JP4767652B2 - Hot-rolled steel strip for cold-rolled high-tensile steel sheet with small thickness variation after cold rolling and method for producing the same - Google Patents

Hot-rolled steel strip for cold-rolled high-tensile steel sheet with small thickness variation after cold rolling and method for producing the same Download PDF

Info

Publication number
JP4767652B2
JP4767652B2 JP2005303350A JP2005303350A JP4767652B2 JP 4767652 B2 JP4767652 B2 JP 4767652B2 JP 2005303350 A JP2005303350 A JP 2005303350A JP 2005303350 A JP2005303350 A JP 2005303350A JP 4767652 B2 JP4767652 B2 JP 4767652B2
Authority
JP
Japan
Prior art keywords
rolled
less
cold
hot
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005303350A
Other languages
Japanese (ja)
Other versions
JP2007111708A (en
Inventor
力 岡本
宏幸 土井
直之 桂
紀行 菱沼
貢一 後藤
満 名田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005303350A priority Critical patent/JP4767652B2/en
Publication of JP2007111708A publication Critical patent/JP2007111708A/en
Application granted granted Critical
Publication of JP4767652B2 publication Critical patent/JP4767652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Description

本発明は、590MPa以上の引張り強さを有する冷延高張力鋼板用熱延鋼帯及びその製造方法に関し、特に、熱延鋼帯を冷間圧延して590MPa以上の引張り強さを有する冷延高張力鋼板を製造する際に、冷間圧延後の板厚変動が小さい熱延鋼帯及びその製造方法に関するものである。   The present invention relates to a hot-rolled steel strip for cold-rolled high-tensile steel sheet having a tensile strength of 590 MPa or more and a method for producing the same, and in particular, cold-rolled hot-rolled steel strip and having a tensile strength of 590 MPa or more. The present invention relates to a hot-rolled steel strip having a small thickness variation after cold rolling and a manufacturing method thereof when manufacturing a high-tensile steel plate.

冷延高張力鋼板(ハイテンと称されている)は、熱延鋼帯を冷間圧延し、必要に応じて熱処理を施すことで製造されている。   A cold-rolled high-tensile steel plate (referred to as “HITEN”) is manufactured by cold-rolling a hot-rolled steel strip and subjecting it to heat treatment as necessary.

近年、冷延高張力鋼板は、自動車部材等の構造部材への適用が拡大し、特に、引張り強さが590MPa以上の冷延高張力鋼板の需要が高まってきていて、そして、冷延高張力鋼板から製造する成形部品の精度を高めるために板厚精度の高い冷延高張力鋼板が需要家から要求されている。   In recent years, the application of cold-rolled high-tensile steel sheets to structural members such as automobile members has expanded, and in particular, the demand for cold-rolled high-tensile steel sheets having a tensile strength of 590 MPa or more has increased. In order to increase the accuracy of molded parts manufactured from steel plates, cold-rolled high-tensile steel plates with high plate thickness accuracy are required by customers.

ところが、高張力鋼板の原材料である熱延鋼帯を冷間圧延すると、冷間圧延後に板厚変動が生じるという問題が発生する。   However, when a hot-rolled steel strip, which is a raw material of a high-tensile steel plate, is cold-rolled, there arises a problem that the plate thickness varies after cold-rolling.

冷間圧延における板厚制御は、従来、ロールクラウン、圧下量、張力等の制御を行うことで行われているが、冷延高張力鋼板では従来の板厚制御だけでは厳しい板厚精度の要求に十分対応できない。板厚変動の小さい冷延高張力鋼板を製造する技術としては、熱延後の冷却の均一性を高めることで、熱延板の強度変動を低下させる製造方法がある。   Thickness control in cold rolling is conventionally performed by controlling the roll crown, reduction amount, tension, etc., but with cold rolled high-tensile steel plates, strict thickness accuracy is required only with conventional thickness control. Cannot handle enough. As a technique for manufacturing a cold-rolled high-tensile steel sheet having a small thickness variation, there is a manufacturing method for reducing the strength variation of the hot-rolled plate by increasing the uniformity of cooling after hot rolling.

例えば、熱延最終パススタンドから巻き取りまでの間の冷却帯において、冷却帯ライン方向のどの位置においても板幅方向の鋼板温度分布が50℃以内となり、かつ、冷却帯ライン方向のどの位置においてもその位置を通過中の鋼板の板幅方向一定位置における冷却速度の変動幅が5℃/秒以内となるように鋼帯を冷却して熱延鋼帯を製造し、この熱延鋼帯を用いて冷間圧延を行うことで板厚変動の小さい冷延鋼板を製造する方法がある(例えば、特許文献1参照)。   For example, in the cooling zone between the hot-rolling final pass stand and the winding, the steel plate temperature distribution in the plate width direction is within 50 ° C. at any position in the cooling zone line direction, and at any position in the cooling zone line direction. The steel strip is cooled to produce a hot-rolled steel strip so that the fluctuation width of the cooling rate at a certain position in the plate width direction of the steel plate passing through that position is within 5 ° C / second. There is a method of manufacturing a cold-rolled steel sheet having a small thickness variation by performing cold rolling using it (see, for example, Patent Document 1).

また、熱延鋼帯の仕上げ圧延後の冷却方法として、鋼帯の幅方向に亘って均一な温度に冷却し、幅方向に均質な鋼帯を得る冷却方法(例えば、特許文献2参照)や、熱延鋼帯をエッジ部の過冷却を防止するために鋼帯のエッジ部をマスキングしながら冷却する方法(例えば、特許文献3参照)等がある。   Moreover, as a cooling method after the finish rolling of the hot-rolled steel strip, a cooling method for cooling to a uniform temperature in the width direction of the steel strip and obtaining a uniform steel strip in the width direction (for example, see Patent Document 2) There is a method of cooling the hot-rolled steel strip while masking the edge portion of the steel strip in order to prevent overcooling of the edge portion (for example, see Patent Document 3).

さらに、鋼板長手方向の材質を均一化するために、鋼板先端が冷却装置に侵入してから鋼板尾端が冷却装置を抜けるまでに、一定の加速率で鋼板を加速搬送して冷却する方法がある(例えば、特許文献4参照)。   Furthermore, in order to make the material in the longitudinal direction of the steel sheet uniform, there is a method of accelerating and cooling the steel sheet at a constant acceleration rate from the time when the steel sheet tip enters the cooling device to the time when the steel sheet tail end exits the cooling device. Yes (see, for example, Patent Document 4).

しかし、本発明で問題としている板厚変動は、図1に示すように冷延高張力鋼板の製造に供される熱延鋼帯の尾端部に相当する部分で発生するもので、巻取り後に発生する温度変動が起因となるものであるため、前述の巻取り以前の鋼帯の幅方向や長手方向の材質の均一化を目的とする技術では冷間圧延時の板厚変動を防止することはできない。   However, the plate thickness variation which is a problem in the present invention occurs at a portion corresponding to the tail end portion of the hot-rolled steel strip used for the production of the cold-rolled high-tensile steel plate as shown in FIG. Because this is due to temperature fluctuations that occur later, the technology aimed at making the material in the width direction and longitudinal direction of the steel strip before winding mentioned above uniform prevents sheet thickness fluctuations during cold rolling. It is not possible.

