By the way, in the coiler 6, a phenomenon called so-called “coil collapse” in which the coil 7 in the down-end state (the winding shaft hole faces sideways) is crushed by its own weight may occur. In this case, a process for rewinding the coil 7 is added, and the production efficiency is lowered.

このコイラー6内でのコイルつぶれは、HRT上で相変態が完了しない場合に発生することが判明している。すなわち、HRT上で相変態が完了しない場合には、コイラー6内で巻取後の鋼板に相変態による体積膨張が生じる。この体積膨張がコイル外周でコイル内周よりも大きい場合、半径方向の面圧が小さくなり、鋼板層間の摩擦力も小さくなる。それにより、鋼板がすべりやすくなり、コイル7の剛性が低下する。コイル7の剛性が大幅に低下するとコイルつぶれが生じ、このコイルつぶれは特に、C:0.25質量%以下(0質量%を含まず)、Mn:1.5質量%〜2.7質量%およびSi:1.5質量%以下(0質量%を含まず)を添加した熱延鋼板の場合に発生し易い傾向がある。   It has been found that the coil collapse in the coiler 6 occurs when the phase transformation is not completed on the HRT. That is, when the phase transformation is not completed on the HRT, the steel sheet after winding in the coiler 6 undergoes volume expansion due to the phase transformation. When this volume expansion is larger at the outer periphery of the coil than at the inner periphery of the coil, the surface pressure in the radial direction is reduced, and the frictional force between the steel sheet layers is also reduced. Thereby, a steel plate becomes easy to slide and the rigidity of the coil 7 falls. When the rigidity of the coil 7 is significantly reduced, coil collapse occurs, and this coil collapse is in particular C: 0.25% by mass or less (not including 0% by mass), Mn: 1.5% by mass to 2.7% by mass. And Si: It tends to occur easily in the case of a hot-rolled steel sheet to which 1.5% by mass or less (excluding 0% by mass) is added.

このため従来は、コイラー6内の巻取軸上で数十秒間冷却を行ってからコイル7を抜き出すことでコイルつぶれを防止しているが、このようにコイルをコイラー内に保持して冷却する方法では、コイルの冷却中は次の熱延鋼板をコイラーで巻き取ることができず、生産効率が低下するという不都合がある。そこで、例えば特許文献1に記載のように、コイラーから取り出したコイルを置き台上で常温まで徐冷する方法も試みられている。   For this reason, conventionally, coil collapse is prevented by extracting the coil 7 after cooling on the winding shaft in the coiler 6 for several tens of seconds. In this way, the coil is held and cooled in the coiler. This method has a disadvantage that the next hot-rolled steel sheet cannot be wound with a coiler while the coil is cooled, and the production efficiency is lowered. Therefore, as described in Patent Document 1, for example, a method of gradually cooling a coil taken out from a coiler to a room temperature on a table has been tried.

特開2006−281306号公報JP 2006-281306 A

この特許文献1記載の方法は、水平面に対し45度〜55度の角度をなす支持面をV字状に向き合わせて配置した置き台上にコイルを載置するもので、この置き台によれば、コイルの自重による下向きの力と自重に対する反力による横向きの力とをV字状の支持面で受け止めることでコイルつぶれを防止することができるものの、この方法では、コイラー内でのコイルつぶれの発生によりコイルがコイラーの巻取軸から抜き出しにくくなったり抜き出せなくなったりするコイル抜き出し不良の問題は解決できない。   In the method described in Patent Document 1, a coil is placed on a pedestal in which a support surface having an angle of 45 to 55 degrees with respect to a horizontal plane is arranged in a V shape. For example, the coil can be prevented from collapsing by receiving the downward force due to the coil's own weight and the lateral force due to the reaction force against its own weight on the V-shaped support surface. The problem of coil extraction failure that makes it difficult or impossible for the coil to be extracted from the winder winding shaft due to the occurrence of the coil cannot be solved.

このため本発明者がコイルつぶれについてさらに研究を進めたところ、コイラー内でのコイルつぶれは、HRT上で相変態が完了しないことに加えて、熱延鋼板の長手方向の相変態率変化が関係しており、それゆえ、熱延鋼板の長手方向の相変態率変化を抑制すれば、HRT上で相変態が未完了であってもコイルつぶれを抑制できるということが判明した。   For this reason, when the present inventor further researched on the coil collapse, the coil collapse in the coiler is related to the fact that the phase transformation rate in the longitudinal direction of the hot-rolled steel sheet is not only completed on the HRT. Therefore, it has been found that if the change in the phase transformation rate in the longitudinal direction of the hot-rolled steel sheet is suppressed, coil collapse can be suppressed even if the phase transformation is not completed on the HRT.

本発明は上述した本発明者の知見に鑑みて、仕上圧延速度の制御やHRT上での冷却制御等により、熱延鋼板の長手方向の相変態率変化を抑制することで、コイラー内でのコイルつぶれの発生を抑制し、生産性を向上させる熱延鋼板の製造方法を提供することを目的とする。   In view of the above-mentioned knowledge of the present inventor, the present invention suppresses the change in the phase transformation rate in the longitudinal direction of the hot-rolled steel sheet by controlling the finish rolling speed, cooling control on the HRT, etc. It aims at providing the manufacturing method of the hot-rolled steel plate which suppresses generation | occurrence | production of a coil collapse and improves productivity.

図2に中炭素鋼および中炭素・高Mn鋼のTTT線図(Time−Temperature−Transformation Diagram)の一例を示す。図2中、曲線Aは中炭素鋼のフェライト変態開始温度と時間との関係、曲線Bは中炭素・高Mn鋼のフェライト変態開始温度と時間との関係、曲線Cは中炭素鋼のベイナイト変態開始温度と時間との関係、曲線Dは中炭素・高Mn鋼のベイナイト変態開始温度と時間との関係を示す。一般的に相変態には、フェライト変態、ベイナイト変態、パーライト変態およびマルテンサイト変態があるが、本発明が対象とする鋼種では、仕上圧延後から巻取までの時間が10〜20sec.(秒)、巻取温度が500℃〜650℃であり、その条件で生じる相変態はフェライト変態(γ→α変態)が主であるため、本発明ではフェライト変態に着目する。   FIG. 2 shows an example of a TTT diagram (Time-Temperature-Transformation Diagram) of medium carbon steel and medium carbon / high Mn steel. In FIG. 2, curve A is the relationship between ferrite transformation start temperature and time of medium carbon steel, curve B is the relationship between ferrite transformation start temperature and time of medium carbon / high Mn steel, and curve C is the bainite transformation of medium carbon steel. The relationship between the start temperature and time, curve D shows the relationship between the bainite transformation start temperature and time of medium carbon / high Mn steel. In general, the phase transformation includes ferrite transformation, bainite transformation, pearlite transformation, and martensitic transformation. In the steel types targeted by the present invention, the time from finish rolling to winding is 10 to 20 sec. (Seconds), the coiling temperature is 500 ° C. to 650 ° C., and the phase transformation that occurs under these conditions is mainly the ferrite transformation (γ → α transformation), so the present invention focuses on the ferrite transformation.

図2において、中炭素鋼については、フェライト変態の開始が1sec.以内であるため巻取時間に対して十分短く、仕上圧延後から巻取までに相変態がほぼ完了する。一方、中炭素・高Mn鋼については、フェライト変態の開始が10sec.前後であり、また、最も早く相変態が開始する温度(フェライトノーズ温度)でない場合には、相変態の進行がさらに遅くなり、仕上圧延後から巻取までに相変態があまり進行しない。すなわち、巻取前の冷却温度量(何度冷却したか)と冷却時間ひいてはそれによる冷却速度が相変態の進行に大きく影響する。   In FIG. 2, for medium carbon steel, the start of ferrite transformation is 1 sec. Therefore, the phase transformation is almost completed from finish rolling to winding. On the other hand, for medium carbon / high Mn steel, the start of ferrite transformation is 10 sec. If the temperature is not the temperature at which the phase transformation starts the earliest (ferrite nose temperature), the phase transformation proceeds further slowly, and the phase transformation does not progress so much from finish rolling to winding. That is, the amount of cooling temperature before winding (how many times it has been cooled) and the cooling time, and thus the cooling rate, greatly affect the progress of the phase transformation.

図3は、低炭素鋼としての590MPa級高張力鋼のTTT線図の一例を示す。図示のように低炭素鋼では、温度を820℃から640℃程度まで冷却すると、仕上圧延後4〜5sec.で相変態率30%のフェライトノーズに達し、さらに600℃程度まで冷却すると、仕上圧延後60sec.程度で相変態率70%のフェライトノーズに達する。ここに、tは仕上圧延後経過時間(sec.)、ΔTは仕上圧延後冷却温度量、Vcは仕上圧延後冷却速度(ΔT/t)である。すなわち、冷却時間と冷却温度と(合わせて冷却速度)によって相変態率が決まる。   FIG. 3 shows an example of a TTT diagram of a 590 MPa class high strength steel as a low carbon steel. As shown in the figure, in the low carbon steel, when the temperature is cooled from about 820 ° C. to about 640 ° C., 4-5 sec. When a ferrite nose with a phase transformation rate of 30% is reached and further cooled to about 600 ° C., 60 sec. A ferrite nose with a phase transformation rate of 70% is reached. Here, t is the elapsed time after finishing rolling (sec.), ΔT is the cooling temperature after finishing rolling, and Vc is the cooling rate after finishing rolling (ΔT / t). That is, the phase transformation rate is determined by the cooling time and the cooling temperature (in combination with the cooling rate).

