JP2016130334A - Hot rolled steel strip, cold rolled steel strip, and production method of hot rolled steel strip - Google Patents

Hot rolled steel strip, cold rolled steel strip, and production method of hot rolled steel strip Download PDF

Info

Publication number
JP2016130334A
JP2016130334A JP2015004067A JP2015004067A JP2016130334A JP 2016130334 A JP2016130334 A JP 2016130334A JP 2015004067 A JP2015004067 A JP 2015004067A JP 2015004067 A JP2015004067 A JP 2015004067A JP 2016130334 A JP2016130334 A JP 2016130334A
Authority
JP
Japan
Prior art keywords
steel strip
rolled steel
coil
hot
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015004067A
Other languages
Japanese (ja)
Other versions
JP6252499B2 (en
Inventor
彩子 田
Ayako Den
彩子 田
植野 雅康
Masayasu Ueno
雅康 植野
松原 行宏
Yukihiro Matsubara
行宏 松原
木村 幸雄
Yukio Kimura
幸雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015004067A priority Critical patent/JP6252499B2/en
Publication of JP2016130334A publication Critical patent/JP2016130334A/en
Application granted granted Critical
Publication of JP6252499B2 publication Critical patent/JP6252499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot rolled steel strip whose intensity, hardness, internal oxidation thickness are uniform over whole width and longitudinal directions of the hot rolled steel strip, a cold rolled steel strip formed by cold rolling the hot rolled steel strip, and a production method for producing the hot rolled steel strip while suppressing increase of production cost.SOLUTION: The present invention relates to the hot rolled steel strip comprising by mass%, Mn:2.0-3.0%, Si:0.01-3.0%, C:0.03-0.3%, and comprising following characteristics. The characteristics are: when Vickers hardness, tension strength, and internal oxidation thickness are measured at total 9 measurement points, in which, in a center of a longitudinal direction, a tip end and tail end of the hot rolled steel strip which is unwound from a coil, the respective width direction center and both ends of the width direction are measurement points, difference between a maximum value and a minimum value of the Vickers hardness is less than 50 HV, difference of a maximum value and a minimum value of the tension strength is less than 100 MPa, and difference between a maximum value and a minimum value of the internal oxidation thickness is less than 3 μm.SELECTED DRAWING: Figure 2

Description

この発明は、長手方向(圧延方向)および幅方向に均一な特性を持つ冷延鋼帯を製造するために用いることができる熱延鋼帯、該熱延鋼帯を冷間圧延してなる冷延鋼帯及び上記熱延鋼帯の製造方法に関する。   The present invention relates to a hot-rolled steel strip that can be used for producing a cold-rolled steel strip having uniform characteristics in the longitudinal direction (rolling direction) and the width direction, and a cold-rolled cold-rolled steel strip. The present invention relates to a rolled steel strip and a method for producing the hot rolled steel strip.

一般的な熱延鋼帯では、コイル状に巻き取られるまでに、フェライト+パーライトへの変態がほぼ完了している。   In a general hot-rolled steel strip, the transformation to ferrite + pearlite is almost completed before being wound into a coil.

ところで、近年、強度、伸び及びヤング率等の機械的特性に優れた鋼帯が開発されている。機械的特性に優れた上記鋼帯はCやSi、Mnなどの強化元素を多量に含んでいる。これらの強化元素はフェライト変態を遅延させるため、鋼帯をコイル状に巻き取った時点では変態が完了しない場合やほとんど変態が進行していない場合がある。こうした強化元素を含有した鋼帯は、熱間圧延し、巻き取られた後、次工程への搬送途中および/または、コイルヤードにおいて変態を起こす。このとき、コイルの状態ではコイル外周部、コイル内周部、コイルの幅方向両端の冷却速度が速いため、コイル外周部、コイル内周部、コイルの幅方向両端は、変態後に他の箇所よりも硬質になる。この硬質化は、冷延時の圧延荷重が大きくなることによる圧延速度の低下や板厚精度の劣化、伸びなどの機械的特性において要求特性を満たさない箇所が生じるなど、生産性や歩留りおよび品質の低下を招く。さらに、巻き周期に応じた硬さの変動が生じるという問題も存在する。   Incidentally, in recent years, steel strips having excellent mechanical properties such as strength, elongation and Young's modulus have been developed. The steel strip having excellent mechanical properties contains a large amount of reinforcing elements such as C, Si, and Mn. Since these strengthening elements delay the ferrite transformation, the transformation may not be completed or the transformation may not proceed at the time when the steel strip is wound into a coil. A steel strip containing such a strengthening element is hot-rolled and wound, and then undergoes transformation in the middle of conveyance to the next process and / or in a coil yard. At this time, since the cooling rate of the coil outer peripheral part, the coil inner peripheral part, and both ends in the width direction of the coil is high in the coil state, the coil outer peripheral part, the coil inner peripheral part, and both ends in the width direction of the coil are different from other parts after transformation. Becomes hard. This hardening results in reduced productivity, yield and quality, such as lowering of rolling speed due to increased rolling load during cold rolling, deterioration of sheet thickness accuracy, and locations that do not satisfy the required characteristics in mechanical properties such as elongation. Incurs a decline. Further, there is a problem that the hardness varies according to the winding cycle.

また、強化元素としてSiを多量に含む場合、熱延時に生成するスケールと地鉄が反応して酸化物が生成し、内部酸化層と呼ばれる層が表面直下に生じる場合がある。この内部酸化層は、熱延鋼帯が高温であるほど、また、同じ温度でも長時間保持されるほど厚化する。内部酸化層は冷延やめっきを施した最終製品の表面欠陥の原因になることが知られている。このため、内部酸化層は何らかの方法で除去する必要がある。しかし、例えば酸洗による除去を考えた場合、鋼帯内の位置によって内部酸化層の厚みに差異が生じると、厚いものを除去するために酸洗減量を増やす必要があり歩留りが低下するほか、酸洗時間が長時間化して製造効率も低下するという問題があり、内部酸化層を適切に除去することは困難である。   In addition, when Si is contained in a large amount as a strengthening element, the scale generated during hot rolling and the base iron may react to generate an oxide, and a layer called an internal oxide layer may be formed immediately below the surface. This internal oxide layer becomes thicker as the hot-rolled steel strip is hotter and as it is held for a longer time at the same temperature. The internal oxide layer is known to cause surface defects in the final product after cold rolling or plating. For this reason, it is necessary to remove the internal oxide layer by some method. However, when considering removal by pickling, for example, if there is a difference in the thickness of the internal oxide layer depending on the position in the steel strip, it is necessary to increase the pickling weight loss to remove the thick one, and the yield decreases, There is a problem that the pickling time is prolonged and the production efficiency is lowered, and it is difficult to appropriately remove the internal oxide layer.

従来、こうした課題を解決するため、鋼帯の機械的特性や表面品質を全長にわたり均一化させる技術が開発されている。   Conventionally, in order to solve these problems, a technique for making the mechanical properties and surface quality of the steel strip uniform over the entire length has been developed.

例えば、特許文献1には、熱延後の巻取り温度に応じて、冷間圧延前に焼き戻し熱処理を実施することによって鋼帯の長手および幅方向の硬度を均一化する技術が開示されている。   For example, Patent Document 1 discloses a technique for equalizing the hardness in the longitudinal and width directions of a steel strip by performing a tempering heat treatment before cold rolling according to the coiling temperature after hot rolling. Yes.

また、特許文献2には、熱延後に一度巻取り保持した後、さらに巻き直すことによって、冷延時の歩留りを向上させるとともに、粒界酸化(本発明では内部酸化層と称す)の過剰な生成を抑える技術が開示されている。   Further, Patent Document 2 discloses that after the winding and holding after hot rolling, the yield during cold rolling is improved by further rewinding and excessive generation of grain boundary oxidation (referred to as an internal oxide layer in the present invention). A technique for suppressing the above is disclosed.

特開2010−144243号公報JP 2010-144243 A 特開2013−253301号公報JP2013-253301A

また、特許文献1に記載の方法では、焼鈍が長時間になり、焼鈍が長時間になると鋼板の内部に析出物が発生して、析出物を起点とした脆化を併発する課題がある。析出物を起点とした脆化が併発されることにより、熱延鋼帯が冷延時に破断する恐れが残るほか、熱延後の鋼帯をそのまま焼鈍することによってスケールと地鉄の反応が促進され、熱延鋼帯ままの内部酸化厚のばらつきがより一層助長され不均一になる。   Moreover, in the method of patent document 1, when annealing becomes long time and a annealing becomes long time, a precipitate will generate | occur | produce in the inside of a steel plate, and there exists a subject which accompanies embrittlement starting from the precipitate. Due to the occurrence of embrittlement starting from precipitates, there is a risk that the hot-rolled steel strip will break during cold rolling, and the steel strip after hot-rolling is annealed as it is to accelerate the reaction between the scale and the steel. Therefore, the variation in the internal oxide thickness of the hot-rolled steel strip is further promoted and becomes non-uniform.

特許文献2の方法では熱延後に750〜600℃の温度で巻き取った後、10〜30分保持し、その後、20℃/s以上の冷却速度で冷却しながら巻き出し、さらに550℃の温度で巻き直す技術である。この方法では巻き出し前に既に厚み10μmを超える内部酸化層が生成し、後の除去工程の負荷が増大するほか、幅エッジの冷却が進行するため、幅方向に内部酸化厚のばらつきが生じるうえ、本来目的である冷延性の改善が図れない。   In the method of Patent Document 2, after hot rolling, it is wound at a temperature of 750 to 600 ° C., held for 10 to 30 minutes, and then unwound while cooling at a cooling rate of 20 ° C./s or more, and further at a temperature of 550 ° C. It is a technology to rewind with. In this method, an internal oxide layer having a thickness of more than 10 μm is already generated before unwinding, and the load of the subsequent removal process is increased. In addition, cooling of the width edge proceeds, so that the internal oxide thickness varies in the width direction. Therefore, it is impossible to improve the original cold rolling property.