したがって、熱延鋼帯を冷間圧延して冷延高張力鋼板とした場合には、これまで冷間圧延後に発生した板厚変動部を除去(歩留り落ち)して製品とせざるを得ないのが現状である。歩留り落ちが生ずると生産効率の低下等を招くので板厚変動の小さい高張力鋼板の安定した製造技術が望まれている。   Therefore, when cold-rolling a hot-rolled steel strip into a cold-rolled high-strength steel sheet, it is necessary to remove (yield off) the plate thickness fluctuation part that has been generated after cold rolling so far to make a product. Is the current situation. When the yield drop occurs, the production efficiency is lowered, and therefore, a stable production technique for a high-tensile steel sheet with small thickness variation is desired.

特開2004−276090号公報JP 2004-276090 A 特開2003−191005号公報JP 2003-191005 A 特開2004−290988号公報Japanese Patent Laid-Open No. 2004-290988 特開2005−154841号公報JP 2005-154841 A

そこで、本発明は上記現状に鑑み、冷間圧延後の板厚変動の小さい冷延高張力鋼板を製造することができる熱延鋼帯及びその製造方法を提供することを課題とするものである。   Then, in view of the said present condition, this invention makes it a subject to provide the hot-rolled steel strip which can manufacture the cold-rolled high-tensile steel plate with the small board | plate thickness fluctuation | variation after cold rolling, and its manufacturing method. .

これまで冷延高張力鋼板の板厚変動対策として、冷間圧延工程での板厚制御や、原材料である熱延鋼帯の硬さを巻取り前の温度の均一性を高めることで均一に制御する方法等があるが、いずれも図1に示す板厚変動の根本的な解決には至っていない。   Until now, as a countermeasure to fluctuations in sheet thickness of cold-rolled high-tensile steel sheets, it is possible to control the sheet thickness in the cold rolling process and increase the hardness of the hot-rolled steel strip, which is the raw material, by increasing the uniformity of the temperature before winding. Although there is a method of controlling, etc., none of them has led to a fundamental solution of the plate thickness fluctuation shown in FIG.

本発明者は、板厚変動の発生メカニズムを究明し、熱延鋼帯の組織制御を行なうことで、冷間圧延後の板厚変動、特に尾端部の板厚変動が小さい冷延高張力鋼板用熱延鋼帯及びその製造方法の発明を完成した。   The present inventor has investigated the mechanism of occurrence of sheet thickness fluctuations, and by controlling the structure of the hot-rolled steel strip, the sheet thickness fluctuations after cold rolling, especially the cold-rolling high tension with small fluctuations at the tail end. The invention of the hot-rolled steel strip for steel plate and the manufacturing method thereof was completed.

本発明の要旨は、以下のとおりである。   The gist of the present invention is as follows.

) 鋼帯の成分が、質量%で、
C:0.05〜0.22%、
Si:0.3〜2.0%、
Mn:1.3〜3.2%、
P:0.025%以下、
S:0.015%以下、
Al:0.08%以下
を含有し、残部が不可避不純物を除きFeであり、熱延コイルの尾端から少なくとも200m以下の範囲が、ベイナイト主体の組織であって、組織中のパーライト分率が15%以下であり、パーライト分率の長手方向の変動差が10%以下であることを特徴とする冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯。
( 1 ) The steel strip component is mass%,
C: 0.05 to 0.22%,
Si: 0.3 to 2.0%,
Mn: 1.3-3.2%
P: 0.025% or less,
S: 0.015% or less,
Al: containing 0.08% or less, the balance Ri Fe der except inevitable impurities, at least 200m below the range of the tail of the hot-rolled coil, a bainite main tissue, pearlite fraction in the tissue Is a hot-rolled steel strip for cold-rolled high-tensile steel sheet with small sheet thickness variation after cold rolling, characterized in that the difference in the longitudinal direction of the pearlite fraction is 10% or less.

) 鋼帯がさらに、質量%で、
Nb:0.005〜0.10%以下、
Ti:0.03〜0.20%以下、
V:0.005〜0.10%以下、
Mo:0.02〜0.5%以下、
Cr:0.1〜5.0%以下、
Co:0.01〜5.0%以下、
W:0.01〜5.0%以下、
の1種または2種以上を含有することを特徴とする上記()に記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯。
( 2 ) The steel strip is further mass%,
Nb: 0.005 to 0.10% or less,
Ti: 0.03 to 0.20% or less,
V: 0.005 to 0.10% or less,
Mo: 0.02 to 0.5% or less,
Cr: 0.1 to 5.0% or less,
Co: 0.01 to 5.0% or less,
W: 0.01 to 5.0% or less,
The hot-rolled steel strip for cold-rolled high-tensile steel sheet having a small thickness variation after cold rolling as described in ( 1 ) above, comprising one or more of the following.

) 鋼帯がさらに、質量%で、
Mg、Zrの1種または2種を夫々0.0005%以上、0.05%以下含有することを特徴とする上記()または()に記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯。
( 3 ) The steel strip is further mass%,
Mg, 1 kind or two kinds respectively 0.0005% or more Zr, small thickness variation after cold rolling according to (1) or (2), characterized in that it contains 0.05% or less Hot-rolled steel strip for cold-rolled high-tensile steel sheets.

) 鋼帯がさらに、質量%で、
Cu:0.04〜2.0%以下、
Ni:0.02〜1.0%以下、
B:0.0003〜0.007%以下、
の1種または2種以上を含有することを特徴とする上記()から()のいずれかに記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯。
( 4 ) The steel strip is further mass%,
Cu: 0.04 to 2.0% or less,
Ni: 0.02 to 1.0% or less,
B: 0.0003 to 0.007% or less,
The hot-rolled steel strip for cold-rolled high-tensile steel sheet having a small thickness variation after cold rolling according to any one of ( 1 ) to ( 3 ), characterized by containing one or more of the following.

) 引張り強さ590MPa以上であることを特徴とする上記(1)から()のいずれかに記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯。
( 5 ) The hot-rolled steel strip for cold-rolled high-tensile steel sheet having a small thickness variation after cold rolling according to any one of (1) to ( 4 ), wherein the tensile strength is 590 MPa or more.

) 鋼片を仕上げ圧延完了温度(FT)がAr3以上となるように熱間圧延し、巻取温度迄冷却する際に、冷却工程での鋼帯温度(T)の経時変化が、下記式(1)を用いて算出されるLが20μm以下を満たす条件で冷却することを特徴とする上記(1)から()のいずれかに記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯の製造方法。
( 6 ) When the steel piece is hot-rolled so that the finish rolling completion temperature (FT) is Ar3 or higher and cooled to the coiling temperature, the change over time in the steel strip temperature (T) in the cooling step is as follows. Cooling with a small variation in sheet thickness after cold rolling according to any one of (1) to ( 5 ) above, wherein cooling is performed under a condition that L calculated using formula (1) satisfies 20 μm or less. A method for producing a hot-rolled steel strip for high-tensile steel sheet.

Figure 0004767652
Figure 0004767652

上記式中、t:仕上げ圧延出側以降の時間(秒)、t600:仕上げ圧延完了時刻を0とし、600℃到達までの時間(秒)、T:仕上げ圧延以降の鋼帯温度(℃)。 In the above formula, t: time after finishing rolling delivery (seconds), t 600 : finishing rolling completion time 0, time to reach 600 ° C. (seconds), T: steel strip temperature after finishing rolling (° C.) .