ところで、コイラー内でのコイルつぶれを抑制するためには、巻取後の相変態による体積膨張量をコイル外周部とコイル内周部とで同程度にすればよく、そのためには、巻取前にコイル外周部になる部分の相変態率をコイル内周部になる部分の相変態率と同程度にすればよい。これは、巻取前にコイル外周部になる部分の相変態率をコイル内周部になる部分の相変態率と同程度にして巻取後の体積膨張量をコイルの外周側と内周側とで同程度とすると、その体積膨張量はコイルの外周側では内周側よりも周方向長さの増加に使われるので、内周側よりも厚さの増加が少なくなってコイルの緩みが抑制され、これによりコイルつぶれを効果的に抑制することが可能となるからである。   By the way, in order to suppress the coil crushing in the coiler, the volume expansion amount due to the phase transformation after winding may be made similar between the coil outer peripheral portion and the coil inner peripheral portion. Further, the phase transformation rate of the portion that becomes the outer peripheral portion of the coil may be set to the same level as the phase transformation rate of the portion that becomes the inner peripheral portion of the coil. This is because the phase transformation rate of the portion that becomes the outer peripheral portion of the coil before winding is approximately the same as the phase transformation rate of the portion that becomes the inner peripheral portion of the coil, and the volume expansion after winding is set to the outer peripheral side and inner peripheral side of the coil. The volume expansion amount is used for increasing the circumferential length on the outer peripheral side of the coil than on the inner peripheral side, so that the increase in thickness is less than that on the inner peripheral side and the coil is loosened. This is because it is possible to suppress the coil collapse effectively.

かかる知見に基づいて前記課題を解決する本発明の熱間圧延鋼板の製造方法の第1の態様は、
熱間圧延鋼板を熱間圧延機で熱間圧延した後に、これをホットランテーブル上で冷却し、コイラーで巻き取ってコイル状熱間圧延鋼板を製造するに際し、
前記熱間圧延鋼板を、熱間圧延機から送り出した直後のその熱間圧延鋼板の温度がその熱間圧延鋼板の長手方向に沿って一定となるように熱間圧延中に冷却した後、熱間圧延機からホットランテーブル上に一定速度で送り出し、
その熱間圧延鋼板を、熱間圧延機からの送り出しからコイラーでの巻取までの間の冷却速度と冷却時間とがその熱間圧延鋼板の長手方向に沿って一定となるようにホットランテーブル上で冷却することを特徴としている。
The first aspect of the method for producing a hot-rolled steel sheet according to the present invention, which solves the above problems based on such knowledge,
After hot rolling the hot rolled steel sheet with a hot rolling machine, cooling it on a hot run table and winding it with a coiler to produce a coiled hot rolled steel sheet,
The hot-rolled steel sheet is cooled during hot rolling so that the temperature of the hot-rolled steel sheet immediately after being sent out from the hot rolling mill is constant along the longitudinal direction of the hot-rolled steel sheet. From a hot rolling mill, it is sent out on a hot run table at a constant speed.
The hot-rolled steel sheet is placed on the hot run table so that the cooling rate and cooling time from the delivery from the hot rolling mill to the winding by the coiler are constant along the longitudinal direction of the hot-rolled steel sheet. It is characterized by cooling with.

また、本発明の熱間圧延鋼板の製造方法の第2の態様は、
熱間圧延鋼板を熱間圧延機で熱間圧延した後に、これをホットランテーブル上で冷却し、コイラーで巻き取ってコイル状熱間圧延鋼板を製造するに際し、
前記熱間圧延鋼板を、熱間圧延機からホットランテーブル上に加速しながら送り出し、
その熱間圧延鋼板を、単位長さ当りの冷却温度量が前記送り出し速度の上昇に比例してその熱間圧延鋼板の長手方向に沿って増加してその熱間圧延鋼板の全長に亘り冷却速度が一定となりかつ巻取時にその熱間圧延鋼板の全長に亘り相変態が終了するかまたは終了直前になるようにホットランテーブル上で冷却することを特徴としている。
Moreover, the second aspect of the method for producing a hot-rolled steel sheet of the present invention is as follows:
After hot rolling the hot rolled steel sheet with a hot rolling machine, cooling it on a hot run table and winding it with a coiler to produce a coiled hot rolled steel sheet,
Sending out the hot rolled steel sheet while accelerating from a hot rolling mill onto a hot run table,
The hot-rolled steel sheet has a cooling temperature amount per unit length that increases along the longitudinal direction of the hot-rolled steel sheet in proportion to the increase in the feed rate, and the cooling rate over the entire length of the hot-rolled steel sheet. And is cooled on a hot run table so that the phase transformation is completed over the entire length of the hot-rolled steel sheet at the time of winding or just before the end.

さらに、本発明の熱間圧延鋼板の製造方法の第3の態様は、
熱間圧延鋼板を熱間圧延機で熱間圧延した後に、これをホットランテーブル上で冷却し、コイラーで巻き取ってコイル状熱間圧延鋼板を製造するに際し、
前記熱間圧延鋼板を、熱間圧延機からホットランテーブル上に加速しながら送り出し、
その送り出し速度の最低速度と最高速度とに対しそれぞれ、コイラーでの巻取時点で前記熱間圧延鋼板の相変態率が10%以下となるようにホットランテーブル上での中間温度目標および/またはコイラーでの巻取温度目標を設定し、それら温度目標に基づき前記熱間圧延鋼板をその送り出し速度に応じてホットランテーブル上で冷却することを特徴としている。
Furthermore, the 3rd aspect of the manufacturing method of the hot rolled steel plate of this invention is as follows.
After hot rolling the hot rolled steel sheet with a hot rolling machine, cooling it on a hot run table and winding it with a coiler to produce a coiled hot rolled steel sheet,
Sending out the hot rolled steel sheet while accelerating from a hot rolling mill onto a hot run table,
The intermediate temperature target on the hot run table and / or the coiler so that the phase transformation rate of the hot-rolled steel sheet is 10% or less at the time of winding with the coiler with respect to the minimum speed and the maximum speed of the feeding speed, respectively. The hot rolling steel sheet is cooled on a hot run table in accordance with the feed speed based on the temperature target.

本発明の熱間圧延鋼板の製造方法の第1の態様(圧延速度一定方法)にあっては、熱間圧延鋼板を、熱間圧延機から送り出した直後のその熱間圧延鋼板の温度がその熱間圧延鋼板の長手方向に沿って一定となるように熱間圧延中に冷却した後、熱間圧延機からホットランテーブル上に一定速度で送り出し、その熱間圧延鋼板を、熱間圧延機からの送り出しからコイラーでの巻取までの間の冷却速度と冷却時間とがその熱間圧延鋼板の長手方向に沿って一定となるようにホットランテーブル上で冷却するので、コイラーでの巻取時に、コイル内周部になる熱間圧延鋼板の先端側は、コイル外周部になる熱間圧延鋼板の尾端側を巻き終わるまでに多少相変態が進行するものの、巻取後の相変態率にコイル外周部とコイル内周部とでさほど大きな差が無くなる。   In the first aspect of the method for producing a hot-rolled steel sheet of the present invention (a method of constant rolling speed), the temperature of the hot-rolled steel sheet immediately after the hot-rolled steel sheet is fed from the hot rolling mill is After cooling during hot rolling so as to be constant along the longitudinal direction of the hot-rolled steel sheet, the hot-rolled steel sheet is sent out on the hot run table at a constant speed, and the hot-rolled steel sheet is removed from the hot rolling mill. Since the cooling is performed on the hot run table so that the cooling rate and the cooling time from the feeding of the coiler to the coiler are constant along the longitudinal direction of the hot-rolled steel sheet, when winding with the coiler, The tip side of the hot-rolled steel sheet that becomes the inner circumference of the coil undergoes a slight phase transformation until the end of the tail end of the hot-rolled steel sheet that becomes the outer circumference of the coil has been wound. Great difference between the outer periphery and coil inner periphery No.

従って、この第1の態様によれば、コイラーでの巻取後にコイラー内でコイル状熱間圧延鋼板のコイル外周部とコイル内周部とにおいてそれぞれ相変態が進行してさほど差のない量の体積膨張が生じ、その際、コイルの外周側では内周側よりも周長が長いためその体積膨張量が周方向長さの増加に使われるので厚さの増加が少なくなる。その結果、コイル外周部に対するコイル内周側の相対的な厚さの増加によって、半径方向の面圧減少によるコイルの緩みが抑制されることから、コイラー内でのコイルつぶれの発生を抑制して生産性を向上させることができる。   Therefore, according to this first aspect, after winding in the coiler, the phase transformation proceeds in the coil outer peripheral portion and the coil inner peripheral portion of the coiled hot-rolled steel sheet in the coiler. Volume expansion occurs. At that time, the outer peripheral side of the coil has a longer peripheral length than the inner peripheral side, and the volume expansion amount is used to increase the circumferential length, so that the increase in thickness is reduced. As a result, the increase in the relative thickness of the coil inner periphery with respect to the coil outer periphery suppresses the loosening of the coil due to the reduction of the radial surface pressure, thereby suppressing the occurrence of coil collapse in the coiler. Productivity can be improved.