本発明は上記課題を解決するものであり、その目的は、熱延鋼帯の幅方向及び長手方向全体にわたって、強度、硬さ、内部酸化厚が均一な熱延鋼帯、その熱延鋼帯を冷間圧延してなる冷延鋼帯及び上記熱延鋼帯を製造コストの増加を抑えつつ製造する方法を提供することにある。   This invention solves the said subject, The objective is a hot-rolled steel strip with uniform intensity | strength, hardness, and internal oxidation thickness over the whole width direction and longitudinal direction of a hot-rolled steel strip, and the hot-rolled steel strip An object of the present invention is to provide a method for producing a cold-rolled steel strip formed by cold rolling and a hot-rolled steel strip while suppressing an increase in production cost.

本発明者らは上記課題を解決するために鋭意研究を重ねた。その結果、鋼帯の冷却中の変態曲線と、鋼帯の尾端部に対応するコイル外周部、鋼帯の中央部に対応するコイル中央部、鋼帯の先端部に対応するコイル内周部の各部の冷却曲線とに基づき、巻取り温度を設定することで上記課題を解決できることを見出し本発明を完成するに至った。より具体的には本発明は以下のものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, the transformation curve during cooling of the steel strip, the outer periphery of the coil corresponding to the tail end of the steel strip, the central portion of the coil corresponding to the central portion of the steel strip, and the inner peripheral portion of the coil corresponding to the tip of the steel strip Based on the cooling curves of the respective parts, it was found that the above-mentioned problems can be solved by setting the winding temperature, and the present invention has been completed. More specifically, the present invention provides the following.

[1]質量%で、Mn:2.0〜3.0%、Si:0.01〜3.0%、C:0.03〜0.3%を含み、下記の特性を有する熱延鋼帯。   [1] Hot-rolled steel containing, by mass, Mn: 2.0 to 3.0%, Si: 0.01 to 3.0%, C: 0.03 to 0.3% and having the following characteristics band.

(特性)
コイルから巻き出された熱延鋼帯の長手方向中央、先端及び尾端において、それぞれの幅方向中央及び幅方向両端を測定点とし、合計9測定点で、ビッカース硬さ、引張強度及び内部酸化厚を測定したときに、ビッカース硬さの最大値と最小値との差が50HV未満であり、引張強度の最大値と最小値との差が100MPa未満であり、内部酸化厚の最大値と最小値との差が3μm未満である。
(Characteristic)
Vickers hardness, tensile strength, and internal oxidation at a total of 9 measurement points at the center in the longitudinal direction and at both ends in the longitudinal direction of the hot rolled steel strip unwound from the coil. When the thickness is measured, the difference between the maximum value and the minimum value of Vickers hardness is less than 50 HV, the difference between the maximum value and the minimum value of tensile strength is less than 100 MPa, and the maximum value and minimum value of the internal oxide thickness The difference from the value is less than 3 μm.

[2]さらに、Nb:0.0005〜0.15%、Ti:0.0005〜0.15%及びV:0.0005〜0.15%から選択される少なくとも1種を含有することを特徴とする[1]に記載の熱延鋼帯。   [2] Further, it contains at least one selected from Nb: 0.0005 to 0.15%, Ti: 0.0005 to 0.15%, and V: 0.0005 to 0.15%. The hot rolled steel strip according to [1].

[3][1]又は[2]に記載の熱延鋼帯を冷間圧延してなる冷延鋼帯。   [3] A cold-rolled steel strip obtained by cold rolling the hot-rolled steel strip according to [1] or [2].

[4]質量%で、Mn:2.0〜3.0%、Si:0.01〜3.0%、C:0.03〜0.3%を含む鋼素材に対して、仕上げ温度:850〜1100℃で仕上げ圧延を施し鋼帯とし、鋼帯をコイル状に巻取り温度400〜700℃の条件で巻取り、巻取り後の鋼帯が冷却停止温度:20〜400℃まで冷却されるにあたり、前記鋼帯の冷却中の変態曲線と、鋼帯の尾端部に対応するコイル外周部、鋼帯の中央部に対応するコイル中央部、鋼帯の先端部に対応するコイル内周部の各部の冷却曲線とに基づき、各部のフェライト分率が略一定になり且つ各部の冷却速度が式1を満たすように、各部の巻取り温度を設定することを特徴とする熱延鋼帯の製造方法。
(式1)0.005≦冷却速度(℃/s)≦0.035
ただし、冷却速度=((巻取り直後の温度−巻取り直後から10000秒後の温度)/10000)とする。
[4] For a steel material containing Mn: 2.0 to 3.0%, Si: 0.01 to 3.0%, and C: 0.03 to 0.3% by mass%, the finishing temperature: Finished rolling is performed at 850 to 1100 ° C. to form a steel strip, the steel strip is wound in a coil shape at a winding temperature of 400 to 700 ° C., and the steel strip after winding is cooled to a cooling stop temperature: 20 to 400 ° C. In the course of cooling, the transformation curve during cooling of the steel strip, the outer periphery of the coil corresponding to the tail end of the steel strip, the central portion of the coil corresponding to the central portion of the steel strip, and the inner periphery of the coil corresponding to the tip of the steel strip Based on the cooling curve of each part, the coiling temperature of each part is set so that the ferrite fraction of each part becomes substantially constant and the cooling rate of each part satisfies Equation 1. Manufacturing method.
(Formula 1) 0.005 ≦ cooling rate (° C./s)≦0.035
However, cooling rate = ((temperature immediately after winding-temperature after 10000 seconds after winding) / 10000).

[5]コイル巻取り直後から1000秒後までの所定の時点から、コイルを断熱材で覆うことを特徴とする[4]に記載の熱延鋼帯の製造方法。   [5] The method for producing a hot-rolled steel strip according to [4], wherein the coil is covered with a heat insulating material from a predetermined time point immediately after coil winding up to 1000 seconds later.

[6]コイル外周部及びコイル内周部の巻取り温度を、コイル中央部の巻取り温度に対して、30〜300℃高温にすることを特徴とする[4]又は[5]に記載の熱延鋼帯の製造方法。   [6] The winding temperature of the coil outer peripheral portion and the coil inner peripheral portion is set to 30 to 300 ° C. higher than the winding temperature of the coil central portion, as described in [4] or [5] Manufacturing method of hot-rolled steel strip.

[7]ランナウトテーブル上での注水条件を調整することで、各部の巻取り温度を調整することを特徴とする[4]〜[6]のいずれかに記載の熱延鋼帯の製造方法。   [7] The method for producing a hot-rolled steel strip according to any one of [4] to [6], wherein a winding temperature of each part is adjusted by adjusting a water injection condition on the run-out table.

本発明によれば、幅方向及び長手方向全体にわたって、強度、硬さ、内部酸化厚が均一な熱延鋼帯が得られる。   According to the present invention, a hot-rolled steel strip having a uniform strength, hardness, and internal oxide thickness can be obtained throughout the width direction and the longitudinal direction.

また、本発明の熱延鋼帯を用いて、冷延鋼帯を製造すれば、特性や品質が均一な冷延鋼帯が得られる。   Moreover, if a cold-rolled steel strip is manufactured using the hot-rolled steel strip of the present invention, a cold-rolled steel strip having uniform characteristics and quality can be obtained.

また、本発明の熱延鋼帯の製造方法は、上記の特徴を有する熱延鋼帯の製造方法でありながら、従来の方法と比較して、製造コストの上昇を抑えられる。   Moreover, although the manufacturing method of the hot-rolled steel strip of this invention is a manufacturing method of the hot-rolled steel strip which has said characteristic, the raise of manufacturing cost can be suppressed compared with the conventional method.

内部酸化層の一例を示す図である。It is a figure which shows an example of an internal oxide layer. 変態曲線と冷却曲線の一例を示す図である。It is a figure which shows an example of a transformation curve and a cooling curve. 断熱材とコイルの位置関係の一例を示す図である。It is a figure which shows an example of the positional relationship of a heat insulating material and a coil. 熱延鋼帯における硬さ等の測定点を示す図である。It is a figure which shows measurement points, such as hardness in a hot-rolled steel strip.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。本明細書においては、熱延鋼帯を「鋼帯」という場合がある。また、成分量を表す「%」は「質量%」を意味する。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment. In this specification, the hot-rolled steel strip may be referred to as “steel strip”. Further, “%” representing the component amount means “mass%”.

先ず、従来技術の問題点について簡単に説明する。   First, the problems of the prior art will be briefly described.

本発明で対象とするMnを多量に含んでいる高強度の鋼帯では、一般的な熱延鋼帯とは異なり、フェライトノーズが連続冷却変態曲線(CCT)図中の比較的長時間側に存在している。このため、鋼帯の組織を決定付けるのは熱延巻取り後の冷却過程である。抜熱が早く進行するコイル外周部、コイル内周部、コイルの幅方向端部は硬質化するため、冷延時に圧延荷重が高くなって圧延負荷が増大する。また、コイル外周部、コイル内周部、コイルの幅方向端部では、冷却ムラが生じることによって板厚精度の低下や、最終製品の硬質化が起こる。これらは製造能力や歩留りを低下させる原因となる。   In a high-strength steel strip containing a large amount of Mn targeted by the present invention, unlike a general hot-rolled steel strip, the ferrite nose is on the relatively long time side in the continuous cooling transformation curve (CCT) diagram. Existing. For this reason, it is the cooling process after hot rolling that determines the structure of the steel strip. Since the coil outer peripheral portion, the coil inner peripheral portion, and the end portion in the width direction of the coil where the heat removal proceeds quickly are hardened, the rolling load increases during cold rolling and the rolling load increases. Further, cooling unevenness occurs at the outer peripheral portion of the coil, the inner peripheral portion of the coil, and the end portion in the width direction of the coil, resulting in a decrease in plate thickness accuracy and a hardened final product. These cause a reduction in manufacturing capacity and yield.