) 400〜600℃の温度範囲にて巻取を行うことを特徴とする上記()に記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯の製造方法。
( 7 ) Winding in a temperature range of 400 to 600 ° C. The production of a hot-rolled steel strip for cold-rolled high-tensile steel sheet having a small thickness variation after cold rolling as described in ( 6 ) above Method.

本発明の組織制御された熱延鋼板によれば、熱延鋼板を冷間圧延して冷延高張力鋼板とする際に、全長に亘って冷間圧延後の板厚変動が小さい冷延高張力鋼板とすることがで、特に従来のように熱延鋼帯の尾端部で発生する約200μmの板厚変動に起因する歩留落ちをなくすことができる。また、本発明では、C:0.05〜0.22%、Si:0.3〜2.0%を含有し冷間圧延時の板厚変動が生じやすい鋼成分の熱延鋼帯についても、冷間圧延後の板厚変動を効果的に抑制できる。   According to the structure-controlled hot-rolled steel sheet of the present invention, when the hot-rolled steel sheet is cold-rolled into a cold-rolled high-tensile steel sheet, the cold-rolled height is small in the thickness variation after cold rolling over the entire length. By using a tension steel plate, it is possible to eliminate a yield drop caused by a thickness variation of about 200 μm, which is generated at the tail end portion of the hot-rolled steel strip as in the conventional case. Further, in the present invention, the hot-rolled steel strip of steel component containing C: 0.05 to 0.22% and Si: 0.3 to 2.0%, which is likely to cause sheet thickness fluctuation at the time of cold rolling. And the board thickness fluctuation | variation after cold rolling can be suppressed effectively.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

冷延高張力鋼板は熱延鋼帯を冷間圧延して製造されているが、冷間圧延後に図1に示すような板厚変動が発生する。この板厚変動の原因、対策については未解決であり、板厚変動部の除去による歩留まり落ちを発生させながら、製品とせざるを得なかった。   A cold-rolled high-tensile steel sheet is manufactured by cold-rolling a hot-rolled steel strip, but a plate thickness variation as shown in FIG. 1 occurs after cold-rolling. The cause and countermeasures of the plate thickness variation are unresolved, and the product must be made while generating a drop in yield due to the removal of the plate thickness varying portion.

そこで、本発明者は、板厚変動の発生メカニズムを鋭意究明し、その結果に基き板厚変動の発生を防止できる冷延高張力鋼板用熱延鋼帯及びその製造方法の発明を完成した。   Accordingly, the present inventor has intensively investigated the mechanism of occurrence of sheet thickness variation, and based on the results, completed the invention of a hot-rolled steel strip for cold-rolled high-tensile steel sheet and a method for producing the same.

まず、本発明で知見した板厚変動の発生実態について説明する。   First, the actual state of occurrence of the plate thickness variation found in the present invention will be described.

板厚変動が発生する部位を特定するために、冷延高張力鋼板の全長に亘ってコイル長と板厚変動との関係を調べた結果、図1に示すように、冷延高張力鋼板の板厚変動の発生部位は、主として熱延鋼帯の尾端(テール)から約200m以内の範囲で発生することが分かった。また、板厚変動の発生部位を拡大してみると、図2に示すように、板厚変動はほぼ同じ周期(ハンチングピッチ)で発生しており、ハンチングピッチを計算すると、ハンチングピッチはホットコイル(熱延コイル)外周ピッチと一致することを知見した。   As a result of investigating the relationship between the coil length and the plate thickness variation over the entire length of the cold-rolled high-tensile steel plate in order to identify the portion where the plate-thickness variation occurs, as shown in FIG. It was found that the occurrence site of the plate thickness fluctuation occurred mainly within a range of about 200 m from the tail end of the hot-rolled steel strip. Further, when the occurrence portion of the plate thickness fluctuation is enlarged, as shown in FIG. 2, the plate thickness fluctuation occurs at substantially the same cycle (hunting pitch), and when the hunting pitch is calculated, (Hot rolled coil) It was found that it coincides with the outer peripheral pitch.

したがって、冷間圧延後の板厚変動の原因は、熱延の巻取り中に発生しているものと推定できる。   Therefore, it can be presumed that the cause of the plate thickness variation after the cold rolling occurs during the hot rolling.

また、冷延高張力鋼板の板厚と硬度の関係について調べたところ、硬度と板厚変動には明確な相関があり、熱延時に発生した硬度の変動が板厚変動の原因となっていることを知見した。   In addition, when the relationship between the thickness and hardness of the cold-rolled high-tensile steel sheet was examined, there was a clear correlation between the hardness and the thickness variation, and the variation in hardness that occurred during hot rolling caused the variation in thickness. I found out.

そこで、熱延コイルの長手方向の硬度、組織の変化を調査した結果、図3(a)に示すように正常部の組織はベイナイト組織であるのに対し、硬度変動部(軟質部)には(b)に示すようなパーライトバンドが形成されていることが確認でき、このパーライト組織の形成によって局部的に軟質化していることがわかった。そこで、巻取りコイル周期で、かつ局部的に発生するパーライト組織の発生を抑制するために鋭意研究した。その結果、このパーライト組織は、熱延鋼帯の巻取り後に熱延コイルにおいて、局所的に冷却速度の遅い部分が発生することが原因であることがわかった。   Therefore, as a result of investigating changes in hardness and structure in the longitudinal direction of the hot-rolled coil, the structure of the normal part is a bainite structure as shown in FIG. It was confirmed that a pearlite band as shown in (b) was formed, and it was found that the pearlite structure was locally softened by the formation of this pearlite structure. Therefore, in order to suppress the occurrence of pearlite texture that occurs locally in the winding coil period, we have intensively studied. As a result, it has been found that this pearlite structure is caused by a local occurrence of a slow cooling rate in the hot-rolled coil after the hot-rolled steel strip is wound.

但し、このような局部的な冷却速度の変化は、例えば、巻取り後にコイルの巻き緩みや、尾端のばたつきを防止する目的でコイルに押し付けられるラッパーロールなどが原因で発生するものであり、この回避は困難である。   However, such a local change in the cooling rate is caused by, for example, a wrapper roll pressed against the coil in order to prevent loose winding of the coil or flapping of the tail end after winding, This avoidance is difficult.

そこで、本発明者らは、まず、板厚変動の抑制できる狙いとする組織の検討を行った。このとき、熱延でパーライト組織を形成すると、焼鈍後の局部変形能の低減を生じるため、巻取後の冷却速度の変動影響を受けにくいパーライト量を低減したベイナイト主体の組織を作りこむようにした。   Therefore, the present inventors first examined a structure aimed at suppressing fluctuations in plate thickness. At this time, forming a pearlite structure by hot rolling causes a reduction in local deformability after annealing, so a bainite-based structure with a reduced amount of pearlite that is less susceptible to fluctuations in the cooling rate after winding is created. .