ここで、熱間圧延鋼板を、熱間圧延機から送り出した直後のその熱間圧延鋼板の温度がその熱間圧延鋼板の長手方向に沿って一定となるように熱間圧延中に冷却した後、熱間圧延機からホットランテーブル上に一定速度で送り出すには、例えば熱間圧延機のうちの仕上圧延機を構成する複数基の圧延スタンドでの圧延におけるベース速度(鋼板先端部の圧延速度)を上昇させるとともに圧延加速率をゼロとして送り出し速度を一定とする一方で、それらの圧延スタンド間での熱間圧延鋼板の冷却をコントロールしたり熱間圧延機のうちの粗圧延機で圧延中の粗バーの冷却をコントロールしたりすることによって、熱間圧延鋼板の尾端側に行くほど圧延中の冷却温度量を減らして、熱間圧延機から送り出した直後の熱間圧延鋼板の温度をその熱間圧延鋼板の長手方向に一定となるように保ってもよく、このようにすれば、ホットランテーブルでの冷却水量および冷却位置を固定としても、熱間圧延鋼板の全長に亘り一定の冷却速度と冷却時間ひいては巻取温度を確保することができる。   Here, after the hot-rolled steel sheet is cooled during hot rolling so that the temperature of the hot-rolled steel sheet immediately after being sent out from the hot rolling mill is constant along the longitudinal direction of the hot-rolled steel sheet In order to feed the hot rolling table at a constant speed from the hot rolling mill, for example, the base speed (rolling speed at the tip of the steel plate) in rolling at a plurality of rolling stands constituting the finishing rolling mill of the hot rolling mill While the rolling acceleration rate is set to zero and the feed rate is constant, the cooling of the hot-rolled steel sheet between the rolling stands is controlled and the rolling of the hot rolling mill is being rolled. By controlling the cooling of the coarse bar, the temperature of the hot rolled steel sheet immediately after being fed from the hot rolling mill is reduced by reducing the amount of cooling temperature during rolling toward the tail end of the hot rolled steel sheet. heat It may be kept constant in the longitudinal direction of the rolled steel sheet. In this way, even if the amount of cooling water and the cooling position on the hot run table are fixed, a constant cooling rate and cooling over the entire length of the hot rolled steel sheet. As a result, the winding temperature can be secured.

また、本発明の熱間圧延鋼板の製造方法の第2の態様(冷却速度一定方法)にあっては、熱間圧延鋼板を、熱間圧延機からホットランテーブル上に加速しながら送り出し、その熱間圧延鋼板を、中間温度目標を用いずに、単位長さ当りの冷却温度量が前記送り出し速度の上昇に比例してその熱間圧延鋼板の長手方向に沿って増加してその熱間圧延鋼板の全長に亘り冷却速度が一定となりかつ巻取時にその熱間圧延鋼板の全長に亘り相変態が終了するかまたは終了直前、例えば好ましくは相変態率90%以上になるようにホットランテーブル上で冷却することから、尾端側に行くほど送り出し速度が速くなるため冷却時間が短くなるのに応じて、送り出し速度の上昇に比例して冷却温度量が多くなるので、冷却速度が熱間圧延鋼板の全長に亘り一定になり、この冷却速度を送り出し速度とホットランテーブルの長さとの関係で、コイラーへの到達までに熱間圧延鋼板の先端部の温度がTTT線図で相変態開始時間が最短のフェライトノーズ温度付近まで低下するように設定することで、コイラーでの巻取時には、熱間圧延鋼板の全長に亘り相変態が終了するかまたは終了直前になる。   Further, in the second aspect of the method for producing a hot-rolled steel sheet of the present invention (a method of constant cooling rate), the hot-rolled steel sheet is fed from a hot rolling mill while being accelerated on a hot run table, and the heat Without using an intermediate temperature target, the hot-rolled steel sheet increases in the length of the hot-rolled steel sheet in the longitudinal direction of the hot-rolled steel sheet in proportion to the increase in the feed rate. Cooling on the hot run table so that the cooling rate is constant over the entire length of the steel sheet and the phase transformation is completed over the entire length of the hot-rolled steel sheet at the time of winding or immediately before the completion, for example, preferably the phase transformation rate is 90% or more. Therefore, as the feed rate increases toward the tail end side, the cooling temperature increases in proportion to the increase in the feed rate as the cooling time becomes shorter. Over the entire length The temperature of the tip of the hot-rolled steel sheet is the TTT diagram and the phase transformation start time is the shortest before reaching the coiler due to the relationship between the cooling speed and the length of the hot run table. By setting so as to decrease to the vicinity, at the time of winding with a coiler, the phase transformation is completed over the entire length of the hot-rolled steel plate or just before the end.

従って、この第2の態様によれば、コイラーでの巻取時にコイラー内でコイル状熱間圧延鋼板のコイル外周部とコイル内周部とにおいてそれぞれ相変態が殆ど終了しているため、巻取後に殆ど体積膨張が生じなくなる。その結果、半径方向の面圧減少によるコイルの緩みが抑制されることから、コイラー内でのコイルつぶれの発生を抑制して生産性を向上させることができる。   Therefore, according to this second aspect, since the phase transformation is almost completed in the coil outer peripheral portion and the coil inner peripheral portion of the coiled hot-rolled steel sheet in the coiler at the time of winding with the coiler, Later, almost no volume expansion occurs. As a result, since the loosening of the coil due to the reduction of the surface pressure in the radial direction is suppressed, the occurrence of coil crushing in the coiler can be suppressed and the productivity can be improved.

ここで、熱間圧延鋼板を、単位長さ当りの冷却温度量が送り出し速度の上昇に比例してその熱間圧延鋼板の長手方向に沿って増加してその熱間圧延鋼板の全長に亘り冷却速度が一定となりかつ巻取時にその熱間圧延鋼板の全長に亘り相変態が終了するかまたは終了近くになるようにホットランテーブル上で冷却するには、例えば、熱間圧延鋼板を層流冷却水で水蒸気を介さず直接冷却するラミナー(層流)冷却設備をホットランテーブルに設け、圧延最高速度におけるラミナー冷却設備の最大冷却量からその最大冷却量による冷却速度の最大値を求め、その最大値以下となるように熱間圧延鋼板の冷却速度を設定し、仕上圧延機の出側速度すなわち送り出し速度からラミナー冷却設備の通過速度を求め、その通過速度において上記設定した冷却速度になるように冷却温度量を求め、その求めた冷却温度量が達成できるようにラミナー冷却設備の冷却能力から冷却水量を決定する、という処理を熱間圧延鋼板の全長について行い、全長の冷却速度を一定としても良い。   Here, the hot-rolled steel sheet is cooled over the entire length of the hot-rolled steel sheet by increasing the cooling temperature per unit length in the longitudinal direction of the hot-rolled steel sheet in proportion to the increase in feed rate. To cool on a hot run table so that the speed is constant and the phase transformation is completed or close to the end of the hot rolled steel sheet during winding, for example, the hot rolled steel sheet is laminar cooling water. The laminar (laminar) cooling equipment that cools directly without steam is installed in the hot run table, and the maximum cooling rate for the maximum cooling rate is obtained from the maximum cooling rate of the laminar cooling facility at the maximum rolling speed. The cooling rate of the hot-rolled steel sheet is set so that the passing speed of the laminar cooling equipment is obtained from the exit side speed of the finish rolling mill, that is, the feeding speed. The cooling temperature amount is determined so that the speed is reached, and the cooling water amount is determined from the cooling capacity of the laminar cooling equipment so that the determined cooling temperature amount can be achieved. The speed may be constant.

さらに、本発明の熱間圧延鋼板の製造方法の第3の態様(変態率低下方法)にあっては、熱間圧延鋼板を、熱間圧延機からホットランテーブル上に加速しながら送り出し、その送り出し速度の最低速度と最高速度とに対しそれぞれ、コイラーでの巻取時点で前記熱間圧延鋼板の相変態率が10%以下となるようにホットランテーブル上での中間温度目標および/またはコイラーでの巻取温度目標を設定し、それらの温度目標に基づき前記熱間圧延鋼板をその送り出し速度に応じてホットランテーブル上で冷却することから、コイラーでの巻取時点で熱間圧延鋼板の相変態率がその全長に亘り10%以下となって、巻取後に熱間圧延鋼板がその全長に亘り相変態することになる。   Furthermore, in the third aspect (transformation rate lowering method) of the method for producing a hot rolled steel sheet according to the present invention, the hot rolled steel sheet is fed out while being accelerated from a hot rolling mill onto a hot run table, and the fed out. With respect to the minimum speed and the maximum speed, the intermediate temperature target on the hot run table and / or the coiler so that the phase transformation rate of the hot-rolled steel sheet is 10% or less at the time of winding with the coiler. Since the winding temperature target is set and the hot-rolled steel sheet is cooled on the hot run table according to the feed speed based on the temperature target, the phase transformation rate of the hot-rolled steel sheet at the time of winding with a coiler Becomes 10% or less over the entire length, and the hot-rolled steel sheet undergoes phase transformation over the entire length after winding.

従って、この第3の態様によれば、コイラーでの巻取後にコイラー内でコイル状熱間圧延鋼板のコイル外周部とコイル内周部とにおいてそれぞれ相変態が進行してほぼ等しい量の体積膨張が生じ、その際、コイルの外周側では内周側よりも周長が長いためその体積膨張量が周方向長さの増加に使われるので厚さの増加が少なくなる。その結果、コイル外周部に対するコイル内周側の相対的な厚さの増加によって、半径方向の面圧減少によるコイルの緩みが抑制されることから、コイラー内でのコイルつぶれの発生を抑制して生産性を向上させることができる。   Therefore, according to the third aspect, after coiling by the coiler, the phase transformation proceeds in the coil outer peripheral portion and the coil inner peripheral portion of the coiled hot-rolled steel sheet in the coiler, respectively, so that the volume expansion of substantially the same amount. In this case, since the outer peripheral side of the coil has a longer peripheral length than the inner peripheral side, the volume expansion amount is used to increase the circumferential length, so that the increase in thickness is reduced. As a result, the increase in the relative thickness of the coil inner periphery with respect to the coil outer periphery suppresses the loosening of the coil due to the reduction of the radial surface pressure, thereby suppressing the occurrence of coil collapse in the coiler. Productivity can be improved.

ここで、コイラーでの巻取時点で前記熱間圧延鋼板の相変態率が10%以下となるようにするには、例えばホットランテーブル上での中間温度目標および/またはコイラーでの巻取温度目標をTTT線図に基づきフェライトノーズ温度よりも極力高く設定することで、相変態の開始を巻取時点まで遅らせれば良い。   Here, in order to make the phase transformation rate of the hot-rolled steel sheet 10% or less at the time of winding with a coiler, for example, an intermediate temperature target on a hot run table and / or a winding temperature target with a coiler. Is set as high as possible from the ferrite nose temperature based on the TTT diagram, and the start of the phase transformation may be delayed until the winding time.