さらに抜熱しにくい、鋼帯の長手方向及び幅方向の中央に相当するコイル中央部は、地鉄と熱延スケールの反応が進行し、地鉄表層に内部酸化層と呼ばれる粒界に沿った亀甲状模様の酸化物の生成が促進される。図1に内部酸化層の一例を示す。この内部酸化層の厚み(内部酸化厚)が厚くなると後工程で除去しきれず、最終製品の表面品質(めっき性、疵など)が悪化する。また一方で、鋼帯の全長で同等の表面品質を得ようとした場合、内部酸化層が最も厚い箇所に合わせて、除去条件を決定せざるを得ず、歩留りを悪化させる等の製造性の低下も併発する。例えば、酸洗により除去しようとすると、酸洗減量を稼ぐために低速で通板する必要がある上、溶解不要な部分(内部酸化厚が薄い部分)も過剰に酸洗除去することになる。なお、この内部酸化層による問題はSi含有量が多いほど発生しやすい。   In the middle of the coil, which corresponds to the center in the longitudinal direction and width direction of the steel strip, which is difficult to remove heat, the reaction between the steel and the hot-rolled scale proceeds, and the surface of the steel is the turtle shell along the grain boundary called the internal oxide layer. The formation of the oxide of the pattern is promoted. FIG. 1 shows an example of the internal oxide layer. When the thickness of the internal oxide layer (internal oxide thickness) is increased, it cannot be removed in a subsequent process, and the surface quality (platability, wrinkles, etc.) of the final product is deteriorated. On the other hand, when trying to obtain the same surface quality with the entire length of the steel strip, it is necessary to determine the removal conditions according to the thickest part of the internal oxide layer, and the productivity such as worsening the yield. The decline also accompanies. For example, if it is attempted to remove by pickling, it is necessary to pass through at a low speed in order to increase the amount of pickling, and also a portion that does not require dissolution (a portion having a thin internal oxide thickness) is excessively pickled and removed. The problem due to the internal oxide layer is more likely to occur as the Si content increases.

次いで、本発明について説明する。   Next, the present invention will be described.

<熱延鋼帯>
本発明の熱延鋼帯は、質量%で、Mn:2.0〜3.0%、Si:0.01〜3.0%、C:0.03〜0.3%を含む。
<Hot rolled steel strip>
The hot-rolled steel strip of the present invention is mass% and contains Mn: 2.0 to 3.0%, Si: 0.01 to 3.0%, and C: 0.03 to 0.3%.

一般的に冷延鋼帯の製造に用いる熱延鋼帯の巻取り後の組織は、フェライト+パーライト組織である。しかし、高強度の鋼帯の場合、焼入れ性を高める元素を添加しているために、巻取り後の組織はベイナイト組織であることが多い。焼入れ性を高める強化元素の中でも、CrやMoは安定して、かつ安価に入手することが困難であるため、C、Si、Mnを主体として添加した成分系での高強度の鋼帯の製造が望まれている。本発明は、C、Mn及びSiを用いて高強度にした鋼帯を対象とする。   Generally, the structure after winding a hot-rolled steel strip used for manufacturing a cold-rolled steel strip is a ferrite + pearlite structure. However, in the case of a high-strength steel strip, since an element that enhances hardenability is added, the structure after winding is often a bainite structure. Among strengthening elements that enhance hardenability, Cr and Mo are difficult to obtain stably and inexpensively, so the production of high-strength steel strips with component systems mainly containing C, Si, and Mn Is desired. The present invention is directed to a steel strip made high in strength using C, Mn, and Si.

Mn:2.0〜3.0%
Mnは固溶強化により、鋼の引張強度(TS)を向上させる元素である。Mn含有量は所望の強度に応じて適宜調整すればよいが、Mn含有量が2.0%未満であると、熱延鋼帯の巻取り前、つまり、ランナウトテーブル上でフェライト変態が進行してしまう。ランナウトテーブル上でフェライト変態が進行してしまうと、本発明のような巻取り温度の制御によって冷却履歴を制御する効果を得ることができない。一方、Mn含有量が3.0%を超える場合、10秒オーダーまで高温で保持しないとフェライト変態が生じない。この場合、巻取り後のコイルを保熱する必要が生じるため、巻取り温度の制御のみではフェライト分率を制御できない。以上の理由から、Mn含有量は2.0〜3.0%の範囲に限定した。
Mn: 2.0 to 3.0%
Mn is an element that improves the tensile strength (TS) of steel by solid solution strengthening. The Mn content may be appropriately adjusted according to the desired strength. However, if the Mn content is less than 2.0%, the ferrite transformation proceeds before winding of the hot-rolled steel strip, that is, on the runout table. End up. If the ferrite transformation proceeds on the run-out table, the effect of controlling the cooling history by controlling the coiling temperature as in the present invention cannot be obtained. On the other hand, if the Mn content exceeds 3.0%, ferrite transformation does not occur unless held at elevated temperatures up to 10 5 seconds the order. In this case, since it is necessary to heat the coil after winding, the ferrite fraction cannot be controlled only by controlling the winding temperature. For these reasons, the Mn content is limited to the range of 2.0 to 3.0%.

Si:0.01〜3.0%
Siは、鋼の強度を増加させ、さらに加工性の向上にも寄与する。また、Siは安価な元素である。強度を得るためにSi含有量を0.01%以上とする。ただし、2.5%を超えて含有させると、脆化を引き起こす上、赤スケールなどの発生による表面性状の劣化を引き起こす。そのため、Siは3.0%以下とする。
Si: 0.01-3.0%
Si increases the strength of steel and further contributes to the improvement of workability. Si is an inexpensive element. In order to obtain strength, the Si content is set to 0.01% or more. However, if it exceeds 2.5%, it causes embrittlement and also causes deterioration of the surface properties due to the occurrence of red scale and the like. Therefore, Si is made 3.0% or less.

C:0.03〜0.3%
Cは、鋼の強度増加や炭化物生成の観点から重要な元素である。所望の強度と炭化物量を確保するために、C含有量を0.03%以上とする。一方、C含有量が0.3%を超えると、溶接性が著しく劣化する。このため、C含有量は0.03〜0.3%の範囲が望ましい。
C: 0.03-0.3%
C is an important element from the viewpoint of increasing the strength of steel and forming carbides. In order to secure desired strength and carbide content, the C content is set to 0.03% or more. On the other hand, when the C content exceeds 0.3%, the weldability is remarkably deteriorated. For this reason, the C content is desirably in the range of 0.03 to 0.3%.

その他の元素
さらに、所望の強度を得るために、熱延鋼帯は、Nb、Ti、Vを含有することも許容する。具体的には、Nb:0.15%以下、Ti:0.15%以下及びV:0.15%以下から少なくとも1種を含むことを許容する。Nb、Ti、Vはいずれも、炭窒化物を形成し、析出強化により、鋼板の強度増加に寄与する元素である。このような効果を得るには、いずれも0.0005%以上の含有を必要とするが、いずれも0.15%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなる。そのため、いずれの元素も0.0005〜0.15%の範囲に限定することが望ましい。
Other elements Further, in order to obtain a desired strength, the hot-rolled steel strip may contain Nb, Ti, and V. Specifically, it is allowed to contain at least one of Nb: 0.15% or less, Ti: 0.15% or less, and V: 0.15% or less. Nb, Ti, and V are all elements that form carbonitrides and contribute to increasing the strength of the steel sheet by precipitation strengthening. In order to obtain such an effect, the content of 0.0005% or more is required in all cases, but even if the content exceeds 0.15%, the effect is saturated and an effect commensurate with the content can be expected. Disappear. Therefore, it is desirable to limit any element to the range of 0.0005 to 0.15%.

また、熱延鋼帯は、P:0.10%以下、S:0.02%以下、Al:0.02〜0.1%、N:0.008%以下を含んでもよい。   Moreover, a hot-rolled steel strip may contain P: 0.10% or less, S: 0.02% or less, Al: 0.02-0.1%, N: 0.008% or less.

P:0.10%以下
Pは鋼を強化する作用がある。しかし、Pを過剰に含有すると、析出物の形成により溶接性や靭性が低下する。このため、P含有量は0.10%以下の範囲にすることが望ましい。
P: 0.10% or less P has an effect of strengthening steel. However, when P is contained excessively, weldability and toughness are reduced due to the formation of precipitates. For this reason, it is desirable that the P content be in the range of 0.10% or less.

S:0.02%以下
Sは伸びフランジ性や靭性に悪影響を及ぼす。そのため、可能な限りS含有量を低減することが望ましい。しかし、過度にS含有量を低減しようとすると製造コストが増大する。そこで、S含有量は0.02%以下の範囲が望ましい。
S: 0.02% or less S adversely affects stretch flangeability and toughness. Therefore, it is desirable to reduce the S content as much as possible. However, if the S content is excessively reduced, the manufacturing cost increases. Therefore, the S content is preferably in the range of 0.02% or less.

Al:0.02〜0.1%
Alは脱酸剤として作用する。また、Alは析出物を形成し、高温での結晶粒粗大化を抑制する。しかし、過剰にAlを含有すると鋼の清浄度が低下したり、表面品質が劣化したりする。そのため、Al含有量は0.02〜0.1%の範囲が望ましい。
Al: 0.02 to 0.1%
Al acts as a deoxidizer. Moreover, Al forms a precipitate and suppresses crystal grain coarsening at a high temperature. However, when Al is contained excessively, the cleanliness of the steel is lowered or the surface quality is deteriorated. Therefore, the Al content is desirably in the range of 0.02 to 0.1%.

N:0.008%以下
Nを過剰に含有すると溶接性が低下する。しかし、過度にN含有量を低減しようとすると製造コストが増大する。そこで、N含有量は0.008%以下の範囲が望ましい。
N: 0.008% or less When N is excessively contained, weldability is lowered. However, if the N content is excessively reduced, the manufacturing cost increases. Therefore, the N content is preferably in the range of 0.008% or less.

また、本発明の熱延鋼帯が、さらに、Cr:0.01〜1.0%、Ni:0.01〜1.0%、Cu:0.01〜1.0%、Mo:0.01〜1.0%、B:0.0003〜0.003%、Ca:0.001〜0.005%を含有しても、本発明の効果が妨げられるものではない。   Moreover, the hot-rolled steel strip of the present invention further includes Cr: 0.01 to 1.0%, Ni: 0.01 to 1.0%, Cu: 0.01 to 1.0%, Mo: 0.00. Even if it contains 01-1.0%, B: 0.0003-0.003%, Ca: 0.001-0.005%, the effect of this invention is not prevented.

続いて、本発明の熱延鋼帯は以下の特性を有する。   Subsequently, the hot-rolled steel strip of the present invention has the following characteristics.