そして、熱延鋼帯の組織制御を全長に亘って行い、特に冷間圧延後の板厚変動が生じやすい尾端部に相当する熱延コイルの尾端(テール)から少なくとも200m以下の範囲をベイナイト主体の組織とし、組織中のパーライト分率が15%以下、好ましくは10%以下であり、また、パーライト分率の長手方向の変動差が10%以下のときに冷延での板厚変動が抑制できることを見出した。このとき、特に板厚変動に対して厳しい要求に対しては、パーライト分率の変動差は5%以下であることが望ましい。なお、組織中に必然的に生成するフェライト組織(α)を20%以下許容することができる。   And the structure control of the hot-rolled steel strip is performed over the entire length, and in particular, a range of at least 200 m or less from the tail end (tail) of the hot-rolled coil corresponding to the tail end portion where the sheet thickness fluctuation easily occurs after cold rolling. The bainite-based structure has a pearlite fraction of 15% or less, preferably 10% or less in the structure, and the thickness variation in cold rolling when the longitudinal variation difference of the pearlite fraction is 10% or less. It was found that can be suppressed. At this time, it is desirable that the variation difference of the pearlite fraction is 5% or less, especially for a severe requirement for the plate thickness variation. In addition, 20% or less of the ferrite structure (α) inevitably formed in the structure can be allowed.

本発明でのパーライト分率は、鋼板をナイタールエッチング液でエッチングした後、走査型電子顕微鏡にて、板厚中央部1/4tから3/4tの範囲の組織を観察し、パーライトの分率を画像解析にて測定することによって求めたものである。また、パーライト分率の変動差は、鋼帯長手方向10mから等間隔に鋼帯の中央部の50点以上の組織観察を行い、パーライトの分率を測定し、測定値の最大値と最小値の差をパーライト分率の変動差とした。   In the present invention, the pearlite fraction is obtained by etching the steel sheet with a nital etching solution, and then observing the structure in the range from 1/4 t to 3/4 t in the thickness center with a scanning electron microscope. Is obtained by measuring by image analysis. The fluctuation difference of the pearlite fraction is observed at 50 points or more of the central part of the steel strip at equal intervals from 10 m in the longitudinal direction of the steel strip, the pearlite fraction is measured, and the maximum and minimum values are measured. This difference was defined as the variation difference in the pearlite fraction.

本発明で熱延コイルの尾端から少なくとも200mと限定したのは、冷間圧延後の板厚変動が顕著に生じるのが尾端から少なくとも200mの範囲である。したがって、少なくともこの200mの範囲の組織制御が必要とされるので、本発明では熱延コイルの尾端から少なくとも200mの範囲と限定した。   The reason why the thickness of the hot rolled coil is limited to at least 200 m from the tail end in the present invention is that the thickness variation after the cold rolling significantly occurs in the range at least 200 m from the tail end. Therefore, since at least 200 m of tissue control is required, the present invention is limited to a range of at least 200 m from the tail end of the hot-rolled coil.

また、ベイナイト組織中のパーライト分率が15%以下と限定したのは、パーライト分率が15%を超えると鋼帯に軟質部が生じ、冷間圧延後に板厚変動を生じるからである。   Further, the reason why the pearlite fraction in the bainite structure is limited to 15% or less is that when the pearlite fraction exceeds 15%, a soft part is formed in the steel strip, and the thickness of the steel sheet varies after cold rolling.

さらに、パーライト分率の長手方向の変動差が10%以下と限定したのは、パーライト分率の長手方向の変動差が10%を超えると鋼帯に軟質部が生じ、冷間圧延後に板厚変動を生じるからである。   Furthermore, the longitudinal variation difference of the pearlite fraction was limited to 10% or less because when the variation difference in the longitudinal direction of the pearlite fraction exceeds 10%, a soft part is generated in the steel strip, and the sheet thickness after cold rolling This is because fluctuation occurs.

そして、本発明者らは、冷却パターンを制御することで、巻取り後に生成する局所的組織変動を抑制することを考え鋭意研究を重ねた結果、下記式(1)の関係を見出し、この式を満たすとき図4に示すように板厚変動量を抑制できることを見出した。この原因は明確ではないが、フェライト変態は凝固時のMnのミクロ偏析から最も離れた部分から起こり、このとき、Cが変態組織(フェライト)から、吐き出され、Mnの偏析部に拡散する。この拡散が十分に起こるとき、パーライト組織は形成されやすく、C拡散が抑制できるとき、パーライト組織は形成されにくいと思われる。そして、C拡散を抑制するためには、熱間仕上温度、高温域での冷却速度が重要であり、式(1)のLが20μm以下の冷却条件を見出すに至った。   And, as a result of intensive studies in consideration of suppressing the local tissue fluctuation generated after winding by controlling the cooling pattern, the present inventors have found the relationship of the following formula (1). As shown in FIG. 4, it was found that the variation in plate thickness can be suppressed when the above condition is satisfied. The cause of this is not clear, but the ferrite transformation occurs from the portion farthest from the microsegregation of Mn during solidification, and at this time, C is discharged from the transformation structure (ferrite) and diffuses into the segregated portion of Mn. When this diffusion occurs sufficiently, a pearlite structure is likely to be formed, and when C diffusion can be suppressed, a pearlite structure is unlikely to be formed. And in order to suppress C diffusion, hot finishing temperature and the cooling rate in a high temperature range are important, and it came to find the cooling conditions whose L of Formula (1) is 20 micrometers or less.

Figure 0004767652
Figure 0004767652

上記式中、t:仕上げ圧延出側以降の時間(秒)、t600:仕上げ圧延完了時刻を0とし、600℃到達までの時間(秒)、T:仕上げ圧延以降の鋼帯温度(℃)を意味する。 In the above formula, t: time after finishing rolling delivery (seconds), t 600 : finishing rolling completion time 0, time to reach 600 ° C. (seconds), T: steel strip temperature after finishing rolling (° C.) Means.

熱間仕上温度は、式(1)を満たすためには、低い方がよい、但し、Ar3変態点以下で、熱延をすると、蛇行等の原因となり安定操業を阻害するほか、未再結晶オーステナイトからのフェライト変態が逆に、バンド組織の形成を促進し、局部的なパーライト生成の原因となり、板厚変動を増加させる。このため、仕上げ温度はAr3点以上とする。   The hot finishing temperature should be low in order to satisfy the formula (1). However, hot rolling below the Ar3 transformation point may cause meandering and the like, impairing stable operation, and unrecrystallized austenite. On the contrary, the ferrite transformation from the above promotes the formation of a band structure, causes local pearlite generation, and increases the thickness variation. For this reason, finishing temperature shall be Ar3 point or more.

次に、熱間仕上直後の高温域での冷却速度は高いほうが式(1)を満たすためには望ましい。但し、200℃/s以上の冷却速度は、製造コストの増加を招くこと、鋼板形状が悪くなり、冷却の均一性を阻害し、コイル全長にわたる板厚精度を劣化させるために200℃/s以下とすることが望ましい。   Next, it is desirable that the cooling rate in the high temperature region immediately after the hot finishing satisfies the formula (1). However, a cooling rate of 200 ° C./s or more causes an increase in manufacturing cost, a steel plate shape deteriorates, the cooling uniformity is hindered, and the plate thickness accuracy over the entire coil length is deteriorated to 200 ° C./s or less. Is desirable.

次に、巻取温度制御としては、巻取り後に低冷速でもパーライトの生成を抑制できるようにするため、巻取温度を低温化した。
冷却後の巻取温度を高くすると巻取後の冷却過程でパーライト変態が起こるためパーライトが多く生成する。これに対して、巻取温度を低くすると、巻取後の冷却過程でパーライトの生成が少なくなる。
Next, as the winding temperature control, the winding temperature was lowered in order to suppress the generation of pearlite even at a low cooling speed after winding.
When the coiling temperature after cooling is increased, pearlite transformation occurs in the cooling process after coiling, so that a lot of pearlite is generated. On the other hand, when the winding temperature is lowered, the generation of pearlite is reduced in the cooling process after winding.