本発明の熱間圧延鋼板の製造方法の上記第1〜第3の態様は何れも特に、C:0.25質量%以下(0質量%を含まず)、Mn:1.5質量%〜2.7質量%およびSi:1.5質量%以下(0質量%を含まず)を添加した熱間圧延鋼板の製造の際に効果的である。   In any of the first to third aspects of the method for producing a hot-rolled steel sheet of the present invention, C: 0.25% by mass or less (excluding 0% by mass), Mn: 1.5% by mass to 2 It is effective when manufacturing a hot-rolled steel sheet to which 0.7% by mass and Si: 1.5% by mass or less (not including 0% by mass) are added.

通常の熱間圧延ラインの概略を示す構成図である。It is a block diagram which shows the outline of a normal hot rolling line. 中炭素鋼および中炭素・高Mn鋼の相変態を例示する関係線図である。It is a relationship diagram which illustrates the phase transformation of medium carbon steel and medium carbon and high Mn steel. 低炭素鋼の仕上圧延後経過時間と温度と相変態率(%)との関係を例示するTTT線図である。It is a TTT diagram which illustrates the relationship between the elapsed time after finish rolling of low carbon steel, temperature, and a phase transformation rate (%). 本発明の熱間圧延鋼板の製造方法の実施例を適用する、図1に示す熱間圧延ラインのホットラン冷却設備を示す構成図である。It is a block diagram which shows the hot run cooling equipment of the hot rolling line shown in FIG. 1 to which the Example of the manufacturing method of the hot rolled steel plate of this invention is applied. 本発明の熱間圧延鋼板の製造方法の三つの態様における熱間圧延鋼板の先端部(TOP)と尾端部(BOT)の相変態率およびそれらの差を示す関係線図である。It is a relationship diagram which shows the phase transformation rate of the front-end | tip part (TOP) and tail end part (BOT) of a hot-rolled steel plate in three aspects of the manufacturing method of the hot-rolled steel plate of this invention, and those differences. 上記三つの態様のうち圧延速度一定の態様を示す概念図であり、(a)は圧延速度一定の状態、(b)は冷却速度一定の状態、(c)は冷却温度一定の状態をそれぞれ熱間圧延鋼板の先端部(TOP)から尾端部(BOT)まで示す。It is a conceptual diagram which shows the aspect with a fixed rolling speed among the said three aspects, (a) is a state with a constant rolling speed, (b) is a state with a constant cooling rate, (c) is a state with a constant cooling temperature, respectively. It shows from the tip (TOP) to the tail (BOT) of the cold rolled steel sheet. 上記三つの態様のうち冷却速度一定の態様を示す概念図であり、(a)は圧延速度加速の状態、(b)は冷却速度一定の状態、(c)は冷却温度量増加の状態をそれぞれ熱間圧延鋼板の先端部(TOP)から尾端部(BOT)まで示す。It is a conceptual diagram which shows the aspect with constant cooling rate among the said three aspects, (a) is the state of acceleration of rolling speed, (b) is the state of constant cooling speed, (c) is the state of cooling temperature amount increase, respectively. It shows from the front end (TOP) to the tail end (BOT) of the hot rolled steel sheet.

以下、この発明の実施の形態を、図面に基づき詳細に説明する。ここに、図4は、この発明の熱間圧延鋼板の製造方法の上記三つの態様のそれぞれの一実施形態を適用する通常の熱間圧延ラインの概略を示す構成図であり、ここにおける熱間圧延ラインでも、加熱炉1において所定温度に加熱したスラブを粗圧延機2で圧延して粗バーとなし、ついでこの粗バーを複数基の圧延スタンドからなる連続熱間仕上圧延機3において所定の厚みの熱間圧延(熱延)鋼板4とする。そして、この熱延鋼板4を、ホットランテーブル(HRT)に設置した冷却装置5で上方および下方から供給する冷却水によって冷却した後、張力を付与しながらコイラー6で巻き取り、コイル状熱延鋼板(コイル)7とする。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 4 is a configuration diagram showing an outline of a normal hot rolling line to which one embodiment of each of the above three aspects of the method for producing a hot rolled steel sheet according to the present invention is applied. Also in the rolling line, the slab heated to a predetermined temperature in the heating furnace 1 is rolled by a roughing mill 2 to form a rough bar, and then this rough bar is predetermined by a continuous hot finish rolling mill 3 composed of a plurality of rolling stands. A hot-rolled (hot rolled) steel plate 4 having a thickness is used. And after cooling this hot-rolled steel plate 4 with the cooling water supplied from the upper direction and the downward direction with the cooling device 5 installed in the hot run table (HRT), it winds up with the coiler 6, providing a tension | tensile_strength, and coil-shaped hot-rolled steel plate (Coil) 7.

コイラー6によって熱延鋼板4を巻き取る際に、熱延鋼板4にその長手方向に付与する張力は、巻取後のコイル状熱延鋼板(コイル)7内では半径方向の面圧として作用し、鋼板層間に摩擦力を発生させる。それにより、鋼板のすべりを抑制し、コイル7の剛性を高めている。   When the hot-rolled steel sheet 4 is wound by the coiler 6, the tension applied to the hot-rolled steel sheet 4 in the longitudinal direction acts as a radial surface pressure in the coiled hot-rolled steel sheet (coil) 7 after winding. A frictional force is generated between the steel plate layers. Thereby, the slip of a steel plate is suppressed and the rigidity of the coil 7 is improved.

ところで、コイルつぶれの発生が確認されている鋼の添加元素とは、C:0.25質量%以下(0質量%を含まず)、Mn:1.5質量%〜2.7質量%、Si:1.5質量%以下(0質量%を含まず)であり、特に、Mnを1.5質量%以上と多量に添加している。これらは他の鋼種に比べて相変態の進行が遅く、コイルつぶれが発生しやすい条件となっている。このため、本発明の熱間圧延鋼板の製造方法の三つの態様P1,P2,P3は、上記の鋼種に適用する。なお、図2,3に例示するように、相変態温度と目標加工温度とは材料によって異なるので、材料に応じてこれら三つの態様を使い分けると好ましい。   By the way, the additive element of steel in which the occurrence of coil crushing has been confirmed is: C: 0.25% by mass or less (excluding 0% by mass), Mn: 1.5% by mass to 2.7% by mass, Si : 1.5% by mass or less (excluding 0% by mass), and in particular, Mn is added in a large amount of 1.5% by mass or more. These are the conditions in which the progress of phase transformation is slow compared to other steel types and coil collapse is likely to occur. For this reason, three aspects P1, P2, P3 of the manufacturing method of the hot-rolled steel sheet of this invention are applied to said steel type. As illustrated in FIGS. 2 and 3, the phase transformation temperature and the target processing temperature differ depending on the material, so it is preferable to use these three modes properly depending on the material.

コイルつぶれを十分抑制するためには、前述のように巻取前の相変態制御によってコイラー6内でのコイル7の外周部の相変態率を内周部の相変態率と同程度とすることが重要であり、相変態率は、例えば本願出願人が先に特開平08−062181号や特開平09−049017号にて開示した、熱延鋼板の透磁率の変化を利用した変態率計等の変態率計により、オンラインでの測定による確認が可能である。   In order to sufficiently suppress coil collapse, the phase transformation rate of the outer peripheral portion of the coil 7 in the coiler 6 is set to be the same as the phase transformation rate of the inner peripheral portion by the phase transformation control before winding as described above. The phase transformation rate is, for example, a transformation rate meter using the change in permeability of a hot-rolled steel sheet previously disclosed by the applicant of the present application in Japanese Patent Laid-Open Nos. 08-0621181 and 09-049017. It is possible to confirm by online measurement using the transformation rate meter.

図5は、コイラー6内でのコイル7の外周部の相変態率を内周部の相変態率と同程度とするための本発明の熱間圧延鋼板の製造方法の三つの態様P1,P2,P3における熱間圧延鋼板の先端部(TOP)と尾端部(BOT)の相変態率およびそれらの差を示す関係線図であり、また、以下の表1は、上記三つの態様P1,P2,P3の内容をそれぞれ示すものである。   FIG. 5 shows three modes P1 and P2 of the method for producing a hot-rolled steel sheet according to the present invention for making the phase transformation rate of the outer peripheral portion of the coil 7 in the coiler 6 the same as the phase transformation rate of the inner peripheral portion. , P3 is a relationship diagram showing the phase transformation rates of the front end portion (TOP) and the tail end portion (BOT) of the hot-rolled steel sheet and the difference between them, and Table 1 below shows the three modes P1, The contents of P2 and P3 are shown respectively.

Figure 2014065077
Figure 2014065077

ここに、TOPは熱延鋼板先端部の略称であり、BOTは熱延鋼板尾端部の略称である。なお、ここでいう熱延鋼板先端部とは熱延鋼板の最先端から10m程度の長さ範囲までの部位を意味し、熱延鋼板尾端部とは熱延鋼板の最尾端から10m程度の長さまでの部位を意味する。   Here, TOP is an abbreviation for the tip of the hot-rolled steel sheet, and BOT is an abbreviation for the tail end of the hot-rolled steel sheet. In addition, the hot-rolled steel sheet tip here means a part from the most advanced part of the hot-rolled steel sheet to a length range of about 10 m, and the hot-rolled steel sheet tail end part is about 10 m from the most extreme end of the hot-rolled steel sheet. It means a part up to the length of.