コイルから巻き出された熱延鋼帯の長手方向中央、先端及び尾端において、それぞれの幅方向中央及び幅方向両端を測定点とし、合計9測定点で、ビッカース硬さ、引張強度及び内部酸化厚を測定したときに、ビッカース硬さの最大値と最小値との差が50HV未満であり、引張強度の最大値と最小値との差が100MPa未満であり、内部酸化厚の最大値と最小値との差が3μm未満である。なお、本明細書において、先端及び尾
端とは巻き取られる際の鋼帯の先端及び尾端を意味する。
Vickers hardness, tensile strength, and internal oxidation at a total of 9 measurement points at the center in the longitudinal direction and at both ends in the longitudinal direction of the hot rolled steel strip unwound from the coil. When the thickness is measured, the difference between the maximum value and the minimum value of Vickers hardness is less than 50 HV, the difference between the maximum value and the minimum value of tensile strength is less than 100 MPa, and the maximum value and minimum value of the internal oxide thickness The difference from the value is less than 3 μm. In addition, in this specification, a front-end | tip and a tail end mean the front-end | tip and tail end of a steel strip at the time of winding up.

ビッカース硬さ
熱延鋼帯巻取り後の冷却速度差に起因する冷延性の悪化を抑止するためには、冷延前母板、すなわち熱延鋼帯の時点で硬さが一定であることが重要である。ビッカース硬さと冷延時の変形抵抗(降伏強度)には密接な関係があり、硬さがある程度の範囲内にあることは、変形抵抗が大きくなり過ぎず圧延荷重が安定であることを示す。なお、ビッカース硬さの測定条件はJISZ2244に準拠するものとする。
Vickers hardness To suppress the deterioration of cold-rollability due to the difference in cooling rate after winding the hot-rolled steel strip, the hardness must be constant at the base plate before cold-rolling, that is, the hot-rolled steel strip. is important. There is a close relationship between the Vickers hardness and the deformation resistance (yield strength) during cold rolling, and the hardness within a certain range indicates that the deformation resistance does not increase excessively and the rolling load is stable. In addition, the measurement conditions of Vickers hardness shall comply with JISZ2244.

コイル状に巻き取られた際に熱延鋼帯の尾端部に対応するコイル外周部、熱延鋼帯の先端部に対応するコイル内周部、コイルの幅方向両端部、コイルのコイルスキッドとの接触部分が周期的に硬質化する場合がある。硬質化した部分の硬さが他の部分とHV50以上大きな値を示す場合、圧延荷重が高くなって、冷延後の寸法が制約を受けてしまう。また、硬さのばらつきが大きい場合、冷延や冷延板焼鈍後に、目的とした機械的特性が得られず歩留りが悪化する。また、周期的な硬質化は、ゲージ変動を生じさせるため、これを生じさせないようにするために冷延速度を上げることができない結果、生産性が低下する。   Coil outer periphery corresponding to the tail end of the hot-rolled steel strip when wound in a coil shape, coil inner peripheral portion corresponding to the tip of the hot-rolled steel strip, both ends in the width direction of the coil, coil skid of the coil There may be a case where the contact portion with the is periodically hardened. When the hardness of the hardened portion shows a value larger than that of the other portions by HV50, the rolling load becomes high and the dimensions after cold rolling are restricted. Moreover, when the variation in hardness is large, the intended mechanical properties cannot be obtained after cold rolling or cold rolling annealing, and the yield deteriorates. Further, since the periodic hardening causes gauge fluctuation, the cold rolling speed cannot be increased in order not to cause the gauge fluctuation, resulting in a decrease in productivity.

以上のような影響を受けず、鋼帯全体にわたって安定した機械的特性を得られ、かつ、冷延速度を一定のまま安定して圧延するためには、上記9個の測定点で硬さを測定したときの最高値と最低値の差がHV50未満である必要がある。なお、硬さの差は小さければ小さいほど好ましい。   In order to obtain stable mechanical properties over the entire steel strip without being affected by the above, and to stably roll with the cold rolling speed kept constant, the hardness is measured at the above nine measurement points. The difference between the highest and lowest values when measured needs to be less than HV50. The smaller the difference in hardness, the better.

引張強度(TS)
TSはフェライト分率と相関することがわかっており、フェライト分率が高いほどTSが低くなる。そのため、TSのばらつきが100MPa未満であることは、TSが高い部分と低い部分とでフェライト分率が同等であること、同等の変形抵抗を持つ熱延鋼帯であることを示す。上記9個の測定点で硬さを測定したときのTS差が100MPa以上であると、後の冷延、冷延焼鈍あるいはめっき後に所望の機械的強度や伸びを得られず歩留りが悪化する原因となる。より好ましいTS差は50MPa未満である。なお、TSはJISZ2241に準拠して測定するものである。
Tensile strength (TS)
TS is known to correlate with the ferrite fraction, and the higher the ferrite fraction, the lower the TS. Therefore, the variation in TS of less than 100 MPa indicates that the ferrite fraction is the same in the portion where TS is high and the portion where TS is low, and that it is a hot-rolled steel strip having equivalent deformation resistance. If the TS difference when the hardness is measured at the above nine measurement points is 100 MPa or more, the cause of deterioration in yield due to failure to obtain desired mechanical strength and elongation after subsequent cold rolling, cold rolling annealing or plating It becomes. A more preferable TS difference is less than 50 MPa. TS is measured according to JISZ2241.

内部酸化厚
内部酸化厚は、熱延巻取り後の保熱状況により変化する。高温であればあるほど、また同じ温度であっても保熱時間が長いほど地鉄とスケール間の酸化反応が進行する。内部酸化厚を均一にするためには鋼帯内の位置によらず同等の冷却履歴でコイルを冷却させることが望ましい。
Internal oxide thickness The internal oxide thickness varies depending on the heat retention after hot rolling. The higher the temperature, and the longer the heat retention time at the same temperature, the more the oxidation reaction between the ground iron and the scale proceeds. In order to make the internal oxide thickness uniform, it is desirable to cool the coil with the same cooling history regardless of the position in the steel strip.

特に、後工程で内部酸化層を効率良く除去する観点及び表面品質の観点から、上記9個の測定点で内部酸化厚を測定したときの内部酸化厚の最大値と最小値の差が3μm未満であることが必要である。内部酸化厚を均一にすることで、最終製品の表面品質を一定に保つことが可能である。   In particular, the difference between the maximum value and the minimum value of the internal oxide thickness when the internal oxide thickness is measured at the above nine measurement points is less than 3 μm from the viewpoint of efficiently removing the internal oxide layer in the subsequent process and the surface quality. It is necessary to be. By making the internal oxide thickness uniform, it is possible to keep the surface quality of the final product constant.

特に、熱延巻取り後に保熱されやすい鋼帯の中心部(コイルにおいて鋼帯の幅方向及び長手方向中央に対応する部分)と、抜熱されやすい部分(コイル内周部、コイル外周部及びコイルの幅方向両端部)は、内部酸化厚に差が生じやすい。差が3μm以上になると、同一条件で酸洗除去をしたとしても、部分的に内部酸化層が残留したり、過酸洗により製造性を低下したりする問題がある。本発明によればこの問題は抑えられる。なお、内部酸化厚の差は小さければ小さいほど好ましい。   In particular, the central part of the steel strip that is easily retained after hot-rolling (the part corresponding to the center in the width direction and the longitudinal direction of the steel strip in the coil) and the part that is subject to heat removal (coil inner peripheral part, coil outer peripheral part and Differences in the internal oxide thickness tend to occur at both ends in the width direction of the coil. When the difference is 3 μm or more, even if the pickling is removed under the same conditions, there is a problem that the internal oxide layer partially remains or the productivity is lowered by peracid washing. According to the present invention, this problem is suppressed. The smaller the difference in internal oxide thickness, the better.

本発明の熱延鋼帯は、その後熱延板焼鈍と酸洗を必要に応じ実施し、冷延して最終製品の要求寸法としたあと、場合により適切な冷延板焼鈍、酸洗、あるいはめっきを施し製品となる。上記の冷延により得られる鋼帯が本発明の冷延鋼帯である。   The hot-rolled steel strip of the present invention is then subjected to hot-rolled sheet annealing and pickling as necessary, cold-rolled to the required dimensions of the final product, and in some cases appropriate cold-rolled sheet annealing, pickling, or It is plated to become a product. The steel strip obtained by the above cold rolling is the cold rolled steel strip of the present invention.

<熱延鋼帯の製造方法>
質量%で、Mn:2.0〜3.0%、Si:0.01〜3.0%、C:0.03〜0.3%を含む鋼素材に対して、仕上げ温度:850〜1100℃で仕上げ圧延を施し鋼帯とし、鋼帯をコイル形状に巻取り、冷却停止温度:20〜400℃まで冷却するにあたり、「鋼帯をコイル形状に巻取り」の際の巻取り温度を後述する方法で設定する点に特徴がある。以下、各条件について説明する。なお「質量%で、Mn:2.0〜3.0%、Si:0.01〜3.0%、C:0.03〜0.3%を含む鋼素材」の成分組成の説明については、上記「熱延鋼帯」で説明したのと同様であるため省略する。
<Method for producing hot-rolled steel strip>
With respect to a steel material containing Mn: 2.0 to 3.0%, Si: 0.01 to 3.0%, and C: 0.03 to 0.3% in terms of mass%, finishing temperature: 850 to 1100 Finishing rolling at ℃ to make a steel strip, winding the steel strip into a coil shape, and cooling stop temperature: when cooling to 20 to 400 ° C, the winding temperature at the time of “winding the steel strip into a coil shape” will be described later It is characterized in that it is set by the method to do. Hereinafter, each condition will be described. For the explanation of the component composition of “a steel material containing Mn: 2.0 to 3.0%, Si: 0.01 to 3.0%, C: 0.03 to 0.3% in mass%” Since it is the same as that explained in the above-mentioned “hot rolled steel strip”, it is omitted.