しかし、巻取温度が400℃未満となるとマルテンサイトが生成し、熱延鋼板の強度変動を増加させるため、板厚精度を劣化させ好ましくないので、本発明では巻取温度の下限を400℃とした。一方、巻取温度の上限はパーライト生成率から600℃としたが、好ましくは500℃である。   However, when the coiling temperature is less than 400 ° C., martensite is generated and the strength fluctuation of the hot-rolled steel sheet is increased, which is not preferable because the thickness accuracy is deteriorated. Therefore, in the present invention, the lower limit of the coiling temperature is 400 ° C. did. On the other hand, the upper limit of the coiling temperature is 600 ° C. from the pearlite production rate, but preferably 500 ° C.

次いで、本発明で用いることができる熱延鋼帯の材質について説明する。   Next, the material of the hot-rolled steel strip that can be used in the present invention will be described.

引張り強さ590MPa以上(例えば、590〜1170MPa)を有する種々の鋼成分の冷延高張力鋼板は知られている。本発明の熱延鋼帯は、これらの冷延高張力鋼板の製造に冷間圧延後の板厚変動を防止して適用することができる。   Cold-rolled high-tensile steel sheets having various steel components having a tensile strength of 590 MPa or more (for example, 590 to 1170 MPa) are known. The hot-rolled steel strip of the present invention can be applied to the production of these cold-rolled high-tensile steel sheets while preventing fluctuations in the thickness after cold rolling.

特に冷間圧延後の板厚変動が発生しやすい、質量%でC:0.05〜0.22%、Si:0.3〜2.0%を含有する鋼種の590MPa以上の引張強度を有する冷延高張力鋼板に効果的に適用することができる。   In particular, the steel sheet has a tensile strength of 590 MPa or more of steel types containing C: 0.05 to 0.22% by mass and Si: 0.3 to 2.0% in mass%, which are likely to cause sheet thickness fluctuation after cold rolling. It can be effectively applied to cold-rolled high-tensile steel sheets.

即ち、Cは強度を確保するために含有させているが、C:0.05%以上となると、パーライト変態を生じやすくなり、熱延鋼帯に軟化部を生成し、冷延後の板厚変動の原因となる。つまり、熱間圧延に供される鋼片は、製鋼時にデンドライトの枝間に不可避的にMnが偏析していて、鋼片を熱間圧延するとMn偏析部は層状に伸ばされてバンド状となる。熱間圧延後にCは高温で自由に動くことができ、フェライト変態により、フェライトから吐き出され、Mn偏析部に移動してバンド状にパーライト変態を生ずる。   That is, C is contained to ensure strength, but when C: 0.05% or more, pearlite transformation is likely to occur, and a softened part is generated in the hot-rolled steel strip, and the thickness after cold rolling Causes fluctuations. In other words, the steel slab subjected to hot rolling inevitably has Mn segregated between dendritic branches during steelmaking, and when the steel slab is hot-rolled, the Mn segregated portion is stretched into a layer and becomes a band shape. . After hot rolling, C can move freely at a high temperature, and is discharged from the ferrite by ferrite transformation, and moves to the Mn segregation portion to cause pearlite transformation in a band shape.

なお、C:0.05%未満ではパーライト変態が生じがたい。また、C:0.22%を超えると靭性や溶接性を劣化させるためCの上限を0.22%とした。   When C is less than 0.05%, pearlite transformation hardly occurs. Further, when C exceeds 0.22%, the toughness and weldability are deteriorated, so the upper limit of C is set to 0.22%.

Siは、強度と伸びを改善する元素であるが、Si:0.3%以上となるとベイナイト生成速度が低下するため、相対的にCの拡散が起こりやすく、パーライト分率の変動を発生しやすくする。このためSiが高いと冷間圧延での板厚変動を引き起こす。しかし、Si:2.0%を超えると溶接性を劣化させることとなるので、Siの上限を2.0%とした。   Si is an element that improves strength and elongation, but when Si is 0.3% or more, the bainite formation rate decreases, so that C diffusion is relatively likely to occur, and fluctuations in the pearlite fraction are likely to occur. To do. For this reason, when Si is high, the thickness variation in cold rolling is caused. However, since Si exceeds 2.0%, the weldability is deteriorated, so the upper limit of Si is set to 2.0%.

このように、C:0.05〜0.22%、Si:0.3〜2.0%を含有する鋼種の冷延高張力鋼板用熱延鋼帯は、パーライト分率の変動を発生しやすく、冷間圧延後の板厚変動を引き起こすが、この鋼種に本発明を適用すると、パーライト変態を抑制することができ、パーライト分率の変動も小さいので、冷間圧延後の板厚変動を効果的に防止することができる。   As described above, the hot-rolled steel strip for cold-rolled high-tensile steel sheets of steel types containing C: 0.05 to 0.22% and Si: 0.3 to 2.0% generates fluctuations in the pearlite fraction. It is easy to cause fluctuations in sheet thickness after cold rolling, but if the present invention is applied to this steel type, pearlite transformation can be suppressed and fluctuations in pearlite fraction are small. It can be effectively prevented.

冷延高張力鋼板中に含有されるその他の鋼成分について説明する。   Other steel components contained in the cold-rolled high-tensile steel plate will be described.

Mn:1.0〜3.2%
Mnは強度、靭性を確保するために含有させるが、1.0%未満ではその効果が十分でなく、3.2%を超えると靭性や溶接性を劣化させるので、1.0〜3.2%とした。
Mn: 1.0-3.2%
Mn is contained to ensure strength and toughness, but if it is less than 1.0%, the effect is not sufficient, and if it exceeds 3.2%, the toughness and weldability are deteriorated, so 1.0 to 3.2. %.

P:0.025%以下
Pは鋼中に不可避的に含有される成分であって、加工性、耐食性を低下させる成分であるから含有させないようにすることが好ましいが、0.025%以下含有されていても許容できる範囲である。
P: 0.025% or less P is an ingredient inevitably contained in the steel, and is preferably a component that lowers workability and corrosion resistance. This is an acceptable range.

S:0.015%以下
SもPと同様に不可避的に含有される成分であって、加工性に悪影響を及ぼすので、含有させないようにするのが好ましいが、0.015%以下含有されていても許容できる範囲内である。
S: 0.015% or less S is an unavoidable component similar to P, and since it adversely affects workability, it is preferable not to contain it, but 0.015% or less is contained. Even within the allowable range.