図5および表1に示すように本発明の第1の態様P1は、TOPとBOTとの間の相変態率差を減少させることで、コイラー6内でのコイル7の外周部の相変態率を内周部の相変態率と同程度とするものであり、そのために一定速度の仕上圧延により、仕上圧延機3からの送り出しを一定速度で行っている。   As shown in FIG. 5 and Table 1, the first aspect P1 of the present invention reduces the phase transformation rate difference between TOP and BOT, thereby reducing the phase transformation rate of the outer peripheral portion of the coil 7 in the coiler 6. Is the same as the phase transformation rate of the inner peripheral portion, and for this purpose, the finish rolling from the finishing mill 3 is performed at a constant speed by finish rolling at a constant speed.

図6は、その第1の態様P1の一実施形態を示す概念図であり、熱間圧延鋼板の先端部(TOP)から尾端部(BOT)までについて、(a)に圧延速度一定の状態、(b)に冷却速度一定の状態、(c)に冷却温度一定の状態をそれぞれ示す。これらの図から明らかなように第1の態様P1のこの実施形態では、熱間圧延鋼板4を、熱間圧延機としての連続熱間仕上圧延機3から送り出した直後のその熱間圧延鋼板4の温度がその熱間圧延鋼板4の長手方向に沿って一定となるように、連続熱間仕上圧延機3での熱間圧延中に冷却した後、連続熱間仕上圧延機3から図示しないホットランテーブル(HRT)上に圧延速度に等しい一定速度Vで送り出し、その熱間圧延鋼板4を、連続熱間仕上圧延機3からの送り出しからコイラー6での巻取までの間の冷却速度Vcと冷却時間tとがその熱間圧延鋼板4の長手方向に沿って一定となるようにHRT上で冷却する。   Drawing 6 is a key map showing one embodiment of the 1st mode P1, and it is in a state where rolling speed is constant in (a) about a tip part (TOP) to a tail end part (BOT) of a hot rolled steel plate. (B) shows a state where the cooling rate is constant, and (c) shows a state where the cooling temperature is constant. As is apparent from these figures, in this embodiment of the first aspect P1, the hot rolled steel sheet 4 immediately after being sent out from the continuous hot finishing mill 3 as a hot rolling mill. Is cooled during hot rolling in the continuous hot finish rolling mill 3 so that the temperature of the hot rolled steel sheet 4 becomes constant along the longitudinal direction of the hot rolled steel sheet 4 and then hot run (not shown) from the continuous hot finish rolling mill 3. The steel sheet 4 is fed on a table (HRT) at a constant speed V equal to the rolling speed, and the hot-rolled steel sheet 4 is cooled from the feed from the continuous hot finishing mill 3 to the winding by the coiler 6 and cooling. Cooling is performed on the HRT so that the time t is constant along the longitudinal direction of the hot-rolled steel sheet 4.

ここで、熱間圧延鋼板4を、連続熱間仕上圧延機3から送り出した直後のその熱間圧延鋼板4の温度がその熱間圧延鋼板4の長手方向に沿って一定となるように熱間圧延中に冷却した後、連続熱間仕上圧延機3からHRT上に一定速度で送り出すには、この実施形態では、連続熱間仕上圧延機3を構成する複数基の圧延スタンドでの圧延におけるベース速度(鋼板先端部の圧延速度)を上昇させるとともに、圧延加速率をゼロとして送り出し速度を一定とする一方で、それらの圧延スタンド間での熱間圧延鋼板4の冷却をコントロールすることによって、熱間圧延鋼板4の尾端側に行くほど圧延中の冷却温度量を減らして、連続熱間仕上圧延機3から送り出した直後の熱間圧延鋼板4の温度をその熱間圧延鋼板4の長手方向に一定となるように保つ。これにより、HRTでの冷却水量および冷却位置を固定としても、熱間圧延鋼板4の全長に亘り一定の冷却速度と冷却時間ひいては巻取温度を確保することができる。   Here, the hot-rolled steel sheet 4 is hot so that the temperature of the hot-rolled steel sheet 4 immediately after the hot-rolled steel sheet 4 is sent out from the continuous hot finish rolling mill 3 is constant along the longitudinal direction of the hot-rolled steel sheet 4. In order to send out at a constant speed from the continuous hot finish rolling mill 3 to the HRT after cooling during rolling, in this embodiment, a base in rolling in a plurality of rolling stands constituting the continuous hot finish rolling mill 3 is used. While increasing the speed (rolling speed at the tip of the steel sheet) and making the feed speed constant with the rolling acceleration rate being zero, by controlling the cooling of the hot-rolled steel sheet 4 between the rolling stands, The temperature of the hot-rolled steel sheet 4 immediately after being sent out from the continuous hot finishing mill 3 is reduced in the longitudinal direction of the hot-rolled steel sheet 4 by decreasing the cooling temperature amount during rolling as it goes to the tail end side of the hot-rolled steel sheet 4. To be constant Keep. Thereby, even if the amount of cooling water and the cooling position in the HRT are fixed, it is possible to ensure a constant cooling rate, cooling time, and coiling temperature over the entire length of the hot-rolled steel sheet 4.

従って、この第1の態様P1によれば、コイラー6での巻取時に、コイル7の内周部になる熱間圧延鋼板4の先端側は、コイル7の外周部になる熱間圧延鋼板4の尾端側を巻き終わるまでに多少相変態が進行するものの、巻取後の相変態率にコイル7の外周部と内周部とでさほど大きな差が無くなることから、コイラー6での巻取後にコイラー6内でコイル状熱間圧延鋼板7のコイル外周部とコイル内周部とにおいてそれぞれ相変態が進行してさほど差のない量の体積膨張が生じ、その際、コイル7の外周側では内周側よりも周長が長いためその体積膨張量が周方向長さの増加に使われるので厚さの増加が少なくなる。その結果、コイル外周部に対するコイル内周側の相対的な厚さの増加によって、半径方向の面圧減少によるコイル7の緩みが抑制されることから、コイラー6内でのコイルつぶれの発生を抑制して生産性を向上させることができる。   Therefore, according to the first aspect P1, the hot-rolled steel sheet 4 that becomes the outer peripheral part of the coil 7 is located at the front end side of the hot-rolled steel sheet 4 that becomes the inner peripheral part of the coil 7 during winding by the coiler 6. Although the phase transformation proceeds somewhat before winding the tail end of the coil, there is not much difference between the outer peripheral portion and the inner peripheral portion of the coil 7 in the phase transformation rate after winding. Later, in the coiler 6, the phase transformation proceeds in the coil outer peripheral portion and the coil inner peripheral portion of the coiled hot-rolled steel sheet 7, respectively, and a volume expansion with a little difference occurs. Since the circumferential length is longer than that of the inner circumferential side, the volume expansion amount is used to increase the circumferential length, so that the increase in thickness is reduced. As a result, the increase in the relative thickness of the coil inner periphery with respect to the coil outer periphery suppresses the loosening of the coil 7 due to the reduction of the radial surface pressure, thereby suppressing the occurrence of coil collapse in the coiler 6. And productivity can be improved.

また、図5および表1に示すように本発明の第2の態様P2は、一定の冷却速度での冷却により熱間圧延鋼板4の全体の相変態率を増加させることで、コイラー6内でのコイル7の外周部の相変態率を内周部の相変態率と同程度とするものであり、そのために高冷却能力の冷却設備を活用し、冷却温度の低温化を図っている。   Moreover, as shown in FIG. 5 and Table 1, the second aspect P2 of the present invention increases the overall phase transformation rate of the hot-rolled steel sheet 4 by cooling at a constant cooling rate, thereby allowing the inside of the coiler 6 to The phase transformation rate of the outer peripheral portion of the coil 7 is set to be the same as the phase transformation rate of the inner peripheral portion. For this purpose, cooling equipment with high cooling capacity is utilized to lower the cooling temperature.

図7は、その第2の態様P2の一実施形態を示す概念図であり、熱間圧延鋼板の先端部(TOP)から尾端部(BOT)までについて、(a)に圧延速度加速の状態、(b)に冷却速度一定の状態、(c)に冷却温度量増加の状態をそれぞれ示す。これらの図から明らかなように第2の態様P2のこの実施形態では、熱間圧延鋼板4を、熱間圧延機としての連続熱間仕上圧延機3からHRT上に加速しながら送り出し、その熱間圧延鋼板4を、中間温度目標を用いずに、単位長さ当りの冷却温度量が送り出し速度の上昇に比例してその熱間圧延鋼板4の長手方向に沿って増加してその熱間圧延鋼板4の全長に亘り冷却速度が一定となりかつ巻取時にその熱間圧延鋼板4の全長に亘り相変態が終了するかまたは終了直前、すなわちここでは相変態率90%以上になるようにHRT上で冷却する。   FIG. 7 is a conceptual diagram showing an embodiment of the second aspect P2, in which the rolling speed acceleration state is shown in (a) from the front end (TOP) to the tail end (BOT) of the hot rolled steel sheet. (B) shows a state where the cooling rate is constant, and (c) shows a state where the cooling temperature is increased. As is apparent from these figures, in this embodiment of the second mode P2, the hot rolled steel sheet 4 is fed from the continuous hot finishing mill 3 as a hot rolling mill while being accelerated on the HRT, and the heat The hot-rolled steel sheet 4 is hot-rolled by increasing the cooling temperature per unit length along the longitudinal direction of the hot-rolled steel sheet 4 in proportion to the increase in feed rate without using the intermediate temperature target. On the HRT, the cooling rate is constant over the entire length of the steel plate 4 and the phase transformation is completed over the entire length of the hot-rolled steel plate 4 at the time of winding or immediately before the completion, that is, here the phase transformation rate is 90% or more. Cool with.