熱延の仕上げ温度
熱延鋼帯の製造にあたり、仕上げ圧延機の出側温度は従来どおりオーステナイト域で、全長等温で終了するものとする。ただし、仕上げ温度が1100℃を超えると、オーステナイト粒が粗粒化し、最終製品で目標とする伸びが得られない。また仕上げ温度が850℃を下回ると、熱延鋼帯を巻き取った後、十分な熱量を得られず、特にコイルの幅方向両端部が硬くなる。そのため、仕上げ圧延の出側温度は850〜1100℃とし、さらに好ましくは900〜1000℃の範囲とする。
Finishing temperature of hot-rolling In the production of hot-rolled steel strip, the exit temperature of the finish rolling mill shall be the austenitic region as usual, and it will be finished at the full isothermal temperature. However, if the finishing temperature exceeds 1100 ° C., the austenite grains become coarse, and the target elongation cannot be obtained in the final product. On the other hand, when the finishing temperature is lower than 850 ° C., after winding the hot-rolled steel strip, a sufficient amount of heat cannot be obtained, and particularly both end portions in the width direction of the coil become hard. Therefore, the exit side temperature of finish rolling is set to 850 to 1100 ° C, more preferably in the range of 900 to 1000 ° C.

熱延巻取り温度
巻取り温度は、次の変態曲線と冷却曲線に基づいて、式1を満たすように各部の巻取り温度を設定する。
(変態曲線)鋼帯の冷却中の変態曲線
(冷却曲線)鋼帯の尾端部に対応するコイル外周部、鋼帯の中央部に対応するコイル中央部、鋼帯の先端部に対応するコイル内周部の各部の冷却曲線
Mnの含有量によって、フェライト変態の開始時間が異なり、Siの含有量によって内部酸化厚は厚くなるため、あらかじめ変態曲線を算出しておくことや、巻取り冷却後の内部酸化厚から冷却曲線を算出しておくことができる。予め算出した変態曲線及び冷却曲線に基づいて巻取り温度を設定する方法は有効な方法の1つである。また、いずれの曲線も、実験的に求めることも有効な方法の1つである。本発明では、どちらを用いてもよい。
Hot Rolling Winding Temperature The winding temperature sets the winding temperature of each part so as to satisfy Equation 1 based on the following transformation curve and cooling curve.
(Transformation curve) Transformation curve during cooling of steel strip (cooling curve) Coil outer periphery corresponding to the tail end of the steel strip, coil central portion corresponding to the central portion of the steel strip, coil corresponding to the tip of the steel strip Cooling curve of each part of the inner periphery Depending on the Mn content, the ferrite transformation start time varies, and the internal oxide thickness increases depending on the Si content. The cooling curve can be calculated from the internal oxide thickness. A method of setting the coiling temperature based on the transformation curve and the cooling curve calculated in advance is one of effective methods. Further, it is one of effective methods to experimentally obtain any curve. In the present invention, either may be used.

冷却曲線の導出方法として、具体的には、熱延鋼帯の長手方向の各位置(コイル外周部、コイル中央部、コイル内周部)について、冷却開始温度である巻取り温度を様々に変更してあらかじめ冷却曲線を算出する。計算にあたっては、各位置の冷却曲線を導出するために、コイル外周部、コイル内周部、コイル中央部に該当する箇所の少なくとも3箇所以上の位置での温度を用いて計算する必要がある。さらに、コイルの寸法(内径、外径)、冷却ヤード内の配置、素材によって冷却曲線は変化するため、コイル温度を実測して、計算冷却履歴との誤差を補正することが望ましい。なお、コイル外周部とは鋼帯の尾端から鋼帯全長の15〜30%までの領域であり、コイル内周部とは鋼帯の先端から鋼帯全長の5〜15%までの領域であり、残りの部分がコイル中央部である。   As a method for deriving the cooling curve, specifically, the coiling temperature that is the cooling start temperature is variously changed for each position in the longitudinal direction of the hot-rolled steel strip (coil outer periphery, coil center, and coil inner periphery). The cooling curve is calculated in advance. In the calculation, in order to derive a cooling curve at each position, it is necessary to calculate using temperatures at at least three positions corresponding to the coil outer peripheral portion, the coil inner peripheral portion, and the coil central portion. Furthermore, since the cooling curve changes depending on the coil dimensions (inner diameter, outer diameter), the arrangement in the cooling yard, and the material, it is desirable to actually measure the coil temperature and correct the error from the calculated cooling history. The coil outer peripheral portion is a region from the tail end of the steel strip to 15 to 30% of the total length of the steel strip, and the coil inner peripheral portion is a region from the tip of the steel strip to 5 to 15% of the total length of the steel strip. Yes, the remaining part is the central part of the coil.

図2に変態曲線(フェライト変態開始曲線と表記し、実線で示した。)と冷却曲線(各部ごとに太線で示した。)の一例を示す。変態曲線及び冷却曲線を用い、各部のフェライト分率が略一定になるように、各部に対応する部分の巻取り温度を設定する。「各部のフェライト分率が略一定になるように、」とは、変態曲線と、各部の冷却曲線との交差点を近づけることで、フェライト分率が一定に近づく。「フェライト分率が略一定」とは、コイル外周部、コイル中央部、コイル内周部のフェライト分率の最大値と最小値の差が20%未満であることを意味する。   FIG. 2 shows an example of a transformation curve (represented as a ferrite transformation start curve, indicated by a solid line) and a cooling curve (shown by a thick line for each part). Using the transformation curve and the cooling curve, the winding temperature of the part corresponding to each part is set so that the ferrite fraction of each part becomes substantially constant. The phrase “so that the ferrite fraction of each part becomes substantially constant” means that the ferrite fraction approaches a constant by bringing the intersection of the transformation curve and the cooling curve of each part close to each other. “The ferrite fraction is substantially constant” means that the difference between the maximum value and the minimum value of the ferrite fraction at the coil outer peripheral portion, the coil central portion, and the coil inner peripheral portion is less than 20%.

また、内部酸化厚と巻取り後経過時間との関係(図2中の破線で示した)を実験又はシミュレーション等で求めておき、内部酸化層厚が同程度となる範囲を通過するように、長手方向の各部について巻取り温度を設定することがより好ましい。本発明では、Si含有量の上限が上記の通り定められているため、内部酸化厚が厚くなり過ぎることを抑えられるが、内部酸化厚が厚くなり過ぎることを十分に抑えるとともに、内部酸化厚差を制御しやすくする観点から、巻取り温度の決定の際には、上記変態曲線及び冷却曲線に加えて内部酸化厚と巻取り後経過時間との関係も用いることが好ましい。なお、各部の巻取り温度を一定としたときに、図2(a)のようになったとしても、図2(b)のように巻取り温度を調整して冷却曲線を動かすことで、所望の熱延鋼帯が得られる。   In addition, the relationship between the internal oxide thickness and the elapsed time after winding (shown by the broken line in FIG. 2) is obtained by experiment or simulation, etc., so that the internal oxide layer thickness passes through the same range, It is more preferable to set the winding temperature for each part in the longitudinal direction. In the present invention, since the upper limit of the Si content is determined as described above, it is possible to suppress the internal oxide thickness from becoming too thick, but it is possible to sufficiently suppress the internal oxide thickness from becoming too thick and to reduce the internal oxide thickness difference. From the viewpoint of easy control, it is preferable to use the relationship between the internal oxide thickness and the elapsed time after winding in addition to the transformation curve and the cooling curve when determining the winding temperature. In addition, even if it becomes like Fig.2 (a) when the winding temperature of each part is made constant, by adjusting the winding temperature and moving a cooling curve as shown in Fig.2 (b), it is desired The hot rolled steel strip can be obtained.

また、鋼帯の品質や特性のバラツキを極力低減するために、巻取り終了直後から10000秒後までの冷却速度が0.005〜0.035℃/sとなるように各部の巻取り温度を設定する。冷却速度が上記範囲を満たすようにすることが必要なのは、対象とする熱延鋼帯がMnを多量に含むため、フェライト変態が巻き取ってから1000秒オーダーの経過時間の後に生じることに起因する。また、巻取り終了直後から10000秒後までの冷却速度が0.005℃/s未満だと、保熱により加熱されすぎ、コイルつぶれを起こすほか、内部酸化厚が過剰に厚くなる。一方、上記冷却速度が0.035℃/s以上だと、ベイナイト変態する可能性が高く、硬質化する。   In addition, in order to reduce variations in the quality and characteristics of the steel strip as much as possible, the winding temperature of each part is set so that the cooling rate immediately after the end of winding up to 10,000 seconds later is 0.005 to 0.035 ° C./s. Set. The reason why the cooling rate needs to satisfy the above range is that the target hot-rolled steel strip contains a large amount of Mn, so that it occurs after an elapsed time of the order of 1000 seconds after the ferrite transformation is wound. . On the other hand, if the cooling rate immediately after the end of winding up to 10,000 seconds later is less than 0.005 ° C./s, it is heated too much by heat retention, causing coil collapse and excessively thick internal oxide thickness. On the other hand, when the cooling rate is 0.035 ° C./s or more, there is a high possibility that bainite transformation will occur, and it will become hard.

各部の冷却速度を上記範囲にするためには、コイル外周部及びコイル内周部の巻取り温度を、コイル中央部の巻取り温度より30〜300℃高温にすることが有効である。上記巻取り温度差が30℃未満では、同一の巻取り温度で巻き取った場合と何ら変化なく、フェライト分率を同程度としにくい場合がある。上記巻取り温度差を300℃より高温にすると、ランナウトテーブル上での急激な温度変化により、材質や形状、張力などの変動が起き、巻取り時の操業トラブルを併発する。そのため、上記巻取り温度差は30〜300℃が好ましい。より好ましくは50〜200℃の範囲である。なお、Mn含有量が2.3〜3.0%の場合に温度差をつけることが必要となりやすい。   In order to set the cooling rate of each part in the above range, it is effective to set the coiling temperature of the coil outer peripheral part and the coil inner peripheral part to 30 to 300 ° C. higher than the coiling temperature of the coil central part. When the winding temperature difference is less than 30 ° C., there is no change from the case of winding at the same winding temperature, and it may be difficult to make the ferrite fraction the same level. When the winding temperature difference is higher than 300 ° C., a sudden change in temperature on the run-out table causes a change in material, shape, tension, etc., which causes operational troubles during winding. Therefore, the winding temperature difference is preferably 30 to 300 ° C. More preferably, it is the range of 50-200 degreeC. In addition, when Mn content is 2.3 to 3.0%, it is necessary to make a temperature difference.