Al:0.08%以下
Alは、脱酸剤として重要である。この目的のためにはAlは0.010%以上添加することが望ましい。一方、Alを過度に添加しても上記効果は飽和し、かえって鋼を脆化させるため、その上限を0.8%とした。Nb、Ti、Vは、微細な炭窒化物を析出して鋼を強化する。また、Mo、Cr、Co、Wは焼き入れ性を高めて鋼を強化する。この目的のためにはNb:0.005%以上、Ti:0.03%以上、V:0.005%以上、Mo:0.02%以上、Cr:0.1%以上、Co:0.01%以上、W:0.01%以上、の1種または2種以上を含有する必要がある。しかし、Nb:0.10%超、Ti:0.20%超、V:0.10%超、Mo:0.5%超、Cr:5.0%超、Co:5.0%超、W:5.0%超を添加しても、強度上昇の効果は飽和するのみならず、延性の低下をもたらすこととなる。
Al: 0.08% or less Al is important as a deoxidizer. For this purpose, it is desirable to add 0.010% or more of Al. On the other hand, even if Al is added excessively, the above effect is saturated and the steel is embrittled, so the upper limit was made 0.8%. Nb, Ti, and V precipitate fine carbonitrides and strengthen the steel. Mo, Cr, Co, and W enhance the hardenability and strengthen the steel. For this purpose, Nb: 0.005% or more, Ti: 0.03% or more, V: 0.005% or more, Mo: 0.02% or more, Cr: 0.1% or more, Co: 0.0. It is necessary to contain one or more of 01% or more and W: 0.01% or more. However, Nb: more than 0.10%, Ti: more than 0.20%, V: more than 0.10%, Mo: more than 0.5%, Cr: more than 5.0%, Co: more than 5.0%, Even if W: more than 5.0% is added, the effect of increasing the strength is not only saturated but also the ductility is decreased.

鋼はさらに、Mg、Zrの1種または2種を、単独または合計で0.0005%以上、0.02%以下含有することができる。Mg、Zrは、硫化物や酸化物の形状を制御して局部延性や穴拡げ性を向上させる。この目的のためには、これらの元素の1種または2種を単独または合計で0.0005%以上添加する必要がある。しかし、過度の添加は加工性を劣化させるため、その上限を0.02%とした。
Steel further, Mg, one or both of Zr, alone or in total 0.0005% or more, may contain 0.02% or less. Mg and Zr improve the local ductility and hole expansibility by controlling the shape of sulfides and oxides. For this purpose, it is necessary to add one or more 0.0005% to 2 alone or the sum of these elements. However, excessive addition deteriorates workability, so the upper limit was made 0.02%.

鋼はさらに、Cu:0.04%以上、2.0%以下、Ni:0.02%以上、1.0%以下、B:0.0003%以上、0.007%以下の1種または2種以上を含有することができる。これらの元素も焼入れ性を向上させて鋼の強度を高めることができるが、Cu:0.04%未満、Ni:0.02%未満、B:0.0003%未満では鋼を強化する効果が小さい。一方、Cu:2.0%超、Ni:1.0%超、B:0.007%超添加しても、強度上昇の効果は飽和するし、延性の低下をもたらすこととなる。   Further, the steel is Cu: 0.04% or more, 2.0% or less, Ni: 0.02% or more, 1.0% or less, B: 0.0003% or more, 0.007% or less, or 1 or 2 More than seeds can be contained. Although these elements can also improve the hardenability and increase the strength of the steel, Cu: less than 0.04%, Ni: less than 0.02%, B: less than 0.0003% has an effect of strengthening the steel. small. On the other hand, even if Cu: more than 2.0%, Ni: more than 1.0%, and B: more than 0.007%, the effect of increasing the strength is saturated and the ductility is lowered.

以下、実施例に基いて本発明を説明する。   Hereinafter, the present invention will be described based on examples.

表1に示す高張力鋼板成分の鋼片を加熱炉から1200℃で抽出し、熱延ラインにて粗圧延及び仕上圧延を行い、熱延鋼帯を製造した。仕上圧延温度は、鋼成分に基くAr3変態温度以上及び比較例としてそれ以下となるようにして実施した。   Steel strips of high-tensile steel plate components shown in Table 1 were extracted from a heating furnace at 1200 ° C., and subjected to rough rolling and finish rolling in a hot rolling line to produce a hot rolled steel strip. The finishing rolling temperature was carried out so as to be not lower than the Ar3 transformation temperature based on the steel component and lower than that as a comparative example.

熱間仕上圧延機の最終仕上圧延機(FT)を出た鋼帯は、ランアウトテーブルの冷却帯で水冷による一次冷却により急冷を行い、次いで二次冷却を行う2段階の冷却または一次、二次冷却とも均一冷速にて巻取温度まで冷却した。引き続き、巻取温度で巻き取って熱延コイルとした。熱間圧延の条件を表2、表3に示した。
得られた熱延鋼板のパーライト分率を求めるために、鋼板尾端部をナイタールエッチング液でエッチングした後、走査型電子顕微鏡にて板厚1/4〜3/4tの範囲の組織を観察し、パーライト分率を画像解析にて測定した。また、パーライト分率の変動差を求めるため、鋼板長手方向10mから等間隔に50点の組織観察を行い、パーライト分率の変動差として求めた。
熱延鋼板の平均パーライト分率、パーライト分率変動差及び板厚変動量を表2、表3に併せて記載した。
The steel strip that exits the final finishing mill (FT) of the hot finishing mill is rapidly cooled by primary cooling by water cooling in the cooling zone of the run-out table, and then cooled in two stages or primary and secondary cooling. It cooled to the coiling temperature with uniform cooling speed with cooling. Subsequently, the coil was wound at the coiling temperature to obtain a hot rolled coil. Tables 2 and 3 show the hot rolling conditions.
In order to obtain the pearlite fraction of the obtained hot-rolled steel sheet, the steel tail end is etched with a nital etching solution, and then the structure in the range of the thickness 1/4 to 3/4 t is observed with a scanning electron microscope. The pearlite fraction was measured by image analysis. In addition, in order to obtain the variation difference of the pearlite fraction, 50 points of the structure were observed at regular intervals from 10 m in the longitudinal direction of the steel sheet, and the variation difference of the pearlite fraction was obtained.
The average pearlite fraction, pearlite fraction fluctuation difference, and plate thickness fluctuation amount of the hot-rolled steel sheet are shown in Tables 2 and 3 together.

この熱延コイルを用いて、酸洗した後冷間圧延ラインにて圧下率40%以上の冷間圧延を実施し、冷延鋼板を製造した。   Using this hot-rolled coil, after pickling, cold rolling with a rolling reduction of 40% or more was performed in a cold rolling line to produce a cold-rolled steel sheet.

表2に示す例は、表1に示す鋼種Aを用いて、Lの影響について試験した例であって、表2に示すように、本発明の要件を満たす本発明鋼の実施例は、いずれも冷間圧延後の板厚変動量が50μm以下と小さかったが、Lが20μmを超える比較鋼は、いずれも板厚変動量が210μmを超えていて良好な板厚変動量を示さなかった。   The example shown in Table 2 is an example in which the effect of L was tested using the steel type A shown in Table 1. As shown in Table 2, the examples of the steel of the present invention satisfying the requirements of the present invention are as follows. Although the plate thickness variation after cold rolling was as small as 50 μm or less, all the comparative steels with L exceeding 20 μm had a plate thickness variation of over 210 μm and did not show good plate thickness variation.

表3に示す例は、表1に示すA以外の鋼種を用いて仕上圧延温度、巻取温度及びLの影響について試験した例であって、本発明の要件を満たす本発明鋼の例は、いずれも板厚変動量が小さく良好であった。これに対して、比較例であるサンプル記号B1は、圧延仕上温度(FT)が高温すぎるため、Lも20μmを超えていて、パーライト分率変動量も大きく、そして板厚変動量が大きく不良となった。   The example shown in Table 3 is an example in which the effects of the finish rolling temperature, the coiling temperature, and L are tested using steel types other than A shown in Table 1, and examples of the steel of the present invention that satisfies the requirements of the present invention are as follows: In all cases, the plate thickness variation was small and good. On the other hand, the sample symbol B1, which is a comparative example, has a rolling finish temperature (FT) that is too high, so that L is more than 20 μm, the pearlite fraction variation is large, and the plate thickness variation is large and defective. became.