ここで、熱間圧延鋼板4を、単位長さ当りの冷却温度量が送り出し速度の上昇に比例してその熱間圧延鋼板4の長手方向に沿って増加してその熱間圧延鋼板4の全長に亘り冷却速度が一定となりかつ巻取時にその熱間圧延鋼板4の全長に亘り相変態が終了するかまたは終了直前、すなわち相変態率90%以上になるようにHRT上で冷却するには、この実施形態では、熱間圧延鋼板4を層流冷却水で水蒸気を介さず直接冷却するラミナー(層流)冷却設備であって高冷却能力のものをHRTに設け、熱間圧延鋼板4の単位長さ毎に、圧延最高速度におけるラミナー冷却設備の最大冷却量からその最大冷却量による冷却速度の最大値を求め、その最大値以下となるように熱間圧延鋼板4の冷却速度を設定し、仕上圧延機3の出側速度すなわち送り出し速度からラミナー冷却設備の通過速度を求め、その通過速度において上記設定した冷却速度になるように冷却温度量を求め、その求めた冷却温度量が達成できるようにラミナー冷却設備の冷却能力から冷却水量を決定する、という処理を熱間圧延鋼板4の全長について行う。   Here, the hot-rolled steel sheet 4 has a cooling temperature amount per unit length that increases along the longitudinal direction of the hot-rolled steel sheet 4 in proportion to the increase in feed rate, and the total length of the hot-rolled steel sheet 4 increases. In order to cool on the HRT so that the cooling rate becomes constant over the entire length of the hot rolled steel sheet 4 during winding or just before the end of the phase transformation, that is, the phase transformation rate is 90% or more. In this embodiment, a laminar (laminar flow) cooling facility that directly cools the hot-rolled steel plate 4 with laminar cooling water without using water vapor and has a high cooling capacity is provided in the HRT. For each length, obtain the maximum value of the cooling rate by the maximum cooling amount from the maximum cooling amount of the laminar cooling facility at the maximum rolling speed, and set the cooling rate of the hot-rolled steel sheet 4 to be equal to or less than the maximum value, The exit side speed of the finishing mill 3, that is, the feed The passage speed of the laminar cooling equipment is obtained from the delivery speed, the cooling temperature amount is obtained so that the cooling speed is set at the passage speed, and cooling is performed from the cooling capacity of the laminar cooling equipment so that the obtained cooling temperature amount can be achieved. The process of determining the amount of water is performed for the entire length of the hot-rolled steel sheet 4.

従って、この第2の態様P2によれば、熱間圧延鋼板4の尾端側に行くほど送り出し速度が速くなるため冷却時間が短くなるのに応じて、送り出し速度の上昇に比例して冷却温度量が多くなるので、冷却速度が熱間圧延鋼板4の全長に亘り一定になり、この冷却速度を、送り出し速度とHRTの長さとの関係で、コイラー6への到達までに熱間圧延鋼板4の先端部の温度がTTT線図で相変態開始時間最短のフェライトノーズ温度付近まで低下するように設定することで、コイラー6での巻取時には、熱間圧延鋼板4の全長に亘り相変態が終了するかまたは終了直前になるようにでき、これにより、コイラー6での巻取時にコイラー6内でコイル状熱間圧延鋼板7のコイル外周部とコイル内周部とにおいてそれぞれ相変態が殆ど終了しているため、巻取後に殆ど体積膨張が生じなくなる。その結果、半径方向の面圧減少によるコイル7の緩みが抑制されることから、コイラー6内でのコイルつぶれの発生を抑制して生産性を向上させることができる。   Therefore, according to the second aspect P2, the feed rate increases as it goes to the tail end side of the hot-rolled steel sheet 4, and therefore the cooling temperature is proportional to the increase in the feed rate as the cooling time is shortened. Since the amount increases, the cooling rate becomes constant over the entire length of the hot-rolled steel plate 4, and this cooling rate is related to the hot-rolled steel plate 4 before reaching the coiler 6 due to the relationship between the feed rate and the HRT length. By setting so that the temperature of the tip of the steel plate decreases to near the ferrite nose temperature with the shortest phase transformation start time in the TTT diagram, the phase transformation occurs over the entire length of the hot-rolled steel plate 4 during winding with the coiler 6. Thus, the phase transformation is almost completed in the coil outer peripheral portion and the coil inner peripheral portion of the coiled hot-rolled steel sheet 7 in the coiler 6 at the time of winding with the coiler 6. doing Because, most of the volume expansion after the take-up does not occur. As a result, the loosening of the coil 7 due to the reduction of the surface pressure in the radial direction is suppressed, so that the occurrence of coil collapse in the coiler 6 can be suppressed and the productivity can be improved.

そして、図5および表1に示すように本発明の第3の態様P3は、熱間圧延鋼板4の全体の相変態率を減少させることで、コイラー6内でのコイル7の外周部の相変態率を内周部の相変態率と同程度とするものであり、そのために冷却温度の高温化を図っている。   As shown in FIG. 5 and Table 1, the third aspect P3 of the present invention reduces the overall phase transformation rate of the hot-rolled steel sheet 4, thereby reducing the phase of the outer peripheral portion of the coil 7 in the coiler 6. The transformation rate is set to the same level as the phase transformation rate in the inner periphery, and for this purpose, the cooling temperature is increased.

このため第3の態様P3のこの実施形態では、熱間圧延鋼板4を、熱間圧延機としての連続熱間仕上圧延機3からHRT上に加速しながら送り出し、その送り出し速度の最低速度と最高速度とに対しそれぞれ、コイラー6での巻取時点で熱間圧延鋼板6の相変態率が10%以下となるようにHRT上での中間温度目標および/またはコイラー6での巻取温度目標を設定し、それらの温度目標に基づき熱間圧延鋼板4をその送り出し速度に応じてHRT上で冷却することから、コイラー6での巻取時点で熱間圧延鋼板4の相変態率がその全長に亘り10%以下となって、巻取後に熱間圧延鋼板4がその全長に亘り相変態することになる。   For this reason, in this embodiment of the third aspect P3, the hot rolled steel sheet 4 is fed from the continuous hot finish rolling mill 3 as a hot rolling mill while accelerating on the HRT, and the minimum speed and the maximum of the feeding speed are sent. The intermediate temperature target on the HRT and / or the coiling temperature target on the coiler 6 are set so that the phase transformation rate of the hot-rolled steel sheet 6 becomes 10% or less at the time of winding with the coiler 6 with respect to the speed. Since the hot-rolled steel sheet 4 is cooled on the HRT according to the feed speed based on the temperature target, the phase transformation rate of the hot-rolled steel sheet 4 reaches its full length at the time of winding with the coiler 6. Therefore, the hot rolled steel sheet 4 undergoes phase transformation over the entire length after winding.

ここで、コイラー6での巻取時点で熱間圧延鋼板4の相変態率が10%以下となるようにするには、この実施形態ではHRT上での中間温度目標および/またはコイラー6での巻取温度目標を、TTT線図に基づきフェライトノーズ温度よりも極力高く設定することで、相変態の開始を巻取時点まで遅らせる。   Here, in order for the phase transformation rate of the hot-rolled steel sheet 4 to be 10% or less at the time of winding with the coiler 6, in this embodiment, the intermediate temperature target on the HRT and / or the coiler 6 By setting the winding temperature target as high as possible above the ferrite nose temperature based on the TTT diagram, the start of the phase transformation is delayed until the winding time.

従って、この第3の態様によれば、コイラー6での巻取後にコイラー6内でコイル状熱間圧延鋼板7のコイル外周部とコイル内周部とにおいてそれぞれ相変態が進行してほぼ等しい量の体積膨張が生じ、その際、コイルの外周側では内周側よりも周長が長いためその体積膨張量が周方向長さの増加に使われるので厚さの増加が少なくなる。その結果、コイル外周部に対するコイル内周側の相対的な厚さの増加によって、半径方向の面圧減少によるコイル7の緩みが抑制されることから、コイラー6内でのコイルつぶれの発生を抑制して生産性を向上させることができる。   Therefore, according to the third aspect, after winding in the coiler 6, the phase transformation proceeds in the coiler 6 at the coil outer peripheral portion and the coil inner peripheral portion of the coiled hot-rolled steel sheet 7, respectively. In this case, since the outer peripheral side of the coil has a longer peripheral length than the inner peripheral side, the volume expansion amount is used for increasing the circumferential length, so that the increase in thickness is reduced. As a result, the increase in the relative thickness of the coil inner periphery with respect to the coil outer periphery suppresses the loosening of the coil 7 due to the reduction of the radial surface pressure, thereby suppressing the occurrence of coil collapse in the coiler 6. And productivity can be improved.

次に、本実施形態に基づく実施例を、図1に示す熱間圧延鋼板の製造ラインの図4に示すホットラン冷却設備において、熱延鋼板4の冷却を行う場合について説明する。このホットラン冷却設備では、仕上温度計8を仕上圧延機3の出口近傍に、また中間温度計9を仕上圧延機3からコイラー6までの距離の圧延機側1/5〜1/2の位置のうち、冷却装置5を設けたHRTのテーブル長の仕上圧延機3側1/3の位置に、そして巻取温度計10をコイラー6の近傍にそれぞれ設置しており、さらに確認のために変態率計11を、巻取温度計10と同じ場所に設置している。この変態率計11は上述のように、例えば熱延鋼板4の透磁率の変化を利用したものとすることができる。   Next, the example based on this embodiment demonstrates the case where the hot-rolled steel plate 4 is cooled in the hot run cooling equipment shown in FIG. 4 of the hot rolled steel plate production line shown in FIG. In this hot run cooling facility, the finishing thermometer 8 is located in the vicinity of the exit of the finishing mill 3, and the intermediate thermometer 9 is located at a position 1/5 to 1/2 of the rolling mill side of the distance from the finishing mill 3 to the coiler 6. Among them, the HRT table length provided with the cooling device 5 is installed at a position 1/3 on the finishing mill 3 side, and the winding thermometer 10 is installed in the vicinity of the coiler 6, and the transformation rate for further confirmation. The total 11 is installed in the same place as the winding thermometer 10. As described above, the transformation rate meter 11 can use, for example, a change in magnetic permeability of the hot-rolled steel plate 4.