また、熱延鋼帯を巻き取る際、700℃より高温で巻き取ると、巻き取った直後から軟質化が進行し、コイルつぶれと呼ばれるコイル形状の変形を起こす場合がある。また、400℃より低温では、巻取り直後からベイナイト変態が進行して硬質化し最終製品の寸法が大幅に制約される。そのため巻取り温度の好適範囲は400〜700℃である。   Further, when the hot-rolled steel strip is wound, if it is wound at a temperature higher than 700 ° C., softening proceeds immediately after winding, and there is a case where a coil shape deformation called coil crushing occurs. Further, at a temperature lower than 400 ° C., the bainite transformation proceeds immediately after winding to harden, and the dimensions of the final product are greatly restricted. Therefore, the suitable range of coiling temperature is 400-700 degreeC.

さらに、上記各部の巻取り温度が異なるように調整するためには、ランナウトテーブル上での注水条件を熱延鋼帯の長手方向の上記各部に対応する位置について調整する方法が有効である。つまり、巻取り温度を高くするコイル内周部やコイル外周部に対応する位置では、注水を止め、あるいは注水密度を小さくし、巻取り温度を低くするコイル中央部に対応する位置では注水量密度を大きくする。ただし、コイル中央部に対応する鋼帯中央部の巻取り温度を下げるために、急冷をした結果、マンドレル到達前に焼入れ状態となって硬質化が起こると、鋼帯を巻取る時点で破断する危険性がある。これを防ぐ観点からも、コイル外周部及びコイル内周部の巻取り温度と、コイル中央部の巻取り温度との差を、300℃以内に設定することが好ましい。なお、ランナウトテーブルの冷却能力、熱延圧下率や熱延速度の観点から、上記巻取り温度差は、望ましくは200℃以内の範囲とする。   Furthermore, in order to adjust so that the winding temperature of each said part differs, the method of adjusting the water injection conditions on a run-out table about the position corresponding to each said part of the longitudinal direction of a hot-rolled steel strip is effective. That is, at the position corresponding to the coil inner peripheral part or coil outer peripheral part where the coiling temperature is increased, water injection is stopped or water injection density is decreased, and the water injection density is provided at the position corresponding to the coil central part which lowers the coiling temperature. Increase However, as a result of quenching in order to lower the coiling temperature of the steel strip center part corresponding to the coil central part, if it becomes hardened and hardens before reaching the mandrel, it breaks when the steel strip is wound up There is a risk. From the viewpoint of preventing this, it is preferable to set the difference between the winding temperature of the coil outer peripheral portion and the coil inner peripheral portion and the winding temperature of the coil central portion within 300 ° C. In addition, from the viewpoint of the cooling capacity of the run-out table, the hot rolling reduction rate, and the hot rolling speed, the above winding temperature difference is desirably within a range of 200 ° C. or less.

また、コイル巻取り直後から1000秒後までの所定の時点から、コイルを断熱材で覆うことが好ましい。断熱材で覆うことで、コイルの幅方向での品質や特性の均一化がより進む。覆う方法としては、コイル全体を覆うことができる断熱性を有する箱をコイルにかぶせる方式がコスト、運用の観点から好ましい。図3に断熱材とコイルの位置関係の一例を示す。この際、地面と断熱材の隙間からの抜熱を低減するため、地面と接してコイルを完全に覆える箱がより好ましい。また、コイル巻取り直後から1000秒以上経過すると、接地面からの抜熱の影響によりコイル外周部でベイナイト変態する箇所が生じ、周期的な硬質化、すなわち、冷延時のゲージ変動の原因となる場合がある。より好ましくは巻取り終了から600秒以内に断熱材で覆うことが好ましい。なお、鋼帯の全長・全幅が、金属組織が決定づけられる温度になるまで断熱材で覆っておけばよく、その後は断熱材で覆ったままの冷却でも、空冷、水冷でも構わない。金属組織が決定づけられる温度は200〜400℃の範囲であるが、厳密には成分によって異なるため、予め実験的に確認しておくことが好ましい。   Further, it is preferable to cover the coil with a heat insulating material from a predetermined time point immediately after coil winding up to 1000 seconds later. By covering with a heat insulating material, quality and characteristics in the width direction of the coil are more uniform. As a covering method, a method of covering the coil with a heat-insulating box that can cover the entire coil is preferable from the viewpoint of cost and operation. FIG. 3 shows an example of the positional relationship between the heat insulating material and the coil. At this time, in order to reduce heat removal from the gap between the ground and the heat insulating material, a box that can completely cover the coil in contact with the ground is more preferable. In addition, when 1000 seconds or more have passed immediately after coil winding, a portion that undergoes bainite transformation occurs at the outer periphery of the coil due to the effect of heat removal from the ground surface, causing periodic hardening, that is, gauge fluctuation during cold rolling. There is a case. More preferably, it is preferable to cover with a heat insulating material within 600 seconds from the end of winding. The steel strip may be covered with a heat insulating material until the entire length and width of the steel strip reach a temperature at which the metal structure can be determined. Thereafter, cooling with the heat insulating material covered, air cooling, or water cooling may be performed. The temperature at which the metal structure is determined is in the range of 200 to 400 ° C., but strictly speaking, since it varies depending on the components, it is preferable to confirm in advance experimentally.

また、冷却停止温度は室温程度であればよく、具体的には20〜400℃の範囲である。冷間圧延等の次工程へ搬送あるいは輸送する上で、熱延鋼帯が約20℃の室温程度から200℃未満になるように冷却することが好ましい。また、本発明の熱延鋼帯は400℃前後で金属組織が決定づけられと考えられるため、冷却された熱延鋼帯の温度がそれ未満であれば本発明の効果に影響が無いと考えられる。なお、どの程度の冷却温度であれば、金属組織に影響が無く、本発明の効果に影響を生じないといえるかについては、必要に応じて、実験で確認すればよい。   Moreover, the cooling stop temperature should just be about room temperature, and is specifically the range of 20-400 degreeC. When transporting or transporting to the next step such as cold rolling, it is preferable to cool the hot-rolled steel strip so that the temperature is about 20 ° C. to less than 200 ° C. In addition, since it is considered that the metal structure of the hot-rolled steel strip of the present invention is determined at around 400 ° C., the effect of the present invention is not affected if the temperature of the cooled hot-rolled steel strip is lower than that. . In addition, what is necessary is just to confirm by experiment as needed about what cooling temperature it has no influence on a metal structure and it can be said that it does not produce the influence of this invention.

本発明の実施例を示す。表1に示す鋼素材を、連続熱間圧延機で幅1200mm、板厚2〜3mmに圧延し、直径760mmのマンドレルに巻き取った。表2に各部の巻取り温度、各部での冷却速度、巻き取ってから耐熱材で覆うまでの所要時間を示す。なお巻取り温度の最大値と最小値の差が10℃未満の場合は、一定温度で巻き取ったものとし、冷却速度の制御は不要と考える。また、冷却停止温度は50〜200℃とした。また、巻取り温度の具体的な調整は、ランナウトテーブル上での注水条件の調整により行った。   The Example of this invention is shown. The steel materials shown in Table 1 were rolled to a width of 1200 mm and a plate thickness of 2 to 3 mm with a continuous hot rolling mill, and wound on a mandrel having a diameter of 760 mm. Table 2 shows the winding temperature of each part, the cooling rate at each part, and the time required from winding to covering with a heat-resistant material. When the difference between the maximum value and the minimum value of the coiling temperature is less than 10 ° C., it is assumed that the coil is wound at a constant temperature, and the cooling rate control is considered unnecessary. The cooling stop temperature was 50 to 200 ° C. The specific adjustment of the coiling temperature was performed by adjusting the water injection conditions on the run-out table.

ここで、発明例であるサンプル14、20、24、27については、各部のフェライト分率が略一定となるように各部の巻取り温度を調整した。具体的には、対象鋼の成分鋼塊を用い、熱延実験を行い、熱延終了後の任意に変化させた巻き取り温度で任意時間保持し、水冷した後に、条件毎(巻取り温度と保持時間の条件毎)に金属組織を観察した。組織観察によってフェライト分率を導出し、変態曲線とした。さらに、対象とする鋼帯の幅、重量、巻き取り時の内径から計算によって巻き取り後の鋼帯各部の冷却曲線を導出した。上記変態曲線及び冷却曲線に基づきフェライト分率が略一定となるように各部の巻取り温度を調整した。   Here, with respect to Samples 14, 20, 24, and 27, which are examples of the invention, the winding temperature of each part was adjusted so that the ferrite fraction of each part was substantially constant. Specifically, using the component steel ingots of the target steel, a hot rolling experiment was performed, the coiling temperature was changed arbitrarily after the hot rolling was completed, the time was held for an arbitrary time, and after water cooling, each condition (winding temperature and The metal structure was observed for each holding time condition). The ferrite fraction was derived by microstructure observation and used as a transformation curve. Furthermore, the cooling curve of each part of the steel strip after winding was derived by calculation from the width, weight, and inner diameter at the time of winding. Based on the transformation curve and the cooling curve, the winding temperature of each part was adjusted so that the ferrite fraction became substantially constant.

図4に熱延鋼帯の概略図を示す。図4には測定点を示した。図4中の各測定点1〜9の位置のビッカース硬さをJISZ2244に準拠して測定した。また、同様の箇所から圧延方向にJIS5号引張試験片を採取しJISZ2241に準拠してTSを測定した。いずれも最大値と最小値の差がHV50未満、もしくは100MPa未満の場合を合格(○)とした。   FIG. 4 shows a schematic diagram of the hot-rolled steel strip. FIG. 4 shows the measurement points. The Vickers hardness at each measurement point 1 to 9 in FIG. 4 was measured according to JISZ2244. Further, a JIS No. 5 tensile test piece was taken from the same portion in the rolling direction, and TS was measured in accordance with JISZ2241. In any case, the case where the difference between the maximum value and the minimum value was less than HV50 or less than 100 MPa was regarded as acceptable (◯).

また、内部酸化厚の測定は、図4中の同箇所のC方向(圧延直角方向)断面を切り出し、研磨をした後、光学顕微鏡にてスケール直下を撮影して、この撮影画像に基づき測定した。なお、図1のように亀甲状の黒線が生じている箇所を内部酸化層とした。この厚みの最大値と最小値の差が3μm未満の場合を合格(○)とした。   In addition, the internal oxide thickness was measured based on this photographed image by cutting a section in the C direction (direction perpendicular to the rolling direction) at the same location in FIG. . In addition, the location where the turtle-shell-shaped black line has arisen like FIG. 1 was made into the internal oxide layer. The case where the difference between the maximum value and the minimum value of the thickness was less than 3 μm was determined as pass (◯).