また、圧延仕上温度がAr3以下のサンプル記号J3は、パーライト分率変動差が大きく、板厚変動が大きかった。このように、圧延仕上温度がAr3以下となると未結晶オーステナイト粒界が圧延方向に並び、これによって粒界にCが偏析するため、パーライト分率の変動が起こりやすくなって、板厚変動が大きくなったものと考えられる。   In addition, the sample symbol J3 having a rolling finishing temperature of Ar3 or lower had a large pearlite fraction variation difference and a large plate thickness variation. In this way, when the rolling finishing temperature is Ar3 or lower, the amorphous austenite grain boundaries are aligned in the rolling direction, and C segregates at the grain boundaries, so that the pearlite fraction tends to fluctuate and the plate thickness fluctuates greatly. It is thought that it became.

サンプル記号F3は、巻取温度(CT)が650℃と高いため、巻取後もLが増加しつづけて非常に大きな値となり、平均パーライト分率が増加し、パーライト変動差が高くて、板厚変動量が大きく生じた。これに対して、巻取温度(CT)が300℃と低すぎるサンプル記号K2では、局所的にMs点以下となった部分がマルテンサイト変態を起こし、局部的に硬くなるため、パーライト変動差は小さいが、板厚変動量は大きくなった。   The sample symbol F3 has a winding temperature (CT) as high as 650 ° C., so that L continues to increase after winding and becomes a very large value, the average pearlite fraction increases, the pearlite fluctuation difference is high, A large amount of thickness variation occurred. On the other hand, in the sample symbol K2 where the coiling temperature (CT) is too low as 300 ° C., the portion where the Ms point or less is locally generated causes martensitic transformation and becomes locally hard. Although it was small, the plate thickness fluctuation amount became large.

また、サンプル記号C1、F2、及びI2は、いずれもLが20μmを超えていて、パーライト分率の変動差が10%を超え、板厚変動量が大きかった。   Further, in all of the sample symbols C1, F2, and I2, L exceeded 20 μm, the variation difference of the pearlite fraction exceeded 10%, and the plate thickness variation amount was large.

さらに、鋼成分中のC量及びMn量が高い鋼mについてのサンプル記号m1の比較鋼では、C量が高いためパーライトの生成が促進され、巻取後の温度に敏感になるため、パーライト分率の変動を発生しやすく、その変動量が10%を超え、板厚変動が大きくなった。そして、鋼成分中のSi量が高い鋼n1についてのサンプル記号n1の比較鋼では、Siが高いためベイナイト生成速度が低下し、相対的にCの拡散が起こって、パーライト分率の変動を引き起こすためパーライト分率の変動量が10%を超え、板厚変動量が大きかった。   Furthermore, in the comparative steel of the sample symbol m1 for steel m having a high C content and Mn content in the steel component, since the C content is high, the production of pearlite is promoted and the temperature after winding becomes sensitive. The fluctuation of the rate was easy to occur, the fluctuation amount exceeded 10%, and the fluctuation of the plate thickness became large. And in the comparative steel of the sample symbol n1 for the steel n1 having a high Si content in the steel component, since the Si is high, the bainite formation rate is lowered, and C diffusion occurs relatively, causing fluctuations in the pearlite fraction. Therefore, the fluctuation amount of the pearlite fraction exceeded 10%, and the fluctuation amount of the plate thickness was large.

以上の実施例から明らかなように、比較例では板厚変動量が200μmを超えていたが、本発明で規定する要件を満たす発明例の冷延高張力鋼板用熱延鋼帯は、これを冷間圧延で全長に亘り、板厚変動量が100μm以下であり、特に鋼帯尾端部での板厚変動量の小さい冷延高張力鋼板とすることができ、板厚変動部の除去による歩留落ちを発生させることがない。   As is clear from the above examples, in the comparative example, the thickness fluctuation amount exceeded 200 μm, but the hot-rolled steel strip for cold-rolled high-tensile steel sheet of the invention example that satisfies the requirements specified in the present invention is By cold rolling, the thickness fluctuation amount is 100 μm or less over the entire length, and in particular, a cold-rolled high-tensile steel plate with a small thickness fluctuation amount at the tail end of the steel strip can be obtained, and by removing the thickness fluctuation part No yield loss occurs.

Figure 0004767652
Figure 0004767652

Figure 0004767652
Figure 0004767652

Figure 0004767652
Figure 0004767652

熱延鋼帯を2タンデム冷間圧延機(2TCM)で冷間圧延した際の圧延機出側の板厚変動を示す図である。It is a figure which shows the plate | board thickness fluctuation | variation by the side of a rolling mill at the time of cold-rolling a hot-rolled steel strip with a 2 tandem cold rolling mill (2TCM). 図1の板厚変動部を拡大して示した図である。It is the figure which expanded and showed the plate | board thickness fluctuation | variation part of FIG. 熱延鋼帯の軟化部および正常部のミクロ組織の顕微鏡写真である。It is a microscope picture of the microstructure of the softened part and normal part of a hot-rolled steel strip. L/μmと板厚変動量/μmとの関係を示す図である。It is a figure which shows the relationship between L / micrometer and plate | board thickness variation | change_quantity / micrometer.

Claims (7)