このホットラン冷却設備を用い、その冷却装置5の作動条件(熱延鋼板4に供給する冷却水の温度や水量等)を制御することにより、以下の実施例1〜3の製造方法でそれぞれ熱延鋼板を製造した。実施例1の製造方法は、上記第1の態様P1を実施するものであり、この実施例1は、適用材を、C:0.15質量%、Mn:2.0質量%、その他の元素は相変態挙動に影響を与えない程度の微小量である高Mn中炭素鋼種で板厚2.9mmの熱延鋼板とし、適用設備/適用工程/適用作業を、仕上圧延速度一定、仕上圧延加速率0.0mpm/sec.、HRT上での冷却装置5の冷却制御も一定とし、操業条件/加工条件を、仕上出側温度870℃、巻取温度600℃としている。   By using this hot run cooling equipment and controlling the operating conditions of the cooling device 5 (temperature and amount of cooling water supplied to the hot-rolled steel sheet 4), the hot-rolling is performed in the production methods of Examples 1 to 3 below. A steel plate was produced. The manufacturing method of Example 1 implements said 1st aspect P1, and this Example 1 is C: 0.15 mass%, Mn: 2.0 mass%, and other elements. Is a high-Mn medium carbon steel grade with a thickness of 2.9 mm, which is a minute amount that does not affect the phase transformation behavior, and the applied equipment / application process / application operations are constant at the finish rolling speed and accelerated finish rolling. Rate 0.0 mpm / sec. The cooling control of the cooling device 5 on the HRT is also constant, and the operating / processing conditions are a finishing side temperature of 870 ° C. and a winding temperature of 600 ° C.

また、実施例2の製造方法は、上記第2の態様P2を実施するものであり、この実施例2は、操業条件のみ実施例1と異なり、仕上圧延加速率15mpm/sec.としている。そして実施例3の製造方法は、上記第3の態様P3を実施するものであり、この実施例3は、適用材を、C:0.005質量%以下、Mn:2.0質量%、その他の元素は相変態挙動に影響を与えない程度の微小量である高Mn低炭素鋼種で板厚3.2mmの熱延鋼板とし、適用設備/適用工程/適用作業を、仕上圧延加速率8.0mpm/sec.とし、操業条件/加工条件を、仕上出側温度890℃、巻取温度640℃としている。なお、コイル内径は750mm、相変態率は変態率計11で測定した結果、実施例1では熱延鋼板4の全長に亘り60%±10%以内、実施例2では熱延鋼板4の全長に亘り100%−10%以内、実施例3では熱延鋼板4の全長に亘り0%+10%以内であった。   Moreover, the manufacturing method of Example 2 implements said 2nd aspect P2, and this Example 2 differs from Example 1 only in operation conditions, and finish rolling acceleration rate 15 mpm / sec. It is said. And the manufacturing method of Example 3 implements the said 3rd aspect P3, and this Example 3 is C: 0.005 mass% or less, Mn: 2.0 mass%, and others. These elements are high-Mn low-carbon steel grades with a minute amount that does not affect the phase transformation behavior, and hot rolled steel sheets with a thickness of 3.2 mm. 0 mpm / sec. And the operation / processing conditions are a finishing delivery temperature of 890 ° C. and a winding temperature of 640 ° C. The coil inner diameter was 750 mm, and the phase transformation rate was measured by the transformation rate meter 11. As a result, in Example 1, the entire length of the hot-rolled steel plate 4 was within 60% ± 10%. It was within 100% -10% over the range, and in Example 3, it was within 0% + 10% over the entire length of the hot-rolled steel sheet 4.

従来方法で製造したコイル7では、コイルつぶれの発生を抑制するためのコイラー6内での水冷時間は10秒であったのに対し、上記実施例1〜3でそれぞれ製造したコイル7では、コイルつぶれの発生を抑制するためのコイラー6内での水冷時間は0秒であった。すなわち、コイラー6内での水冷なしでもコイルつぶれの発生はなかった。   In the coil 7 manufactured by the conventional method, the water cooling time in the coiler 6 for suppressing the occurrence of coil crushing was 10 seconds, whereas in the coil 7 manufactured in each of the first to third embodiments, the coil 7 The water cooling time in the coiler 6 for suppressing the occurrence of crushing was 0 second. That is, no coil collapse occurred even without water cooling in the coiler 6.

上述した結果から明らかなように本発明の上記三種類の態様の熱間圧延鋼板の製造方法によれば何れも、巻取後に半径方向の面圧減少によるコイルの緩みが抑制されることから、コイラー内でのコイルつぶれの発生を抑制して生産性を向上させることができる。   As is clear from the results described above, according to the method for manufacturing a hot-rolled steel sheet according to the above three types of aspects of the present invention, any coil loosening due to a reduction in radial surface pressure after winding is suppressed. Productivity can be improved by suppressing the occurrence of coil collapse in the coiler.

以上、図示例に基づき説明したが、本発明は上述の例の限定されるものでなく、特許請求の範囲の記載範囲内で適宜変更し得るものであり、例えば、上記第1の態様P1では、連続熱間仕上圧延機3から送り出した直後の熱間圧延鋼板4の温度をその熱間圧延鋼板4の長手方向に一定となるように保つのに、熱間圧延機のうちの粗圧延機2で圧延中の粗バーの冷却をコントロールすることによって熱間圧延鋼板4の尾端側に行くほど圧延中の冷却温度量を減らしても良い。   The present invention has been described based on the illustrated examples. However, the present invention is not limited to the above-described examples, and can be appropriately changed within the scope of the claims. For example, in the first aspect P1 described above, In order to keep the temperature of the hot rolled steel sheet 4 immediately after being sent out from the continuous hot finish rolling mill 3 so as to be constant in the longitudinal direction of the hot rolled steel sheet 4, a rough rolling mill of the hot rolling mills. By controlling the cooling of the coarse bar during rolling at 2, the amount of cooling temperature during rolling may be reduced toward the tail end side of the hot rolled steel plate 4.

また、上記第2の態様P2では、HRT上での熱間圧延鋼板4の冷却速度を一定とするのに通常のラミナー冷却設備で冷却能力が足りれば、特に高冷却能力のラミナー冷却設備を用いず通常のラミナー冷却設備を用いても良い。   Moreover, in the said 2nd aspect P2, if the cooling capacity is sufficient with the normal laminar cooling equipment in order to make the cooling rate of the hot-rolled steel sheet 4 on HRT constant, especially the laminar cooling equipment with a high cooling capacity is used. Ordinary laminar cooling equipment may be used instead.

かくして本発明の熱間圧延鋼板の製造方法によれば、コイラーでの巻取後に、半径方向の面圧減少によるコイルの緩みが抑制されることから、コイラー内でのコイルつぶれの発生を抑制して生産性を向上させることができる。   Thus, according to the method for producing a hot-rolled steel sheet of the present invention, after coiling with a coiler, coil loosening due to reduction of the radial surface pressure is suppressed, so that occurrence of coil crushing in the coiler is suppressed. Productivity.

1 加熱炉
2 粗圧延機
3 仕上圧延機
4 熱延鋼板
5 冷却装置
6 コイラー
7 コイル状熱延鋼板(コイル)
8 仕上温度計
9 中間温度計
10 巻取温度計
11 相変態率計
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Rough rolling mill 3 Finish rolling mill 4 Hot-rolled steel plate 5 Cooling device 6 Coiler 7 Coiled hot-rolled steel plate (coil)
8 Finishing thermometer 9 Intermediate thermometer 10 Winding thermometer 11 Phase transformation rate meter

Claims (6)