サンプルNo.1では、熱延条件は本発明内の範囲内であるが、鋼の成分組成が本発明範囲内ではないため、幅方向の分布が解消できない。   Sample No. In 1, the hot rolling conditions are within the range within the present invention, but the distribution in the width direction cannot be eliminated because the component composition of the steel is not within the range of the present invention.

サンプルNo.2〜5は各部の巻取り温度が一定の場合の例である。サンプルNo.2、3は温度が規定外であり、部分的に未変態部分が残ったり、あるいは内部酸化層幅中央部あるいは交代の長手中央部で過剰に厚くなったりした。サンプルNo.5は、各部のフェライト分率が略一定となるように各部の巻取り温度が調整されていないため(この点のみが請求項4の範囲外の場合、表2で下線を付した条件は無いが、請求項4の範囲外である。)、断熱材で覆う前にある程度熱延鋼帯の金属組織や内部酸化状況が決定しており、ばらつきを解消できない。サンプルNo.4は、各部の巻取り温度が一定ではあるものの、Mn含有量が2.3%未満であることから、図2(b)に示すような状態(各部のフェライト分率が略一定となるように各部の巻取り温度が調整された状態)になり、良好な結果が得られたと考えられる。   Sample No. 2 to 5 are examples when the winding temperature of each part is constant. Sample No. In Nos. 2 and 3, the temperature was not specified, and an untransformed part remained partially, or it became excessively thick in the central part of the inner oxide layer width or the central part of the alternate length. Sample No. 5 is because the coiling temperature of each part is not adjusted so that the ferrite fraction of each part becomes substantially constant (if this point is outside the scope of claim 4, there is no condition underlined in Table 2) However, this is outside the scope of claim 4), and the metal structure and internal oxidation state of the hot-rolled steel strip are determined to some extent before being covered with the heat insulating material, and the variation cannot be eliminated. Sample No. No. 4 has a constant coiling temperature, but the Mn content is less than 2.3%, so the state shown in FIG. 2B (the ferrite fraction of each part is substantially constant) In other words, the coiling temperature of each part was adjusted), and good results were obtained.

サンプルNo.6〜13は巻取り温度を変更した場合の例である。サンプルNo.6〜8のように巻取り温度が規定の範囲をはずれると未変態部が残存したり、過剰に高温になる部分があるためばらつきを解消できない。   Sample No. 6 to 13 are examples when the winding temperature is changed. Sample No. When the coiling temperature is out of the specified range as in 6 to 8, the untransformed part remains or there is a part that becomes excessively high in temperature, so the variation cannot be eliminated.

サンプルNo.9やサンプルNo.10のように冷却速度が規定範囲をはずれると、保熱時間に差異が生じ、サンプルNo.6〜8同様にばらつきを残したまま冷却される。   Sample No. 9 and sample no. When the cooling rate deviates from the specified range as shown in FIG. As in 6-8, the cooling is performed with the variation remaining.

サンプルNo.11はサンプルNo.5と同様で、各部のフェライト分率が略一定となるように各部の巻取り温度が調整されていないため、本発明の効果が得られない。   Sample No. 11 is sample No. As in the case of No. 5, the coiling temperature of each part is not adjusted so that the ferrite fraction of each part becomes substantially constant, so the effect of the present invention cannot be obtained.

サンプルNo.12では、各部のフェライト分率が略一定となるように各部の巻取り温度が調整されていないため、鋼帯全長・全幅での硬さと内部酸化のばらつき低減を両立できない。   Sample No. In No. 12, since the winding temperature of each part is not adjusted so that the ferrite fraction of each part is substantially constant, it is impossible to achieve both reduction in hardness and internal oxidation variation over the entire length and width of the steel strip.

サンプルNo.13のように、巻取り温度が本発明の範囲外であり、鋼帯全長・全幅での硬さと内部酸化のばらつき低減を両立できない。   Sample No. As shown in FIG. 13, the coiling temperature is outside the range of the present invention, and it is impossible to achieve both reduction in hardness and internal oxidation variation in the entire length and width of the steel strip.

さらに、サンプルNo.15、16のようにMn量が多くなると、変態がより遅延するため本発明の範囲内では全長均一に変態を起こすことが困難となり硬さ、TSのばらつきが残存する。   Furthermore, sample no. When the amount of Mn increases as in 15 and 16, the transformation is further delayed, so that it is difficult to cause the transformation to be uniform over the entire length within the scope of the present invention, and variations in hardness and TS remain.

サンプルNo.17、18のように仕上げ圧延温度が異なると、意図していた変態が得られなくなり、本発明の規定範囲内ではばらつきを抑制することが困難となる。   Sample No. When the finish rolling temperature is different as in 17 and 18, the intended transformation cannot be obtained, and it becomes difficult to suppress variations within the specified range of the present invention.

以上より、No.4とNo.14のように、仕上げ圧延温度、巻取り温度、巻取り後の冷却速度と保熱状況のいずれをも満たすことではじめて全長・全幅で硬さ、もしくは強度、表面品質が均質な熱延鋼帯が得られることを確認した。   From the above, no. 4 and no. As shown in Fig. 14, a hot-rolled steel strip with uniform hardness, strength, and surface quality over its entire length and width can only be achieved by satisfying all of the finish rolling temperature, coiling temperature, cooling rate after coiling, and heat-retaining condition. It was confirmed that

また、No.19は、仕上げ圧延温度、巻取り温度、巻取り後の冷却速度と保熱状況のいずれをも満たすため、全長・全幅で硬さ、もしくは強度、表面品質が均質な熱延鋼帯が得られる。No.20は各部のフェライト分率が略一定となるように各部の巻取り温度が調整されていないため、鋼帯全長・全幅での硬さと内部酸化のばらつき低減を両立できない。   No. No. 19 satisfies the finish rolling temperature, the coiling temperature, the cooling rate after coiling, and the heat-retaining condition, so that a hot-rolled steel strip having a uniform hardness, strength, and surface quality can be obtained over its entire length and width. . No. In No. 20, since the coiling temperature of each part is not adjusted so that the ferrite fraction of each part becomes substantially constant, it is impossible to achieve both reduction in hardness and internal oxidation variation over the entire length and width of the steel strip.

No.21、22はMn含有量が本発明範囲外であるため、鋼帯全長・全幅での硬さと内部酸化のばらつき低減を両立できない。また、No.22から、巻取り温度を調整しても、Mn含有量が本発明範囲外であれば、鋼帯全長・全幅での硬さと内部酸化のばらつき低減を両立することは困難であることが分かる。   No. Since Nos. 21 and 22 have Mn contents outside the scope of the present invention, it is impossible to achieve both reduction in hardness and internal oxidation variation in the entire length and width of the steel strip. No. From FIG. 22, it can be seen that, even if the coiling temperature is adjusted, if the Mn content is outside the range of the present invention, it is difficult to achieve both reduction in hardness and internal oxidation variation in the entire length and width of the steel strip.

No.23、24から、Si含有量が本発明範囲内にあることが、全長・全幅で硬さ、もしくは強度、表面品質が均質な熱延鋼帯を得るために重要であることがわかる。   No. 23 and 24, it is understood that the Si content within the range of the present invention is important for obtaining a hot-rolled steel strip having a uniform hardness, strength, and surface quality over the entire length and width.

No.25、26から、C含有量が本発明範囲内にあることが、全長・全幅で硬さ、もしくは強度、表面品質が均質な熱延鋼帯を得るために重要であることがわかる。   No. From 25 and 26, it is understood that the C content within the range of the present invention is important for obtaining a hot-rolled steel strip having a uniform hardness, strength, and surface quality over the entire length and width.

No.27はコイルを断熱材で覆わなかった発明例である。   No. 27 is an invention example in which the coil was not covered with a heat insulating material.

Claims (7)