鋼帯の成分が、質量%で、
C:0.05〜0.22%、
Si:0.3〜2.0%、
Mn:1.3〜3.2%、
P:0.025%以下、
S:0.015%以下、
Al:0.08%以下、
を含有し、残部が不可避不純物を除きFeであり、熱延コイルの尾端から少なくとも200m以下の範囲が、ベイナイト主体の組織であって、組織中のパーライト分率が15%以下であり、パーライト分率の長手方向の変動差が10%以下であることを特徴とする冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯。
The steel strip component is mass%,
C: 0.05 to 0.22%,
Si: 0.3 to 2.0%,
Mn: 1.3-3.2%
P: 0.025% or less,
S: 0.015% or less,
Al: 0.08% or less,
Containing the balance Ri Fe der except inevitable impurities, at least 200m below the range of the tail of the hot-rolled coil, a bainite main tissue, pearlite fraction in tissues is 15% or less, A hot-rolled steel strip for cold-rolled high-tensile steel sheet having a small variation in sheet thickness after cold rolling, wherein the difference in the longitudinal direction of the pearlite fraction is 10% or less.
鋼帯がさらに、質量%で、
Nb:0.005〜0.10%以下、
Ti:0.03〜0.20%以下、
V:0.005〜0.10%以下、
Mo:0.02〜0.5%以下、
Cr:0.1〜5.0%以下、
Co:0.01〜5.0%以下、
W:0.01〜5.0%以下、
の1種または2種以上を含有することを特徴とする請求項に記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯。
The steel strip is further mass%,
Nb: 0.005 to 0.10% or less,
Ti: 0.03 to 0.20% or less,
V: 0.005 to 0.10% or less,
Mo: 0.02 to 0.5% or less,
Cr: 0.1 to 5.0% or less,
Co: 0.01 to 5.0% or less,
W: 0.01 to 5.0% or less,
The hot-rolled steel strip for cold-rolled high-tensile steel sheet having a small variation in sheet thickness after cold rolling according to claim 1, comprising one or more of the following.
鋼帯がさらに、質量%で、
Mg、Zrの1種または2種を夫々0.0005%以上、0.05%以下含有することを特徴とする請求項または請求項のいずれかに記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯。
The steel strip is further mass%,
Mg, Zr 1, two or respectively 0.0005% or more, the thickness variation after the cold rolling according to claim 1 or claim 2, characterized in that it contains 0.05% or less Is a hot-rolled steel strip for cold-rolled high-tensile steel.
鋼帯がさらに、質量%で、
Cu:0.04〜2.0%以下、
Ni:0.02〜1.0%以下、
B:0.0003〜0.007%以下、
の1種または2種以上を含有することを特徴とする請求項から請求項のいずれかに記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯。
The steel strip is further mass%,
Cu: 0.04 to 2.0% or less,
Ni: 0.02 to 1.0% or less,
B: 0.0003 to 0.007% or less,
One or cold plate thickness variation is less cold-rolled high strength steel sheet for hot-rolled steel strip after rolling according to any one of claims 1 to 3, characterized in that it contains two or more.
引張り強さ590MPa以上であることを特徴とする請求項1から請求項のいずれかに記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯。 The hot-rolled steel strip for cold-rolled high-tensile steel sheet having a small thickness variation after cold rolling according to any one of claims 1 to 4 , wherein the tensile strength is 590 MPa or more. 鋼片を仕上げ圧延完了温度(FT)がAr3以上となるように熱間圧延し、巻取温度迄冷却する際に、冷却工程での鋼帯温度(T)の経時変化が、下記式(1)を用いて算出されるLが20μm以下を満たす条件で冷却することを特徴とする請求項1から請求項のいずれかに記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯の製造方法。
Figure 0004767652
上記式中、t:仕上げ圧延出側以降の時間(秒)、t600:仕上げ圧延完了時刻を0とし、600℃到達までの時間(秒)、T:仕上げ圧延以降の鋼帯温度(℃)。
When the steel slab is hot-rolled so that the finish rolling completion temperature (FT) becomes Ar3 or more and cooled to the coiling temperature, the change over time in the steel strip temperature (T) in the cooling step is expressed by the following formula (1). The cold-rolled high-tensile steel sheet having a small thickness variation after cold rolling according to any one of claims 1 to 5 , wherein L is calculated under a condition satisfying L of 20 µm or less. Manufacturing method for hot-rolled steel strips.
Figure 0004767652
In the above formula, t: time after finishing rolling delivery (seconds), t 600 : finishing rolling completion time 0, time to reach 600 ° C. (seconds), T: steel strip temperature after finishing rolling (° C.) .
400〜600℃の温度範囲にて巻取を行うことを特徴とする請求項記載の冷間圧延後の板厚変動が小さい冷延高張力鋼板用熱延鋼帯の製造方法。 The method for producing a hot-rolled steel strip for a cold-rolled high-tensile steel sheet having a small thickness variation after cold rolling according to claim 6 , wherein winding is performed in a temperature range of 400 to 600 ° C.
JP2005303350A 2005-10-18 2005-10-18 Hot-rolled steel strip for cold-rolled high-tensile steel sheet with small thickness variation after cold rolling and method for producing the same Active JP4767652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303350A JP4767652B2 (en) 2005-10-18 2005-10-18 Hot-rolled steel strip for cold-rolled high-tensile steel sheet with small thickness variation after cold rolling and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005303350A JP4767652B2 (en) 2005-10-18 2005-10-18 Hot-rolled steel strip for cold-rolled high-tensile steel sheet with small thickness variation after cold rolling and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007111708A JP2007111708A (en) 2007-05-10
JP4767652B2 true JP4767652B2 (en) 2011-09-07

Family

ID=38094361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303350A Active JP4767652B2 (en) 2005-10-18 2005-10-18 Hot-rolled steel strip for cold-rolled high-tensile steel sheet with small thickness variation after cold rolling and method for producing the same

Country Status (1)

Country Link
JP (1) JP4767652B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8212511B2 (en) 2008-10-22 2012-07-03 Kelsey-Hayes Company Method and apparatus for limiting torque in an electric drive motor
JP4978741B2 (en) * 2010-05-31 2012-07-18 Jfeスチール株式会社 High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue resistance and method for producing the same
KR20140110996A (en) * 2012-01-06 2014-09-17 제이에프이 스틸 가부시키가이샤 High strength hot-rolled steel sheet and method for producing same
JP5928226B2 (en) * 2012-07-31 2016-06-01 Jfeスチール株式会社 Manufacturing method of high-strength steel sheets with excellent edge quality and gauge uniformity
MX2017015332A (en) 2015-05-29 2018-03-28 Jfe Steel Corp Hot-rolled steel sheet, full hard cold-rolled steel sheet, and method for producing hot-rolled steel sheet.
JP6086134B1 (en) * 2015-08-24 2017-03-01 Jfeスチール株式会社 Structural steel with excellent ethanol pitting resistance
JP6892842B2 (en) * 2017-06-29 2021-06-23 Jfeスチール株式会社 Material for high-strength cold-rolled steel sheet Hot-rolled steel sheet and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241791A (en) * 1996-03-07 1997-09-16 Nippon Steel Corp High strength hot rolled steel plate excellent in hole spreadability by continuous hot rolling process and its production

Also Published As

Publication number Publication date
JP2007111708A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP5200653B2 (en) Hot rolled steel sheet and method for producing the same
JP4605100B2 (en) High strength hot rolled steel sheet and method for producing the same
KR101797383B1 (en) High strength hot rolled steel sheet having low deviation of mechanical property and excellent surface quality and method for manufacturing the same
JP4767652B2 (en) Hot-rolled steel strip for cold-rolled high-tensile steel sheet with small thickness variation after cold rolling and method for producing the same
JP2006316301A (en) High tensile strength hot rolled steel sheet, and method for producing the same
US11473159B2 (en) Hot rolled steel sheet and method for producing same
US11512359B2 (en) Hot rolled steel sheet and method for producing same
JP4539484B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP2014031538A (en) Hot-rolled steel sheet and method for producing the same
JP7317100B2 (en) hot rolled steel
JP7111246B2 (en) hot rolled steel
JP2008189985A (en) Hot rolled steel sheet having local ductile performance, and method for producing the same
US6755919B2 (en) Stainless steel tube for automobile structure
JP6252499B2 (en) Manufacturing method of hot-rolled steel strip, cold-rolled steel strip and hot-rolled steel strip
JP4158737B2 (en) Manufacturing method of fine grain hot rolled steel sheet
JP4901693B2 (en) Manufacturing method of cold-rolled steel sheet with excellent deep drawability with extremely small material variation
JP2008189984A (en) Hot rolled steel sheet, and method for producing the same
JP4192857B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5895772B2 (en) High-strength hot-rolled steel sheet with excellent appearance and excellent isotropic toughness and yield strength and method for producing the same
JP2012041611A (en) Method for manufacturing high strength steel sheet excellent in stability of mechanical property
WO2021005971A1 (en) Hot rolled steel sheet
KR102020387B1 (en) High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same
RU2379361C1 (en) Method of cold-rolled sheet products manufacturing for enameling
US20140102604A1 (en) Cold rolled recovery annealed mild steel and process for manufacture thereof
JP4803210B2 (en) Manufacturing method of fine grain hot rolled steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110615

R151 Written notification of patent or utility model registration

Ref document number: 4767652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350