熱間圧延鋼板を熱間圧延機で熱間圧延した後に、これをホットランテーブル上で冷却し、コイラーで巻き取ってコイル状熱間圧延鋼板を製造するに際し、
前記熱間圧延鋼板を、熱間圧延機から送り出した直後のその熱間圧延鋼板の温度がその熱間圧延鋼板の長手方向に沿って一定となるように熱間圧延中に冷却した後、熱間圧延機からホットランテーブル上に一定速度で送り出し、
その熱間圧延鋼板を、熱間圧延機からの送り出しからコイラーでの巻取までの間の冷却速度と冷却時間とがその熱間圧延鋼板の長手方向に沿って一定となるようにホットランテーブル上で冷却することを特徴とする熱間圧延鋼板の製造方法。
After hot rolling the hot rolled steel sheet with a hot rolling machine, cooling it on a hot run table and winding it with a coiler to produce a coiled hot rolled steel sheet,
The hot-rolled steel sheet is cooled during hot rolling so that the temperature of the hot-rolled steel sheet immediately after being sent out from the hot rolling mill is constant along the longitudinal direction of the hot-rolled steel sheet. From a hot rolling mill, it is sent out on a hot run table at a constant speed.
The hot-rolled steel sheet is placed on the hot run table so that the cooling rate and cooling time from the delivery from the hot rolling mill to the winding by the coiler are constant along the longitudinal direction of the hot-rolled steel sheet. The manufacturing method of the hot-rolled steel plate characterized by cooling with.
前記熱間圧延鋼板を、熱間圧延機から送り出した直後のその熱間圧延鋼板の温度がその熱間圧延鋼板の長手方向に沿って一定となるようにする前記熱間圧延中の冷却は、仕上圧延機を構成する複数基の圧延スタンド間の冷却で行うことを特徴とする請求項1記載の熱間圧延鋼板の製造方法。   The cooling during the hot rolling so that the temperature of the hot rolled steel sheet immediately after the hot rolled steel sheet is sent out from the hot rolling mill is constant along the longitudinal direction of the hot rolled steel sheet, The method for producing a hot-rolled steel sheet according to claim 1, wherein cooling is performed between a plurality of rolling stands constituting the finish rolling mill. 熱間圧延鋼板を熱間圧延機で熱間圧延した後に、これをホットランテーブル上で冷却し、コイラーで巻き取ってコイル状熱間圧延鋼板を製造するに際し、
前記熱間圧延鋼板を、熱間圧延機からホットランテーブル上に加速しながら送り出し、
その熱間圧延鋼板を、単位長さ当りの冷却温度量が前記送り出し速度の上昇に比例してその熱間圧延鋼板の長手方向に沿って増加してその熱間圧延鋼板の全長に亘り冷却速度が一定となりかつ巻取時にその熱間圧延鋼板の全長に亘り相変態が終了するかまたは終了直前になるようにホットランテーブル上で冷却することを特徴とする熱間圧延鋼板の製造方法。
After hot rolling the hot rolled steel sheet with a hot rolling machine, cooling it on a hot run table and winding it with a coiler to produce a coiled hot rolled steel sheet,
Sending out the hot rolled steel sheet while accelerating from a hot rolling mill onto a hot run table,
The hot-rolled steel sheet has a cooling temperature amount per unit length that increases along the longitudinal direction of the hot-rolled steel sheet in proportion to the increase in the feed rate, and the cooling rate over the entire length of the hot-rolled steel sheet. A method for producing a hot-rolled steel sheet, characterized in that the cooling is performed on the hot run table so that the phase transformation is completed over the entire length of the hot-rolled steel sheet during winding or just before the end.
前記巻取時の熱間圧延鋼板の相変態率はその全長に亘り90%以上であることを特徴とする請求項3記載の熱間圧延鋼板の製造方法。   The method for producing a hot-rolled steel sheet according to claim 3, wherein a phase transformation rate of the hot-rolled steel sheet at the time of winding is 90% or more over its entire length. 熱間圧延鋼板を熱間圧延機で熱間圧延した後に、これをホットランテーブル上で冷却し、コイラーで巻き取ってコイル状熱間圧延鋼板を製造するに際し、
前記熱間圧延鋼板を、熱間圧延機からホットランテーブル上に加速しながら送り出し、
その送り出し速度の最低速度と最高速度とに対しそれぞれ、コイラーでの巻取時点で前記熱間圧延鋼板の相変態率が10%以下となるようにホットランテーブル上での中間温度目標および/またはコイラーでの巻取温度目標を設定し、それら温度目標に基づき前記熱間圧延鋼板をその送り出し速度に応じてホットランテーブル上で冷却することを特徴とする熱間圧延鋼板の製造方法。
After hot rolling the hot rolled steel sheet with a hot rolling machine, cooling it on a hot run table and winding it with a coiler to produce a coiled hot rolled steel sheet,
Sending out the hot rolled steel sheet while accelerating from a hot rolling mill onto a hot run table,
The intermediate temperature target on the hot run table and / or the coiler so that the phase transformation rate of the hot-rolled steel sheet is 10% or less at the time of winding with the coiler with respect to the minimum speed and the maximum speed of the feeding speed, respectively. A method for producing a hot rolled steel sheet, comprising setting a coiling temperature target at a temperature and cooling the hot rolled steel sheet on a hot run table according to the feed rate based on the temperature target.
前記熱間圧延鋼板は、C:0.25質量%以下(0質量%を含まず)、Mn:1.5質量%〜2.7質量%およびSi:1.5質量%以下(0質量%を含まず)を添加したものであることを特徴とする請求項1から請求項5までの何れか1項記載の熱間圧延鋼板の製造方法。   The hot-rolled steel sheet has C: 0.25% by mass or less (excluding 0% by mass), Mn: 1.5% by mass to 2.7% by mass, and Si: 1.5% by mass or less (0% by mass). The method for producing a hot-rolled steel sheet according to any one of claims 1 to 5, wherein a hot-rolled steel sheet according to any one of claims 1 to 5 is added.
JP2013179000A 2012-09-06 2013-08-30 Manufacturing method of hot rolled steel sheet Active JP6015953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013179000A JP6015953B2 (en) 2012-09-06 2013-08-30 Manufacturing method of hot rolled steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012195899 2012-09-06
JP2012195899 2012-09-06
JP2013179000A JP6015953B2 (en) 2012-09-06 2013-08-30 Manufacturing method of hot rolled steel sheet

Publications (3)

Publication Number Publication Date
JP2014065077A true JP2014065077A (en) 2014-04-17
JP2014065077A5 JP2014065077A5 (en) 2016-03-17
JP6015953B2 JP6015953B2 (en) 2016-10-26

Family

ID=50741980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013179000A Active JP6015953B2 (en) 2012-09-06 2013-08-30 Manufacturing method of hot rolled steel sheet

Country Status (1)

Country Link
JP (1) JP6015953B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214324A (en) * 2013-04-23 2014-11-17 Jfeスチール株式会社 Method for manufacturing hot rolled steel plate
JP2016130334A (en) * 2015-01-13 2016-07-21 Jfeスチール株式会社 Hot rolled steel strip, cold rolled steel strip, and production method of hot rolled steel strip
CN107649522A (en) * 2017-10-31 2018-02-02 攀钢集团攀枝花钢铁研究院有限公司 Surface quality of hot rolled steel coils control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277721A (en) * 1990-03-28 1991-12-09 Sumitomo Metal Ind Ltd Method for controlling cooling of hot rolled steel strip
JPH0468045B2 (en) * 1982-05-13 1992-10-30 Nitsushin Seiko Kk
JP2008018459A (en) * 2006-07-13 2008-01-31 Nisshin Steel Co Ltd Cooling control method for high carbon hot-rolled steel sheet
JP2009214112A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Method for manufacturing hot rolled steel sheet
JP2009220158A (en) * 2008-03-18 2009-10-01 Jfe Steel Corp Apparatus and method for cooling steel
JP2011240354A (en) * 2010-05-17 2011-12-01 Nippon Steel Corp Method for manufacturing hot-rolled coil
JP2012055950A (en) * 2010-09-10 2012-03-22 Jfe Steel Corp Method for manufacturing hot rolled steel strip, and facility for cooling hot rolled steel strip

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0468045B2 (en) * 1982-05-13 1992-10-30 Nitsushin Seiko Kk
JPH03277721A (en) * 1990-03-28 1991-12-09 Sumitomo Metal Ind Ltd Method for controlling cooling of hot rolled steel strip
JP2008018459A (en) * 2006-07-13 2008-01-31 Nisshin Steel Co Ltd Cooling control method for high carbon hot-rolled steel sheet
JP2009214112A (en) * 2008-03-07 2009-09-24 Kobe Steel Ltd Method for manufacturing hot rolled steel sheet
JP2009220158A (en) * 2008-03-18 2009-10-01 Jfe Steel Corp Apparatus and method for cooling steel
JP2011240354A (en) * 2010-05-17 2011-12-01 Nippon Steel Corp Method for manufacturing hot-rolled coil
JP2012055950A (en) * 2010-09-10 2012-03-22 Jfe Steel Corp Method for manufacturing hot rolled steel strip, and facility for cooling hot rolled steel strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014214324A (en) * 2013-04-23 2014-11-17 Jfeスチール株式会社 Method for manufacturing hot rolled steel plate
JP2016130334A (en) * 2015-01-13 2016-07-21 Jfeスチール株式会社 Hot rolled steel strip, cold rolled steel strip, and production method of hot rolled steel strip
CN107649522A (en) * 2017-10-31 2018-02-02 攀钢集团攀枝花钢铁研究院有限公司 Surface quality of hot rolled steel coils control method

Also Published As

Publication number Publication date
JP6015953B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
US8945319B2 (en) Manufacturing method and manufacturing apparatus of hot-rolled steel sheet
RU2491356C1 (en) Method and device for production of microalloy steel, in particular, pipe steel
CN103667648B (en) Method and the microalloy tube blank steel of microalloy tube blank steel is manufactured in rolling casting bonding equipment
JP6026014B2 (en) Shape correction and rolling method and shape correction device for high strength steel
JP6015953B2 (en) Manufacturing method of hot rolled steel sheet
JP2011051002A (en) Cooling equipment and cooling method for hot-rolled steel sheet
JP5335179B2 (en) Hot rolled coil and manufacturing method thereof
JP2014065077A5 (en)
JP2006055884A (en) Method for manufacturing hot-rolled steel sheet and apparatus for controlling rolling
JP5988042B2 (en) Manufacturing method of hot rolled steel sheet
JP5609407B2 (en) Manufacturing method and manufacturing equipment for hot-rolled steel sheet
JP2015116596A (en) Method for production of hot-rolled steel strip
JP5838959B2 (en) Steel strip rolling method and steel strip rolling apparatus
JP5991023B2 (en) Steel strip production method using continuous hot rolling equipment
CN113458152B (en) Control method for eliminating flat coil of hot-rolled high-strength strip steel
JP2005169454A (en) Steel strip manufacturing equipment and method
JP5447744B1 (en) Manufacturing method of hot rolled steel sheet
JP5609703B2 (en) Manufacturing method of hot-rolled steel sheet
KR20140081575A (en) Controlling apparatus for preventing distortion of rolled coil and method of coiling coil manufactured using thereof
JP2005296973A (en) Method and apparatus for manufacturing hot-rolled steel plate
JP5779853B2 (en) Hot-rolled steel strip manufacturing method and hot-rolled steel strip cooling equipment
JP2001240915A (en) Method for producing extra-low carbon hot-rolled steel strip and its producing apparatus
JP2020015947A (en) Method for manufacturing hot-rolled coil and method for manufacturing non-oriented electromagnetic steel sheet
JP4964061B2 (en) Control method for steel wire rod cooling
JP2006052433A (en) Method for producing hot-rolled steel strip having characteristic of trip steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160913

R150 Certificate of patent or registration of utility model

Ref document number: 6015953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250