質量%で、Mn:2.0〜3.0%、Si:0.01〜3.0%、C:0.03〜0.3%を含み、下記の特性を有する熱延鋼帯。
(特性)
コイルから巻き出された熱延鋼帯の長手方向中央、先端及び尾端において、それぞれの幅方向中央及び幅方向両端を測定点とし、合計9測定点で、ビッカース硬さ、引張強度及び内部酸化厚を測定したときに、
ビッカース硬さの最大値と最小値との差が50HV未満であり、
引張強度の最大値と最小値との差が100MPa未満であり、
内部酸化厚の最大値と最小値との差が3μm未満である。
A hot-rolled steel strip containing, by mass%, Mn: 2.0 to 3.0%, Si: 0.01 to 3.0%, C: 0.03 to 0.3% and having the following characteristics.
(Characteristic)
Vickers hardness, tensile strength, and internal oxidation at a total of 9 measurement points at the center in the longitudinal direction and at both ends in the longitudinal direction of the hot rolled steel strip unwound from the coil. When measuring the thickness,
The difference between the maximum value and the minimum value of Vickers hardness is less than 50 HV,
The difference between the maximum value and the minimum value of tensile strength is less than 100 MPa,
The difference between the maximum value and the minimum value of the internal oxide thickness is less than 3 μm.
さらに、Nb:0.0005〜0.15%、Ti:0.0005〜0.15%及びV:0.0005〜0.15%から選択される少なくとも1種を含有することを特徴とする請求項1に記載の熱延鋼帯。   Furthermore, it contains at least one selected from Nb: 0.0005 to 0.15%, Ti: 0.0005 to 0.15%, and V: 0.0005 to 0.15%. Item 2. The hot-rolled steel strip according to item 1. 請求項1又は2に記載の熱延鋼帯を冷間圧延してなる冷延鋼帯。   A cold-rolled steel strip obtained by cold rolling the hot-rolled steel strip according to claim 1 or 2. 質量%で、Mn:2.0〜3.0%、Si:0.01〜3.0%、C:0.03〜0.3%を含む鋼素材に対して、仕上げ温度:850〜1100℃で仕上げ圧延を施し鋼帯とし、鋼帯をコイル状に巻取り温度400〜700℃の条件で巻取り、巻取り後の鋼帯が冷却停止温度:20〜400℃まで冷却されるにあたり、
前記鋼帯の冷却中の変態曲線と、鋼帯の尾端部に対応するコイル外周部、鋼帯の中央部に対応するコイル中央部、鋼帯の先端部に対応するコイル内周部の各部の冷却曲線とに基づき、各部のフェライト分率が略一定になり且つ各部の冷却速度が式1を満たすように、各部の巻取り温度を設定することを特徴とする熱延鋼帯の製造方法。
(式1)
0.005≦冷却速度(℃/s)≦0.035
ただし、冷却速度=((巻取り直後の温度−巻取り直後から10000秒後の温度)/10000)とする。
With respect to a steel material containing Mn: 2.0 to 3.0%, Si: 0.01 to 3.0%, and C: 0.03 to 0.3% in terms of mass%, finishing temperature: 850 to 1100 When the steel strip is subjected to finish rolling at ℃ to form a steel strip, the steel strip is wound in a coil shape at a temperature of 400 to 700 ° C, and the steel strip after winding is cooled to a cooling stop temperature: 20 to 400 ° C.
The transformation curve during cooling of the steel strip, the coil outer peripheral portion corresponding to the tail end portion of the steel strip, the coil central portion corresponding to the central portion of the steel strip, and the coil inner peripheral portion corresponding to the tip portion of the steel strip The coiling temperature of each part is set so that the ferrite fraction of each part becomes substantially constant and the cooling rate of each part satisfies Equation 1 based on the cooling curve of .
(Formula 1)
0.005 ≦ cooling rate (° C./s)≦0.035
However, cooling rate = ((temperature immediately after winding-temperature after 10000 seconds after winding) / 10000).
コイル巻取り直後から1000秒後までの所定の時点から、コイルを断熱材で覆うことを特徴とする請求項4に記載の熱延鋼帯の製造方法。   The method for manufacturing a hot-rolled steel strip according to claim 4, wherein the coil is covered with a heat insulating material from a predetermined time point immediately after coil winding up to 1000 seconds later. コイル外周部及びコイル内周部の巻取り温度を、コイル中央部の巻取り温度に対して、30〜300℃高温にすることを特徴とする請求項4又は5に記載の熱延鋼帯の製造方法。   6. The hot-rolled steel strip according to claim 4, wherein the coiling temperature of the coil outer peripheral part and the coil inner peripheral part is 30 to 300 ° C. higher than the coiling temperature of the coil central part. Production method. ランナウトテーブル上での注水条件を調整することで、各部の巻取り温度を調整することを特徴とする請求項4〜6のいずれかに記載の熱延鋼帯の製造方法。   The method for manufacturing a hot-rolled steel strip according to any one of claims 4 to 6, wherein the coiling temperature of each part is adjusted by adjusting the water injection conditions on the run-out table.
JP2015004067A 2015-01-13 2015-01-13 Manufacturing method of hot-rolled steel strip, cold-rolled steel strip and hot-rolled steel strip Active JP6252499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015004067A JP6252499B2 (en) 2015-01-13 2015-01-13 Manufacturing method of hot-rolled steel strip, cold-rolled steel strip and hot-rolled steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015004067A JP6252499B2 (en) 2015-01-13 2015-01-13 Manufacturing method of hot-rolled steel strip, cold-rolled steel strip and hot-rolled steel strip

Publications (2)

Publication Number Publication Date
JP2016130334A true JP2016130334A (en) 2016-07-21
JP6252499B2 JP6252499B2 (en) 2017-12-27

Family

ID=56415311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015004067A Active JP6252499B2 (en) 2015-01-13 2015-01-13 Manufacturing method of hot-rolled steel strip, cold-rolled steel strip and hot-rolled steel strip

Country Status (1)

Country Link
JP (1) JP6252499B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020534438A (en) * 2017-09-20 2020-11-26 宝鋼湛江鋼鉄有限公司Baosteel Zhanjiang Iron & Steel Co., Ltd. How to soften high-strength Q & P steel hot-rolled coil
WO2021167332A1 (en) * 2020-02-18 2021-08-26 주식회사 포스코 Steel sheet with excellent surface quality, and manufacturing method therefor
KR20210105304A (en) * 2020-02-18 2021-08-26 주식회사 포스코 A high carbon steel sheet having good surface quality, and its manufacturing method
JP2023504150A (en) * 2019-12-02 2023-02-01 ポスコホールディングス インコーポレーティッド Heavy-duty composite structure steel with excellent durability and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248822A (en) * 1984-05-22 1985-12-09 Nippon Steel Corp Manufacture of cold rolled steel sheet with superior workability
JPH06306537A (en) * 1993-04-19 1994-11-01 Nippon Steel Corp Hot rolled high strength steel sheet excellent in formability and spot weldability and its production
JPH11181526A (en) * 1997-12-19 1999-07-06 Kobe Steel Ltd Production of hot rolled steel plate excellent in workability and non-aging characteristic
WO2011093319A1 (en) * 2010-01-26 2011-08-04 新日本製鐵株式会社 High-strength cold-rolled steel sheet, and process for production thereof
JP2014065077A (en) * 2012-09-06 2014-04-17 Jfe Steel Corp Method of manufacturing hot rolled steel plate
JP2015116596A (en) * 2013-12-19 2015-06-25 Jfeスチール株式会社 Method for production of hot-rolled steel strip

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248822A (en) * 1984-05-22 1985-12-09 Nippon Steel Corp Manufacture of cold rolled steel sheet with superior workability
JPH06306537A (en) * 1993-04-19 1994-11-01 Nippon Steel Corp Hot rolled high strength steel sheet excellent in formability and spot weldability and its production
JPH11181526A (en) * 1997-12-19 1999-07-06 Kobe Steel Ltd Production of hot rolled steel plate excellent in workability and non-aging characteristic
WO2011093319A1 (en) * 2010-01-26 2011-08-04 新日本製鐵株式会社 High-strength cold-rolled steel sheet, and process for production thereof
US20130037180A1 (en) * 2010-01-26 2013-02-14 Nippon Steel Corporation High-strength cold-rolled steel sheet and method of manufacturing thereof
JP2014065077A (en) * 2012-09-06 2014-04-17 Jfe Steel Corp Method of manufacturing hot rolled steel plate
JP2015116596A (en) * 2013-12-19 2015-06-25 Jfeスチール株式会社 Method for production of hot-rolled steel strip

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020534438A (en) * 2017-09-20 2020-11-26 宝鋼湛江鋼鉄有限公司Baosteel Zhanjiang Iron & Steel Co., Ltd. How to soften high-strength Q & P steel hot-rolled coil
JP7320512B2 (en) 2017-09-20 2023-08-03 宝鋼湛江鋼鉄有限公司 Method for softening high-strength Q&P steel hot-rolled coil
US11981972B2 (en) 2017-09-20 2024-05-14 Baosteel Zhanjian Iron & Steel Co., Ltd. Softening method for high-strength Q and P steel hot roll
JP2023504150A (en) * 2019-12-02 2023-02-01 ポスコホールディングス インコーポレーティッド Heavy-duty composite structure steel with excellent durability and its manufacturing method
JP7431325B2 (en) 2019-12-02 2024-02-14 ポスコホールディングス インコーポレーティッド Thick composite structure steel with excellent durability and its manufacturing method
WO2021167332A1 (en) * 2020-02-18 2021-08-26 주식회사 포스코 Steel sheet with excellent surface quality, and manufacturing method therefor
KR20210105304A (en) * 2020-02-18 2021-08-26 주식회사 포스코 A high carbon steel sheet having good surface quality, and its manufacturing method
CN115103924A (en) * 2020-02-18 2022-09-23 株式会社Posco Steel sheet having excellent surface quality and method for manufacturing same
KR102498137B1 (en) 2020-02-18 2023-02-09 주식회사 포스코 A high carbon steel sheet having good surface quality, and its manufacturing method
JP2023514592A (en) * 2020-02-18 2023-04-06 ポスコホールディングス インコーポレーティッド Steel sheet with excellent surface quality and its manufacturing method

Also Published As

Publication number Publication date
JP6252499B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
CN110088326B (en) Hot-rolled flat steel product and method for the production thereof
KR102128563B1 (en) Cold-rolled flat steel product and method for the production thereof
JP2015224359A (en) Method of producing high strength steel sheet
JP5817671B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP2012041638A (en) Method for producing abrasion resistant steel sheet
JP2018188675A (en) High strength hot-rolled steel sheet and production method thereof
JP6252499B2 (en) Manufacturing method of hot-rolled steel strip, cold-rolled steel strip and hot-rolled steel strip
JP5042982B2 (en) Manufacturing method of high-strength steel sheet with excellent thickness accuracy
JP6171994B2 (en) Manufacturing method of high-strength steel sheet with excellent formability
JP4998716B2 (en) Manufacturing method of wear-resistant steel plate
JP4767652B2 (en) Hot-rolled steel strip for cold-rolled high-tensile steel sheet with small thickness variation after cold rolling and method for producing the same
US9765417B2 (en) Low-yield ratio high-strength electric resistance welded steel pipe, steel strip for electric resistance welded steel pipes, and methods of manufacturing them
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP2001152254A (en) Method for producing highly workable hot rolled high tensile steel sheet excellent in material uniformity
JP7116064B2 (en) FERRITIC STAINLESS STEEL EXCELLENT IN RIDGING PROPERTIES AND SURFACE QUALITY AND METHOD FOR MANUFACTURING SAME
JP4300793B2 (en) Manufacturing method of hot-rolled steel sheet and hot-dip steel sheet with excellent material uniformity
JP4840270B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP2000054071A (en) Hot rolled thin steel sheet and its production
JP5481941B2 (en) Hot-rolled steel sheet for high-strength cold-rolled steel sheet, method for producing the same, and method for producing high-strength cold-rolled steel sheet
JP6202012B2 (en) Manufacturing method of high-strength steel sheet with excellent formability
JP6213098B2 (en) High-strength hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same
JP2015116596A (en) Method for production of hot-rolled steel strip
JP3719007B2 (en) Manufacturing method of hot-rolled steel strip with two-phase structure
JP5742207B2 (en) Low yield ratio high strength ERW steel pipe and method for producing the same
RU2379361C1 (en) Method of cold-rolled sheet products manufacturing for enameling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R150 Certificate of patent or registration of utility model

Ref document number: 6252499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250